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Résumé

Ce document synthétise mes travaux de recherche depuis la fin de ma thèse. Les deux parties
correspondent à des thèmes très largement indépendants. La première porte sur la statistique
non paramétrique, plus précisément sur les questions relatives aux méthodes de type plus proches
voisins, que ce soit en dimension finie ou infinie. La seconde concerne la simulation et l’estimation
d’événements rares par des méthodes Monte-Carlo en interaction.

Méthodes de plus proches voisins

La méthode dite des plus proches voisins est l’une des techniques les plus classiques en estima-
tion non paramétrique. Que ce soit en classification supervisée, en régression ou en estimation
de la densité, l’idée est d’estimer le label Y , la fonction de régression r ou la densité f en un
point X via une moyennisation sur ses voisins les plus proches dans l’échantillon d’apprentissage
Dn = (Xi, Yi)1≤i≤n.

Si les propriétés de cette règle très simple sont bien connues lorsque la variable explicative X est
à valeurs dans Rd, il n’en va pas de même lorsqu’elle vit dans un espace de dimension infinie.
On parle alors de statistiques pour données fonctionnelles (courbes, etc.), domaine connaissant un
intérêt croissant depuis une vingtaine d’années grâce aux puissances de calcul à disposition.

Dans le chapitre 1, basé sur l’article [31], nous montrons que la consistance universelle de la méth-
ode des plus proches voisins, vraie en dimension finie, ne l’est plus en dimension infinie et donnons
une condition suffisante de consistance dans ce cadre.

Ceci étant acquis, le chapitre 2 (référence [13]) prouve que sous des hypothèses raisonnables, les
vitesses de convergence en dimension infinie sont typiquement logarithmiques, i.e. en (log n)−α, et
non plus en n−α comme en dimension finie. Ce sont à notre connaissance les premières vitesses à
avoir été exhibées dans un cadre fonctionnel.

Enfin, en dimension finie, le chapitre 3 montre la puissance des méthodes d’ensemble en prouvant
qu’une règle aussi fruste que celle du plus proche voisin, lorsqu’elle est agrégée, permet d’atteindre
des vitesses optimales de convergence. Cette section correspond à un résumé de l’article [12].

Méthodes Monte-Carlo pour les événements rares

Les méthodes Monte-Carlo ont pour principe général de recourir à la simulation pour estimer des
quantités hors d’atteinte via des techniques analytiques classiques. Néanmoins, lorsque l’événement
à estimer est de probabilité très faible, disons moins d’une chance sur un million, mais d’importance
pratique cruciale, la procédure Monte-Carlo standard devient trop imprécise et demande donc à
être affinée. Dans cette situation, on distingue généralement deux types d’approches : échantillon-
nage préférentiel d’un côté (importance sampling), méthodes multi-niveaux de l’autre (multilevel
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splitting). C’est de cette seconde famille dont nous discutons ici.

Les contributions d’ordre méthodologique sont résumées dans le chapitre 4. Le premier article sur
ce thème (voir [27]) porte sur les événements rares pour des processus stochastiques unidimen-
sionnels. Dans ce cadre, nous avons proposé un nouvel algorithme, dit multi-niveaux adaptatif,
et démontré son optimalité en terme de variance asymptotique d’estimation. La version de cet
algorithme dans un cadre statique, typiquement un événement rare pour un vecteur aléatoire de
grande dimension, a ensuite été proposée et étudiée dans [23]. Elle fait l’objet de la section 4.3 du
présent document. Enfin, une variante permettant d’obtenir des résultats non asymptotiques est
présentée en section 4.4. Elle est basée sur l’article [64].

L’algorithme de la section 4.3, bien que très général, a été initialement proposé pour répondre à
des questions issues de la protection de données numériques par tatouage (watermarking) et par
traçage de traître (fingerprinting). Il s’agit alors de déterminer très précisément la fiabilité d’un
système en termes de probabilités de fausse alarme. Ces applications, présentées en sections 5.1
et 5.2, correspondent aux publications [23, 26, 30]. Les problèmes de dénombrement en grande
dimension représentent un autre champ d’application de nos méthodes : en satisfiabilité, on veut
par exemple déterminer les éventuelles solutions d’un très grand système d’équations booléennes.
C’est ce qu’explique la section 5.3, basée sur l’article [29].

Dans un cadre non plus statique mais dynamique, la variante proposée en section 4.4 a été ap-
pliquée à la simulation de trajectoires réactives en dynamique moléculaire. L’enjeu est cette fois
d’étudier aussi finement que possible le passage d’un état métastable à un autre. Le chapitre 6
expose succinctement ce champ applicatif, plus de détails étant disponibles dans l’article [28].

Enfin, l’annexe A présente un résultat non asymptotique sur l’approximation particulaire de mod-
èles de Feynman-Kac non normalisés. Par rapport à la présentation générale faite dans l’article [24],
nous insistons surtout ici sur son application en terme d’efficacité pour l’estimation d’événements
rares par techniques multi-niveaux.
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Part I

Nearest Neighbor Rules





Chapter 1

Consistency of the Functional k-Nearest

Neighbor Rule

1.1 Introduction

In many experiments, scientists and practitioners often collect samples of curves and other func-
tional observations. For instance, curves arise naturally as observations in the investigation of
growth, in climate analysis, in food industry or in speech recognition; Ramsay and Silverman [96]
discuss other examples. The aim of the present chapter is to investigate whether the classical non-
parametric classification rule based on k-nearest neighbor (as discussed, for example, in Devroye,
Györfi and Lugosi [46]) can be extended to classify functions.

Classical classification deals with predicting the unknown nature Y , called a label, of an observation
X with values in Rd (see Boucheron, Bousquet and Lugosi [17] for a survey). Both X and Y are
assumed to be random, and the distribution of (X, Y ) just describes the frequency of encountering
particular pairs in practice. We require for simplicity that the label only takes two values, say
0 and 1. Note that, in this framework, the label Y is random, and this casts the classification
problem into a bounded regression problem.

The statistician creates a classifier g : Rd → {0, 1} which represents his guess of the label of X.
An error occurs if g(X) 6= Y , and the probability of error for a particular classifier g is

L(g) = P (g(X) 6= Y ) .

It is easily seen that the Bayes rule

g∗(x) =

{
0 if P (Y = 0|X = x) ≥ P (Y = 1|X = x)
1 otherwise,

(1.1)

is the optimal decision, in the sense that, for any decision function g : Rd → {0, 1},
L∗ = P (g∗(X) 6= Y ) ≤ P (g(X) 6= Y ) .

Unfortunately, the Bayes rule depends on the distribution of (X, Y ), which is unknown to the
statistician. The problem is thus to construct a reasonable classifier gn based on independent
observations (X1, Y1), . . . , (Xn, Yn) with the same distribution as (X, Y ).

Among the various ways to define such classifiers, one of the most simple and popular is probably
the k−nearest neighbor rule given by

gn(x) =

{
0 if

∑n
i=1wi1{Yi=0} ≥

∑n
i=1wi1{Yi=1}

1 otherwise,
(1.2)
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where wi = 1/k if Xi is amongst the k nearest neighbors of x, and wi = 0 elsewhere. This simple
rule dates back to the fifties and the seminal papers of Fix and Hodges [57, 58]. For a complete and
updated list of references, we refer the reader to the monograph by Devroye, Györfi and Lugosi
[46], Chapters 5 and 11.

Now, if we are given any classification rule gn based on the training data (X1, Y1), . . . , (Xn, Yn),
the best we can expect from the classification function gn is to achieve the Bayes error probability
L∗ = L(g∗). Generally, we cannot hope to obtain a function that exactly achieves the Bayes error
probability, and we rather require that the error probability

Ln = P (gn(X) 6= Y |(X1, Y1), . . . , (Xn, Yn))

gets arbitrarily close to L∗ with large probability. More precisely, a classification rule gn is called
consistent if

ELn = P (gn(X) 6= Y ) → L∗ as n → ∞.

A decision rule can be consistent for a certain class of distributions of (X, Y ), but may not be
consistent for others. On the other hand, it is clearly desirable to have a rule that gives good
performance for all distributions. With this respect, a decision rule is called universally consistent
if it is consistent for any distribution of the pair (X, Y ). When X is Rd-valued, equipped with any
vector norm, it is known from Stone [110] that the conditions k → ∞ and k/n → 0 as n → ∞
ensure that the k−nearest neighbor rule (1.2) is universally consistent.

In this chapter, we wish to investigate consistency properties of the k−nearest neighbor rule (1.2)
in the setting of random functions, that is when X takes values in a metric space (F , d) instead
of Rd. In this general framework, the optimal decision remains the Bayes one g∗ : F → {0, 1} as
in (1.1). Probably due to the difficulty of the problem, and despite nearly unlimited applications,
the theoretical literature on regression and classification in infinite dimensional spaces is relatively
recent. Key references on this topic are Rice and Silverman [97], Kneip and Gasser [77], Kulkarni
and Posner [80], Ramsay and Silverman [96], Bosq [15], Ferraty and Vieu [56], Diabo-Niang and
Rhomari [38], Hall, Poskitt and Presnell [67], Abraham, Cornillon, Matzner-Løber and Molinari
[2], Antoniadis and Sapatinas [5], and Biau, Bunea and Wegkamp [11]. We also mention that
Cover and Hart [36] consider classification of Banach space valued elements as well, but they do
not establish consistency.

The classification rule (1.2) is fed with infinite-dimensional observations as inputs. In particular, it
does not require any preliminary dimension reduction or model selection step. On the other hand,
in the so-called “filtering approach”, one first reduces the infinite dimension of the observations
by considering only the first m coefficients of the data on an appropriate basis, and then perform
finite dimensional classification. For more on this alternative approach, we refer the reader to Hall,
Poskitt and Presnell [67], Abraham, Cornillon, Matzner-Løber and Molinari [2], Biau, Bunea and
Wegkamp [11], and the references therein.

As a first contribution, we show in Section 1.2.1 that the universal consistency result valid for the
rule (1.2) in the finite dimensional case when Rd is equipped with a vector norm, breaks down as
soon as an arbitrary distance is allowed. More precisely, we are able to exhibit a distance on [0, 1]
and a distribution of (X, Y ) such that the k−nearest neighbor rule (1.2) fails to be consistent.
This negative finding makes it legitimate to put some restrictions both on the functional space and
the distribution of (X, Y ) in order to obtain the desired consistency property. Sufficient conditions
of this sort are given in Section 1.2.2. Finally, these conditions are discussed in Section 1.3.

Arnaud Guyader Habilitation
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1.2 A Consistency Result

Let us first introduce a few notations for the abstract mathematical model. Let X be a random
variable taking values in a metric space (F , d) and let Y be a random label with values 0 and 1.
The distribution of the pair (X, Y ) is completely specified by µ, the probability measure of X and
by r, the regression function of Y on X. That is, for any Borel-measurable set A ⊂ F ,

µ(A) = P(X ∈ A)

and, for any x ∈ F , r(x) = P(Y = 1|X = x).

1.2.1 Separability of the Metric Space

To generalize Stone’s result, the first natural assumption is to require the separability of the metric
space (F , d). The following example shows that this condition is necessary even in finite dimension.

2

10 x x
′

1

1

Figure 1.1: A pathological distance on [0, 1].

Example: A pathological distance on [0, 1]
Let us define the distance d on [0, 1] as follows (see also figure 1.1):

d(x,x′) =





0 if x = x
′

1 if xx′ = 0 and x 6= x
′

2 if xx′ 6= 0 and x 6= x
′

Since the triangle inequality holds, d is a distance on [0, 1]. But ([0, 1], d) is clearly not separable.
Let us now define µ the probability distribution of X on [0, 1] as follows: with probability one half,
one picks the origin 0; with probability one half, one picks a point uniformly in [0, 1]. In other
words, if λ[0,1] denotes the Lebesgue measure on [0, 1] and δ0 the Dirac measure at the origin:

µ =
1

2
δ0 +

1

2
λ[0,1]

The way to attribute a label Y to a point x in [0, 1] is deterministic: if x = 0 then y = 0, otherwise
y = 1. As Y is a deterministic function of X, the Bayes risk L∗ is equal to zero. Nevertheless, it
is intuitively clear that the asymptotic probability of error with the k−nearest neighbor rule does
not converge to 0:

lim
n→∞

E[Ln] =
1

2
> L∗ = 0.

So the k−nearest neighbor classifier is not weakly consistent in this context, although we are in
finite dimension.

In general metric spaces, the separability assumption is sufficient to have convergence of the nearest
neighbor to the point of interest, as noticed by Cover and Hart [36]. As stated in the following
lemma, this is also true for the k-th nearest neighbor, provided that k/n goes to zero when n goes

Habilitation Arnaud Guyader
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to infinity. First, a few notations are in order. Let Bx,δ denote the open ball in F centered at x

of radius δ. Then we let the support S(µ) of the probability measure µ of X be defined as the
collection of all x with µ(Bx,δ) > 0 for all δ > 0. Finally, we denote X(k)(x) the k-th nearest
neighbor of x among all X1, . . . ,Xn.

Lemma 1 If x is in the support of µ and limn→∞ k/n = 0, then limn→∞ d(X(k)(x),x) = 0 with
probability one. If X is independent of the data and has probability measure µ, then with probability
one

lim
n→∞

d(Xk(X),X) = 0.

We refer to Devroye, Györfi and Lugosi [46], Lemma 5.1, for the proof. The proof there is written
in Rd equipped with the Euclidean norm, but the argument still works in any separable metric
space. Consequently, from now on, we will assume that (F , d) is a separable metric space.

1.2.2 The Lebesgue-Besicovitch Condition

As we will see later, separability of the metric space is not a sufficient assumption for consistency
of the k−nearest neighbor classifier. It is also necessary to put a regularity assumption on r with
respect to µ. More precisely, we will require a differentiation hypothesis that will be called “the
Lebesgue-Besicovitch property” (LB condition).

Assumption 1 (Lebesgue-Besicovitch (LB) property) We say that the LB property is ver-
ified if for every ε > 0

lim
δ→0

µ

{
x ∈ F :

1

µ(Bx,δ)

∫

B
x,δ

|r(x′)− r(x)| dµ(x′) > ε

}
= 0.

Another formulation is the following convergence in µ-probability:

1

µ(Bx,δ)

∫

B
x,δ

|r − r(X)| dµ −−−→
δ→0

0 in µ-probability.

We will discuss this condition in the final section. Let us now give the main result of this chapter.

Theorem 1 If (F , d) is separable and if the LB property is fulfilled, then the k−nearest neighbor
classifier is consistent

ELn −−−→
n→∞

L∗.

Remark. In finite dimension, Devroye already mentions in [45] that the LB property plays a key
role for nearest neighbor estimates as well as for kernel estimates.

1.3 Discussion

1.3.1 Continuity of the Regression Function

If r is continuous on (F , d), then obviously the LB condition is fulfilled. However, intuitively,
continuity is not necessary, since the key idea of nearest neighbor classification is the following:
to guess the label Y of a new point X, just average the labels Yi for points Xi around X. The
continuous version which ensures the validity of this averaging method has an integral form: this

Arnaud Guyader Habilitation
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is exactly the LB property.

We will illustrate this point through an example where r is nowhere continuous, but where the
k-nearest neighbor classifier is still consistent anyway. Before that, we formulate a stronger but
more tractable assumption than the LB property, called the “µ-continuity property”.

Assumption 2 (µ-continuity property) We say that the µ-continuity property is verified if for
every ε > 0, for µ almost every x ∈ F

lim
δ→0

µ {x′ ∈ F : |r(x′)− r(x)| > ε ∩ d(x,x′) < δ}
µ {x′ ∈ F : d(x,x′) < δ} = 0.

This is a kind of continuity of r with respect to the measure µ, hence the name µ-continuity
(see figure 1.2 for an illustration). Another equivalent definition is the following almost sure
convergence:

1

µ(Bx,δ)

∫

B
x,δ

1{|r−r(X)|>ε} dµ −−−→
δ→0

0 µ− a.s.

r(x)
δ

ε

r

x

Figure 1.2: µ−continuity: another way to see the Lebesgue-Besicovitch property.

Lemma 2 (µ-continuity ⇒ Lebesgue-Besicovitch) If the regression function r is µ-continuous,
then the LB property is verified.

One can in fact see that µ-continuity property is equivalent to almost sure convergence in the
Besicovitch condition:

1

µ(Bx,δ)

∫

B
x,δ

|r − r(X)| dµ −−−→
δ→0

0 µ− a.s.

As we will see in the following example, the µ−continuity property 2 may be easier to check than
the LB property.

Example: Trajectories of a Poisson process on [0, 1]
F is the space of all possible realizations of a Poisson process of intensity 1 between initial time 0
and final time 1. Its elements are denoted x = (xt)0≤t≤1 or x

′ = (x′t)0≤t≤1. The distance on F is
derived from the L1 norm:

d(x,x′) = ‖x− x
′‖1 =

∫ 1

0
|xt − x′t|dt

Habilitation Arnaud Guyader
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x = (xt)0≤t≤1

1

t

1

2

3

4 x1 = 4

Figure 1.3: A trajectory x = (xt)0≤t≤1 of a Poisson process.

The metric space (F , ||.||1) is obviously separable: consider for example the trajectories that jump
at rational times between time 0 and time 1. This is a countable set, and for every δ > 0 and
every x ∈ F , there exists such a trajectory in the ball Bx,δ.

Given a trajectory x, its label is deterministic and depends only on its terminal point: if x1 is
even, then y = 0, otherwise y = 1. As a consequence, the Bayes risk L∗ is null. Moreover, it is
readily seen that r is nowhere continuous. Indeed, let us fix x ∈ F , δ ∈ (0, 1), and consider x′ ∈ F
defined as follows (see figure 1.4):

x′(t) =

{
x(t) if 0 ≤ t ≤ 1− δ
x(t) + 1 if 1− δ < t ≤ 1

So x
′ is at distance δ from x but has not the same label as x: since δ is arbitrary, this proves that

r is not continuous at point x. Since x is arbitrary, this proves that r is nowhere continuous.

d(x,x′) = ‖x− x
′‖1 = δ

1

1

2

3

4

δ

x
′

x1 = 1 ⇒ y = 1

x′
1 = 2 ⇒ y′ = 0

x

Figure 1.4: The trajectories x and x
′ do not have the same label.

However, we can prove that the k-nearest neighbor rule is consistent by checking that the LB
property is fulfilled. In this aim, we make use of the more tractable µ-continuity property. Let us
fix ε > 0 and x ∈ F . The aim is to show that

lim
δ→0

µ ({|r(x′)− r(x)| > ε} ∩ Bx,δ)

µ(Bx,δ)
= 0.

The following result provides some useful upper-bound.
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Lemma 3 (The ratio of small balls) If the trajectory x has no jump, then

µ ({|r(x′)− r(x)| > ε} ∩ Bx,δ)

µ(Bx,δ)
≤ eδ − 1

1 + δ
.

If the trajectory x has m jumps, then

µ ({|r(x′)− r(x)| > ε} ∩ Bx,δ)

µ(Bx,δ)
≤ C2(x)

C1(x)

[
sinh(δ)

sinh( δ
m2 )

]m

sinh(2δ),

where the constants C1(x) and C2(x) do not depend on δ.

So, whatever the number of jumps of x, it turns out that

lim
δ→0

µ ({|r(x′)− r(x)| > ε} ∩ Bx,δ)

µ(Bx,δ)
= 0.

As a consequence, the k-nearest neighbor rule is consistent, although r is nowhere continuous.

1.3.2 The Lebesgue-Besicovitch Condition in Infinite Dimension

In this section, we discuss the LB property. First of all, let us say a word about finite dimension.
In this case, if Rd is equipped with a vector norm, the crucial result is the following one (see for
instance [53], Chapter 1.7, pp 43-44).

Theorem 2 (Lebesgue-Besicovitch differentiation Theorem) Let µ be a Radon measure on
R

d and f ∈ Lp
loc(R

d), then

lim
δ→0

1

µ(Bx,δ)

∫

B
x,δ

|f − f(x)|p dµ = 0

for µ almost every x.

In a classification context, µ is a probability measure on Rd and r is bounded by 1, so this result
can be directly applied. Devroye already noted in [45] that this is another way to prove Stone’s
Theorem.

Corollary 1 (Stone’s Theorem) In (Rd, ||.||), the k-nearest neighbor classifier is universally
consistent.

The LB condition also appears in recent papers on connected problems: Abraham, Biau and Cadre
[1] use it for function classification with the kernel rule. Dabo-Niang and Rhomari [38] require it
for nonparametric regression estimation in general metric spaces.

Now, concerning the LB property in infinite dimension, there have been several attempts to gener-
alize this kind of result in general metric (separable) spaces. Interestingly, this topic has been in-
vestigated by several authors in geometric measure theory, see for example Federer [55], Preiss [93],
and Preiss and Tišer [94]. Unlike the situation in (Rd, ‖.‖), the LB property is no longer automat-
ically fulfilled in infinite dimension.

In [93], Preiss introduces a rather technical notion, called the σ-finite dimensionality of a metric
on a space. He shows that it is a sufficient condition for the LB property for all measures on a
metric space. Without delving into the details of this notion, let us just mention that it is related
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to the σ-finite dimensionality of the space. We can illustrate this idea on our example of Poisson
trajectories on [0, 1].

Example. Fix m ≥ 0 and denote Fm as all possible realizations of the Poisson process that have
exactly m jumps. A process that has m jumps can be summarized by an m-dimensional vector of
jump times. Then it is obvious that the metric space (Fm, ‖.‖1) is isometric to ([0, 1]m, ‖.‖1)

(F , ‖.‖1) =
+∞⋃

m=0

(Fm, ‖.‖1) ∼
+∞⋃

m=0

([0, 1]m, ‖.‖1),

and the σ-finite dimensionality is clear.

Let us focus now on the classical situation where (F , d) is a separable Hilbert space and µ a
Gaussian measure. Let ν denote the centered and normalized Gaussian measure on R, let (cn) be
a non-increasing sequence of positive numbers such that

∑+∞
n=0 cn < +∞ and let ℓ2(c) be the set

of all sequences x = (xn) such that

|x|2 =
+∞∑

n=0

cnx
2
n < +∞.

Then µ = ν⊗N is a σ-additive measure on the Hilbert space ℓ2(c). In fact, each Gaussian measure
can be represented in this way.

Even in this rather comfortable context, it turns out that one has to put conditions on the sequence
(cn) to get the Lebesgue-Besicovitch property. Namely, Preiss and Tišer [94] prove the following
result: if there exists q < 1 such that

∀n ∈ N cn+1

cn
< q,

then the LB property is true for every function f ∈ L1(µ). Roughly speaking, if we see (cn) as the
sequence of variances of µ along the directions of the base vectors, it means that these variances
have to decay exponentially fast: this is a very strong assumption.

Now let us see an example which shows that if the LB property is not satisfied, k−nearest neighbor
classification might not work. This example is due to Preiss in [92].

Example: A problematic case for nearest neighbor classification
In [92], Preiss constructs a Gaussian measure µ on a separable Hilbert space F and a Borel set
M ⊂ F with µ(M) < 1 such that

lim
δ→0

µ(M ∩ Bx,δ)

µ(Bx,δ)
= 1

for µ almost every x ∈ F .

Now suppose that X has law µ and that its label Y is deterministic, defined as Y = 1M (X). As
usual the Bayes risk is then equal to 0. Nevertheless, in this situation, the k-nearest neighbor rule
fails in classifying elements x ∈ M . Indeed, one can prove that

lim
n→∞

L∗
n ≥ 1

2
µ(M) > 0 = L∗.

As a conclusion, let us mention that this result is not in contradiction with the one obtained
by Biau, Bunea and Wegkamp in [11]. In this paper, they consider a random variable X taking
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values in a separable Hilbert space F , with label Y ∈ {0, 1}. They establish the universal weak
consistency of a neighbor-type classifier, but not of the classical k−nearest neighbor classifier.
Namely, they reduce the infinite dimension of F by considering only the first m coefficients of the
Fourier series expansion of each Xi, and then perform nearest neighbor classification in Rm.
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Chapter 2

Rates of Convergence of the Functional

k-Nearest Neighbor Estimate

2.1 Introduction

Let (F , ‖.‖) be a separable Banach space, and let Dn = {(X1, Y1), . . . , (Xn, Yn)} be independent
F × R-valued random variables with the same distribution as a generic pair (X, Y ) such that
EY 2 < ∞. In the regression function estimation problem, the goal is to estimate the regression
function r(x) = E[Y |X = x] using the data Dn. With this respect, we will say that a regression
estimate rn(x) is consistent if E[rn(X)− r(X)]2 → 0 as n → ∞.

In the classical statistical setting, each observation Xi is supposed to be a collection of numerical
measurements represented by a d-dimensional vector. Thus, to date, most of the results pertaining
to regression estimation have been reported in the finite-dimensional case, where it is assumed that
F is the standard Euclidean space Rd. We refer the reader to the monograph of Györfi, Kohler,
Krzyżak and Walk [66] for a comprehensive introduction to the subject and an overview of most
standard methods and developments in Rd.

However, in an increasing number of practical applications, input data items are in the form
of random functions (speech recordings, multiple time series, images...) rather than standard
vectors, and this casts the regression problem into the general class of functional data analysis.
Here, “random functions” means that the variable X takes values in a space F of functions on a
subset of Rd, equipped with an appropriate norm. For example, F could be the Banach space of
continuous real functions on X = [0, 1]d with the norm

‖f‖∞ = sup
x∈X

|f(x)| ,

but many other choices are possible. The challenge in this context is to infer the regression struc-
ture by exploiting the infinite-dimensional nature of the observations. The last few years have
witnessed important developments in both the theory and practice of functional data analysis,
and many traditional statistical tools have been adapted to handle functional inputs. The book of
Ramsay and Silverman [96] provides a presentation of the area.

Interestingly, functional observations also arise naturally in the so-called kernel methods for general
pattern analysis. These methods are based on the choice of a proper similarity measure, given by a
positive definite kernel defined between pairs of objects of interest, to be used for inferring general
types of relations. The key idea is to embed the observations at hand into a (typically infinite-
dimensional) Hilbert space, called the feature space, and to compute inner products efficiently
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directly from the original data items using the kernel function. For an exhaustive presentation of
kernel methodologies and related algorithms, we refer the reader to Schölkopf and Smola [104],
and Shawe-Taylor and Cristianini [106].

Motivated by this broad range of potential applications, we propose, in the present chapter, to
investigate rates of convergence properties of the kn-nearest neighbor (kn-NN) regression estimate,
assuming that the Xi’s take values in a general separable Banach space (F , ‖.‖), typically infinite-
dimensional. Recall that, for x in F , the kn-NN estimate is defined by

rn(x) =
1

kn

kn∑

i=1

Y(i,n)(x),

where (X(1,n)(x), Y(1,n)(x)), . . . , (X(n,n)(x), Y(n,n)(x)) denotes a reordering of the data according
to the increasing values of ‖Xi − x‖ (ties are broken in favor of smallest indices). This procedure
is one of the oldest approaches to regression analysis, dating back to Fix and Hodges [57, 58]. It
is among the most popular nonparametric methods, with over 900 research articles published on
the method since 1981 alone. For implementation, it requires only a measure of distance in the
sample space, hence its popularity as a starting-point for refinement, improvement and adaptation
to new settings (see for example Devroye, Györfi and Lugosi [46], Chapter 19).

Stone [110] proved the striking result that the estimate rn is universally consistent if F = Rd, pro-
vided kn → ∞ and kn/n → 0. Here, “universally consistent” means that the method is consistent
for all distributions of (X, Y ) with EY 2 < ∞ (universally consistent regression estimates can also
be obtained by other local averaging methods as long as F = Rd, see e.g. [66]). As mentioned
in the previous chapter, it turns out that the story is radically different in general spaces F . In
this respect, we have presented counterexamples indicating that the estimate rn is not universally
consistent for general F , and that restrictions on F and the distribution of (X, Y ) cannot be dis-
pensed with.

In this chapter, we go one step further in the analysis and study the rates of convergence of
E[rn(X)− r(X)]2 as n → ∞, when X is allowed to take values in the separable Banach space F .
This important question has been first addressed by Kulkarni and Posner [80], who put forward
the essential role played by the covering numbers of the support of the distribution of X. Building
upon the ideas in [80] and exploiting recent advances on compact embeddings of functional Banach
spaces, we present explicit and general finite sample upper bounds on E[rn(X) − r(X)]2, and
particularize our results to classical function spaces such as Sobolev spaces, Besov spaces and
reproducing kernel Hilbert spaces.

2.2 Bias-Variance Tradeoff

Setting

r̃n(x) =
1

kn

kn∑

i=1

r
(
X(i,n)(x)

)
,

we start the analysis with the standard variance/bias decomposition (Györfi, Kohler, Krzyżak and
Walk [66])

E [rn(X)− r(X)]2 = E [rn(X)− r̃n(X)]2 + E [r̃n(X)− r(X)]2 . (2.1)

The first term is a variance term, which can be upper bounded independently of the topological
structure of the space F . Proof of the next proposition can be found for example in [66], Chapter
6:
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Proposition 1 Suppose that, for all x ∈ F ,

σ2(x) = Var[Y |X = x] ≤ σ2.

Then

E [rn(X)− r̃n(X)]2 ≤ σ2

kn
.

The right-hand term in (2.1), which is a bias term, needs more careful attention. Let the symbol
⌊.⌋ denote the integer part function. A quick inspection of the finite-dimensional proof (see [66],
page 95) reveals the following result:

Proposition 2 Suppose that, for all x and x
′ ∈ (F , ‖.‖),

∣∣r(x)− r(x′)
∣∣ ≤ L‖x− x

′‖, (2.2)

for some positive constant L. Then

E [r̃n(X)− r(X)]2 ≤ L2 E‖X(1,⌊ n
kn

⌋)(X)−X‖2.

Putting Proposition 1 and Proposition 2 together, we obtain

E [rn(X)− r(X)]2 ≤ σ2

kn
+ L2 E‖X(1,⌊ n

kn
⌋)(X)−X‖2. (2.3)

Thus, in order to bound the rate of convergence of E[rn(X)− r(X)]2, we need to analyze the rate
of convergence of the nearest neighbor distance in the Banach space F . As noticed in Kulkarni
and Posner [80], this task can be achieved via the use of covering numbers of totally bounded sets
(Kolmogorov and Tihomirov [79]). Some recalls are in order. Let BF (x, ε) denote the open ball in
F centered at x of radius ε.

A

1

1

B(x, ε)

x

Figure 2.1: An ε-covering of A = (−1, 1)2 in (R2, ‖.‖∞).

Definition 1 Let A be a subset of F . The ε-covering number N (ε) [= N (ε,A)] is defined as the
smallest number of open balls of radius ε that cover the set A. That is

N (ε) = inf

{
r ≥ 1 : ∃x1, . . . ,xr ∈ F such that A ⊂

r⋃

i=1

BF (xi, ε)

}
.
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A set A ⊂ F is said to be totally bounded if N (ε) < ∞ for all ε > 0. In particular, any relatively
compact set is totally bounded, and the converse assertion is true if the space F is complete.
All totally bounded sets are bounded, and the converse assertion is satisfied when F is finite-
dimensional. Figure 2.1 below illustrates this important concept in the finite-dimensional setting,
with (F , ‖.‖) = (R2, ‖.‖∞) and A = (−1, 1)2.

As a function of ε, N (ε) is nonincreasing, piecewise-constant and right-continuous (see Figure
2.2 for an illustration). The following discrete function, called the metric covering radius, can be
interpreted as a pseudo-inverse of the function N (ε).

Definition 2 Let A be a subset of F . The metric covering radius N−1(r) [= N−1(r,A)] is defined
as the smallest radius such that there exist r open balls of this radius which cover the set A. That
is

N−1(r) = inf

{
ε > 0 : ∃x1, . . . ,xr ∈ F such that A ⊂

r⋃

i=1

BF (xi, ε)

}
.

We note that N−1(r) is a nonincreasing function of r (see Figure 2.2 for an illustration). Observe
also that both N and N−1 are increasing with respect to the inclusion, that is N (ε,A) ≤ N (ε,B)
and N−1(r,A) ≤ N−1(r,B) for A ⊂ B.

1

2

1

3
1

ε

1

N (ε,A)

1

4

9

1 4 9

1/2

1/3

N
−1(r,A)

r

Figure 2.2: Covering numbers and covering radii of the set A = (−1, 1)2 in (R2, ‖.‖∞).

Finally, we let the support S(µ) of the probability measure µ of X be defined as the collection of
all x with µ(BF (x, ε)) > 0 for all ε > 0. Throughout the paper, it will be assumed that S(µ) is
totally bounded. Observe then that 2N−1(1,S(µ)) is an upper bound on the diameter of S(µ).

Proposition 3 below bounds the convergence rate of the expected squared nearest neighbor distance
in terms of the metric covering radii of S(µ). This result sharpens the constant of Theorem 1,
page 1032 in Kulkarni and Posner [80].

Proposition 3 Let X1, . . . ,Xp be independent F-valued random variables, distributed according
to a common probability measure µ. Suppose that S(µ) is a totally bounded subset of (F , ‖.‖).
Then

E‖X(1,p) −X‖2 ≤ 4

p

p∑

i=1

[
N−1 (i,S(µ))

]2
.
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Example 2.2.1 Take (F , ‖.‖) = (Rd, ‖.‖∞) and suppose that S(µ) ⊂ A = (−1, 1)d. Then a
moment’s thought shows that

N (ε,A) =

(
1

ε

)d

1{ε−1∈N} +

(⌊
1

ε

⌋
+ 1

)d

1{ε−1 /∈N}. (2.4)

In addition

N−1 (i,A) = i−
1
d
1{i1/d∈N} +

⌊
i1/d

⌋−1
1{i1/d /∈N}.

Consequently, for d ≥ 3, by Proposition 3,

E‖X(1,p) −X‖2 . p−
2
d ,

where the notation x . y means x ≤ Ay for some positive constant A. Combining this result with
inequality (2.3), we conclude that

E [rn(X)− r(X)]2 .
σ2

kn
+ L2

⌊
n

kn

⌋− 2
d

.

Thus, for the choice kn ∝ n
2

d+2 ,

E [rn(X)− r(X)]2 . n− 2
d+2 .

This shows that the nearest neighbor estimate is of optimal rate for the class of smooth distributions
(X, Y ) such that X has compact support, the regression function r is Lipschitz with constant L
and, for all x ∈ Rd, Var[Y |X = x] ≤ σ2 (Ibragimov and Khasminskii [73] and Györfi, Kohler,
Krzyżak and Walk [66], Chapter 3 and Theorem 6.2).

Example 2.2.1 strongly relies on the fact that bounded subsets of (Rd, ‖.‖∞) are in fact totally
bounded, as expressed by identity (2.4). Indeed, as shown in Proposition 3, a key step in obtain-
ing rates of convergence for the nearest neighbor regression estimate is the derivation of covering
numbers for the support of the distribution µ of X. Unfortunately, in infinite-dimensional spaces,
closed balls are bounded but not totally bounded, so that N−1(i,S(µ)) = ∞ and Proposition 3 is
useless.

To correct this situation, a possible route is to assume that the observations we are dealing with
behave in fact more regularly than a generic element of the ambient space F , thereby reducing
the general complexity of S(µ). To illustrate this idea, suppose for example that F is the space
C([0, 1]) of continuous real functions on [0, 1] equipped with the supremum norm ‖.‖∞. Then,
guided by the experience and practical considerations, it may be fair to suppose that the ran-
dom curves X1, . . . ,Xn are smooth enough, so that the support of their common distribution µ
is in fact included and bounded in Dm([0, 1]), the space of m times differentiable functions with
bounded derivatives, endowed with its canonical norm. Next, in this context, it can be proved
that N−1(i,S(µ)) < ∞, and the show may go on. This example will be thoroughly discussed in
the next section, together with other illustrations.

Thus, taking a general point of view, we will now suppose that the support of µ is bounded
and included in a subspace (G, ‖.‖G) of (F , ‖.‖), and that the embedding (G, ‖.‖G) →֒ (F , ‖.‖) is
compact. Here, “compact embedding” means that the unit ball (and thus, any ball) in (G, ‖.‖G)
is totally bounded in (F , ‖.‖). Put differently, balls in G (with respect to ‖.‖G) become totally
bounded as we see them as subsets of F , endowed with the original metric ‖.‖. The crux then is
to identify covering numbers of balls in G with respect to the norm ‖.‖. This will be the topic of
the next section.
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2.3 Compact Embeddings

As we are now working with two different spaces, to avoid notational confusion we will rather
denote by ‖.‖F the original norm of F . Thus, in our context, (G, ‖.‖G) is a separable Banach
subspace of (F , ‖.‖F ) and, to simplify notation a bit, we let in the sequel BG(R) be the open ball
in (G, ‖.‖G) of radius R > 0 centered at the origin, that is

BG(R) = {x ∈ G : ‖x‖G < R}.

Definition 3 The embedding I : (G, ‖.‖G) →֒ (F , ‖.‖F ) is called compact if I(BG(1)) is totally
bounded in (F , ‖.‖F ).

Note that this definition is equivalent to require that the closure I(B) is compact for any bounded
set B ⊂ G. It turns out that many interesting Banach spaces can be embedded into a larger
functional space. To convince the reader, four examples are discussed below.

Example 2.3.1 (Differentiable functions) Let X be a compact domain in Rd with smooth
boundary. For every m ∈ N, let Dm(X ) be the Banach space of m times differentiable functions
with bounded partial derivatives, that is

Dm(X ) =



f : X → R, ‖f‖Dm =

∑

|α|≤m

‖Dαf‖∞ < ∞



 ,

where the sum is taken over all multi-indices α = (α1, . . . , αd) such that |α| = α1 + · · ·+ αd ≤ m.
Then the inclusion

Im : (G, ‖.‖G) = (Dm(X ), ‖.‖Dm) →֒ (F , ‖.‖F ) = (C(X ), ‖.‖∞)

is a compact embedding. Moreover, for every ε > 0 and R > 0,

lnN
(
ε, Im (BG(R))

)
≤

(
RC

ε

) d
m

,

for some positive constant C independent of ε and R (Kolmogorov and Tihomirov [79]). This
implies, for i ∈ N⋆ and R > 0,

N−1
(
i, Im (BG(R))

)
≤ RC (ln(i+ 1))−

m
d .

Example 2.3.2 (Sobolev spaces) Let again X be a compact domain in Rd with smooth bound-
ary. For every s ∈ N and p ≥ 1, let W s,p(X ) be the usual Sobolev space equipped with the norm

‖f‖W s,p =
∑

|α|≤m

‖Dαf‖p.

The Rellich-Kondrakov Theorem asserts that, for s1 > s2, the inclusion

Is1,s2 : (G, ‖.‖G) = (W s1,p(X ), ‖.‖W s1,p) →֒ (F , ‖.‖F ) = (W s2,p(X ), ‖.‖W s2,p)

is compact. It can be proved (see for example Edmunds and Triebel [52], page 105) that for every
ε > 0 and R > 0,

lnN
(
ε, Is1,s2 (BG(R))

)
≤

(
RC

ε

) d
s1−s2

,
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for some positive constant C independent of ε and R. This implies, for s1 > s2, i ∈ N⋆ and R > 0,

N−1
(
i, Is1,s2 (BG(R))

)
≤ RC (ln(i+ 1))−

s1−s2
d .

This result can be extended to the more general context of Sobolev-type function spaces (Edmunds
and Triebel [52]).

Example 2.3.3 (Besov spaces) Let X be a compact domain in Rd with smooth boundary, and
let (Bs

pq(X ), ‖.‖spq) be the Besov space on X (Edmunds and Triebel [52]). If 1 ≤ p, q ≤ ∞ and
s > d/p, then the inclusion

Is : (G, ‖.‖G) =
(
Bs

pq(X ), ‖.‖spq
)
→֒ (F , ‖.‖F ) = (C(X ), ‖.‖∞)

is compact. Besides, using a general result in [52], page 105, we have, for every ε > 0 and R > 0,

lnN
(
ε, Is (BG(R))

)
≤

(
RC

ε

) d
s

,

and this gives raise to the bound

N−1
(
i, Is (BG(R))

)
≤ RC (ln(i+ 1))−

s
d .

As mentioned in [52], this inequality can be extended to compact embeddings of Besov-type function
spaces.

Example 2.3.4 (Reproducing kernel Hilbert spaces) Let X be a compact domain in Rd, and
let K : X × X → R be a Mercer kernel, i.e., K is continuous, symmetric and positive definite.
Recall that we say that K is positive definite if for all finite sets {x1, . . . ,xm} ⊂ X , the m × m
matrix [K(xi,xj)]1≤i,j≤m is positive definite. Typical examples of Mercer kernels are the Gaussian
kernel K(x,x′) = exp(−‖x− x

′‖2) and the kernel K(x,x′) = (c2 + ‖x− x
′‖2)−α with α > 0.

For x ∈ X , let Kx = K(x, .). According to Moore-Aronszajn’s Theorem (Aronszajn [7]), there
exists a unique Hilbert space HK of functions on X satisfying the following conditions:

(i) For all x ∈ X , Kx ∈ HK ;

(ii) The span of the set {Kx = K(x, .), x ∈ X} is dense in HK ;

(iii) For all f ∈ HK , f(x) = 〈Kx, f〉.

The Hilbert space HK is said to be the reproducing kernel Hilbert space (for short, RKHS) associated
with the kernel K. It can be shown that HK consists of continuous functions and, provided K is a
C∞ Mercer kernel, that the inclusion

IK : (G, ‖.‖G) = (HK , ‖.‖K) →֒ (F , ‖.‖F ) = (C(X ), ‖.‖∞)

is a compact embedding (Cucker and Smale [37], Theorem D). Moreover, as proved in [37], for all
h > d, ε > 0 and R > 0,

lnN
(
ε, IK (BG(R))

)
≤

(
RC

ε

) 2d
h

,

where C is a positive constant independent of ε and R. This readily implies that for h > d, i ∈ N⋆

and R > 0,

N−1
(
i, IK (BG(R))

)
≤ RC (ln(i+ 1))−

h
2d .
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This result has been improved by Zhou [116], who studies convolution-type kernels on [0, 1]d, i.e.,
kernels of form K(x,x′) = k(x′ − x). Zhou provides estimates of lnN (ε, IK (BG(R))) depending
on the decay of k̂, the Fourier transform of k. For example, when k̂ decays exponentially, one has

lnN
(
ε, IK (BG(R))

)
≤ C

(
ln

R

ε

)d+1

,

where C depends only on the kernel and the dimension. This implies

N−1
(
i, IK (BG(R))

)
≤ R exp

{
−
(
ln(i+ 1)

C

) 1
d+1

}
.

This result can typically be applied to the Gaussian kernel.

Motivated by Examples 2.3.1-2.3.4 above, we shall impose the following set of assumptions on the
distribution µ of X:

A1 There exists a subspace (G, ‖.‖G) of (F , ‖.‖F ) such that the support S(µ) is bounded in
(G, ‖.‖G), that is S(µ) ⊂ BG(R) for some positive constant R.

A2 There exists a compact embedding

I : (G, ‖.‖G) →֒ (F , ‖.‖F ).

A3 There exists a function φ : ]0,∞[→ ]0,∞[ such that

[
N−1

(
i, I (BG(R))

)]2
≤ φ (ln(i+ 1)) , i ∈ N⋆,

where the covering number is taken with respect to ‖.‖F , and φ satisfies the following con-
ditions

(i) φ is nonincreasing and limt→∞ tφ(ln t) = ∞;

(ii) φ is differentiable on ]0,∞[ and
φ′(u)

φ(u)
→ 0 as u → ∞;

(iii) One has

∫ ∞

1
φ(ln t)dt = ∞.

The boundedness condition in assumption A1 is standard when establishing rates of convergence of
nonparametric estimates, see e.g. Györfi, Kohler, Krzyżak and Walk [66]. As noticed in Theorem
7 of Kulkarni and Posner [80], this condition can be slightly relaxed, at the price of obtaining rates
of convergence in probability.

Assumption A2 means that the balls in G (with respect to ‖.‖G) are totally bounded as subsets
of the space (F , ‖.‖F ). This condition is not restrictive, and it is in particular satisfied by our
leading Examples 2.3.1-2.3.4. From a practical perspective, we wish to emphasize that one usually
has some latitude in choosing the space G. This choice will typically be based on the regularity
of the data (curves) to be processed. Roughly speaking, the smoother they are, the “smaller"
the support of µ, and therefore the faster the convergence. On the other hand, we note that the
Lipschitz condition in (2.2) needs to be valid in (F , ‖.‖F ) — typically in (C(X ), ‖.‖∞) — which
is a stronger requirement than a Lipschitz condition in (G, ‖.‖G). To overcome this difficulty, we
may decide to choose a “smaller” space F , where the Lipschitz condition will be easier fulfilled.
However, this operation may lead to slower rates of convergence, since they essentially depend
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on the difference of regularity (on the difference of “size" in some sense) between (F , ‖.‖F ) and
(G, ‖.‖G), as enlightened by Example 2.3.2.

Finally, a quick inspection shows that the requirement A3 is verified for the presented examples
2.3.1-2.3.4. We will specify what is φ on each example in the following, but let us first give the
main result of this chapter.

Theorem 3 Suppose that assumptions A1-A3 are satisfied. Suppose in addition that, for all x
and x

′ ∈ F ,
σ2(x) = Var[Y |X = x] ≤ σ2

and ∣∣r(x)− r(x′)
∣∣ ≤ L‖x− x

′‖F ,
for some positive constants σ2 and L. Then

E [rn(X)− r(X)]2 .
σ2

kn
+ L2φ

(
ln

⌊
n

kn

⌋)
.

Theorem 3 can be illustrated in light of Examples 2.3.1-2.3.4. For differentiable functions (Example
2.3.1), we have φ(t) ∝ t−2m/d, and the result reads

E [rn(X)− r(X)]2 .
σ2

kn
+ L2

(
ln

⌊
n

kn

⌋)− 2m
d

.

Therefore, with the choice kn ∝ (lnn)
2m
d ,

E [rn(X)− r(X)]2 . (lnn)−
2m
d .

Similarly, in Sobolev spaces (Example 2.3.2), the choice kn ∝ (lnn)
2(s1−s2)

d leads to

E [rn(X)− r(X)]2 . (lnn)−
2(s1−s2)

d .

In Besov spaces (Example 2.3.3), φ(t) ∝ t−2s/d and, with kn ∝ (lnn)
2s
d , we obtain

E [rn(X)− r(X)]2 . (lnn)−
2s
d .

Finally, in reproducing kernel Hilbert spaces (Example 2.3.4), attention shows that the choice

kn ∝ (lnn)−
h
d results in

E [rn(X)− r(X)]2 . (lnn)−
h
d .

For convolution-type kernels (Zhou [116]), the choice kn ∝ exp

{
2
(
lnn
C

) 1
d+1

}
implies

E [rn(X)− r(X)]2 . exp

{
−2

(
lnn

C

) 1
d+1

}
.

The general finding here is that these rates of convergence are much slower than the traditional
finite-dimensional rates (see Example 2.3.1). On the other hand, to the best of our knowledge,
they are the first explicit available rates for the functional kn-NN estimate. It is an open problem
to know whether these rates are optimal over the smoothness classes we consider.
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Chapter 3

On the Rate of Convergence of the

Bagged Nearest Neighbor Estimate

3.1 Introduction

3.1.1 Bagging

Ensemble methods are popular machine learning algorithms which train multiple learners and
combine their predictions. The success of ensemble algorithms on many benchmark data sets has
raised considerable interest in understanding why such methods succeed and identifying circum-
stances in which they can be expected to produce good results. It is now well known that the
generalization ability of an ensemble can be significantly better than that of a single predictor,
and ensemble learning has therefore been a hot topic during the past years. For a comprehensive
review of the domain, we refer the reader to Dietterich [47] and the references therein.

One of the first and simplest ways to combine predictors in order to improve their performance is
bagging (bootstrap aggregating), suggested by Breiman [18]. This ensemble method proceeds by
generating subsamples from the original data set, constructing a predictor from each resample, and
decide by combining. It is one of the most effective computationally intensive procedures to im-
prove on unstable estimates or classifiers, especially for large, high dimensional data set problems
where finding a good model in one step is impossible because of the complexity and scale of the
problem. Bagging has attracted much attention and is frequently applied, although its statistical
mechanisms are not yet fully understood and are still under active investigation. Recent theoret-
ical contributions to bagging and related methodologies include those of Friedman and Hall [60],
Bühlmann and Yu [21], Hall and Samworth [68], Buja and Stuetzle [22], and Biau and Devroye [14].

It turns out that Breiman’s bagging principle has a simple application in the context of nearest
neighbor methods. Nearest neighbor predictors are one of the oldest approaches to regression and
classification (Fix and Hodges [57, 58], Cover and Hart [36], Cover [34, 35], Györfi [65], Venkatesh,
Snapp and Psaltis [115], Psaltis, Snapp and Venkatesh [95]). Before we formalize the link between
bagging and nearest neighbors, some definitions are in order. Throughout the paper, we suppose
that we are given a sample Dn = {(X1, Y1), . . . , (Xn, Yn)} of i.i.d. Rd×R-valued random variables
with the same distribution as a generic pair (X, Y ) satisfying EY 2 < ∞. The space Rd is equipped
with the standard Euclidean metric. For fixed x ∈ Rd, our mission is to estimate the regression
function r(x) = E[Y |X = x] using the data Dn. With this respect, we say that a regression function
estimate rn(x) is consistent if E[rn(X)− r(X)]2 → 0 as n → ∞. It is universally consistent if this
property is true for all distributions of (X, Y ) with EY 2 < ∞.
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3.1.2 Bagging and Nearest Neighbors

Recall that the 1-nearest neighbor (1-NN) regression estimate sets rn(x) = Y(1)(x) where Y(1)(x)
is the observation of the feature vector X(1)(x) whose Euclidean distance to x is minimal among
all X1, . . . ,Xn. Ties are broken in favor of smallest indices. It is clearly not, in general, a consis-
tent estimate (Devroye, Györfi and Lugosi [46], Chapter 5). However, by bagging, one may turn
the 1-NN estimate into a consistent one, provided that the size of the resamples is sufficiently small.

We proceed as follows, via a randomized basic regression estimate rkn in which 1 ≤ kn ≤ n is a
parameter. The elementary predictor rkn is the 1-NN rule for a random subsample Sn drawn with
(or without) replacement from {(X1, Y1), . . . , (Xn, Yn)}, with Card(Sn) = kn. We apply bagging,
that is, we repeat the random sampling an infinite number of times, and take the average of the
individual outcomes. Thus, the bagged regression estimate r⋆n is defined by

r⋆n(x) = E⋆ [rkn(x)] ,

where E⋆ denotes expectation with respect to the resampling distribution, conditionally on the
data set Dn.

The following result, proved by Biau and Devroye [14], shows that for an appropriate choice of kn,
the bagged version of the 1-NN regression estimate is universally consistent:

Theorem 4 If kn → ∞ and kn/n → 0, then r⋆n is universally consistent.

In this theorem, the fact that resampling is done with or without replacement is irrelevant. Thus,
by bagging, one may turn the crude 1-NN procedure into a consistent one, provided that the size
of the resamples is sufficiently small. To understand the statistical forces driving Theorem 4, recall
that if we let V1 ≥ V2 ≥ . . . ≥ Vn ≥ 0 denote deterministic weights that sum to one, then the
regression estimate

n∑

i=1

Vi Y(i)(x)

is called a weighted nearest neighbor regression estimate. It is known to be universally consistent
provided V1 → 0 and

∑
i>εn Vi → 0 for all ε > 0 as n → ∞ (Stone [110], Devroye [45], and

Problems 11.7, 11.8 of Devroye, Györfi and Lugosi [46]). The crux to prove Theorem 4 is to
observe that r⋆n is in fact a weighted nearest neighbor estimate with

Vi = P(i-th nearest neighbor of x is the 1-NN in a random selection).

Then, a moment’s thought shows that for the “with replacement” sampling

Vi =

(
1− i− 1

n

)kn

−
(
1− i

n

)kn

,

whereas for sampling “without replacement”, Vi is hypergeometric:

Vi =





(
n− i

kn − 1

)

(
n

kn

) , i ≤ n− kn + 1

0, i > n− kn + 1.

The core of the proof of Theorem 4 is then to show that, in both cases, the weights Vi satisfy
the conditions V1 → 0 and

∑
i>εn Vi → 0 for all ε > 0 as n → ∞. These weights have been
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independently exhibited by Steele [109], who also shows on practical examples that substantial
reductions in prediction error are possible by bagging the 1-NN estimate. Note also that this new
expression for the 1-NN bagged estimate makes any Monte Carlo approach unnecessary to evaluate
the estimate. Indeed, up to now, this predictor was implemented by Monte Carlo, i.e., by repeating
the random sampling T times, and taking the average of the individual outcomes. Formally, if
Zt = rkn(x) is the prediction in the t-th round of bagging, the bagged regression estimate was
approximately evaluated as

r⋆n(x) ≈
1

T

T∑

t=1

Zt,

where Z1, . . . , ZT are the outcomes in the individual rounds. Clearly, writing the 1-NN bagged
estimate as an (exact) weighted nearest neighbor predictor makes such calculations useless.

On the other hand, the fact that the bagged 1-NN estimate reduces to a weighted nearest neighbor
estimate may seem at first sight somehow disappointing. Indeed, we get the ordinary kn-NN rule
back by the choice

Vi =

{
1/kn if i ≤ kn
0 otherwise,

and, with an appropriate choice of the sequence (kn), this regression estimate is known to have
optimal asymptotic properties (see Chapter 6 in Györfi, Kohler, Krzyżak and Walk [66] and the
references therein). Thus, the question is: Why would one care about the bagged nearest neighbor
rule then? The answer is twofold. First, bagging the 1-NN is a very popular technique for re-
gression and classification in the machine learning community, and most — if not all — empirical
studies report practical improvements over the traditional kn-NN method. Secondly (and most
importantly), analysing 1-NN bagging is part of a larger project trying to understand the driving
forces behind the random forests estimates, which were defined by Breiman in [19]. In short,
random forests are some of the most successful ensemble methods that exhibit performance on
the level of boosting and support vector machines. These learning procedures typically involve a
resampling step, which may be interpreted as a particular 1-NN bagged procedure based on the
so-called “layered nearest neighbor” proximities (Lin and Jeon [85], Biau and Devroye [14]).

Thus, in the present chapter, we go one step further in bagging investigation and study the rate
of convergence of E [r⋆n(X)− r(X)]2 to 0 as n → ∞. We will start our analysis by stating a
comprehensive theorem on the rate of convergence of general weighted nearest neighbor estimates
(section 3.2.1). Then, this result will be particularized to 1-NN bagging, focusing on the “with
replacement” case (section 3.2.2).

Throughout the document, we will be interested in rate of convergence results for the class F of
(1, C, ρ, σ2)-smooth distributions (X, Y ) such that X has compact support with diameter 2ρ, the
regression function r is Lipschitz with constant C and, for all x ∈ Rd, σ2(x) = Var[Y |X = x] ≤ σ2.
It is known (see for example Ibragimov and Khasminskii [72, 73, 74]) that for the class F , the

sequence (n− 2
d+2 ) is the optimal minimax rate of convergence. In particular,

lim inf
n→∞

inf
rn

sup
(X,Y )∈F

E[rn(X)− r(X)]2

((ρC)dσ2)
2

d+2 n− 2
d+2

≥ ∆

for some positive constant ∆ independent of C, ρ and σ2. Here the infimum is taken over all
estimates rn, i.e., over all square integrable measurable functions of the data. As a striking result,
we prove that for d ≥ 3 and a suitable choice of the sequence (kn), the estimate r⋆n is of optimum
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rate for the class F , that is

lim sup
n→∞

sup
(X,Y )∈F

E[r⋆n(X)− r(X)]2

((ρC)dσ2)
2

d+2 n− 2
d+2

≤ Λ

for some positive Λ independent of C, ρ and σ2. Since the parameter kn of the estimate with
the optimal rate of convergence depends on the unknown distribution of (X, Y ), especially on the
smoothness of the regression function, we present in section 3.2.3 adaptive (i.e., data-dependent)
choices of kn which preserve the minimax optimality of the estimate.

We wish to emphasize that all the results are obtained by letting the resampling size kn grows
with n in such a manner that kn → ∞ and kn/n → 0. These results are of interest because
the majority of bagging experiments employ relatively large resample sizes. In fact, much of
the evidence against the performance of bagged nearest neighbor methods is for full sample size
resamples (see the discussion in Breiman [18], Paragraph 6.4), except the notable results of Hall
and Samworth [68] and Steele [109], who also report encouraging numerical results in the context
of regression and classification.

3.2 Rates of Convergence

3.2.1 Weighted Nearest Neighbor Estimates

As an appetizer, we start our analysis of the 1-NN bagged regression estimate from a larger point
of view, by offering a general theorem on the rate of convergence of weighted nearest neighbor
estimates, i.e., estimates of the form

rn(x) =

n∑

i=1

Vi Y(i)(x)

with nonnegative weights satisfying the constraints
∑n

i=1 Vi = 1 and V1 ≥ V2 ≥ . . . ≥ Vn ≥ 0. As
in Chapter 2, we will make use of the well-known notions of covering numbers and covering radii
which characterize the massiveness of a set (Kolmogorov and Tihomirov [79]). As put forward in
Kulkarni and Posner [80], these quantities play a key role in the context of nearest neighbor analysis.

Throughout the paper, we will denote by B(x, ε) the open Euclidean ball in Rd centered at x of
radius ε. As usual in this context, µ will stand for the distribution of X, which will be assumed
to be a bounded random variable. Recall that the support S(µ) of µ is defined as the collection
of all x with µ(B(x, ε)) > 0 for all ε > 0. Letting ρ = N−1(1,S(µ)), we observe that 2ρ is an
upper bound on the diameter of S(µ). We are now in a position to state the main result of this
subsection. We let the symbol ⌊.⌋ denote the integer part function.

Theorem 5 Let rn(x) =
∑n

i=1 Vi Y(i)(x) be a weighted nearest neighbor estimate of r(x). Suppose

that X is bounded, and set ρ = N−1(1,S(µ)). Suppose in addition that, for all x and x
′ ∈ Rd,

σ2(x) = Var[Y |X = x] ≤ σ2

and ∣∣r(x)− r(x′)
∣∣ ≤ C‖x− x

′‖,
for some positive constants σ2 and C. Then, if d ≥ 3,

E [rn(X)− r(X)]2 ≤ σ2
n∑

i=1

V 2
i +

8ρ2C2

1− 2/d

n∑

i=1

Vi

⌊n
i

⌋−2/d
.
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Sketch of the Proof of Theorem 5 Setting

r̃n(x) =

n∑

i=1

Vi r(X(i)(x)),

the proof of Theorem 5 will rely on the variance/bias decomposition

E [rn(X)− r(X)]2 = E [rn(X)− r̃n(X)]2 + E [r̃n(X)− r(X)]2 . (3.1)

The first term is easily bounded by noting that, for all x ∈ Rd,

E [rn(x)− r̃n(x)]
2 ≤ σ2

n∑

i=1

V 2
i . (3.2)

To analyse the bias term in (3.1), we will need the following result, which bounds the convergence
rate of the expected i-th nearest neighbor squared distance in terms of the metric covering radii of
the support of the distribution µ of X. Proposition 4 is a generalization of Theorem 1, page 1032
in Kulkarni and Posner [80], which only reports results for the rate of convergence of the nearest
neighbor. Therefore, this result is interesting by itself.

Proposition 4 Suppose that X is bounded. Then

E‖X(i)(X)−X‖2 ≤ 8i

n

⌊n/i⌋∑

j=1

[
N−1 (j,S(µ))

]2
.

For any bounded set A in the Euclidean d-space, the covering radius satisfies N−1(r,A) ≤
N−1(1,A)r−1/d (see [79]). Hence the following corollary:

Corollary 2 Suppose that X is bounded, and set ρ = N−1(1,S(µ)). Then if d ≥ 3,

E‖X(i)(X)−X‖2 ≤ 8ρ2⌊n/i⌋− 2
d

1− 2/d
.

Thus, to prove Theorem 5, it suffices to note from (3.1) and (3.2) that

E [rn(X)− r(X)]2 ≤ σ2
n∑

i=1

V 2
i + E [r̃n(X)− r(X)]2 .

Next, applying Jensen’s inequality and integrating with respect to the distribution of X, we obtain

E [r̃n(X)− r(X)]2 ≤ C2

[
n∑

i=1

Vi E‖X(i)(X)−X‖2
]
,

and the conclusion follows by applying Corollary 2. ¥

Theorem 5 offers a general result, which can be made more precise according to the weights
definition. Taking for example

Vi =

{
1/kn if i ≤ kn
0 otherwise,

we get the ordinary kn-NN rule back. In this context, according to Theorem 5, for d ≥ 3, there

exists a sequence (kn) with kn ∝ n
2

d+2 such that

E [rn(X)− r(X)]2 ≤ Λ

(
(ρC)dσ2

n

) 2
d+2

,
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for some positive constant Λ independent of ρ, C and σ2. This is exactly Theorem 6.2, page 93 of
Györfi, Kohler, Krzyżak and Walk [66], which states that the standard nearest neighbor estimate
is of optimum rate for the class F of (1, C, ρ, σ2)-smooth distributions (X, Y ) such that X has
compact support with covering radius ρ, the regression function r is Lipschitz with constant C
and, for all x ∈ Rd, σ2(x) = Var[Y |X = x] ≤ σ2.

The adaptation of Theorem 5 to the 1-NN bagged regression estimate needs more careful attention.
This will be the topic of the next section.

3.2.2 Bagging

In the following, we will focus on bagging with replacement when the dimension d is equal to
or greater than 3. Comparable results have been obtained for d ≤ 2 and for bagging without
replacement (see Biau, Cérou and Guyader [12]).

Bagging with replacement is sometimes called moon-bagging, standing for m out of n bootstrap
aggregating. As seen in the introduction, in this case, the weighted nearest neighbor regression
estimate takes the form

r⋆n(x) =
n∑

i=1

Vi Y(i)(x),

where

Vi =

(
1− i− 1

n

)kn

−
(
1− i

n

)kn

.

Under the same assumptions as in Theorem 3.2.1, we obtain

Theorem 6 If d ≥ 3, there exists a sequence (kn) with kn ∝ n
d

d+2 such that

E [r⋆n(X)− r(X)]2 ≤ Λ

(
(ρC)dσ2

n

) 2
d+2

,

for some positive constant Λ independent of ρ, C and σ2.

Two important remarks are in order.

1. First, we note that, for a suitable choice of kn, the bagged 1-NN estimate achieves both the
minimax n−2/(d+2) rate and the optimal order of magnitude ((ρC)dσ2)2/(d+2) in the constant,
for the class F of (1, C, ρ, σ2)-smooth distributions (X, Y ) such that X has compact support
with covering radius ρ, the regression function r is Lipschitz with constant C and, for all
x ∈ Rd, σ2(x) = Var[Y |X = x] ≤ σ2. Seconds, the bound is valid for finite sample sizes,
so that we are in fact able to approach the minimax lower bound not only asymptotically
but even for finite sample sizes. On the other hand, the estimate with the optimal rate of
convergence depends on the unknown distribution of (X, Y ), and especially on the covering
radius ρ and the smoothness of the regression function measured by the constant C. It is to
correct this situation that we present adaptation results in section 3.2.3.

2. We have also obtained convergence rates in the cases d = 1 and d = 2 (see [12]). It turns out
that, for d = 1, the obtained rate is not optimal, whereas it is optimal up to a log term for
d = 2. This low-dimensional phenomenon is also known to hold for the traditional kn-NN
regression estimate, which does not achieve the optimal rates in dimensions 1 and 2 (see
Problems 6.1 and 6.7 in [66], Chapter 3).
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3.2.3 Adaptation

In the previous subsections, the parameter kn of the estimate with the optimal rate of convergence
for the class F depends on the unknown distribution of (X, Y ), especially on the smoothness of the
regression function measured by the Lipschitz constant C. In this subsection, we present a data-
dependent way of choosing the resampling size kn and show that, for bounded Y , the estimate with
parameter chosen in such an adaptive way achieves the optimal rate of convergence (irrespectively
of the resampling type). To this aim, we split the sample Dn = {(X1, Y1), . . . , (Xn, Yn)} in two
parts of size ⌊n/2⌋ and n− ⌊n/2⌋, respectively (assuming n ≥ 2). The first half is denoted by Dℓ

n

(learning set) and is used to construct the bagged 1-NN estimate r⋆⌊n/2⌋(x,Dℓ
n) = r⋆k,⌊n/2⌋(x,Dℓ

n)

(for the sake of clarity, we make the dependence of the estimate upon k explicit). The second half
of the sample, denoted by Dt

n (testing set), is used to choose k by picking k̂n ∈ K = {1, . . . , ⌊n/2⌋}
to minimize the empirical risk

1

n− ⌊n/2⌋
n∑

i=⌊n/2⌋+1

(
Yi − r⋆k,⌊n/2⌋(Xi)

)2
.

Define the estimate
r⋆n(x) = r⋆

k̂n,⌊n/2⌋
(x,Dℓ

n),

and note that r⋆n depends on the entire data Dn. If |Y | ≤ L < ∞ almost surely, a straightforward
adaptation of Theorem 7.1 in [66] shows that, for any δ > 0,

E[r⋆n(X)− r(X)]2 ≤ (1 + δ) inf
k∈K

E[r⋆k,⌊n/2⌋(X)− r(X)]2 + Ξ
lnn

n
,

for some positive constant Ξ depending only on L, d and δ. Thus we can conclude:

Theorem 7 Suppose that |Y | ≤ L almost surely, and let r⋆n be the bagged 1-NN estimate with
k ∈ K = {1, . . . , ⌊n/2⌋} chosen by data-splitting, irrespectively of the resampling type. Then
(lnn)(d+2)/(2d)n−1/2 ≤ ρC together with d ≥ 3 implies, for n ≥ 2,

E[r⋆n(X)− r(X)]2 ≤ (Λ + o(1))

(
(ρC)d

n

) 2
d+2

,

for some positive constant Λ which depends only on L and d.

Thus, the expected error of the estimate obtained via data-splitting is bounded from above up to
a constant by the corresponding minimax lower bound for the class F of regression functions, with
the optimal dependence in C and ρ.
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Part II

Rare Event Simulation and Estimation





Chapter 4

Methodology

4.1 Introduction

Monte Carlo approach is a common tool to estimate the expectation of any function of a random
object when analytical or numerical methods are not available. Here, typically, we want to esti-
mate precisely and in a reasonable time the small probability, say 10−9 or below, of an extreme
event. Formally, suppose X is random vector in Rd with law µ that we can simulate, and Φ is a
mapping from R

d to R, also called a score function. Because of the complexity of the underlying
process, we view Φ as black box, that is, we do not have an analytic expression for Φ but we
can readily evaluate Φ(X) for any given instance X. Then given a threshold q which lies far out
in the right hand tail of the distribution of Φ(X), we seek to estimate the very low probability
p = P(Φ(X) > q).

A Crude Monte Carlo (CMC) that uses an i.i.d. N -sample X1, . . . , XN to estimate p by the frac-
tion p̂mc = #{i : Φ(Xi) > q}/N is not practical when p is very small. Indeed, in order to obtain
a reasonable precision of the estimate given by the relative variance Var(p̂mc)/p

2, which is equal
to (1− p)/(Np), one needs to select a sample size N of order p−1. For instance, a random sample
of one billion observations is needed to estimate a target probability of 10−9.

Importance sampling, which draws samples according to π and weights each observation X = x by
w(x) = dµ(x)/dπ(x) can decrease the variance of the estimated probability which in turn greatly
reduces the need for such large sample sizes. We refer to Robert and Casella [98] for a discussion
on variance reduction techniques in general and to Bucklew [20] for the application of importance
sampling in the context of rare events estimation. Unfortunately, when Φ is a black box, these
weights cannot be computed, and hence importance sampling is not available to us.

Multilevel splitting, also called Importance splitting, introduced by Kahn and Harris [76] and Rosen-
bluth and Rosenbluth [100], is another powerful algorithm for rare events simulations. The
basic idea of multilevel splitting, adapted to our problem, is to fix a set of increasing levels
−∞ = L0 < L1 < L2 < · · · < Ln = q, and to decompose the tail probability

P(Φ(X) > q) =
n−1∏

k=0

P(Φ(X) > Lk+1|Φ(X) > Lk).

Each conditional probability pk = P(Φ(X) > Lk+1|Φ(X) > Lk) is then estimated separately. We
refer the reader to the paper by Glasserman, Heidelberger, Shahabuddin and Zajic [62] for an
in-depth review of the multilevel splitting method and a detailed list of references. Two practical
issues associated with the implementation of multilevel splitting are the need for computationally
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efficient algorithms for estimating the successive conditional probabilities, and the optimal selec-
tion of the sequence of levels.

Recently Cérou, Del Moral, Le Gland and Lezaud [25] bridged multilevel splitting for Markovian
processes and particle methods for Feynman-Kac models, thus introducing a rigorous mathemat-
ical framework for linking the sample used to estimate pj to the one needed to estimate pj+1.
Within the context of Markovian processes, Cérou and Guyader [27] proposed an algorithm to
adaptively select the levels in an optimal way.

To our knowledge, the first instance in which static rare event simulation using splitting was pro-
posed is a paper by Au and Beck [8] (see also Au and Beck [9]). But these authors call it “Subset
Simulation” and do not make any connection with multilevel splitting, which is why people in the
rare event community do not mention this work afterwards. The next work where a reversible
transition kernel was introduced to deal with such static rare events is due to Del Moral, Doucet
and Jasra [41] (see also Johansen, Del Moral and Doucet [75]). However, these articles were written
in a different framework, and thus do not deal with the practical details of our precise setting.
In the present chapter, we detail a fixed and two adaptive multilevel algorithms. Given a fixed
probability of success p0 at each step, for example p0 = 0.75, the first adaptive one consists in
optimally placing the levels on the fly. The second adaptive algorithm goes one step further and
minimizes the estimator variance, by taking p0 = 1− 1/N , where N is the number of particles.

Recently and independently, Botev and Kroese [16] proposed the same approach as in the first
adaptive algorithm. These authors work on a similar algorithm, including the use of quantiles of
the random variable Φ(X) on the swarm of particles in order to estimate the next level. The main
difference is their two stage procedure (like in Garvels [61]): they first run the algorithm just to
compute the levels, and then they restart from the beginning with these proposed levels. Actually
we prove that by computing the levels on the fly, i.e. within the same run as the one to compute
the rare event probability, we only pay a small bias on the estimate. Note also that [16] does
not address the general construction of the transition kernels Mk, since the authors only tackle
examples where they can derive a Gibbs sampler at each step. This is mainly possible because
their function Φ is linear, which is a severe restriction.

Another related approach is the recent work on combinatorial counting of Rubinstein [101]. This
article presents some optimizations for counting problems in which X has a uniform distribution
over a discrete but very large state space. The author uses what he calls a cloning procedure, where
the number of offspring is fixed (i.e. the same for all the particles in the sample) but adaptive
to keep the number roughly constant, while removing redundant particles after the MCMC step.
This is a main difference since we use a resampling with replacement procedure. But clearly results
in [101] show that the adaptive procedure is well suited for SAT problems, or other hard finite set
optimization problems. We would also like to mention that these last two papers [16][101] have
demonstrated the performance of their algorithms via an extensive simulation study, to which we
now lay out the mathematical foundations.

4.2 The Fixed-Levels Method

4.2.1 Assumptions and Ingredients

We assume that X is a random vector on Rd for some d > 0, and denote by µ its probability dis-
tribution on the underlying probability space (Ω,F ,P). We denote by A the rare set of interest,
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and we assume that A = {x ∈ Rd s.t. Φ(x) > q} for some function Φ : Rd 7→ R and some real
number q. We also assume that we know how to draw i.i.d. samples from µ.

Our algorithm makes use of the following ingredients. An increasing sequence {L0, . . . , Ln} in R,
with L0 = −∞ and Ln = q defines a sequence of corresponding sets Ak = {x ∈ Rd, Φ(x) > Lk}.
These sets are thus nested: Rd = A0 ⊃ A1 ⊃ · · · ⊃ An = A. We now need to choose sequence
{L0, . . . , Ln} in such a way that pk = P(X ∈ Ak+1|X ∈ Ak) is not too small. We also need to
choose a Markov transition kernel K on Rd which is µ-symmetric, that is

∀(x, y) ∈ Rd ×Rd, µ(dx)K(x, dy) = µ(dy)K(y, dx).

As a consequence, K has µ as an invariant measure.

As we will see in the sequel, the choice of the Lk’s can be made adaptive and is thus not an issue.
However, the choice of the kernel K is crucial. Even if any µ-symmetric kernel would eventually do
the job, we need to carefully choose it to make the algorithm efficient, as discussed in section 4.4.4.

Consider now a Markov chain (Xk)k≥0 defined by: L(X0) = µ and the inhomogeneous transitions
kernels Mk(x, dx

′) = P(Xk ∈ dx′|Xk−1 = x), with

Mk(x, dx
′) = 1Ac

k
(x) δx(dx

′) + 1Ak
(x)(K(x, dx′)1Ak

(x′) +K(x,Ac
k) δx(dx

′)).

Starting from position x in Ak, moving a particle according to Mk is then twofold: firstly a new
transition according to K is proposed, and secondly we accept this transition only if it stays in
Ak, keeping the old position otherwise.

For k ∈ {0, . . . , n}, denote µk(dx) = 1
µ(Ak)

1Ak
(x)µ(dx) the normalized restriction of µ on Ak,

so that µk(Ak+1) = P(X ∈ Ak+1|X ∈ Ak). At this point, we should also note that instead of
a µ-symmetric kernel K to construct the Mk, one can use at level k, any kernel, if available, for
which µk is invariant. In some applications this can be done directly through a Gibbs sampler
(see for example [101]). We have chosen to adopt here a Metropolis-Hastings approach because
it is somehow more general, and we will not particularly discuss this case. But from a practical
point of view, if such a family of kernels Mk is readily available, then it is much advisable to use
it. Anyway, the following stationarity property holds for µ and µk.

Proposition 5 The measures µ and µk are both invariant by the transition kernel Mk.

Now we may give a Feynman-Kac representation for µk. From a general point of view, a Feynman-
Kac representation for µk is a formula of the form

µk(ϕ) =
E[ϕ(Xk)

∏k−1
m=0Gm(Xm)]

E[
∏k−1

m=0Gm(Xm)]
,

where the potentials Gm are positive functions, and (Xk)k≥0 is a non homogeneous Markov chain
with transitions Mk. If we know how to draw realizations of the Markov chain, then we can com-
pute µk(ϕ) with a Monte Carlo approach. But Crude Monte Carlo is not efficient, because most
of the realizations of the chain have small values for the product of the potentials.

However, in this form a much nicer Monte Carlo algorithm can be used. It mainly consists in
keeping a cloud of particles (Xj

k), with time 0 ≤ k ≤ n and particle index 1 ≤ j ≤ N . Then
for each time step k, discard those with small potential Gk, and branch the others, with a rate
proportional to Gk(X

j
k). Then apply the Markov transition Mk to all the surviving particles, and
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iterate on the time step.

This approach has given birth to a huge amount of literature, and is often referred to as Sequential
Importance Sampling (SIS) or Sequential Monte Carlo (SMC). See the monograph by Del Moral [40]
for a theoretical overview and Doucet, de Freitas and Gordon [48] for examples of applications. In
our context, the Feynman-Kac representation for µk has the following form.

Proposition 6 For every test function ϕ, for k ∈ {0, . . . , n}, the Feynman-Kac representation is
as follows

µk(ϕ) =
E[ϕ(Xk)

∏k−1
m=0 1Am+1(Xm)]

E[
∏k−1

m=0 1Am+1(Xm)]
,

where (Xk)k≥0 is a Markov chain given by the following conditions: X0 ∼ µ and the inhomogeneous
transition kernels (Mk)k≥1.

4.2.2 The Fixed-Levels Algorithm

Proposition 6 shows that the framework of Feynman-Kac formulae does apply, and thus this grants
access to the approximation of the associated measures using an interacting particle method.
Basically, at each iteration k, it consists in selecting the particles according to the potentials, here
1Ak+1

, and then in propagating the particles according to the transitions given by Mk+1. The
approximation of the rare event probability stems from the following obvious property

p = P(X ∈ An) =
n−1∏

k=0

P(X ∈ Ak+1|X ∈ Ak) =
n−1∏

k=0

µk(Ak+1)

and finally

p =

n−1∏

k=0

E[1Ak+1
(Xk)

∏k−1
m=0 1Am+1(Xm)]

E[
∏k−1

m=0 1Am+1(Xm)]
,

where the last equality comes from Proposition 6. We approximate at each stage the probability
pk = µk(Ak+1) = P(X ∈ Ak+1|X ∈ Ak) by the proportion of the particles already in the next set,
and the total probability is estimated as the product of those. This gives Algorithm 1 below.

Algorithm 1

Parameters

N the number of particles, the sequence {L0, . . . , Ln} of levels.

Initialization

Draw an i.i.d. N -sample (Xj
0)1≤j≤N , of the law µ.

Iterations

for k = 0 to n− 1 /* level number */

Let Ik = {j : Xj
k ∈ Ak+1}.

Let p̃k = |Ik|
N .

for j ∈ Ik, let X̃j
k+1 = Xj

k
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for j 6∈ Ik, let X̃j
k+1 be a copy of Xℓ

k where ℓ is chosen randomly in Ik with uniform
probabilities.

for j = 1 to N /* particle index */

Draw a new particle X̂j
k+1 ∼ K(X̃j

k+1, .).

If X̂j
k+1 ∈ Ak+1 then let Xj

k+1 = X̂j
k+1, else Xj

k+1 = X̃j
k+1.

endfor

endfor

Output

Estimate the probability of the rare event by p̃ =
n−1∏

k=0

p̃k.

Remark: The last set of particles is a (non independent) sample that provides an approximation
of the law µn of the rare event. The samples are not independent due to the splitting of successful
particles.

4.2.3 Fluctuations Analysis

Del Moral [40] has extensively studied in a very general context the asymptotic behavior of the
interacting particle model as the number N of particles goes to infinity. For example, it is well
known that the estimate p̃ is unbiased. The next proposition presents a precise fluctuation result
in our context of rare event analysis.

Proposition 7 Let p̃ denote the estimate given by the fixed-levels algorithm, then

√
N

p̃− p

p

D−−−−−→
N→+∞

N (0, σ2),

with

σ2 =
n−1∑

k=0

1− pk
pk

+

n−1∑

k=1

1

pk
E

[(
P(Xn−1 ∈ An|Xk)

P(Xn−1 ∈ An|Xk−1 ∈ Ak)
− 1

)2
∣∣∣∣∣Xk−1 ∈ Ak

]
.

This result does not correspond exactly to Algorithm 1. The difference is that the proposition
assumes that the resampling is done using a multinomial procedure, which gives a higher variance
than that of Algorithm 1. This does not make much difference for the following discussion, as the
best possible variance is the same. In fact the variance is lower bounded

σ2 ≥
n−1∑

k=0

1− pk
pk

,

with equality if and only if for all k = 1, . . . , n− 1, and knowing that Xk−1 ∈ Ak, one has

P(Xn−1 ∈ An|Xk) ⊥ Xk.

This means that equality holds if, between step k and step n − 1, the algorithm forgets the ini-
tial position Xk. In order to reach this goal, a possible route is to begin step k by applying an
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infinite number of times (and not only one time as is the case in Algorithm 1) the transition ker-
nel Mk with stationary distribution µk = L(X|X ∈ Ak). We will discuss this point in section 4.4.4.

This will motivate us in the sequel to study an idealized version of the algorithm with at each
step the possibility (never met in practice) to draw directly an i.i.d. sample of µk. As we will see
from numerical results, the theoretical performance derived for this idealized version can almost
be achieved by the actual algorithm at a reasonable cost. However, from now on, we assume that
at each step k it is possible to draw an i.i.d. sample of the law of X conditionally on the event
{X ∈ Ak} = {Φ(X) > Lk}. Then the relative variance of the estimator reduces to

σ2 =
n−1∑

k=0

1− pk
pk

.

Thus, for a fixed value of p and a fixed number n of levels, this asymptotic variance would be
minimal if pk ≡ p0 for all k. This is indeed a simple constrained optimization problem:

argmin
p0,...,pn−1

n−1∑

k=0

1− pk
pk

s.t.
n−1∏

k=0

pk = p.

In this case, the minimal asymptotic variance is simply n1−p0
p0

, with p0 = p
1
n . This optimal situa-

tion corresponds to the case where the levels are evenly spaced in terms of probability of success:
as far as multilevel splitting for Markov processes is concerned, this point was also mentioned in
Glasserman, Heidelberger, Shahabuddin and Zajic [62], Lagnoux [81], and Cérou, Del Moral, Le
Gland, and Lezaud [25]. The following section addresses this crucial issue for the adaptive version
of the algorithm. Before this, two remarks are in order.

Remarks:

1. If one’s particular interest is the variance of p̃ rather than a convergence in distribution like
the CLT-type result of Proposition 7, then we can turn to the recent non asymptotic results
obtained in Cérou, Del Moral and Guyader [24, corollary 5.2] (see also appendix A). Under
some regularity conditions mainly about the mixing property of the kernel K, there exist
positive constants αk, for 0 ≤ k ≤ n− 1, such that for all N ≥ N0 =

∑n−1
k=0

αk
pk

,

E

([
p̃− p

p

]2)
≤ 4

N0

N
.

If we assume an i.i.d. sample at each step, then all the αk’s are all equal to 1, and N0 =∑n−1
k=0

1
pk

.

2. Finally, there is a maybe small, but non-zero, probability that the particle system dies at
some stage. This may typically happen when two consecutive levels are too far apart, or
when the number of particles is too small. A first solution to this problem is given in Le
Gland and Oudjane [82]. The idea is to go on sampling new particles until a given number
of them have reached the given level. The price to pay is a possibly very long computation
time. A second solution is proposed in the next section.

4.3 A First Adaptive Method

4.3.1 The Algorithm

As we may not have a great insight about the law µ and/or the mapping Φ, typically when Φ is a
black box, the choice of the levels L1, . . . , Ln−1 might prove to be quite problematic. We propose
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from now on to adaptively choose the level sets, ensuring not only that the particle system never
dies but also that the asymptotic variance of the estimate p̃ is minimized.

The method is very easy to implement. We choose a prescribed success rate p0 between two con-
secutive levels. In practice, p0 = 0.75 works well. At step k, the algorithm sorts the particles Xj

k

according to their scores Φ(Xj
k). Then it sets the next level to the (1−p0) empirical quantile L̃k+1,

which means that a proportion p0 of the particles scores are above it. Starting from this sample of
p0N particles which are (ideally) independently and identically distributed according to the law
L(X|Φ(X) > L̃k+1), an i.i.d. sample of size N is drawn with the same distribution, and the rest
of the algorithm is unchanged.

The algorithm then stops when some L̃ñ0+1 > q, and the probability is estimated by p̃ = r̃0 pñ0
0 ,

where r̃0 denotes the number of particles in the last iteration being above level q. The number
ñ0 of steps is random, but if N is large enough, then we can prove that, outside an event of
exponentially small probability, ñ0 is actually fixed by the ratio of the logarithms

n0 =

⌊
logP(X ∈ A)

log p0

⌋
=

⌊
log p

log p0

⌋
.

As mentioned above, this variant enforces evenly spaced levels in terms of probability of success,
and therefore a minimal asymptotic variance for the estimate p̃ of p. The pseudo-code for the
adaptive (idealized) algorithm is given in Algorithm 2 below.

Algorithm 2

Parameters

N the number of particles, the number N0 < N of succeeding particles, and let p0 = N0/N .

Initialization

Draw an i.i.d. N -sample (Xj
0)1≤j≤N of the law µ.

Compute L̃1, the (1− p0) quantile of Φ(Xj
0), j = 1, . . . , N .

k = 1;

Iterations

while L̃k ≤ q do

Starting from an i.i.d. p0N -sample with law L(X|Φ(X) > L̃k), draw an i.i.d. N -sample
(Xj

k)1≤j≤N with the same law.

Compute L̃k+1, the (1− p0) quantile of Φ(Xj
k), j = 1, . . . , N .

k = k + 1;

endwhile

Let NL the number of particles Xj
k−1, j = 1, . . . , N , such that Φ(Xj

k−1) > q.

Output

Estimate the probability of the rare event by p̃ =
NL

N
pk−1
0 .
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Remarks:

1. In this algorithm, the step drawing an N -sample starting from a p0N -sample is of course the
trickiest one, that is why we call it the idealized algorithm. Once again, the analytical study
of this idealized version in the next subsection assumes it can be done perfectly, although this
will never be met in practice. In section 4.4.4, we propose a way to implement it in practice,
at least approximately, and chapter 5 shows its practical efficiency on several examples.

2. The cost of adaptive levels is a higher complexity by a factor logN , due to the quick sort,
and a slight loss of accuracy due to a bias. Yet, Proposition 8 below proves that this
bias becomes negligible compared to the standard deviation as N increases and provides
an explicit formula, which allows to correct this bias and to derive confidence intervals.
Experimental results of chapter 5 illustrate this.

4.3.2 Bias and Variance

The assumption of a continuous cumulative distribution function (cdf) F of Φ(X) is now required
to derive the properties of the adaptive algorithm. Let us write the rare event probability as

p = r0 p
n0
0 , with n0 =

⌊
log p

log p0

⌋
and r0 = p p−n0

0 ,

so that r0 ∈ (p0, 1]. In the same way we write p̃ = r̃0 p
ñ0
0 , with ñ0 the number of steps before the

algorithm stops. A first theorem shows a CLT-type convergence.

Theorem 8 If F is continuous, then we have

√
N

p̃− p

p

D−−−−−→
N→+∞

N (0, σ2),

where

σ2 = n0
1− p0
p0

+
1− r0
r0

.

Unlike the fixed-levels version of the algorithm, the adaptive version is biased. Nevertheless, the
next result shows that the bias is of order 1/N , and is thus negligible compared to the standard
deviation given in Theorem 8 for the idealized algorithm.

Proposition 8 If F is continuous, then we have

N
E[p̃]− p

p
−−−−−→
N→+∞

n0
1− p0
p0

.

Thus the bias is positive and of order 1
N when N goes to infinity

E[p̃]− p ∼ p

N

n0(1− p0)

p0
.

Putting all things together, we can write the following asymptotic expansion

p̃ = p

(
1 +

1√
N

√
n0

1− p0
p0

+
1− r0
r0

Z +
1

N
n0

1− p0
p0

+ o
P

(
1

N

))
,

where Z is a standard Gaussian variable.

Finally, it is worth mentioning that the bias is always positive, giving a slightly overvalued estimate.
As rare event analysis usually deals with catastrophic events, it is not a bad thing that the real
value be a bit lower than the provided estimate. Moreover, if one wants to correct it, the explicit
formula of Proposition 8 allows to do so.
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4.4 A Second Adaptive Method

4.4.1 Introduction

The analysis of the statistical properties of p̃, the tail probability estimate of p presented in the
previous section, reveals that when the number of particles N tends to infinity, the expectation
and variance are respectively

E[p̃] = p+O(N−1) and Var(p̃) =
p2

N

(
n0

1− p0
p0

+
1− r0
r0

)
+ o(N−1),

where

n0 =

⌊
log p

log p0

⌋
and r0 = p p−n0

0 .

so that r0 ∈ (p0, 1]. Since the function ψ : p0 7→ (1 − p0)/(−p0 log p0) is nonincreasing on (0, 1)
(see figure 4.1), one can deduce that the larger p0, the lower the variance, with

lim
p0→1−

Var(p̃) =
p2 ×− log p

N
.

Hence the idea to choose p0 as large as possible. However, with an adaptive method such as the
one of the previous section, the largest possible value is clearly p0 = 1 − 1/N . This is the main
idea of this second adaptive method.

Figure 4.1: Function ψ : p0 7→ (1− p0)/(−p0 log p0).

Indeed, this section presents a refinement of Algorithm 2: at each iteration j, define the new level
Lj as the minimum of Φ(·) evaluated on the N particles, remove the particle that achieves the
minimum, and use the Metropolis-Hastings algorithm to rebranch the removed particle according
to the conditional distribution of X knowing that {Φ(X) > Lj}. This is a crucial step of the algo-
rithm. Ideally, we would like to exactly sample from the conditional distribution L(X|Φ(X) > Lj).
In practice, as in the previous section, this is impossible. Nevertheless, we will analyze our algo-
rithm under that very strong assumption. As previously, to avoid any misunderstanding, we will
call this the idealized algorithm. Even if it does not completely match with the algorithm used in
practice, it gives us an insight about the optimal performance this latter could reach. In particular,
we will show that our idealized algorithm improves the current state-of-the-art algorithms.

Unfortunately, the techniques used to prove Theorem 8 and Proposition 8 cannot be applied to
this new algorithm. Instead, the analysis of this idealized algorithm uses a novel technique that
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exploits Poisson processes to obtain an exact description of the statistical properties of the esti-
mate for a finite number of particles N . The analysis holds for both the problem of estimating the
tail probability for a given quantile and the problem of estimating the quantile given a specified
tail probability. To our knowledge, the application of multilevel splitting techniques to quantile
estimation is new. Furthermore, the idealized approach enables us to produce non-asymptotic
confidence intervals for the estimated quantities with respect to the number of particles.

Finally, we would like to stress that our methodology fits nicely within the modern computational
Bayesian paradigm, since it provides a novel tool for computing extreme quantiles of posterior
distributions of univariate functions of the parameters. In a different context, it indeed bears
a resemblance to the “Nested Sampling” approach as initially and independently proposed by
Skilling [107, 108] and recently analysed by Chopin and Robert [33].

4.4.2 Algorithm

First of all, we present the new adaptive algorithm in a unified context, that means for the
estimation of a tail probability as well as for the estimation of an extreme quantile, depending
on the stopping rule.

• Start with an i.i.d. sample (X1, X2, . . . , XN ) from µ and initialize L0 = −∞ and

X1
1 = X1, . . . , X

1
N = XN .

• For m = 1, 2, . . ., set

Lm = min(Φ(Xm
1 ), . . . ,Φ(Xm

N )),

and define for all i = 1, 2, . . . , N :

Xm+1
i =

{
Xm

i if Φ(Xm
i ) > Lm

X⋆ ∼ L(X|Φ(X) > Lm) if Φ(Xm
i ) = Lm,

where X⋆ is independent of {Xm
1 , . . . , Xm

N }.

• Stopping rules:

(1) To estimate a tail probability p given a quantile q,
continue until m = M where M = max{m : Lm ≤ q} and set

p̂ =

(
1− 1

N

)M

.

We will show that M is a Poisson distributed random variable.

(2) To estimate a quantile q given a tail probability p,
continue until iteration

m =

⌈
log(p)

log(1−N−1)

⌉
,

and set q̂ = Lm. Note that this time, the number of iterations is deterministic.

Remark: Once again, simulating exactly according to L(X|Φ(X) > Lm) is impossible in general
and we propose in section 4.4.4 to do so approximately using Markov Chain Monte Carlo tech-
niques. However, for the theoretical analysis, we will consider only the case where that simulation
could be done perfectly, and we call it the idealized algorithm.
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4.4.3 Statistical Results on the Idealized Algorithm

Suppose that the distribution µ of X and the mapping Φ are such that the univariate random
variable Y = Φ(X) has cumulative distribution function F for which, as in the previous section,
we only assume continuity. This is the only assumption we make about the distribution of X and
the transformation Φ, unless stated otherwise. We denote the survival function and the integrated
hazard function of Y by S(y) = 1−F (y), and Λ(y) = − logS(y), respectively. The main result in
this section describes the joint distribution of the levels L1, L2, L3, . . . generated by our algorithm.

Theorem 9 The random variables Λ(L1),Λ(L2),Λ(L3), . . . are distributed as the successive ar-
rival times of a Poisson process with rate N , that is,

Λ(Lm)
d
=

1

N

m∑

j=1

Ej ,

where E1, . . . , Em, are i.i.d. Exponential(1).

Estimating a Tail Probability

Consider the problem of estimating the tail probability p = P(Φ(X) > q) for a given quantile q.
Applying the results of Theorem 9 to stopping rule number 1, we obtain the following corollary:

Corollary 3 The random variable M = max{m : Lm ≤ q} is distributed according to a Poisson
law with parameter −N log p.

It follows from this corollary that E[M ] = Var(M) = −N log p. Furthermore, the classical approx-
imation of the Poisson distribution by a Gaussian law N (−N log p,−N log p) is of course valid in
our context since N is assumed to be large (at least 100) and p small.

Since we discard exactly one particle among N at each step of the algorithm, a natural estimator
for the tail probability p is indeed

p̂ =

(
1− 1

N

)M

and the following proposition describes its distribution.

Proposition 9 The estimator p̂ for the tail probability p is a discrete random variable taking
values in

S =

{
1,

(
1− 1

N

)
,

(
1− 1

N

)2

, . . .

}
,

with probability

P

[
p̂ =

(
1− 1

N

)m]
=

pN (−N log p)m

m!
, m = 0, 1, 2, . . . .

It follows that p̂ is an unbiased estimator of p with variance

Var(p̂) = p2
(
p−

1
N − 1

)
.

Comparing our estimator with the one obtained through Crude Monte Carlo (CMC) is instructive.
Recall that the CMC estimate for the tail probability is given by

p̂mc =
N̂mc

N
=

#{i ∈ {1, . . . , N} : Φ(Xi) > q}
N

,
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where N is the size of the CMC sample. The random variable N̂mc has a Binomial distribution
with parameters (N, p), and hence p̂mc is an unbiased estimator with relative variance

Var(p̂mc)

p2
=

1− p

Np
≈ 1

Np
.

The last approximation assumes that p is small and hence 1− p ≈ 1. Thus the sample size N has
to be at least as large as 1/p in order to get a reasonable precision. Compare the latter with the
relative variance of our estimator p̂

Var(p̂)

p2
=

(
p−

1
N − 1

)
≈ − log p

N
,

when p is very small and/or N is large. This proves that, for the same precision in terms of vari-
ance of the estimator, CMC requires about (−p log p)−1 more particles than the method presented
in this paper. However the CMC estimator has a lower complexity than our algorithm, this point
will be discussed in Section 4.4.5.

For now, we can use Proposition 9 to derive confidence intervals for p. Let α be a fixed number
between 0 and 1, e.g. α = 0.05, and denote by Z1−α/2 the quantile of order 1−α/2 of the standard
Gaussian distribution.

Proposition 10 Let us denote

p̂± = p̂ exp


±

Z1−α/2√
N

√

− log p̂+
Z2
1−α/2

4N
−

Z2
1−α/2

2N


 ,

then I1−α(p) = [p̂−, p̂+] is a 100(1− α)% confidence interval for p.

For example, if α = 0.05, then Z1−α/2 ≈ 2, and neglecting the terms of order 1/N gives the
following 95% confidence interval for p

p̂ exp

(
−2

√
− log p̂

N

)
≤ p ≤ p̂ exp

(
+2

√
− log p̂

N

)
. (4.1)

The asymmetry of this confidence interval around p̂ arises from the distribution of p̂ around its
mean p. Indeed, since M is approximately Gaussian, p̂ is approximately log-Gaussian. We will
illustrate this result in section 5.1.

Estimating a Large Quantile

Consider now the problem of estimating the quantile q for a given p such that P(Φ(X) > q) = p.
Using stopping rule number 2 described in Section 4.4.2, a natural estimator for the quantile q is

q̂ = Lm,

where m =
⌈

log p
log(1−N−1)

⌉
. Given sufficient smoothness of the distribution at the quantile q, we

obtain an asymptotic normality result for our estimator.

Proposition 11 If cdf F is differentiable at point q, with density f(q) 6= 0, then

√
N(q̂ − q)

L−−−−→
N→∞

N
(
0,

−p2 log p

f(q)2

)
.
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The CMC estimator for q is defined as q̂mc = Y(⌊(1−p)N⌋), where Y(1) ≤ · · · ≤ Y(N) are the order
statistics of Φ(X1), . . . ,Φ(XN ) and ⌊y⌋ stands for the integer part of y. It satisfies the following
CLT type result (see for example Schervish [103], Theorem 7.25)

√
N(q̂mc − q)

L−−−−→
N→∞

N
(
0,

p(1− p)

f(q)2

)
.

This proves again that in order to achieve the same precision in terms of variance of the estimator,
CMC requires about (−p log p)−1 more particles than the estimator proposed here. The following
proposition describes the bias of our estimator. As already noticed in van Zwet [114] for the CMC
estimator, the estimation of the bias requires further assumptions.

Proposition 12 If F−1 is twice differentiable on (0, 1) with continuous second derivative on
(0, 1), if (F−1)′(t) > 0 for t ∈ (0, 1), and if there exist non-negative numbers a and b such that
F−1(t)ta(1− t)b is bounded for t ∈ (0, 1), then the bias of q̂ is bounded from below by

lim
N→∞

N(E [q̂]− q) ≥
(
log p− pf ′(q)

2f(q)2
(−2− log p)

)
p

f(q)
,

and bounded from above by

lim
N→∞

N(E [q̂]− q) ≤
(
1 + log p− pf ′(q)

2f(q)2
(2− log p)

)
p

f(q)
.

Remarks:

1. As usual the bias is in O(1/N) where as standard deviation is in O(1/
√
N), so that only this

latter is worth of attention when N is large enough.

2. In these inequalities, it is assumed that f ′(q) < 0. Suitably modified upper and lower bounds
are readily obtained when f ′(q) > 0. We chose to present the results for f ′(q) < 0, as that
assumption is more likely to hold in practice.

3. The assumptions to get expressions for the bias and the variance are the same as in CMC.
For this estimator, it is known from the theory of order statistics (see for example van Zwet
[114], Lemma 3.2.2, or Arnold, Balakrishnan and Nagaraja [6], p.128) that:

E[q̂mc] = q − 1

N
· p(1− p)f ′(q)

2f(q)3
+ o(1/N).

The obtained expression for the asymptotic variance in Proposition 11 proves that q̂ is much more
precise than the CMC estimator q̂mc, but is of limited practical use as it requires the knowledge
of f(q). Nonetheless, exploiting the connection with Poisson processes allows us to derive non
asymptotic confidence intervals for q without having to estimate the density at the quantile q.
Indeed, fix α ∈ (0, 1), denote by Z1−α/2 the quantile of order 1 − α/2 of the standard Gaussian
distribution, and define

m− =
⌊
−N log p− Z1−α/2

√
−N log p

⌋

m+ =
⌈
−N log p+ Z1−α/2

√
−N log p

⌉

and consider Lm− , Lm+ the associate levels. The following proposition provides a 1−α confidence
interval for q.
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Proposition 13 If the cdf F is continuous, then a 100(1−α)% confidence interval for the quantile
q is I1−α(q) = [Lm− , Lm+ ].

Remarks:

1. The computational price to pay to obtain the confidence interval is the cost of running the
algorithm until m = m+ in order to get the upper confidence bound Lm+ . This requires the
algorithm to run around Z1−α/2

√−N log p additional steps.

2. Compared to Proposition 11, the great interest of this property lies in the fact that it does
not require any estimation of the probability density function f . This result will also be
illustrated in section 5.1.

4.4.4 Practical Implementation

This section explains how to generate a random variable X⋆ from the conditional distribution
L(X|Φ(X) > Lm) that is needed at each step in the first adaptive algorithm as well as in the sec-
ond adaptive algorithm. Let us recall that µ denotes the law of X. As mentioned above, to draw
X⋆, we run a Monte Carlo Markov Chain with a suitable µ-symmetric and one-step µ-irreducible
kernel K. That is: K satisfies the detailed balance property with µ; and from any initial point x,
the Radon-Nikodym derivative dK(x, dx′)/dµ(dx′) is strictly positive. Either, one knows such a
kernel K or otherwise could use a Metropolis-Hasting kernel K based on a one-step µ-irreducible
instrumental kernel Q(x, dx′) (see for example Robert and Casella [98]).

Toy Example: Let us suppose that X has a standard Gaussian distribution on R. Then let us
present two ways to get such a transition kernel K:

1. Direct construction: fix σ > 0 and denote K the transition kernel defined by

K(x, dx′) =

√
1 + σ2

2πσ2
exp

(
−1 + σ2

2σ2

(
x′ − x√

1 + σ2

)2
)
λ(dx′),

where λ stands for Lebesgue measure on Rd. Denoting W a Gaussian standard variable, the
transition X Ã X ′ proposed by K is simply X ′ = (X + σW )/

√
1 + σ2.

2. Metropolis-Hastings kernel: fix σ > 0 and denote Q the transition kernel defined by

Q(x, dx′) =
1√
2πσ2

exp

(
−(x′ − x)2

2σ2

)
λ(dx′) = q(x, x′)λ(dx′).

Denoting W a Gaussian standard variable, the transition X Ã X ′ proposed by K is X ′ =
X+σW . Then, starting from Q, the transition kernel K constructed by Metropolis-Hastings
is µ-symmetric and one-step µ-irreducible.

Application to the Adaptive Algorithms

Consider that a µ-symmetric and one-step µ-irreducible transition kernel K is available. For all
m = 1, 2, . . ., knowing L1 = ℓ1, L2 = ℓ2, . . ., consider the sets

Am = {x ∈ Rd s.t. Φ(x) > ℓm},

and let us call µm the normalized restriction of µ on Am

µm(dx) =
1

µ(Am)
1Am(x)µ(dx).
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We define also the transition kernel Km by

Km(x, dx′) = 1Ac
m
(x) δx(dx

′) + 1Am(x)(K(x, dx′)1Am(x
′) +K(x,Ac

m) δx(dx
′)).

The idea behind the definition of Km is very simple: starting from x in Am, the kernel K proposes
a transition x Ã x′. Then, if Φ(x′) > ℓm, the transition is accepted, else it is rejected and x stays
at the same place.

With these notations, it easy to see that the probability measure µm is invariant by the transition
kernel Km. Moreover, Km is also Harris recurrent, and we have for any initial distribution ν such
that ν(Am) = 1

‖νKn
m − µm‖ −−−−−→

n→+∞
0, (4.2)

where ‖ · ‖ is the total variation norm. In our context, let us fix m = 1, so that the algorithm
begins with an i.i.d. sample (X1, X2, . . . , XN ) from µ, and initialize

X1
1 = X1, . . . , X

1
N = XN .

In order to simplify notations, suppose that

Φ(X1
1 ) < . . . < Φ(X1

N ),

so that L1 = Φ(X1
1 ) and

X2
2 = X1

2 , . . . , X
2
N = X1

N .

Knowing L1 = ℓ1, the sample (X2
2 , . . . , X

2
N ) is i.i.d. with distribution µ1. Now pick at random

an integer i between 2 and N and set X⋆
0 = X2

i . Thus X⋆
0 is also distributed according to µ1,

but is not independent from {X2
2 , X

2
3 , . . . , X

2
N}. In order to get independence, apply iteratively

the transition kernel K1 to X⋆
0 . Knowing X2

i = x2i , one has δx2
i
(A1) = 1 since by construction

Φ(x2i ) > ℓ1. As a consequence, the result given by equation (4.2) may be applied

∥∥∥∥
∫

δx2
i
Kn

1 − µ1

∥∥∥∥ −−−−−→
n→+∞

0.

Thus, after “enough” applications of the kernel K1, X
⋆
0 has mutated into a new particle X⋆ that is

distributed according to µ1 and is now “almost” independent from the initial position X2
i . Denoting

by X2
1 = X⋆, we have constructed a sample (X2

1 , . . . , X
2
N ) of i.i.d. random variables with common

distribution L(X|Φ(X) > ℓ1). The principle of the algorithm is to iteratively apply this simple idea.

Remarks:

1. One would theoretically have to iterate Km an infinite number of times to get independence
at each step and to match perfectly with the theoretical analysis of the idealized algorithm in
section 4.4.3. This is of course unrealistic, and in practice it is applied only a finite number
of times, denoted T . In the watermarking example of section 5.1, we have applied it T = 20
times at each step and this led to an excellent agreement between the idealized and empirical
results. However, this is certainly due to the fact that this is an extremely regular situation,
and we admit that one can undoubtedly find cases where things do not happen so nicely.

2. The second remark is about the choice of the transition kernel K. To fix ideas, let us
come back to the toy example where X has a standard Gaussian distribution on R, i.e.,
µ = N (0, 1), and Φ(x) = x. Two µ-symmetric kernels have been proposed. Both require to
choose the value of a standard deviation parameter σ. The value of σ has in fact a great
impact on the efficiency of the algorithm. Indeed, if σ is too small, then almost all of the T
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proposed transitions will be accepted, but since each transition corresponds (in expectation)
to a small move, it will require a large T to forget the initial position. On the other side, if σ
is too large, then almost all of the T proposed transitions will be rejected, but each transition
corresponds (in expectation) to a huge move, so that it will require a rather low T to forget
its initial position. Consequently, a trade-off has to be found for the “mixing” parameter σ.
As a rule of thumb, it seems reasonable to count the proportion of accepted transitions at
each step, and if this proportion is below a certain rate (say for example 20%) then one may
reduce σ (say for example by a factor of 10%). This adaptive tuning is possible since K has
the desired properties with respect to µ for any value of σ. In this respect, we would like
to mention that there is a huge amount of literature on appropriate scaling of random walk
Metropolis algorithms, dating back at least to Roberts, Gelman and Gilks [99].

3. Keeping the notations of the previous remark, one could think that, as the algorithm goes
on and concentrates on regions with smaller and smaller probabilities, one would have to
reduce the mixing parameter σ with increasing iteration. In fact, and as will be illustrated
in section 5.1, this is not the case when dimension d is large enough: in such a situation,
a region with very small probability may indeed be very large. For our purpose, one could
call this phenomenon the “blessing of dimensionality”, in opposition to the statistical “curse
of dimensionality”.

Pseudo-Code for Estimating p

We give now the pseudo-code version of the algorithm for the tail probability estimation when q
is given.

Algorithm 3

Parameters

The number N of particles, the quantile q, the number T of proposed transitions, a µ-
reversible kernel transition K.

Initialization

m = 1.

Draw an i.i.d. N -sample (Xm
1 , . . . , Xm

N ) of the law µ.

Sort the vector (Φ(Xm
1 ), . . . ,Φ(Xm

N )).

Denote (Xm
1 , . . . , Xm

N ) the sorted sample according to Φ and L1 = Φ(Xm
1 ).

Iterations

while Lm < q

Pick an integer R randomly between 2 and N .

Let Xm+1
1 = Xm

R .

for t = 1 : T

From Xm+1
1 , draw a new particle X⋆ ∼ K(Xm+1

1 , .).

If Φ(X⋆) > Lm, then let Xm+1
1 = X⋆.

endfor
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Let (Xm+1
2 , . . . , Xm+1

N ) = (Xm
2 , . . . , Xm

N ).

Put Φ(Xm+1
1 ) at the right place in the sorted vector (Φ(Xm+1

2 ), . . . ,Φ(Xm+1
N )) (di-

chotomic search).

Denote (Xm+1
1 , . . . , Xm+1

N ) the sorted sample according to Φ and Lm+1 = Φ(Xm+1
1 ).

m = m+ 1.

endwhile

Output

p̂ =
(
1− 1

N

)m−1
.

Remarks:

1. For the pseudo-code of the first adaptive method (Algorithm 2), one has to apply the same
procedure “for t = 1 : T (...) endfor” to all the (1−p0)N particles that need to be resampled,
and not only to one particle as is the case in Algorithm 3 above.

2. As mentioned in section 4.4.2, if we want to estimate a large quantile instead of a tail
probability, then we just have to replace the loop “while Lm < q (...) endwhile” with the

loop “for m = 1 :
⌈

log(p)
log(1−N−1)

⌉
(...) endfor”. We call it Algorithm 4.

4.4.5 Complexity, Efficiency and Asymptotic Efficiency

In this section, we mix the theoretical results of the idealized algorithm derived in section 4.4.3
and the computational complexity of Algorithm 3 above. Once again, we do acknowledge that one
might not find this analysis totally convincing. However it gives us an insight about our method
regarding the crucial issues of complexity and efficiency.

The expected computational complexity CN of Algorithm 3 is O(N logN log p−1) since it requires:

• A sorting of the initial sample, whose cost is (in expectation) in O(N logN) via a quicksort
algorithm;

• Around E[M ] = −N log p steps (where p = P(Φ(X) > q)), whose cost is decomposed in:

– T proposed kernel transitions,

– the dichotomic search and the insertion of the new particle at the right place in the
ordered sample, whose cost is in O(logN) via a min-heap algorithm (see for example
Knuth [78]).

By comparison, the algorithm complexity of CMC is N . The complexity of Algorithm 2, where at
each iteration, instead of killing and branching the smallest particle, we are branching a proportion
(1− p0) (typically p0 = 3/4) is also in O(N logN log p−1).

We noticed in section 4.4.3 that our estimator p̂ of p has a smaller variance than p̂mc but a larger
computational complexity. To take into account both computational complexity and variance,
Hammersley and Handscomb have proposed to define the efficiency of a Monte Carlo process as
“inversely proportional to the product of the sampling variance and the amount of labour expended
in obtaining this estimate” [69]. So Algorithm 3 is a bit more efficient than Algorithm 2 because
the variance of p̂ is a bit smaller than the variance of p̃ while sharing similar computational costs.
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Specifically, the proposed estimator p̂ is computationally more efficient than the CMC estimator
p̂mc whenever

Var(p̂)× CN ≤ Var(p̂mc)× Cmc,

that is

−p2 log p

N
· (−kN logN log p) ≤ p(1− p)

N
·N ⇔ k logN ≤ 1− p

p(log p)2
.

That inequality is satisfied when p goes to zero since the right-hand side goes then to infinity. For
example, let us fix N = 200 and k = 10, then one can check numerically that the condition

10 log(200) ≤ 1− p

p(log p)2

is true as soon as p ≤ 1.0 × 10−4. The take-home message here is that our adaptive method for
estimating tail probabilities is useful only for rare events. If the probability is not that rare, then
one might simply apply a Crude Monte Carlo method.

Our calculations on p̂ enable us to derive another efficiency result for rare event probability esti-
mation based on the asymptotic behavior of the relative variance of the estimator when the rare
event probability p goes to 0. Here we will focus only on the asymptotic efficiency, as discussed
in Glynn and Whitt [63]. Recall that an estimator p̂ for the tail probability p is said to reach
asymptotic efficiency if for N fixed

lim
p→0

log (Var(p̂)× C(p̂))

2 log p
= 1.

Jensen’s inequality shows that for any unbiased estimator

lim sup
p→0

log (Var(p̂)× C(p̂))

2 log p
≤ 1.

For example, the CMC method does not reach asymptotic efficiency since

log (Var(p̂mc)× C(p̂mc))

2 log p
=

log p+ log (1− p)

2 log p
−−−→
p→0

1

2
.

Thanks to Proposition 9, we get for the proposed estimator

log (Var(p̂)× C(p̂))

2 log p
= 1 +

log
(
p−

1
N − 1

)
+ log(kN logN log p−1)

2 log p
−−−→
p→0

1− 1

2N
.

Consequently, since the number N of particles is supposed to be large, the proposed method almost
reaches asymptotic efficiency.
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Chapter 5

Applications in a Static Context

5.1 Watermarking

Digital watermarking is a set of techniques for embedding information in digital files, such as
audio files, images, or video files. Ideally, this embedding should minimally distort the original,
be robust to corruption, and be hard to remove. Digital watermarking with these properties en-
able ownership attribution of digital media that is essential for digital rights management. For
example, watermarking is used for copy protection by optical disk players to prevent and deter
unauthorized copying of digital media by refusing to record any watermarked content (see Digital
Rights Management site for DVD copy [71] and Figure 5.1).

Digital file I
X

Encoding
Yes

No

Detection

Φ(X) ≶ q

Watermark W

Figure 5.1: Schematic representation of digital watermarking.

The probability of false alarm is the probability that the detector considers an original piece of
content (which has not been watermarked) as protected. The movie that a user shot during his
holidays could be rejected by his storage device. This absolutely non user-friendly behavior really
scares consumer electronics manufacturers, and should thus be very small. In 1997, the standards
group for DVD copyright protection called for technologies capable of producing at most one false
alarm in 400 hours of operations. As the detection rate was one decision per ten seconds, this
implied a probability of false alarm of about 7× 10−6. Since 2001, consumer electronics manufac-
turers claim no error in “316,890 years”, or equivalently a false positive probability of 1× 10−12. A
fundamental problem in developing and evaluating watermarking for digital rights management is
to estimate the probability of false positive by the watermarking detection scheme.

Formally, suppose that selecting a “random” (i.e., unwatermarked) digital file is equivalent to draw-
ing a random element X from a distribution µ on the probability space (Ω,F ,P). For that vector
X, let Φ(X) be a score that is large when a watermark is detected, i.e., the device considers the file
as watermarked if Φ(X) > q, where q is a fixed given threshold. Because of the complexity of many
decoding schemes, we view Φ as a black box, that is, we do not have an analytic expression for Φ
but we can readily evaluate Φ(X) for any given instance X. Then given a threshold q, we seek to es-
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timate the probability of false alarm, defined as the tail probability p = P(Φ(X) > q) when X ∼ µ.

Consequently, we are exactly in the abstract context of the previous chapter. Here, we apply our
algorithm to a well-known watermarking detector for which there exists a closed form expression
for the probability of false alarm. This allows us to benchmark our method. For this purpose,
we have selected the absolute value of the normalized correlation as the score function Φ (see for
example Merhav and Sabbag [87]), so that X is deemed watermarked whenever

Φ(X) =
|XTu|
‖X‖ > q,

where u is a secret but fixed unit vector, and X is a d−dimensional random vector with an un-
known isotropic distribution. Given a threshold value q we would like to find the tail probability
p.
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Figure 5.2: Detection region for zero-bit watermarking.

A geometrical interpretation shows that the acceptance region is a two-sheet hypercone (see figure
5.2) whose axis is given by u and whose angle is θ = cos−1(q) (with 0 < θ < π/2). Since X has
an isotropic distribution, X/‖X‖ has the uniform law on the unit sphere in dimension d, so that
any isotropic distribution makes the job to evaluate p. In the following, we propose to choose
a standard Gaussian distribution: X ∼ N (0, Id). This allows us to derive explicit expressions
for the probability of false positive detections to benchmark our algorithm. The following lemma
describes the distribution of Φ(X).

Lemma 4 Let us denote F the cdf of the random variable Y = Φ(X), G the cdf of a random
variable following a Fisher-Snedecor distribution with (1, d − 1) degrees of freedom, f and g their
respective pdf. Then for all q in (0, 1), we have

p = P(Φ(X) > q) = 1− F (q) = 1−G

(
(d− 1)q2

1− q2

)
,

from which it follows that

f(q) =
2(d− 1)q

(1− q2)2
· g

(
(d− 1)q2

1− q2

)
.

In our simulations, we chose the following transition kernel for Gaussian random vectors on Rd:
Given a current location x, we propose the new position

X ′ =
x+ σW√
1 + σ2

,
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where W is a N (0, Id) R
d-valued random vector and σ a positive number. In the simulations, the

dimension is d = 20, the number of proposed kernel transitions is T = 20, the numbers of parti-
cles are successively N = 100, 200, 500, 1000, 5000, and for each N we have run the algorithm 100
times in order to get boxplots, empirical relative standard deviations and confidence intervals. The
choice σ = 0.3 has experimentally been proved to be a good trade-off for the “mixing” parameter.

Remark: The fact that we do not have to tune σ on the fly might seem quite surprising at
first sight. Indeed, one could think that we should reduce it adaptively since we progressively
focus on smaller and smaller hypercones. Anyway, since d = 20, the square of the distance
between a particle and the origin is distributed according to a chi-square distribution χ2

20, which
is concentrated around its mean (i.e., 20). Thus, roughly speaking, the particles are concentrated
around the hypersphere centered at the origin and with radius

√
20. Thus, if θ = cos−1(0.95), then

even at the end of the algorithm the distance between the axis of the hypercone and its boundary
is around 1.5: this is five times larger than the standard deviation σ = 0.3 of the Gaussian moves
and explains that the rate of rejection does not dramatically increase with the iterations of the
algorithm.

5.1.1 Estimation of p

For our illustrative example, we fix q = 0.95 and apply Lemma 4 to conclude that the probability
of interest is approximately equal to p = 4.704 × 10−11. Estimating such a small probability by
running a CMC algorithm is of course out of question. For this purpose, we have applied Algorithm
3 of the previous chapter. Figure 5.3 summarizes the results through boxplots for our method. As
the number of particles increases, the distribution of the estimator concentrates around p.

100 200 500 1000 5000
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12
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Figure 5.3: Boxplots for the estimation of p obtained with 100 simulations for N = 100 to N =
5, 000 particles (Algorithm 3).

Figure 5.4 shows in log-log scales the theoretical and empirical relative standard deviations: the
theoretical one is known thanks to Proposition 9, replacing p with the numerical value 4.704×10−11,
whereas the empirical one was estimated through 100 successive simulations. Let us recall that
the theoretical relative standard deviations is namely

√
Var(p̂)

p
=

√
p−

1
N − 1 ≈

√
− log p

N
,

the last approximation being valid when N is large enough, hence the slope equal to −0.5 on the
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right hand of figure 5.4. One can notice the great coincidence between theory and practice on this
example, that means between the idealized algorithm and its practical implementation.
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Figure 5.4: Theoretical and empirical relative standard deviations with 100 simulations for N = 10
to N = 5, 000 particles (Algorithm 3).

To highlight the main differences between Algorithm 2 and Algorithm 3, we have also run Algorithm
2 on the same example and with exactly the same parameters, that means: d = 20, T = 20, σ = 0.3.
When the proportion of particles surviving from one step to the next is fixed to p0, Theorem 8
ensures that

√
N

p̃− p

p

D−−−−−→
N→+∞

N (0, σ2),

where

σ2 = n0
1− p0
p0

+
1− r0
r0

with n0 =

⌊
log p

log p0

⌋
and r0 = p p−n0

0 .

Taking p0 = 0.75 for example, it follows that n0 = 82 and r0 ≈ 0.83. In this case, the resulting
relative standard deviation of the estimator p̃ is only slightly larger than the standard deviation
of the estimator p̂ since

√
n0

1− p0
p0

+
1− r0
r0

≈ 1.66 ' 1.58 ≈
√
− log p.

One consequence is that Algorithm 3 requires a bit fewer particles to compute estimators for the
tail probability with similar standard errors. But that is not the most interesting point. More
important, Algorithm 3 gives the exact variance for as few as N = 10 particles, whereas the
asymptotic variance of Algorithm 2 is reached only for N ≥ 500. This is illustrated in Figures 5.4
and 5.5 that graph the estimated standard deviation as a function of the number of particle (dots)
for both methods, and compares it with the theoretical lower bound (line).

As a consequence, Algorithm 3 enables us to draw confidence intervals even with a low number
of particles, which, on this specific example, is only possible for N ≥ 500 with Algorithm 2. In
this respect, for N = 100 particles, figure 5.6 illustrates the 95% confidence intervals obtained in
equation (4.1), i.e. with Algorithm 3.
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Figure 5.5: Theoretical and empirical relative standard deviations with 100 simulations for N = 50
to N = 5, 000 particles (Algorithm 2).
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Figure 5.6: 95% confidence intervals for p = 4.704 · 10−11 with 100 simulations and N = 100
particles (Algorithm 3).

5.1.2 Estimation of q

Conversely, suppose that we fix p = 4.704 × 10−11 and seek to use Algorithm 4 to estimate its
associated tail quantile. We know that the theoretical value is q = 0.95. Figure 5.7 summarizes
the results through boxplots.
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Figure 5.7: Boxplots for the estimation of q obtained with 100 simulations for N = 100 to N =
5, 000 particles (Algorithm 4).

Figure 5.8 shows in log-log scales empirical and theoretical relative standard deviations: these last
ones are known thanks to Proposition 11, replacing p with the numerical value 4.704× 10−11 and
f(q) by the second formula of Lemma 4. The empirical standard deviation was estimated through
100 successive simulations of the algorithm.
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Figure 5.8: Theoretical and empirical relative standard deviations with 100 simulations for N = 100
to N = 5, 000 particles (Algorithm 4).

Once again, one can notice the great coincidence between theory and practice on this example.
Finally, figure 5.9 illustrates the 95% confidence intervals obtained in Proposition 13 for N = 100
particles.
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Figure 5.9: 95% confidence intervals for q = 0.95 with 100 simulations and N = 100 particles.

5.2 Fingerprinting

In this application, users’ identifiers are embedded in a purchased content. When this content is
found in an illegal place (e.g. a P2P network), the right holders decode the hidden message, find
a serial number, and thus they can trace the traitor, i.e. the customer who has illegally broadcast
his copy. However, the task is not that simple because dishonest users might collude. For security
reason, anti-collusion codes have to be employed. Yet, these solutions (also called weak traceability
codes, see for example Barg, Blakley and Kabatiansky [10]) have a non-zero probability of error,
defined as the probability of accusing an innocent. This probability should be, of course, extremely
low, but it is also a very sensitive parameter: in terms of the number of bits to be hidden in the
host content, anti-collusion codes get longer as the probability of error decreases.

Consequently, fingerprint designers have to strike a trade-off, which is hard to conceive when only a
rough estimation of the probability of error is known. The major issue for fingerprinting algorithms
is the fact that embedding large sequences implies also assessing reliability on a huge amount of
data which may be practically unachievable without using rare event analysis.

? Accusation
Procedure

Fingerprint X1 I1

I ′
colluders

In

Digital file I

Digital file I

Digital file I Fingerprint Xn

Fingerprint Xi

Figure 5.10: Schematic representation of a fingerprinting process.

In other words, fingerprinting is the application where a content server gives personal copies of
the same content to n different buyers. c of them are dishonest users, called colluders, who mix
their copies to yield a pirated content. A binary fingerprinting code is a set of n different m bit
sequences {Xi}1≤i≤n. Each sequence identifying a user has to be hidden in the personal copy with
a watermarking technique. When a pirated copy is found, the server retrieves a m bit sequence
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and accuses some users or nobody (see figure 5.10). There are two kinds of errors: accusing an
innocent (a false alarm) and accusing none of the colluders (a false negative). The designers of the
fingerprinting code must assess the minimum length of the code so that the probabilities of error
are below some significance levels: Pfa < ǫ1 and Pfn < ǫ2.

One of the best fingerprinting codes is a probabilistic code proposed by Tardos [111], where m =
O(c2 log 1

ǫ1
). Before Tardos’ work, the existence of such a short code was only theoretically proved.

Tardos is the first to exhibit a construction which is, moreover, surprisingly simple. The main point
of interest for us is that the accusation is based on the calculus of scores and their comparison to
a threshold (see figure 5.11 for a schematic picture). Consequently, this fingerprinting code is very
well suited with respect to our algorithm.

pdf of a good guy

pdf of a bad guy

PfaPfn

q

Figure 5.11: Accusation strategy of Tardos fingerprinting code.

5.2.1 New Accusation Strategy

In Tardos probabilistic fingerprinting code, the accusation is focused: The detection decides
whether a given user is guilty or not. It calculates his score from the code sequence of the user and
the sequence y recovered in the pirated copy. The user is deemed guilty when his score is higher
than a threshold q. The size of the collusion c, the probabilities ǫ1 and ǫ2 are the inputs of the
code. The outputs are the code length m and the value of the threshold q.

We think that this approach is not adapted in practice. We believe that the length of the code
sequence to be embedded in content is not tunable but fixed by the payload of the watermarking
technique and the length of the content. It is clear that the longer the sequence, the better the
accusation process. But, in practice, there is certainly a wide range in the length of the sequences
to be embedded due to a wide diversity of contents. In the same way, it might be complicated to
derive the right value of the threshold for different sequence lengths.

We propose a different approach. Once we have recovered the sequence y in the pirated copy, we
calculate all the scores of the users to which the content has been delivered and accuse the most
likely guilty users, i.e. the ones with the highest scores. In the sequel, consider that user j is
accused because he has the biggest score. There is no longer need of a threshold. However, we
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Figure 5.12: Theoretical and empirical relative standard deviations with 100 simulations for an
example of Tardos code.

cannot guaranty a probability ǫ1. To be fair, the output of our accusation process is the index j of
the most likely guilty user associated with the probability of making an error, i.e. the probability
that an innocent gets a larger score than the one of user j.

5.2.2 Accusing an Innocent

We are interested here in embedding an identifier in each copy of a purchased content. Then a pi-
rate copy, which is the result of a collusion, is found on the web, and we want to decide whether or
not it can be originated from a certain user. The rare event will be to consider an innocent as guilty.

The embedded message, called a fingerprint, consists of a sequence of bits X = (X1, . . . , Xm),
where each Xi is independent from the others, and drawn from a Bernoulli’s B(pi). The pi’s
are themselves i.i.d. random variables, drawn from an arcsine distribution on [0, 1]. Then we
find a pirate copy with fingerprint y = (y1, . . . , ym) ∈ {0, 1}m. Then for each user, with generic
fingerprint X = (X1, . . . , Xm), we compute his score Φ(X)

Φ(X) =
m∑

i=1

yi gi(Xi),

where the functions gi’s are defined as follows:

gi(Xi) =

√
1− pi
pi

1{Xi=1} −
√

pi
1− pi

1{Xi=0}

This approach was proposed by Tardos in [111]. We refer the interested reader to Cérou, Furon
and Guyader [26] to understand why the choices of the arcsine distribution for the pi’s and of these
specific forms for the gi’s are optimal in some sense.

To apply our algorithm, we need to choose the kernel K. As the Xi’s are independent, we ran-
domly choose r indices {j1, . . . , jr} ∈ {1, . . . ,m}, with r being a fixed parameter. Then for each
jℓ, we draw a new X ′

jℓ
independently from the Bernoulli distribution B(pjℓ).

For such codes, we first present the equivalent of Figure 5.5 on Figure 5.12. We consider the
probability of accusing an innocent using a code of length m = 200. In this first experiment, the
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Figure 5.13: Distribution of the number of steps.

pirate fingerprint y is fixed and is an input of the algorithm. Algorithm 2 was run with p0 = 1/2.
As in the watermarking example of section 5.1, the transition kernel K was applied T = 20 times,
with r = 20. As we do not have any other estimates on the rare event probability, we just plugged
the mean of the estimates given by the runs of our algorithm with the largest number of particles
(N = 3, 200) in the theoretical variance given by Theorem 8. This best estimate on the probability
of the rare event is 2.6×10−9. Again, we see that the performance of the algorithm is close to that
of the idealized version. Figure 5.13 shows the distribution of the number of steps as a function of
the number of particles. We can see that for 800 particles and more, the number of steps can be
seen practically as deterministic.

These results illustrate the efficiency of our algorithm on a discrete problem. It is indeed noticeable
that the coincidence between theory and practice remains true even if in this case the continuity
assumption on the cdf F of Φ(X) of section 4.3.2 is clearly not fulfilled: Φ(X) is here a discrete
random variable. However, one can argue that in this precise setting Φ(X) can take a huge number
of values, namely 2m, so that it can almost be considered as continuous. When this is not possible,
we can sometimes adapt our algorithm by embedding the discrete problem at hand in a continuous
space. We will present this idea in section 5.3 and illustrate it on a counting problem.

5.2.3 Accusing None of the Colluders

Using our adaptive algorithm, we made some additional numerical experiments on such codes.
More precisely, we can easily estimate the probability of false detection (false positive) for some
code length m, and collusion size c. The collusion strategy is to randomly pick up the symbols
of pirated copy among the c colluders’ sequences. We can also estimate the probability of not
accusing someone guilty (false negative). The results for m = 200, and c = 2, 3, 4 are shown on
Figure 5.14. The parabolic form of the curves (in logarithmic scale on the y axis) stems from the
definition of Φ(X) as a sum of i.i.d. random variables and the CLT phenomenon. However, from
these curves, one can then decide how to set the threshold q to minimize the total error.
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Figure 5.14: Mappings of the false positive probability (blue) and false negative probability (red)
against the threshold. The score of a particle is the mean of the c colluders scores.

5.3 Counting

The goal of this work is to propose a novel and original way, called the smoothed splitting method
(SSM), for counting on discrete sets associated with NP-hard discrete combinatorial problems and
in particular counting the number of satisfiability assignments. The main idea of the SSM is to
transform a combinatorial counting problem, so a discrete issue, into a continuous one using a type
of “smoothing” of discrete indicator functions. Then we are in a position to apply a quite standard
multilevel splitting method, as described for example in section 4.3, to this continuous integration
problem.

Before proceeding with SSM we present the splitting method for counting, following Rubin-
stein [101, 102]. The main idea of the splitting method for counting is to design a sequential
sampling plan, with a view of decomposing a “difficult” counting problem defined on some set X ∗

into a number of “easy” ones associated with a sequence of related nested sets X0,X1, . . . ,XT and
such that XT = X ∗. Similar to randomized algorithms [89, 90], splitting algorithms explore the
connection between counting and sampling problems and in particular the reduction from approx-
imate counting of a discrete set to approximate sampling of elements of this set.

A typical splitting algorithm comprises the following steps (see also figure 5.15):

1. Formulate the counting problem as that of estimating the cardinality |X ∗| of some set X ∗.

2. Find a sequence of sets X = X0,X1, . . . ,XT such that X0 ⊃ X1 ⊃ · · · ⊃ XT = X ∗, and
|X | = |X0| is known.

3. Write |X ∗| = |XT | as

|X ∗| = |X0|
T∏

t=1

|Xt|
|Xt−1|

= |X0|p, (5.1)
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X ⋆
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Figure 5.15: Nested sets X0 ⊃ X1 ⊃ · · · ⊃ XT = X ∗ for counting.

where p =
∏T

t=1
|Xt|

|Xt−1|
. Note that p is typically very small, like p = 10−100, while each ratio

pt =
|Xt|
|Xt−1|

should not be small, like pt = 10−1 or bigger. Clearly, estimating p directly while sampling
in X0 is meaningless, but estimating each pt separately seems to be a good alternative.

4. Develop an efficient estimator p̃t for each pt and estimate |X ∗| by

|̃X ∗| = |X0| p̃ = |X0|
T∏

t=1

p̃t,

where p̃ =
∏T

t=1 p̃t is an estimator of p =
∏T

t=1
|Xt|

|Xt−1|
.

It is readily seen that in order to obtain a meaningful estimator of |X ∗|, we have to resolve the
following two major problems:

(i) Put the NP-hard counting problem into the framework (5.1) by making sure that X0 ⊃ X1 ⊃
· · · ⊃ XT = X ∗ and each pt is not a rare event probability.

(ii) Obtain a low variance estimator p̃t of each pt = |Xt|/|Xt−1|.

In Section 5.3.1, we briefly recall the SAT problem, which we will focus on in order to present our
new method. In Section 5.3.2, we show how to resolve problems (i) and (ii) for the SAT problem by
using the smoothed splitting method (SSM), which presents an enhanced version of the splitting
method of Rubinstein [101, 102]. Some remarks and comments are gathered in Section 5.3.3. We
report the reader to the article [29] for the presentation of numerical results.

5.3.1 Presentation of the SAT Problem

The most common SAT problem comprises the following two components:

• A set of n Boolean variables {x1, . . . , xn}, representing statements that can either be TRUE

(=1) or FALSE (=0). The negation (the logical NOT) of a variable x is denoted by x. For
example, TRUE = FALSE. A variable or its negation is called a literal.

• A set of m distinct clauses {S1, S2, . . . , Sm} of the form Sj = zj1 ∨ zj2 ∨ · · · ∨ zjq , where the
z’s are literals and the ∨ denotes the logical OR operator. For example, 0 ∨ 1 = 1.
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The binary vector x = (x1, . . . , xn) is called a truth assignment, or simply an assignment. Thus,
xi = 1 assigns truth to xi and xi = 0 assigns truth to xi, for each i = 1, . . . , n. The simplest SAT
problem can now be formulated as: find a truth assignment x such that all clauses are true.

Denoting the logical AND operator by ∧, we can represent the above SAT problem via a single
formula as

F = S1 ∧ S2 ∧ · · · ∧ Sm,

where the Sj ’s consist of literals connected with only ∨ operators. The SAT formula is then said
to be in conjunctive normal form (CNF). The problem of deciding whether there exists a valid
assignment, and, indeed, providing such a vector, is called the SAT-assignment problem.

Toy Example: Let us consider the following toy SAT problem with two clauses and two vari-
ables: (x1 ∨ x2) ∧ (x̄1 ∨ x2). It is straightforward by considering all the four possible assignments,
that this formula is satisfiable, with two valid assignments x1 = 1, x2 = 1 and x1 = 0, x2 = 1. If
now we consider the three clauses formula (x1∨x2)∧(x̄1∨x2)∧(x̄2), then it is clearly unsatisfiable.

Note that the SAT-assignment problem can be modeled via rare events with p given by

p = P




m∑

j=1

Cj(X) = m


 , (5.2)

where X has a uniform distribution on the finite set {0, 1}n, and

Cj(x) = max
1≤k≤n

{0, (2xk − 1) ajk}.

Here Cj(x) = 1 if clause Sj is TRUE with truth assignment x and Cj(x) = 0 if it is FALSE, A = (ajk)
is an m× n given clause matrix that indicates if the literal corresponds to the variable (+1) , its
negation (-1), or that neither appears in the clause (0). If for example xk = 0 and ajk = −1, then
the literal xj is TRUE. The entire clause is TRUE if it contains at least one true literal. In other
words, p in (5.2) is the probability that a uniformly generated SAT assignment X is valid, that is,
all clauses are satisfied. Denoting

S(X) = min
1≤j≤m

Cj(X),

we want to estimate p = P(S(X) = 1), which is typically very small.

5.3.2 Smoothed Splitting Method

Before presenting the SSM algorithm we shall discuss its main features having in mind a SAT
problem. To proceed, recall that the main idea of SSM is to work within a continuous space rather
than a discrete one. As a result this involves a continuous random vector Y instead of the discrete
random vector X with i.i.d. components X1, . . . , Xn with law Ber(p = 1/2). For example for a
SAT problem, one needs to adopt the following steps:

1. Choose a random vector Y of the same size as X, such that the components Y1, . . . , Yn
are i.i.d. uniformly distributed on the interval (0, 1). Clearly the Bernoulli components
X1, . . . , Xn can be written as X1 = 1{Y1>1/2}, . . . , Xn = 1{Yn>1/2}.

2. Instead of the former 0− 1 variables x or x̄ we will use for each clause a family of functions
from (0, 1) to (0, 1). In particular, for each occurrence of x or x̄, we consider two functions,
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say gε(y) and hε(y) = gε(1− y) indexed by ε ≥ 0. These functions need to be increasing in
ε, which means that

0 < ε ≤ ε′ ⇒ gε(y) ≤ gε′(y), ∀y ∈ (0, 1).

and for ε = 0, g0(y) = 1{y>1/2}, h0(y) = g0(1− y) = 1{y≤1/2}. Possible choices of gε(y) are:

gε(y) = (2y)1/ε1{0<y< 1
2
} + 1{y> 1

2
} (5.3)

or

gε(y) = 1{ 1
2
−ε<y< 1

2
}

(
y

ε
+ 1− 1

2ε

)
+ 1{y> 1

2
}. (5.4)

or (see figure 5.16)
gε(y) = 1[1/2−ε,1](y). (5.5)

3. For each clause Cj , we consider the approximate ε-clause Cjε, where we replace x by gε(y),
x̄ by hε(y), and ∨ by +. Note also that the statement “Cj(x) is true”, i.e. Cj(x) = 1, is
replaced in the new notations by “Cjε(y) ≥ 1”. As a consequence, denoting

Sε(y) = min
1≤j≤m

Cjε(y),

the event {S(X) = 1} is replaced by the event {Sε(Y) ≥ 1}.

1
2

1

1

1

gε′

gε

g0 = 1{y> 1

2
}

hε

hε′

1

h0

ε

1
2

Figure 5.16: The families of functions gε and hε of (5.5).

4. Nested sets. For each ε ≥ 0, consider the subset (or event) Bε of (0, 1)n defined as

Bε = {y ∈ (0, 1)n : ∀j ∈ {1, . . . ,m}, Cjε(y) ≥ 1} = {y ∈ (0, 1)n : Sε(y) ≥ 1}.
Then it is clear from the above that for ε1 ≥ ε2 ≥ 0, we have the inclusions B0 ⊂ Bε2 ⊂ Bε1 .
Note that B0 is the event for which all the original clauses are satisfied and Bε is an event
on which all the approximate ε-clauses are satisfied. Note also that εt, t = 1, . . . , T, should
be a decreasing sequence, with T being the number of nested sets, and εT = 0. In our SSM
algorithm below, we shall choose the sequence εt, t = 1, . . . , T, adaptively.

The SSM Algorithm

We are now in a position to describe the smoothed splitting algorithm. Algorithm 2’ below is an
adaptation of Algorithm 2 in this context, but adapting Algorithm 3 would make the job as well.
Just note that the score function here is defined for any particle y ∈ (0, 1)n as

Φ(y) = max
1≤j≤m

inf{ε : Cjε(y) ≥ 1}.

Thus, given y, the derivation of Φ(y) just uses the pseudo-inverses of gε and hε.
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Algorithm 2’

Parameters

N the number of particles, the number N0 < N of succeeding particles, and let p0 = N0/N .

Initialization

Draw an i.i.d. N -sample (Yj
0)1≤j≤N of the law U((0, 1)n).

Compute ε̃1, the (1− p0) quantile of Φ(Yj
0), j = 1, . . . , N .

k = 1;

Iterations

while ε̃k > 0 do

Starting from an i.i.d. p0N -sample with uniform law on Bεk draw an i.i.d. N -sample

(Yj
k)1≤j≤N with the same law (see Gibbs sampling below).

Compute ε̃k+1, the (1− p0) quantile of Φ(Yj
k), j = 1, . . . , N .

k = k + 1;

endwhile

Let r̃0 the proportion of particles Yj
k−1, j = 1, . . . , N , such that Φ(Yj

k−1) = 0.

Output

Estimate the probability of the rare event by p̃ = r̃0 pk−1
0 .

At the end of the line, we obtain a set of r̃0N non necessarily different solutions of the original
SAT problem by a simple rounding operation: for each Y = (Y1, . . . , Yn) such that Φ(Y) = 0,
X = (1{Y1>1/2}, . . . ,1{Yn>1/2}) is an assignment such that all the clauses are true.

Gibbs Sampler

Starting from Y = (Y1, . . . , Yn), which is uniformly distributed on

Bε = {y ∈ (0, 1)n : ∀j ∈ {1, . . . ,m}, Cjε(y) ≥ 1} = {y ∈ (0, 1)n : Sε(y) ≥ 1},

a possible way to generate Ỹ with the same law as Y is to use the following general systematic
Gibbs sampler (g is the target distribution.):

1. Draw Ỹ1 from the conditional pdf g(y1|y2, . . . , yn).

2. Draw Ỹk from the conditional pdf g(yk|ỹ1, . . . , ỹk−1, yk+1, . . . , yn), 2 ≤ k ≤ n− 1.

3. Draw Ỹn from the conditional pdf g(yn|ỹ1, . . . , ỹn−1).
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In our case, g is the uniform distribution on Bε, and the conditional distribution of the kth compo-
nent given the others is simply the uniform distribution on some interval (r,R) given as explained
on the following toy example.

Toy Example: Let us consider a small example with four variables and two clauses: (X1 ∨X2)∧
(X̄1 ∨X3 ∨ X̄4). For a given ε > 0, this gives the two ε-clauses:

gε(Y1) + gε(Y2) ≥ 1

hε(Y1) + gε(Y3) + hε(Y4) ≥ 1.

Let us say we want the distribution of Y1 given Y2, Y3, Y4. If we want the first one to be satisfied,
we need gε(Y1) ≥ 1 − gε(Y2), that is Y1 ≥ g−1

ε (1 − gε(Y2)) = r. Similarly, the second clause
gives hε(Y1) ≥ 1− gε(Y3)− hε(Y4), and because hε is decreasing, Y1 ≤ h−1

ε (1− gε(Y3)− hε(Y4)) =
1−g−1

ε (1−gε(Y3)−hε(Y4)) = R. Thus the conditional distribution of Y1 is uniform on the interval
(r,R). The generalization is straightforward.

It is readily seen that r < R and Ỹ = (Ỹ1, . . . , Ỹn) has the same distribution as Y. This is so
since the initial point Y = (Y1, . . . , Yn) belongs to and is uniformly distributed in Bε. Note that
our simulation results in Cérou, Guyader, Rubinstein and Vaisman [29] clearly indicate that one
round of the Gibbs sampler suffices for good experimental results. Nonetheless, if one wants the
new vector Ỹ to be independent of its initial position Y, then in theory the Gibbs sampler would
have to be applied an infinite number of times. As before, we could call it the idealized SSM. In
this case, the idealized SSM estimator inherits the variance and bias results from Theorem 8 and
Proposition 8 of section 4.3.

5.3.3 Remarks and Comments

Estimate of the Rare Event Cardinality

The previous discussion focused on the estimation of the rare event probability, which in turn
provides an estimate of the actual number of solutions to the original SAT problem by taking

|̃X ∗| = 2n p̃. In fact, the number of solutions may be small and thus can be determined by
counting the different instances in the last sample of the algorithm. This estimator will be denoted

by |̃X ∗
dir|. Clearly |̃X ∗

dir| underestimates the true number of solutions |X ∗|, but at the same time it

has a smaller (empirical) variance than |̃X ∗|. Even if we do not know its mathematical properties,
this estimate can be useful. Indeed, it may be interesting for practical purposes to know the set
(and the number) of all the different solutions that have been found for the original SAT problem.

Mixing Properties

Our purpose here is to explain why the Gibbs sampler used at each step of the algorithm is irre-
ducible and globally reaching and hence has good mixing properties. For the sake of clarity, we will
focus first on gε as per (5.5). With this function, for a given ε, we can split the region explored by
the Gibbs sampler in several small (sub) hypercubes or hyperrectangles, as shown schematically
in Figure 5.17. To each vertex of the whole hypercube (0, 1)n that represents a solution of the
original SAT problem, corresponds a sub-hypercube of edge length 1/2 + ε, including the central
point with coordinates (1/2, . . . , 1/2). And around this point, we have a sub-hypercube of edge
length 2ε, which is common to all those elements.

For the other parts of the domain, which do not correspond to a solution, things become a bit
more complicated. It is a union of ε-thin “fingers” extending outwards in several directions (a
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subspace). The corresponding sub-domain being explored depends on the minimum number of
variables that need to be taken in (1/2 − ε, 1/2 + ε) in order to satisfy all the ε-clauses. The
domain is then a rectangle of length 1/2 + ε on the “free” variables, and of length 2ε in the other
directions, that is on the (1/2−ε, 1/2+ε) constrained variables. Again, all those rectangles include
the small central sub-hypercube. The union of all these sub-hypercubes/rectangles is the domain
currently explored by the Gibbs sampler. The geometry of the whole domain is then quite complex.

Not a solution (not all clauses satisfied)

True solution
ε

( 1

2
, . . . , 1

2
)

2ε

Figure 5.17: Partial mixing of the Gibbs sampler.

It is clear that starting with any one of these sub-hypercubes/rectangles we can reach any other
point within it in one iteration of the Gibbs sampler. Moreover, as long as the Markov chain stays
within the same sub-hypercube/rectangle, any other point is accessed with uniform probability.
This means that the mixing properties of our Gibbs sampler are the best possible as long as we
are restricted to one sub-hypercube. Actually this suffices to make the algorithm work.

To see this consider the particles at the beginning: after the first cloning, they are all in the central
sub-hypercube with a high probability. Then at each step of the algorithm, the above mentioned
“fingers” become thinner and thinner. Moreover, given that a replica is in one of these, it has a
higher probability of being discarded when the “finger” is thin, that is the number of variables
constrained to be in (1/2 − ε, 1/2 + ε) is large. On the other hand, the replicas that satisfy a
large number of clauses are favored. In the end, all the replicas hopefully find their way to a
sub-hypercube corresponding to a true solution of the original SAT problem.

For gε as per (5.3) or (5.4), the same picture mostly holds, but the mixing properties within each
sub-hypercube are not that easy to analyze. This is somehow compensated by an ability to deal
with the inter-variable relations: the geometry of the domain explored around the centre point
reflects these constraints, and thus has a much more complicated shape. These gε functions work
in practice better than (5.5).
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Walksat Algorithms

We truly acknowledge that our algorithm is in fact much slower than the best available stochastic
algorithms to solve SAT problems, for example Walksat proposed by Selman, Kautz and Cohen
[105]. Nonetheless, we would like to emphasize that:

1. our algorithm is more general, which means that mutatis mutandis, our method can be
applied to other counting problems;

2. it finds almost all the solutions (when there are many) at once;

3. moreover, when there are so many solutions that we cannot find all of them in one run, we
can still have an estimate of the total number.

Arnaud Guyader Habilitation



Chapter 6

Application to Molecular Dynamics

6.1 Introduction

The aim of molecular dynamics computations is to evaluate macroscopic quantities from models
at the microscopic scale. These can be:

1. thermodynamics quantities (stress, heat capacity, free energy), which imply averages of some
observable with respect to an equilibrium measure;

2. dynamical quantities (diffusion coefficients, viscosity, transition rates), which imply averages
over trajectories at equilibrium;

Molecular dynamics computations have many applications in various fields (biology, physics, chem-
istry, materials sciences, etc.), but they consume today a lot of CPU time. Formally, a molecular dy-
namics model is specified through a potential function V , which associates an energy V (x1, . . . , xd)
to a configuration (x1, . . . , xd). Let us consider, to fix ideas, overdamped Langevin dynamics:

dXt = −∇V (Xt) dt+
√
2β−1dWt, (6.1)

where β = 1/(kBT ). The equilibrium canonical measure is

dµ = Z−1 exp(−βV (x)) dx

where Z =

∫

R

d

exp(−βV (x)) dx is the partition function. The equilibrium trajectories are those

obtained with initial conditions X0 distributed according to µ, and which satisfy (6.1). The diffi-
culty when computing thermodynamics and/or dynamical quantities is due to the fact that V has
several wells (called metastable states) around which the process Xt stays for a long time, espe-
cially at low temperature. The metastability of Xt implies that the convergence to equilibrium is
very slow. Figure 6.1 presents a 2d schematic picture where X1

t is a slow variable of the system.

In this context, a very challenging problem in molecular dynamics is to compute reactive paths,
namely trajectories of the system leaving a given metastable state, say A, and ending in another
one, say B, without going back to A in the meantime (see figure 6.2 and references [70, 88]). The
difficulty comes from the fact that a dynamics at equilibrium typically remains for a very long
time around a metastable state before hoping to another one. In other words, most of the trajec-
tories leaving A will go back to A, rather than reaching B. There exist many methods to sample
the canonical equilibrium measure and compute equilibrium thermodynamics quantities like for
example the free energy [32, 84], but it is much more difficult to compute dynamical quantities at
equilibrium along reactive paths, like transport coefficients and transition rates.
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Figure 6.1: A 2d schematic picture where X1
t is a slow variable of the system.

BA

Figure 6.2: A reactive trajectory (in blue) between metastable states A and B.

In the following, we assume that a reaction coordinate (or an order parameter) is known, which
in some sense, indexes transitions from A to B. In other words, a reaction coordinate is simply
meant to be a smooth one-dimensional function ξ : Rd → R such that (see figure 6.3)

|∇ξ| 6= 0, A ⊂ {x ∈ Rd, ξ(x) < zmin} and B ⊂ {x ∈ Rd, ξ(x) > zmax}, (6.2)

where zmin < zmax are two given real numbers. Let us denote

Σz = {x ∈ Rd, ξ(x) = z}

the submanifold of configurations at a fixed value z of the reaction coordinate. For the algorithm
we propose to give reliable results, one needs at least Σzmin (resp. Σzmax) to be “sufficiently close”
to A (resp. B). More precisely, we require that most trajectories starting from the submanifold
Σzmin (resp. Σzmax) end in A (resp. in B). Below, we will show on a simple two-dimensional
example that a reaction coordinate as crude as the distance to a reference configuration in A may
yield correct results.

In our context, the idea is to perform an iterative process on many replicas of trajectories which
start from the metastable region A, and end either in A or in B, and to kill progressively the
trajectories which have not reached high values along ξ. At the end of the day, an equilibrium
ensemble of trajectories starting from A and ending in B are obtained. Compared to a brute force
algorithm, the computational cost is typically reduced by a factor 1 000 (see Section 6.3 for more
details). The details of the algorithm are provided in Section 6.2.

One of the differences between the algorithm we propose and the transition interface sampling
method [112, 113], the forward flux sampling method [3, 4], or the milestoning method [54, 86]
whose aim is also to compute reactive trajectories through paths ensembles, is that we do not need
to decide a priori of a given discrete set of values zmin = z0 < z1 < z2 < . . . < zn = zmax through
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{ξ(x) = zmin}
{ξ(x) = zmax}

B
A
+
xA

Figure 6.3: An example of reaction coordinate: ξ(x) = ‖x− xA‖.

which the trajectories will go. In some sense, these are adaptively selected by the algorithm, with
typically fine discretizations in regions with high gradients of the potential energy, before saddle
points, and coarser discretizations in flat regions. Other techniques to sample reactive trajectories
include the string method [49, 50, 51], see also the review paper [44].

The main interests of the algorithm we propose are: (i) It does not require fine tuning of any
numerical parameter, nor a priori discretization of the reaction coordinate values; (ii) It can be
applied to any Markovian stochastic dynamics (overdamped Langevin, Langevin, Hybrid Monte
Carlo, etc.) and is easy to implement starting from a standard molecular dynamics code; (iii)
It seems to be reliable even for very simple choices of reaction coordinates satisfying (6.2), at
least in our simple test cases. In particular, we will consider below a situation where the reaction
coordinate does not describe all the metastabilities, namely a situation where, conditionally to
a given value of ξ, the canonical measure is multimodal (or, equivalently, the potential energy
exhibits wells separated by high barriers along some submanifolds Σz). This is actually a generic
situation in practice, encountered in particular when multiple pathways link the two metastable
states A and B (see Section 6.3.2 for a numerical illustration). Of course, the dependency of the
whole procedure efficiency on the choice of the reaction coordinate for more complicated test cases
remains to be investigated.

6.2 Computing Reactive Trajectories: the Algorithm

6.2.1 Reactive Trajectories

With the same notations as above, we propose an algorithm to build an ensemble of N reactive
trajectories, using a reaction coordinate ξ which satisfies (6.2). In the numerical experiments of
the paper [28], we have tested various reaction coordinates, but, to fix ideas, we will focus here on
the specific case ξ(x) = ‖x−xA‖ where xA ∈ A denotes a reference configuration in A, and ‖ · ‖ is
the Euclidean norm. The following algorithm can be seen as a dynamical version of Algorithm 3
of section 4.4: here the reaction coordinate ξ plays the same role as the score function Φ and the
gradient dynamics replaces the Metropolis-Hastings procedure.
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6.2.2 Details of the Algorithm

The algorithm starts with an initialization procedure which consists in generating an ensemble
of N equilibrium trajectories (Xn

t )0≤t≤τn , which leave A, end either in A (the most likely) or in
B, conditionally to the fact that supt≥0 ξ(X

n
t ) ≥ zmin. For n ∈ {1, . . . , N}, let us denote these

trajectories (X1,n
t ) and the associated stopping times τ1,n = τn. Now, the adaptive multilevel

splitting (AMS) algorithm goes as follows (see Figure 6.4 for a schematic representation): Iterate
on k ≥ 1,

1. Compute the largest reaction coordinate value attained for each path

zk,n = sup
0≤t≤τk,n

ξ(Xk,n
t ).

2. Order the values (zk,n)1≤n≤N

zk,ε
k(1) ≤ zk,ε

k(2) ≤ . . . ≤ zk,ε
k(N),

where εk is a permutation over {1, . . . , N}. To simplify the notation, let us denote

nk = εk(1) = argmin
n∈{1,...,N}

zk,n,

the index which realizes the smallest value zk,ε
k(1), and let us denote qk the (empirical)

quantile of order 1/N , namely this smallest value

qk = zk,ε
k(1) = zk,n

k
= min

n∈{1,...,N}
zk,n.

3. Kill the trajectory (Xk,nk

t )
0≤t≤τk,n

k , and consider trajectories for iteration k + 1 as follows:

• For all n 6= nk, the n-th trajectory is unchanged: τk+1,n = τk,n and (Xk+1,n
t )0≤t≤τk+1,n =

(Xk,n
t )0≤t≤τk,n ;

• Generate a new nk-th trajectory in three steps:

(i) Choose at random ik ∈ {1, . . . , nk − 1, nk + 1, . . . , N}.
(ii) Set Xk+1,nk

t = Xk,ik
t for all t ∈ (0, σk) where

σk = inf{t ≥ 0, ξ(Xk,ik
t ) ≥ qk}.

(iii) Generate the end of the trajectory (Xk+1,nk

t )t≥σk
according to (6.1) (with Wt =

Wnk
t ) until the stopping time

τk+1,nk = inf{t ≥ σk, X
k+1,nk

t ∈ A ∪B}.
4. Go back to 4 (with k being k+1), until qk ≥ zmax. More precisely, the number of iterations

is defined as
kmax = sup{k ≥ 1, qk ≤ zmax}.

At iteration k of the algorithm, one obtains N equilibrium trajectories (Xk,n
t )0≤t≤τk,n , which leave

A, end either in A or in B, conditionally to the fact that sup0≤t≤τk,n ξ(X
n
t ) ≥ qk.

At the end of the algorithm, all the trajectories cross the submanifold Σqkmax . Since kmax is the

last iteration index for which the quantile qk is smaller than zmax and since Σzmax is assumed to
be “close to” B, most of them end in B. The final step to retain only reactive trajectories is:

8. We retain only the trajectories which indeed end in B to perform statistics on reactive
trajectories. We denote r the proportion of such trajectories among the ones obtained at the
final iteration kmax. Thus, most of the time, r is equal to 1.
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A

B

Σzmin Σzmax

q1

A

B

Σzmin Σzmax

q1
q2

Figure 6.4: Schematic representation of the algorithm, with N = 3 paths: on the left, the path
which goes the less far in the reaction coordinate direction is killed, and, on the right, a new path
is generated, starting from a previous one at the 1/N empirical quantile value.

6.2.3 Discussion of the Algorithm

As for Algorithm 3, note that at the end of the day

α̂N = r

(
1− 1

N

)kmax

(6.3)

gives an estimate of the probability p of “observing a reactive trajectory”. Specifically, this is an
estimate of the probability, starting from Σzmin with the equilibrium distribution generated by
the initialization procedure, to observe a trajectory which touches B before A. This probability
actually depends on the choice of Σzmin , while the law of the reactive trajectories generated by the
algorithm does not.

A difficult mostly open question is to compute the asymptotic variance of an estimator associated
to a given observable over reactive trajectories (say the time length of the trajectory) and then
to try to optimize this estimator with respect to the chosen reaction coordinate (commonly called
importance function [39] in the context of statistics). It can be shown that in terms of the asymp-
totic variance of α̂N , the optimal reaction coordinate is the so-called committor function [70, 51]
q which satisfies: {

−∇V · ∇q + β−1∆q = 0 in Rd \ (A ∪B),

q = 0 on ∂A and q = 1 on ∂B.
(6.4)

The function q can be interpreted in terms of the process Xx
t solution to (6.1) with initial condition

Xx
0 = x, as:

q(x) = P (Xx
t reaches B before A) . (6.5)

We can check numerically on some simple test cases that the variance of the results seems to be
smaller if ξ is chosen close to q (see [28]). But one interesting feature of the method is that it does
not need to be the case to give reliable results in terms of reactive trajectories. This is a crucial
point since it is impossible to solve numerically the partial differential equation (6.4) except in
very low dimension.

6.3 Computing Reactive Trajectories: Numerical Illustrations

6.3.1 A One-Dimensional Case

In this section, we consider a one-dimensional situation and overdamped Langevin trajectories (6.1),
with V being the double-well potential (see figure 6.5)

V (x) = x4 − 2x2.
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Figure 6.5: A double-well potential.

This potential has two global minima at ±1 and one local maximum at 0. In this simple one
dimensional setting, we set as metastable states A = {−1} and B = {+1}, and the reaction
coordinate is taken to be simply

ξ(x) = x.

For the numerical experiments, we take zmax = −zmin = 0.9. The aim of this section is mainly
to validate the adaptive multilevel splitting (AMS) algorithm by comparing the results to those
obtained by direct numerical simulation (DNS1), namely a simple Monte Carlo algorithm without
any selection procedure, and then to have an idea of the computational gain. We will see that
DNS can only be used for small values of β (typically β ≤ 10 in this setting).

Distribution of the Time Lengths of Reactive Paths. To validate the algorithm, we com-
pute an histogram of the distribution of the time length (duration) of a reactive path. On Fig-
ure 6.6, we compare the results obtained with DNS and our algorithm: the agreement is excellent.
The interest of our algorithm is that it is possible to compute this distribution for very small
temperatures (large values of β), for which a DNS cannot be used.

Computational Time. Let us now compare the computational time required to simulate an
ensemble of reactive paths. In Table 6.1, we give CPU times for various values of β, using DNS
(when possible) or our algorithm. The DNS time simulation rapidly explodes when β increases.
For β = 15 and N = 105, the ratio between the CPU time of a DNS and the CPU time of our
algorithm is of the order of 1 000.

Variance of the Estimators α̂N . To complete the discussion on computational time, we also
compare in Table 6.1 the relative variances of the estimators α̂N of the probability p, for DNS and
for our algorithm. The relative variance is defined as the variance divided by the mean square.
With the notations of this table, the relative variance of the DNS estimator for α̂N is estimated
by (1 − α̂N )/N . With our algorithm, we have seen in section 4.4 that this relative variance
can be estimated by − log(α̂N )/N . This explains why in the four last rows of Table 6.1 (where
N = 105), the relative variance of our estimator increases very slowly (in fact, logarithmically)
when the probability of interest decreases to zero. To take into account both computational time
and variance, Hammersley and Handscomb [69] propose to define the efficiency of a Monte Carlo
process as “inversely proportional to the product of the sampling variance and the amount of labour
expended in obtaining this estimate” (see also section 4.4.5). Using this definition of efficiency, for
β = 15 and N = 105, our algorithm is about 800 times more efficient than DNS.

1also called CMC (Crude Monte Carlo).
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Figure 6.6: Distribution of the time lengths of reactive paths. In the first three figures we compare
results computed with DNS and our algorithm. In the last figure, distributions of the lengths are
given for various values of β: β = 1, 5, 10, 15, 20, 30, 40.

β N α̂N DNS time AMS time DNS RV AMS RV

1 104 1.03 10−1 2s 2s 9 10−5 2 10−4

1 105 1.01 10−1 21s 1 min 19 s 9 10−6 2 10−5

10 104 2.04 10−5 140 min 05 s 5 s 10−4 10−3

10 105 1.98 10−5 1400 min ⋆ 5 min 22 s 10−5 10−4

15 105 1.78 10−7 92000 min ⋆ 7 min 52 s 10−5 1.5 10−4

20 105 1.33 10−9 8 min 36 s 2 10−4

40 105 5.82 10−18 10 min 09 s 4 10−4

Table 6.1: Probability α̂N (see (6.3)), computational time and relative variance (RV) for the
estimators of p, for different values of β and number of paths N . DNS CPU time with ⋆ is an
extrapolated time deduced from a small number of iterations.
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Figure 6.7: The potential V .

6.3.2 A Two-Dimensional Case with Two Channels

In this section, we apply the algorithm to a two-dimensional situation, again with overdamped
Langevin trajectories (6.1). The potential V we consider is taken from [88, 91]:

V (x, y) = 3e−x2−(y− 1
3
)2 − 3e−x2−(y− 5

3
)2 − 5e−(x−1)2−y2

− 5e−(x+1)2−y2 + 0.2x4 + 0.2

(
y − 1

3

)4

.
(6.6)

This potential (see Figure 6.7) has two deep minima approximately at H± = (±1, 0), a shallow
minimum approximately at M = (0, 1.5) and three saddle points approximately at U± = (±0.6, 1.1)
and L = (0,−0.4). In the notation of our algorithm above, A (resp. B) denotes a neighborhood of
H− (resp. H+). The two metastable regions A and B can thus be connected by two channels: The
upper channel around the points (H−, U−,M,U+, H+) and the lower channel around the points
(H−, L,H+).

From large deviation theory (see for example Freidlin and Wentzell [59]), it is known that in the
small temperature limit (β → ∞) the reactive trajectories which will be favored will go through the
upper channel, since the energy barrier is lower there. On the other hand, at higher temperature,
the lower channel is also very likely, since the trajectories going through the upper channel have
to pass two saddle points (two narrow corridors) to reach B instead of only one saddle point for
the lower channel. The trajectories going through the upper channel are thus less favored in this
regime, since the lower channel is more “direct”. This temperature-dependent switching effect is
well-known [88, 91].

For the numerical experiments, we use the two following values for the temperature [88]: β = 6.67
(low temperature), which is such that most of the trajectories go through the upper channel, and
β = 1.67 (high temperature), which is such that most of the trajectories go through the lower
channel. The region A (resp. B) is defined as the Euclidean ball B(H−, 0.05) (resp. B(H+, 0.05)),
and the reaction coordinate is the Euclidean distance to H−: ξ(x, y) = ‖(x, y)−H−‖. Note that in
such a low dimension, it is possible to solve numerically the PDE (6.4) and obtain the shape of the
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Figure 6.8: Level sets of 1− q for β = 1.67, with q the committor function as in (6.4).
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Figure 6.9: Density ρ for different choices of β.

committor function q (see figure 6.8 as given in [88] for the level sets of 1− q). This will prove use-
ful to compare our results with the ones obtained in [88] thanks to this optimal reaction coordinate.

To discretize the dynamics (6.1), we use an Euler scheme with a time-step size ∆t = 10−2. We
take zmin = 0.05 and zmax = 1.5. We first plot the probability density ρ of positions, conditionally
on being on a reactive trajectory. The discretization of this density uses a regular grid of size
100 × 100 with constant x and y intervals. Figure 6.9 gives the estimation of the density ρ for
N = 105 and for the two temperature values β = 1.67, 6.67.

An important quantity computed from reactive paths is the flux of reactive trajectories, which is
defined, up to a multiplicative constant, as [70, 88]: for any domain D ∈ Rd \ (A ∪B),

∫

D
divJ = P(a reactive trajectory enters D)−P(a reactive trajectory leaves D).

On Figure 6.10, we plot the flux J at the two temperature values, using a grid of size 20× 20 with
constant x and y intervals. It is clear from these figures that at low temperature (β = 6.67), the
upper channel is favored, while at higher temperature (β = 1.67), the lower channel is more likely.

On Figure 6.11, a few reactive paths are plotted. To quantify the fact that the upper or the lower
channel is preferentially used by reactive paths, let us consider Xy

σ0 which is the y-value of the
reactive path at the first time σ0 such that the x-value of the process Xt is equal to 0. We consider
that the reactive path goes through the upper (resp. the lower) channel if Xy

σ0 is larger than 0.75
(resp. smaller than 0.25). For β = 6.67, the proportion of paths such that 0.25 ≤ Xy

σ0 ≤ 0.75 is
0.28% and the paths going through the upper (resp. the lower) channel is 62.55% (resp. 37.17%).
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Figure 6.10: Flux of reactive trajectories, at inverse temperature β = 1.67 on the left, and β = 6.67
on the right. The color indicates the norm of the flux.
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Figure 6.11: A few reactive paths for β = 1.67 (left), β = 6.67 (right).

For β = 1.67, the proportion of paths such that 0.25 ≤ Xy
σ0 ≤ 0.75 is 11.26% and the paths going

through the upper (resp. the lower) channel is 31.46% (resp. 57.28%).

Finally, we plot on Figure 6.12, the histogram of the time lengths of reactive trajectories, at the
two temperatures. We observe two modes in this distribution when β = 6.67, corresponding to
the two channels. These two modes overlap when β = 1.67. We would like to stress that all these
results are in agreement with those obtained by Metzner, Schütte and Vanden-Eijden [88] using a
different numerical method.
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Figure 6.12: Distribution of the time lengths of reactive paths for β = 1.67 (left), β = 6.67 (right).
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6.4 Conclusion and Perspectives

We have presented a multiple replica algorithm to generate an ensemble of reactive trajectories.
We have illustrated its efficiency and accuracy on two test cases. In the paper [28], we have also
proposed an estimator of the transition times. Future works are of course required in order to test
the interest of such an approach for larger systems. We also would like to mention two possible
extensions of the approach. First, in a case where only the initial metastable state A is known, one
could think of using this algorithm to force the system to leave A (without knowing the metastable
states around a priori), by using as a reaction coordinate the distance to a reference configuration
xA in A (like ξ above). The paths would then be generated until they go back to A, or they
reach a given fixed final time T . This would generate equilibrium trajectories of time length T ,
conditionally to reach a certain distance from xA. It should be an efficient procedure to explore the
energy landscape at fixed positive temperature. Second, it would be interesting to test an adaptive
procedure which, at the end of the algorithm, approximates the committor function thanks to the
reactive trajectories, and then uses this approximation as a reaction coordinate, iteratively. In
particular, note that the isocommittors are also isolines of the function exp(βV )ρ, where ρ is the
density along reactive paths which seems to be accurately obtained by our algorithm. This should
produce better and better results as the approximations of the isocommittors get more and more
refined.
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Appendix A

The Application of a General Formula

to Rare Event Analysis

A.1 Introduction

In this appendix, we present a non-asymptotic theorem for interacting particle approximations of
unnormalized Feynman-Kac models. We provide an original stochastic analysis based on Feynman-
Kac semigroup techniques combined with recently developed coalescent tree-based functional rep-
resentations of particle block distributions. We present some regularity conditions under which
the L2-relative error of these weighted particle measures grows linearly with respect to the time
horizon yielding what seems to be the first results of this type for this class of unnormalized mod-
els. We also illustrate these results in the context of rare event analysis.

The field of Feynman-Kac path integrals and their particle interpretations are one of the most
active contact points between probability, theoretical chemistry, quantum physics, and engineer-
ing sciences, including rare event analysis, and advanced signal processing. For a rather thorough
discussion, the interested reader is recommended to consult the pair of books [40, 48], and the
references therein. During the last two decades, the asymptotic analysis of these interacting par-
ticle models has been developed in various directions, including propagation of chaos analysis,
Lp-mean error estimates, central limit type theorems, and large deviation principles. Nevertheless,
we emphasize that most of the non-asymptotic results developed in the literature are concerned
with empirical particle measures and normalized Feynman-Kac probability distributions. Thus,
they do not apply to engineering or physical problems involving the computation of unnormalized
Feynman-Kac models including rare event particle simulation and partition functions estimation
in statistical mechanics.

Loosely speaking, unnormalized Feynman-Kac measures represent the distribution of the paths of
a Markov process, weighted by the product of a given collection of non-negative potential func-
tions. The total masses of these measures are also called the normalizing constants. For instance,
for set indicator potential functions the total mass of these functional represents the probability
that the reference Markov chain stays in that set for a given number of time steps. We already
mention that the particle approximations of these unnormalized measures are defined in terms of
weighted products of empirical potential functions. The length of these products is directly related
to the time horizon. The refined analysis of these unnormalized particle approximations requires
to control the degeneracy of these weighted products in terms of the time parameter.

The main objective of this appendix is to present non-asymptotic L2-estimates for these weighted
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particle measures. As shown in [25, 81] in the context of rare events, this result is sharp in the
sense that the asymptotic variance of the relative errors grows linearly with respect to the time
horizon. We design an original stochastic analysis that combines refined Feynman-Kac semigroup
techniques with the recently developed algebraic tree-based functional representations of particle
block distributions obtained by Del Moral, Patras and Rubenthaler in [43]. However, in the fol-
lowing, we will not go into the details of this analysis, nor into the description of the tree-based
functional representation. For this purpose, we refer the interested reader to the article by Cérou,
Del Moral and Guyader [24].

The rest of this appendix is organized as follows: In a preliminary section, section A.2, we provide
a mathematical description of the Feynman-Kac models and their probabilistic particle interpre-
tations. The advantage of the general Feynman-Kac model presented here is that it unifies the
theoretical analysis of a variety of genetic type algorithms currently used in Bayesian statistics,
biology, particle physics, and engineering sciences. It is clearly out of the scope of this chapter to
present a detailed review of these particle approximation models. Section A.3 is devoted to the
analysis of the total mass of unnormalized Feynman-Kac semigroups. We provide some regularity
conditions under which the relative variation of these quantities depends only linearly on the time
horizon of these semigroups. In section A.4, we state and prove the main results of the present
chapter. We examine non-homogeneous models including degenerate potential functions that may
vanish on some state space regions. In the final section, section A.5, we outline the preceding
results in terms of efficiency for rare event probability estimation. Roughly speaking, we want to
control the relative variance of our estimator when the event of interest is getting more and more
rare. Our main result enables us to derive an efficiency result for rare event probability estimation,
the first of its kind concerning the Interacting Particle System (IPS) approach applied to rare
events.

A.2 Description of the Models and Statement of Some Results

We begin this section with a brief review of some of the standard notation. We denote respec-
tively by M(E), P(E), and Bb(E), the set of bounded and signed measures, the subset of all
probability measures on some measurable space (E, E), and the Banach space of all bounded and
measurable functions f on E equipped with the uniform norm ‖f‖ = supx∈E |f(x)|. We denote by
µ(f) =

∫
µ(dx) f(x), the Lebesgue integral of a function f ∈ Bb(E), with respect to a measure

µ ∈ M(E). We slightly abuse the notation, and sometimes denote by µ(A) = µ(1A) the measure
of a measurable subset A ∈ E .

Recall that a bounded integral operator M from a measurable space E into itself, is an oper-
ator f 7→ M(f) from Bb(E) into itself such that the functions M(f)(x) =

∫
F M(x, dy) f(y)

are measurable and bounded, for any f ∈ Bb(E). A bounded integral operator M from a mea-
surable space (E, E) into itself also generates a dual operator µ 7→ µM from M(E) into M(E)
defined by (µM)(f) = µ(M(f)). Given a pair (M1,M2) of bounded integral operators we de-
note by M1M2 the composition of the operators given by the following formula (M1M2)(x, dz) =∫
M1(x, dy)M2(y, dz). We also set Mm = Mm−1M = MMm−1 the m composition transition. Fi-

nally, the tensor product operator M⊗2 is the bounded integral operator defined for every function
f ∈ Bb(E × E) by

M⊗2(f)(x, x′) =

∫

E×E
M(x, dy)M(x′, dy′)f(y, y′).

We consider a collection of bounded potential functions Gn on the state space E, a distribution η0
on E, and a collection of Markov transitions Mn(x, dy) from E into itself. We associate to these
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objects the Feynman-Kac measures, defined for any f ∈ Bb(E) by the formulae

ηn(f) = γn(f)/γn(1) with γn(f) = E[f(Xn)
∏

0≤k<nGk(Xk)]. (A.1)

In (A.1), (Xn)n≥0 represents a Markov chain with initial distribution η0, and elementary transitions
(Mn)n>0. To simplify the presentation, we shall suppose that the potential functions Gn take values
in [0, 1] and for any n ≥ 0 we have ηn(Gn) > 0. By the Markov property and the multiplicative
structure of (A.1), it is easily checked that the flow (ηn)n≥0 satisfies the following equation

ηn+1 = Φn(ηn) = ΨGn(ηn)Mn+1, (A.2)

with the Boltzmann-Gibbs transformation ΨGn defined as follows:

ΨGn(ηn)(dx) =
1

ηn(Gn)
Gn(x) ηn(dx).

We also readily check the following multiplicative formula

γn(1) =
∏

0≤p<n

ηp(Gp). (A.3)

The particle approximation of the flow (A.2) depends on the choice of the McKean interpretation
model. These probabilistic interpretations consist of a chosen collection of Markov transitions
Kn+1,ηn , indexed by the set of probability measures ηn on E, and satisfying the compatibility
condition Φn(ηn) = ηnKn+1,ηn (see for instance [40], definition 2.5.4 p.75). The choice of these
Markov transitions is far from being unique. By (A.2), we find that

∀n ≥ 0 ∀α ∈ [0, 1] ηn+1 = ηnK
(α)
n+1,ηn

(A.4)

with the McKean transition K
(α)
n+1,ηn

= SαGn,ηnMn+1 and the selection type transition

SαGn,ηn(x, dy) = αGn(x) δx(dy) + (1− αGn(x)) ΨGn(ηn)(dy).

Definition 4 The mean field particle interpretation of the evolution equation (A.4) is the EN -

valued Markov chain X
(N)
n =

(
X

(N,i)
n

)
1≤i≤N

with elementary transitions

P
(
X

(N)
n+1 ∈ dxn+1 | X(N)

n

)
=

N∏

i=1

K
(α)

n+1,ηNn
(X(N,i)

n , dxin+1),

where ηNn stands for the occupation measure ηNn = 1
N

∑N
i=1 δX(N,i)

n
of the N -uple X

(N)
n at time

n. The initial configuration X
(N)
0 =

(
X

(N,i)
0

)
1≤i≤N

consists of N independent and identically

distributed random variables with distribution η0.

In our context, it is worth mentioning that the elementary transitions of the chain X
(N)
n Ã X

(N)
n+1

are decomposed into two separate mechanisms:

• Firstly, the current state X
(N,i)
n of each individual with label i ∈ {1, . . . , N} performs

an acceptance-rejection type transition X
(N,i)
n Ã X̂

(N,i)
n according to Markov transition

SαGn,ηNn
. In other words with a probability αGn(X

(N,i)
n ) the particle remains in the same

site and we set X̂
(N,i)
n = X

(N,i)
n . Otherwise it jumps to a new location randomly chosen

according to the Boltzmann-Gibbs distribution

ΨGn(η
N
n ) =

N∑

j=1

Gn(X
(N,j)
n )

∑N
k=1Gn(X

(N,k)
n )

δ
X

(N,j)
n

.
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• After the acceptance-rejection stage, the selected individuals X̂
(N,i)
n evolve independently to

a new site X
(N,i)
n+1 randomly chosen with distribution Mn+1(X̂

(N,i)
n , dx).

Remarks:

1. For α = 0, we find that K
(0)
n+1,ηn

(x, dy) = Φn+1(ηn)(dy). In this situation, X
(N)
n evolves as a

simple genetic algorithm with mutation transitions Mn, and selection fitness functions Gn.
Theorem 10 below is only valid in this specific situation, but all other results in this chapter
are true for any α ∈ [0, 1]. In particular, when the Gn’s are indicator functions, we always
consider α = 1 in practice (see also section 4.3).

2. Besides the fact that ηn(Gn) > 0, it is important to mention that the empirical quantities
ηNn (Gn) may vanish at a given random time. The formal definition of this time τN is

τN = inf
{
n ≥ 0 : ηNn (Gn) = 0

}
.

At time τN , the particle algorithm stops and from that time the particle approximation
measures are defined as the null measures (see for instance chapter 7, section 7.2.2 in [40]):
∀n > τN , ηNn = 0.

Mimicking the multiplicative formula (A.3), we also consider the following N -particle approxima-
tion of the unnormalized Feynman-Kac measures.

Definition 5 The N -particle approximation measures γNn associated with the unnormalized Feynman-
Kac models γn introduced in (A.1) are defined for any f ∈ Bb(E) by the following formulae:

γNn (f) = γNn (1)× ηNn (f) with γNn (1) =
∏

0≤p<n

ηNp (Gp).

As an aside, we observe that γNn = 0 for any time n > τN . It is well known that the parti-
cle measures γNn are unbiased estimates of the unnormalized Feynman-Kac measures γn (see for
instance [40], Theorem 7.4.2 p.239). That is we have that

∀f ∈ Bb(E) E
(
γNn (f)

)
= γn(f).

It is obviously out of the scope of this chapter to present a full asymptotic analysis of these particle
models. We refer the interested reader to the book [40] and the series of articles [41, 42, 75] and the
references therein. For instance, it is well known that the particle occupation measures converge
to the desired Feynman-Kac measures as the size of the population tends to infinity. That is, we
have with various precision estimates, and as N tends to infinity, the weak convergence results
limN→∞ ηNn = ηn and limN→∞ γNn = γn.

To give a flavor of our results, we present in this section non-asymptotic variance estimates only for
time homogeneous models (Gn,Mn) = (G,M). The next result is a representation/decomposition
formula for the normalizing constant γNn (1).

Theorem 10 For the simple genetic algorithm corresponding to the choice α = 0, we have an
explicit decomposition formula of the following form

∀N > 1 E
(
γNn (1)2

)
= γn(1)

2

(
1 +

(
1− 1

N

)(n+1) n+1∑

s=1

1

(N − 1)s
vn(s)

)

for some finite constants vn(s) explicitly described in terms of Feynman-Kac type coalescent tree
based expansions and whose values do not depend on the precision parameter N .
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Remark: The analysis of particle models with an acceptance parameter α ∈]0, 1] is much more
involved. In particular, we have no explicit representation formulae for the second moment of
γNn (1) but only some L2-mean error bounds between γNn (1) and its limiting value γn(1).

The quantities vn(s) are expressed in terms of coalescent tree based expansions of path integrals as-
sociated with the semigroup Qp,n associated with the Feynman-Kac distribution flow γn = γpQp,n,
with 0 ≤ p ≤ n. It is clear that the preceding representation for the variance is only as good as our
information about vn(s). Theorem 11 and its extension to non-homogeneous models, Theorem 12,
provide some precise conditions under which vn(s) can be upper-bounded.

We also would like to emphasize that Theorem 10 holds true under no additional assumptions on
the model. In particular, it is valid for Feynman-Kac models associated with non-homogeneous
potential functions Gn and Markov transitions Mn, including the example of rare event estimation
of section A.5. The next theorem is of a different flavor since it holds true for any α ∈ [0, 1], but
only under very strict conditions on pair (G,M). Its extension to non-homogeneous Feynman-Kac
models is presented in section A.4 (see Theorem 12 and Corollary 4).

Theorem 11 Suppose that the pair of potential-transitions (G,M) are chosen so that

∀(x, x′) ∈ E2 G(x) ≤ δ G(x′) and Mm(x, dy) ≤ β Mm(x′, dy) (A.5)

for some m ≥ 1 and some parameters (δ, β) ∈ [1,∞[2. In this situation, for any n ≥ 0 and any
N > (n+ 1)βδm we have

E
[(
γNn (1)− γn(1)

)2] ≤ γn(1)
2

(
4

N
(n+ 1) β δm

)
. (A.6)

As the quantities vn(s) discussed above, the variance estimates (A.6) involve the analysis of coa-
lescent tree based integrals expressed in terms of the semigroup Qp,n. We already mention that the
regularity condition (A.5) is mainly used to obtain a uniform control of the total mass mapping
x 7→ Qp,n(1)(x).

However, the first part of assumption (A.5) is clearly not satisfied for potential functions Gn that
can be equal to zero, which is typically the case with indicator type potential functions. Conse-
quently, the analysis of non-homogeneous models associated with indicator type potential functions
(as is the case in rare event analysis) will be developed using a time non-homogeneous version of
condition (A.5). In this situation, the upper bound corresponding to (A.6) can be expressed in
terms of a sum over n quantities that depend on the oscillations of the potential functions Gn and
on the mixing properties of the Markov transitions Mn (see for instance Corollary 4). More pre-

cisely, we can replace in condition (A.5) the triplet (E,G,M) by the triplet (Ên, Ĝn, M̂n) defined
as

Ên = Ĝ−1
n (]0, 1]) Ĝn(x) = Mn(Gn)(x) and M̂n(x, dy) = Mn(x, dy)Gn(y)/Mn(G)(x)

To illustrate these ideas, the application to rare events will be given in section A.5.

A.3 Regularity Properties of Feynman-Kac Semigroups

This section is concerned with some regularity properties of the Feynman-Kac semigroups involved
in the coalescent tree based functional expansions for non-homogeneous models. To describe
precisely these new conditions, we need to introduce another round of notations.
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Definition 6 We denote by An the support of the potential functions Gn, that is

An = {x ∈ E : Gn(x) > 0} .

We let (γ̂n, η̂n) be the updated Feynman-Kac measures on the set An given by

∀n ≥ 0 γ̂n(dx) = γn(dx) Gn(x) and η̂n(dx) =
1

ηn(Gn)
Gn(x) ηn(dx).

We let
(
Ĝn, M̂n

)
be the pair of potential functions and Markov transitions given by :

∀x ∈ An Ĝn(x) = Mn+1(Gn+1)(x) and ∀x ∈ An−1 M̂n(x, dy) =
Mn(x, dy)Gn(y)

Mn(Gn)(x)

Notice that the updated Feynman-Kac measures (γ̂n, η̂n) can be rewritten in terms of
(
Ĝn, M̂n

)

with the following change of reference measure formula

η̂n(f) =
γ̂n(f)

γ̂n(1)
with γ̂n(f) = η0(G0) E


f

(
X̂n

) ∏

0≤p<n

Ĝp(X̂p)


 (A.7)

In the above display, X̂n stands for a non-homogeneous Markov chain with initial distribution η̂0
and elementary Markov transitions M̂n from An−1 into An. We are now in position to describe
these new conditions.

Condition (Ĥ)m:

• (Ĝ) The potential functions Ĝn satisfy the following conditions

∀n ≥ 0 δ̂n = sup
(x,y)∈A2

n

Ĝn(x)

Ĝn(y)
< ∞

• (M̂)m There exists some integer m ≥ 1 and some sequence of numbers β̂
(m)
p ∈ [1,∞[ such

that for any p ≥ 0 and any (x, x′) ∈ A2
p we have

M̂p,p+m(x, dy) ≤ β̂(m)
p M̂p,p+m(x′, dy) with M̂p,p+m = M̂p+1M̂p+2 . . . M̂p+m

Using the change of measure formula (A.7) we observe that the semigroup of the updated measures
γ̂n is given by

Q̂p,n = Q̂p+1Q̂p+2 . . . Q̂n with Q̂n(x, dy) = Ĝn−1(x) M̂n(x, dy).

In other words, Q̂p,n is defined as the semigroup Qp,n by replacing the pair of objects (Gn,Mn) by

the quantities (Ĝn, M̂n). With these notations, we can prove that for any p ≥ 0

sup
(x,y)∈A2

p

Q̂p,n(1)(x)

Q̂p,n(1)(y)
≤ δ̂(m)

p β̂(m)
p with δ̂(m)

p =
∏

p≤q<p+m

δ̂q

as soon as the regularity condition (Ĥ)m is met for some parameters (m, δ̂n, β̂
(m)
p ).
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A.4 Non-Asymptotic L2-Estimates

This section is concerned with the statement of the main results of this appendix.

Theorem 12 We suppose condition (Ĥ)m is met for some parameters (m, δ̂n, β̂
(m)
p ). In addition,

we assume that the potential functions Gn satisfy the following conditions

∀n ≥ 0 δ̃n = sup
(x,y)∈A2

n

Gn(x)

Gn(y)
< +∞ (A.8)

Then, for any non-negative function F ∈ Bb(E
2) with ‖F‖ ≤ 1, and any N > 1 we have

E
(
(γNn )⊗2(F )

)
≤ γn(1)

2 ×
n∏

s=0

(
1 +

1

N − 1

δ̃s δ̂
(m)
s β̂

(m)
s

ηs(As)

)

We conclude this section with a simple consequence of the above estimates. Notice that, in a
homogeneous context, Theorem 11 is a direct consequence of the following corollary.

Corollary 4 When conditions (A.8) and (Ĥ)m are met for some (m, δ̂n, β̂
(m)
p ), we have the non-

asymptotic estimates

N >
n∑

s=0

δ̃s δ̂
(m)
s β̂

(m)
s

ηs(As)
=⇒ E

([
γNn (1)

γn(1)
− 1

]2)
≤ 4

N

n∑

s=0

δ̃s δ̂
(m)
s β̂

(m)
s

ηs(As)
.

A.5 Application to Rare Events

In this section, we want to outline the use of our main result in terms of efficiency for rare event
probability estimation. By rare event we mean an event whose probability is too small to be
accurately estimated by a simple Monte Carlo procedure in a reasonable time. Practically, this is
the case if this probability is less than, say 10−9. In this case, the normalizing constant γn(1) is
the probability, to be estimated, of the rare event under consideration.

One of the most used model for rare event is the following. Let Z = {Zt , t ≥ 0} be a continuous–
time strong Markov process taking values in some Polish state space S. For a given target Borel
set A ⊂ S we define the hitting time

TA = inf{t ≥ 0 : Zt ∈ A},

as the first time when the process Z hits A. In many applications, the set A is the (super) level
set of a scalar measurable function φ defined on S, i.e.

A = {z ∈ S : φ(z) ≥ λA}.

It may happen that most of the realizations of X never reach the set A. As a consequence, the
corresponding rare event probabilities are extremely difficult to analyze. In particular one would
like to estimate the quantity

P(TA ≤ T ),

where T is a P–almost surely finite stopping time, for instance the hitting time of a recurrent Borel
set R ⊂ S, i.e. T = TR with

TR = inf{t ≥ 0 : Zt ∈ R} and P(TR < ∞) = 1.
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In practice the process Z, before entering into the desired set A, passes through a decreasing
sequence of closed sets

A = An⋆ ⊂ An⋆−1 ⊂ · · · ⊂ A2 ⊂ A1 ⊂ A0.

The parameter n⋆ and the sequence of level sets depend on the problem at hand. We can easily
fit this problem in the Feynman-Kac model presented in section A.2 simply by setting

∀1 ≤ n ≤ n⋆ Xn = ZTn∧T

where, with a slight abuse of notation, Tn stands for the first time TAn the process Z reaches An,
that is

Tn = inf{t ≥ 0 : Zt ∈ An},
with the convention inf ∅ = ∞. The potential functions Gn on S are defined by

Gn(x) = 1An(x).

In this notation, we have TA = Tn⋆ and for every n ≤ n⋆

γn(1) = P(Tn ≤ T ) and ηn = L(Xn | Tn ≤ T ). (A.9)

For more details on these excursion valued Feynman-Kac models, we refer the reader to Cérou, Del
Moral, Le Gland and Lezaud [25]. As we will show now, our main result enables us to derive an
efficiency result for rare event probability estimation, the first of its kind concerning the Interacting
Particle System (IPS) approach applied to rare events.

Basically, efficiency results are about asymptotics when the rare event probability goes to 0: we
want to control the relative variance of our estimator when the event of interest is getting more
and more unlikely. In the context of importance sampling, a discussion about various efficiency
(or robustness) properties may be found in L’Ecuyer, Blanchet, Tuffin and Glynn [83]. Among all
those, we will focus here on logarithmic efficiency, a topic that was already mentioned in section
4.4.5.

Returning to the framework presented above, we further assume that we have a family of rare sets
Aε indexed by ε ≥ 0, of the form

Aε = {z ∈ S s.t. φ(z) > λε},

for some real valued function φ. Denote as usual

TAε = inf{t ≥ 0 : Zt ∈ Aε} and TR = inf{t ≥ 0 : Zt ∈ R}.

Assume further that we have for some fixed θ > 0

P(TAε < TR) = e−θ/ε,

which is typical of behavior driven by a large deviation principle. We further assume that we are
given a non-increasing sequence of level sets

Aε = Anε ⊂ Anε−1 ⊂ · · · ⊂ A2 ⊂ A1 ⊂ A0

with a real valued function ψ so that

An = {z ∈ S : ψ(z) > Ln}.
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In the above displayed formula (Ln)1≤n≤nε stands for a non-decreasing sequence of real numbers,
with some fixed time horizon nε that may depend on the parameter ǫ, and so that Anε = Aε. In
the rare event literature, such a function ψ is called an importance function. In this notation, by
(A.9) the rare event probability of interest is given by

γnε(1) = P(Tnε ≤ TR) = e−θ/ε

Then we say that our estimator γNnε
(1) has the logarithmic efficiency property if we have

lim
ε→0

logE
[(
γNnε

(1)
)2]

2 log γnε(1)
= 1.

Next, we discuss the regularity conditions (Ĝ) and (M̂)m introduced on page 88. Firstly, we ob-
serve that the parameters δ̃n introduced in (A.8) are simply given by δ̃n = 1. We check this claim
using the fact that the potential functions Gn are the indicator functions on excursion subsets
ending at the level sets An. Secondly, the assumption (M̂)m is clearly a mixing type property. In

this context M̂n(xn−1, dxn) is the elementary transition probability of an excursion X̂n starting at
An−1 (at the terminal state of an excursion xn−1 ending at An−1) and ending at the next level set
An.

Example: We can illustrate condition (M̂)m for the simple random walk on the one dimensional
lattice S = Z starting at the origin, with the decreasing sequence of level sets An = [n,∞[. In this

context, we readily find that (M̂)m is satisfied with m = 1 and β̂
(1)
n = 1, for every n ≥ 1. More

generally, in the simple setting of one dimension (i.e. the random process Z lives in R), we always

have β̂
(m)
n = 1 for all n.

Now we discuss the regularity condition (Ĝ). We observe that

Ĝn(xn) = Mn+1 (Gn+1) (xn)

is the probability of reaching the set An+1, starting from the terminal value of a random excursion
xn ending at An. The less this quantity depends on xn, the lower is the variance, as it is already
well known for the asymptotic variance (as seen in [25]). So a good choice of the sets An is such
that they are close to level sets for the probability of reaching the rare event.

From Corollary 4, we see that ηn(An) is another quantity of interest. In this situation, we recall
that An is the set of all random excursions ending at the level An and ηn is the distribution of the
n-th excursion Xn of the process Zt given the fact that it has reached the level An−1 at time Tn−1.
Thus, ηn(An) is the probability of reaching level An, knowing that the trajectory has reached An−1.
It is well known already (see [25, 81]) that we need to have these quantities ηn(An) as close to each
other as possible (the best would be equal). So not only do we need to have an importance function
close to the optimal one, but also to have the sets An evenly spaced in terms of hitting probabilities.

We would like to stress here that the issue of constructing a good importance function is far from
trivial. It has been nicely addressed in Dean and Dupuis [39] in the case of importance splitting
techniques, which are close to the IPS approach. Their choice of importance function allows them
to prove the asymptotically optimal efficiency of the importance splitting with their choice of the
importance function.

From now on, we assume that we know how to construct a good importance function, in such a

way that for all n, δ̂
(m)
n < δ for some δ, and we know how to construct the level sets An so that

P (Tn < TR | Tn−1 < TR) = ηn(An) ≈ p > 0
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for some p ∈ [0, 1]. A practical way for doing this has been proposed by Cérou and Guyader in

[27]. We also suppose that the Markov process X̂n is sufficiently mixing, so that β̂
(m)
n < β, for

some β. In this situation, using the fact that ηn(An) ≈ p > 0, we get that the number nε of steps
needed to get to the rare event is of order − θ

ε log p . Using Theorem 12, we see that

E[(γNnε
(1))2] ≤ γnε(1)

2

(
1 +

δβ

(N − 1)p

)− θ
ε log p

,

Using the fact that log γnε(1) = −θ/ε, we get the lower bound

1 +
1

2 log p
log

(
1 +

1

N − 1

δβ

p

)
≤ logE[(γNnε

(1))2]

2 log γnε(1)
.

Now, using Jensen’s inequality and the fact that the estimator γNnε
(1) is unbiased, we have the

upper bound
logE[(γNnε

(1))2]

2 log γnε(1)
≤ 1.

Putting all things together, we get the asymptotic logarithmic efficiency at any (slow) rate, in the
sense that

lim
N↑∞

logE[(γNnε
(1))2]

2 log γnε(1)
= 1.
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