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Université Pierre et Marie Curie – Paris VI

Bôıte 158, 175 rue du Chevaleret
75013 Paris, France

gerard.biau@upmc.fr

b INRIA Rennes Bretagne Atlantique
Aspi project-team

Campus de Beaulieu, 35042 Rennes Cedex, France

Frederic.Cerou@irisa.fr
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Abstract

Let F be a separable Banach space, and let (X, Y ) be a random pair
taking values in F×R. Motivated by a broad range of potential appli-
cations, we investigate rates of convergence of the k-nearest neighbor
estimate rn(x) of the regression function r(x) = E[Y |X = x], based
on n independent copies of the pair (X, Y ). Using compact embed-
ding theory, we present explicit and general finite sample bounds on
the expected squared difference E[rn(X) − r(X)]2, and particularize
our results to classical function spaces such as Sobolev spaces, Besov
spaces and reproducing kernel Hilbert spaces.
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1 Introduction

Let (F , ‖.‖) be a separable Banach space (possibly infinite-dimensional),
and let Dn = {(X1, Y1), . . . , (Xn, Yn)} be independent F × R-valued ran-
dom variables with the same distribution as a generic pair (X, Y ) such that
EY 2 < ∞. In the regression function estimation problem, the goal is to
estimate the regression function r(x) = E[Y |X = x] using the data Dn.
With this respect, we will say that a regression estimate rn(x) is consistent
if E[rn(X) − r(X)]2 → 0 as n → ∞.

In the classical statistical setting, each observation Xi is supposed to be a
collection of numerical measurements represented by a d-dimensional vector.
Thus, to date, most of the results pertaining to regression estimation have
been reported in the finite-dimensional case, where it is assumed that F is
the standard Euclidean space R

d. We refer the reader to the monograph of
Györfi, Kohler, Krzyżak and Walk [12] for a comprehensive introduction to
the subject and an overview of most standard methods and developments in
R

d.

However, in an increasing number of practical applications, input data items
are in the form of random functions (speech recordings, multiple time series,
images...) rather than standard vectors, and this casts the regression problem
into the general class of functional data analysis. Here, “random functions”
means that the variable X takes values in a space F of functions on a subset
of R

d, equipped with an appropriate norm. For example, F could be the
Banach space of continuous real functions on X = [0, 1]d with the norm

‖f‖∞ = sup
x∈X

|f(x)| ,

but many other choices are possible. The challenge in this context is to infer
the regression structure by exploiting the infinite-dimensional nature of the
observations. The last few years have witnessed important developments in
both the theory and practice of functional data analysis, and many tradi-
tional statistical tools have been adapted to handle functional inputs. The
book of Ramsay and Silverman [14] provides a presentation of the area.

Interestingly, functional observations also arise naturally in the so-called ker-
nel methods for general pattern analysis. These methods are based on the
choice of a proper similarity measure, given by a positive definite kernel de-
fined between pairs of objects of interest, to be used for inferring general
types of relations. The key idea is to embed the observations at hand into a
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(typically infinite-dimensional) Hilbert space, called the feature space, and to
compute inner products efficiently directly from the original data items using
the kernel function. For an exhaustive presentation of kernel methodologies
and related algorithms, we refer the reader to Schölkopf and Smola [15], and
Shawe-Taylor and Cristianini [16].

Motivated by this broad range of potential applications, we propose, in the
present contribution, to investigate rates of convergence properties of the
kn-nearest neighbor (kn-NN) regression estimate, assuming that the Xi’s
take values in a general separable Banach space (F , ‖.‖), typically infinite-
dimensional. Recall that, for x in F , the kn-NN estimate is defined by

rn(x) =
1

kn

kn
∑

i=1

Y(i,n)(x),

where (X(1,n)(x), Y(1,n)(x)), . . . , (X(n,n)(x), Y(n,n)(x)) denotes a reordering of
the data according to the increasing values of ‖Xi − x‖ (ties are broken in
favor of smallest indices). This procedure is one of the oldest approaches
to regression analysis, dating back to Fix and Hodges [7, 8]. It is among
the most popular nonparametric methods, with over 900 research articles
published on the method since 1981 alone. For implementation, it requires
only a measure of distance in the sample space, hence its popularity as a
starting-point for refinement, improvement and adaptation to new settings
(see for example Devroye, Györfi and Lugosi [5], Chapter 19).

Stone [17] proved the striking result that the estimate rn is universally consis-
tent if F = R

d, provided kn → ∞ and kn/n → 0. Here, “universally consis-
tent” means that the method is consistent for all distributions of (X, Y ) with
EY 2 < ∞ (universally consistent regression estimates can also be obtained
by other local averaging methods as long as F = R

d, see e.g. [12]). It turns
out that the story is radically different in general spaces F . In this respect,
Cérou and Guyader [2] present counterexamples indicating that the estimate
rn is not universally consistent for general F , and they argue that restrictions
on F and the distribution of (X, Y ) cannot be dispensed with. In short, F
must be separable for the norm ‖.‖, as already noticed by Cover and Hart [3],
page 23. To see this, take for (F , ‖.‖) the non-separable space of continuous
functions from ]0, 1] to [0, 1] equipped with the supremum norm ‖.‖ = ‖.‖∞,
and define the random function X as follows: let α be a [0, 1]-valued random
variable with distribution µ = 1

2
δ0 + 1

2
U[0,1] (i.e., a mixture of a Dirac at 0

and the uniform distribution over [0, 1]) and let X : t 7→ sin(α/t). Letting
Y = 0 if X = 0 and Y = 1 otherwise, the regression function has the form
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r(x) = 1[x 6=0]. It is then easy to see that the kn-NN regression estimate is
not consistent for this distribution of (X, Y ). And there is worse: even if
the space (F , ‖.‖) is separable, the estimate rn may still have bad asymp-
totic behavior. Indeed, by working out arguments in Preiss [13], Cérou and
Guyader [2] exhibit a random X with Gaussian distribution in a separable
Hilbert space F for which the estimate rn fails to be consistent. On the pos-
itive side, these authors provide a general condition, called the µ-continuity
condition, which ensures the consistency of the estimate.

In this note, we go one step further in the analysis and study the rates of
convergence of E[rn(X) − r(X)]2 as n → ∞, when X is allowed to take val-
ues in the separable Banach space F . This important question has been
first addressed by Kulkarni and Posner [11], who put forward the essential
role played by the covering numbers of the support of the distribution of
X. Building upon the ideas in [11] and exploiting recent advances on com-
pact embeddings of functional Banach spaces, we present explicit and general
finite sample upper bounds on E[rn(X) − r(X)]2, and particularize our re-
sults to classical function spaces such as Sobolev spaces, Besov spaces and
reproducing kernel Hilbert spaces.

2 Rates of convergence

2.1 Bias-variance tradeoff

Setting

r̃n(x) =
1

kn

kn
∑

i=1

r
(

X(i,n)(x)
)

,

we start the analysis with the standard variance/bias decomposition (Györfi,
Kohler, Krzyżak and Walk [12])

E [rn(X) − r(X)]2 = E [rn(X) − r̃n(X)]2 + E [r̃n(X) − r(X)]2 . (2.1)

The first term is a variance term, which can be upper bounded independently
of the topological structure of the space F . Proof of the next proposition can
be found for example in [12], Chapter 6 (here and throughout the document,
the symbol V denotes variance):

Proposition 2.1 Suppose that, for all x ∈ F ,

σ2(x) = V[Y |X = x] ≤ σ2.
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Then

E [rn(X) − r̃n(X)]2 ≤ σ2

kn
.

The right-hand term in (2.1), which is a bias term, needs more careful atten-
tion. Let the symbol ⌊.⌋ denote the integer part function. A quick inspection
of the finite-dimensional proof (see [12], page 95) reveals the following result:

Proposition 2.2 Suppose that, for all x and x′ ∈ (F , ‖.‖),

|r(x) − r(x′)| ≤ L‖x − x′‖, (2.2)

for some positive constant L. Then

E [r̃n(X) − r(X)]2 ≤ L2
E‖X(1,⌊ n

kn
⌋)(X) − X‖2.

Putting Proposition 2.1 and Proposition 2.2 together, we obtain

E [rn(X) − r(X)]2 ≤ σ2

kn
+ L2

E‖X(1,⌊ n
kn

⌋)(X) − X‖2. (2.3)

Thus, in order to bound the rate of convergence of E[rn(X) − r(X)]2, we
need to analyze the rate of convergence of the nearest neighbor distance in
the Banach space F . As noticed in Kulkarni and Posner [11], this task can be
achieved via the use of covering numbers of totally bounded sets (Kolmogorov
and Tihomirov [10]). Some recalls are in order. Let BF (x, ε) denote the open
ball in F centered at x of radius ε.

Definition 2.1 Let A be a subset of F . The ε-covering number N (ε) [=
N (ε,A)] is defined as the smallest number of open balls of radius ε that
cover the set A. That is

N (ε) = inf

{

r ≥ 1 : ∃x1, . . . ,xr ∈ F such that A ⊂
r

⋃

i=1

BF (xi, ε)

}

.

A set A ⊂ F is said to be totally bounded if N (ε) < ∞ for all ε > 0. In
particular, any relatively compact set is totally bounded, and the converse
assertion is true if the space F is complete. All totally bounded sets are
bounded, and the converse assertion is satisfied when F is finite-dimensional.
Figure 1 below illustrates this important concept in the finite-dimensional
setting, with (F , ‖.‖) = (R2, ‖.‖∞) and A = (−1, 1)2.

As a function of ε, N (ε) is nonincreasing, piecewise-constant and right-
continuous. The following discrete function, called the metric covering radius,
can be interpreted as a pseudo-inverse of the function N (ε).
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A

1

1

B(x, ε)

x

Figure 1: An ε-covering of A = (−1, 1)2 in (R2, ‖.‖∞).

Definition 2.2 Let A be a subset of F . The metric covering radius N−1(r)
[= N−1(r,A)] is defined as the smallest radius such that there exist r open
balls of this radius which cover the set A. That is

N−1(r) = inf

{

ε > 0 : ∃x1, . . . ,xr ∈ F such that A ⊂
r

⋃

i=1

BF(xi, ε)

}

.

We note that N−1(r) is a nonincreasing function of r (see Figure 2 for an
illustration). Observe also that both N and N−1 are increasing with respect
to the inclusion, that is N (ε,A) ≤ N (ε,B) and N−1(r,A) ≤ N−1(r,B) for
A ⊂ B.

1

2

1

3
1

ε

1

N (ε,A)

1

4

9

1 4 9

1/2

1/3

N
−1(r,A)

r

Figure 2: Covering numbers and covering radii of the set A = (−1, 1)2 in
(R2, ‖.‖∞).
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Finally, we let the support S(µ) of the probability measure µ of X be defined
as the collection of all x with µ(BF(x, ε)) > 0 for all ε > 0. Throughout the
paper, it will be assumed that S(µ) is totally bounded. Observe then that
2N−1(1,S(µ)) is an upper bound on the diameter of S(µ).

Proposition 2.3 below bounds the convergence rate of the expected squared
nearest neighbor distance in terms of the metric covering radii of S(µ). This
result sharpens the constant of Theorem 1, page 1032 in Kulkarni and Posner
[11].

Proposition 2.3 Let X1, . . . ,Xp be independent F-valued random variables,
distributed according to a common probability measure µ. Suppose that S(µ)
is a totally bounded subset of (F , ‖.‖). Then

E‖X(1,p) − X‖2 ≤ 4

p

p
∑

i=1

[

N−1 (i,S(µ))
]2

.

Proof of Proposition 2.3 All the covering and metric numbers we use in
this proof are pertaining to the set S(µ). Therefore, to lighten notation a
bit, we set N (ε) = N (ε,S(µ)) and N−1(r) = N−1(r,S(µ)).

Let X′ be a random variable distributed as and independent of X and let,
for ε > 0,

FX(ε) = P (‖X− X′‖ ≤ ε |X)

be the conditional cumulative distribution function of the distance between
X and X′. Set finally

D(1)(X) = ‖X(1,p)(X) −X‖.

Clearly,

P
(

D2
(1)(X) > ε

)

= E
[

P(D(1)(X) >
√

ε |X)
]

= E
[(

1 − FX(
√

ε)
)p]

.

Next, take B1, . . . ,BN (
√

ε/2) a
√

ε/2-covering of S(µ), and define an N (
√

ε/2)-
partition of S(µ) as follows. For each ℓ = 1, . . . ,N (

√
ε/2), let

Pℓ = Bℓ −
ℓ−1
⋃

j=1

Bj .

Then Pℓ ⊂ Bℓ and
N (

√
ε/2)

⋃

ℓ=1

Bℓ =

N (
√

ε/2)
⋃

ℓ=1

Pℓ,
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with Pℓ ∩ Pℓ′ = ∅. Also,
N (

√
ε/2)

∑

ℓ=1

µ(Pℓ) = 1.

Thus, letting pℓ = µ(Pℓ), we may write

FX

(√
ε
)

≥ P(∃ ℓ = 1, . . . ,N (
√

ε/2) : X ∈ Pℓ and X′ ∈ Pℓ |X)

= E





N (
√

ε/2)
∑

ℓ=1

1[X∈Pℓ]1[X′∈Pℓ]

∣

∣

∣

∣

∣

∣

X





=

N (
√

ε/2)
∑

ℓ=1

pℓ1[X∈Pℓ].

As a by-product, we remark that, for all ε > 0, FX (
√

ε) > 0 almost surely.
Moreover

E

[

1

FX (
√

ε)

]

≤ E

[

1
∑N (

√
ε/2)

ℓ=1 pℓ1[X∈Pℓ]

]

= E





N (
√

ε/2)
∑

ℓ=1

1

pℓ

1[X∈Pℓ]



 ,

which leads to

E

[

1

FX (
√

ε)

]

≤ N
(√

ε

2

)

.

Since t(1 − t)p ≤ t exp(−pt) ≤ 1
2p

for all t ∈ [0, 1], we deduce

P(D2
(1)(X) > ε) = E

[(

1 − FX(
√

ε)
)p]

= E

[

1

FX (
√

ε)
FX(

√
ε)

(

1 − FX(
√

ε)
)p

]

≤ 1

2p
E

[

1

FX (
√

ε)

]

≤ N (
√

ε/2)

2p
.

Next, using the fact that P(D(1)(X) > ε) = 0 for ε ≥ 2N−1(1), we may write

E
[

D2
(1)(X)

]

=

∫ ∞

0

P
(

D2
(1)(X) > ε

)

dε

=

∫ 4[N−1(1)]2

0

P
(

D2
(1)(X) > ε

)

dε

=

∫ 4[N−1(p)]2

0

P
(

D2
(1)(X) > ε

)

dε +

∫ 4[N−1(1)]2

4[N−1(p)]2
P

(

D2
(1)(X) > ε

)

dε.
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Thus

E
[

D2
(1)(X)

]

≤ 4
[

N−1(p)
]2

+
1

2p

∫ 4[N−1(1)]2

4[N−1(p)]2
N (

√
ε/2)dε

= 4
[

N−1(p)
]2

+
2

p

∫ [N−1(1)]2

[N−1(p)]2
N (

√
ε)dε

= 4
[

N−1(p)
]2

+
2

p

p
∑

i=2

∫ [N−1(i−1)]2

[N−1(i)]2
N (

√
ε)dε.

Since N (
√

ε) = i for N−1(i) ≤ √
ε < N−1(i − 1), we obtain

E
[

D2
(1)(X)

]

≤ 4
[

N−1(p)
]2

+
2

p

p
∑

i=2

i
(

[

N−1(i − 1)
]2 −

[

N−1(i)
]2

)

=
4

p

[

N−1(1)
]2

+
2

p

p−1
∑

i=2

[

N−1(i)
]2

+ 2
[

N−1(p)
]2

≤ 4

p

p
∑

i=1

[

N−1(i)
]2

.

To state the last inequality, recall that the sequence (N−1(i))i≥1 is nonin-
creasing, so that

[

N−1(p)
]2 ≤

∑p
i=2 [N−1(i)]

2

p − 1
.

The decomposition

[

N−1(p)
]2

=
p − 1

p

[

N−1(p)
]2

+
1

p

[

N−1(p)
]2

leads to the desired result. �

Example 2.1 Take (F , ‖.‖) = (Rd, ‖.‖∞) and suppose that S(µ) ⊂ A =
(−1, 1)d. Then a moment’s thought shows that

N (ε,A) =

(

1

ε

)d

1[ε−1∈N] +

(⌊

1

ε

⌋

+ 1

)d

1[ε−1 /∈N]. (2.4)

In addition
N−1 (i,A) = i−

1
d 1[i1/d∈N] +

⌊

i1/d
⌋−1

1[i1/d /∈N].

Consequently, for d ≥ 3, by Proposition 2.3,

E‖X(1,p) −X‖2 . p−
2
d ,
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where the notation x . y means x ≤ Ay for some positive constant A.
Combining this result with inequality (2.3), we conclude that

E [rn(X) − r(X)]2 .
σ2

kn

+ L2

⌊

n

kn

⌋− 2
d

.

Thus, for the choice kn ∝ n
2

d+2 ,

E [rn(X) − r(X)]2 . n− 2
d+2 .

This shows that the nearest neighbor estimate is of optimal rate for the class of
smooth distributions (X, Y ) such that X has compact support, the regression
function r is Lipschitz with constant L and, for all x ∈ R

d, V[Y |X = x] ≤ σ2

(Ibragimov and Khasminskii [9] and Györfi, Kohler, Krzyżak and Walk [12],
Chapter 3 and Theorem 6.2).

Example 2.1 strongly relies on the fact that bounded subsets of (Rd, ‖.‖∞)
are in fact totally bounded, as expressed by identity (2.4). Indeed, as shown
in Proposition 2.3, a key step in obtaining rates of convergence for the nearest
neighbor regression estimate is the derivation of covering numbers for the sup-
port of the distribution µ of X. Unfortunately, in infinite-dimensional spaces,
closed balls are bounded but not totally bounded, so that N−1(i,S(µ)) = ∞
most of the time and Proposition 2.3 is useless.

To correct this situation, a possible route is to assume that the observations
we are dealing with behave in fact more regularly than a generic element
of the ambient space F , thereby reducing the general complexity of S(µ).
To illustrate this idea, suppose for example that F is the space C([0, 1]) of
continuous real functions on [0, 1] equipped with the supremum norm ‖.‖∞.
Then, guided by the experience and practical considerations, it may be fair
to suppose that the random curves X1, . . . ,Xn are smooth enough, so that
the support of their common distribution µ is in fact included and bounded
in Dm([0, 1]), the space of m times differentiable functions with bounded
derivatives, endowed with its canonical norm. Next, in this context, it can be
proved that N−1(i,S(µ)) < ∞, and the show may go on. This example will
be thoroughly discussed in the next section, together with other illustrations.

Thus, taking a general point of view, we will now suppose that the support
of µ is bounded and included in a subspace (G, ‖.‖G) of (F , ‖.‖), and that
the embedding (G, ‖.‖G) →֒ (F , ‖.‖) is compact. Here, “compact embedding”
means that the unit ball (and thus, any ball) in (G, ‖.‖G) is totally bounded
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in (F , ‖.‖). Put differently, balls in G (with respect to ‖.‖G) become totally
bounded as we see them as subsets of F , endowed with the original metric
‖.‖. The crux then is to identify covering numbers of balls in G with respect
to the norm ‖.‖. This will be the topic of the next section.

3 Compact embeddings

As we are now working with two different spaces, to avoid notational con-
fusion we will rather denote by ‖.‖F the original norm of F . Thus, in our
context, (G, ‖.‖G) is a separable Banach subspace of (F , ‖.‖F) and, to sim-
plify notation a bit, we let in the sequel BG(R) be the open ball in (G, ‖.‖G)
of radius R > 0 centered at the origin, that is

BG(R) = {x ∈ G : ‖x‖G < R}.
Definition 3.1 The embedding I : (G, ‖.‖G) →֒ (F , ‖.‖F) is called compact
if I(BG(1)) is totally bounded in (F , ‖.‖F).

Note that this definition is equivalent to require that the closure I(B) is
compact for any bounded set B ⊂ G. It turns out that many interesting
Banach spaces can be embedded into a larger functional space. To convince
the reader, four examples are discussed below.

Example 3.1 (Differentiable functions) Let X be a compact domain in
R

d with smooth boundary. For every m ∈ N, let Dm(X ) be the Banach space
of m times differentiable functions with bounded partial derivatives, that is

Dm(X ) =







f : X → R, ‖f‖Dm =
∑

|α|≤m

‖Dαf‖∞ < ∞







,

where the sum is taken over all multi-indices α = (α1, . . . , αd) such that
|α| = α1 + · · · + αd ≤ m. Then the inclusion

Im : (G, ‖.‖G) = (Dm(X ), ‖.‖Dm) →֒ (F , ‖.‖F) = (C(X ), ‖.‖∞)

is a compact embedding. Moreover, for every ε > 0 and R > 0,

lnN
(

ε, Im (BG(R))
)

≤
(

RC

ε

)
d
m

,

for some positive constant C independent of ε and R (Kolmogorov and Ti-
homirov [10]). This implies, for i ∈ N

⋆ and R > 0,

N−1
(

i, Im (BG(R))
)

≤ RC (ln(i + 1))−
m
d .
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Example 3.2 (Sobolev spaces) Let again X be a compact domain in R
d

with smooth boundary. For every s ∈ N and p ≥ 1, let W s,p(X ) be the usual
Sobolev space equipped with the norm

‖f‖W s,p =
∑

|α|≤m

‖Dαf‖p.

The Rellich-Kondrakov Theorem asserts that, for s1 > s2, the inclusion

Is1,s2 : (G, ‖.‖G) = (W s1,p(X ), ‖.‖W s1,p) →֒ (F , ‖.‖F) = (W s2,p(X ), ‖.‖W s2,p)

is compact. It can be proved (see for example Edmunds and Triebel [6], page
105) that for every ε > 0 and R > 0,

lnN
(

ε, Is1,s2 (BG(R))
)

≤
(

RC

ε

)
d

s1−s2

,

for some positive constant C independent of ε and R. This implies, for
s1 > s2, i ∈ N

⋆ and R > 0,

N−1
(

i, Is1,s2 (BG(R))
)

≤ RC (ln(i + 1))−
s1−s2

d .

This result can be extended to the more general context of Sobolev-type func-
tion spaces (Edmunds and Triebel [6]).

Example 3.3 (Besov spaces) Let X be a compact domain in R
d with smo-

oth boundary, and let (Bs
pq(X ), ‖.‖spq) be the Besov space on X (Edmunds and

Triebel [6]). If 1 ≤ p, q ≤ ∞ and s > d/p, then the inclusion

Is : (G, ‖.‖G) =
(

Bs
pq(X ), ‖.‖spq

)

→֒ (F , ‖.‖F) = (C(X ), ‖.‖∞)

is compact. Besides, using a general result in [6], page 105, we have, for
every ε > 0 and R > 0,

lnN
(

ε, Is (BG(R))
)

≤
(

RC

ε

)
d
s

,

and this gives raise to the bound

N−1
(

i, Is (BG(R))
)

≤ RC (ln(i + 1))−
s
d .

As mentioned in [6], this inequality can be extended to compact embeddings
of Besov-type function spaces.
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Example 3.4 (Reproducing kernel Hilbert spaces) Let X be a com-
pact domain in R

d, and let K : X × X → R be a Mercer kernel, i.e., K
is continuous, symmetric and positive definite. Recall that we say that K
is positive definite if for all finite sets {x1, . . . ,xm} ⊂ X , the m × m ma-
trix [K(xi,xj)]1≤i,j≤m is positive definite. Typical examples of Mercer ker-
nels are the Gaussian kernel K(x,x′) = exp(−‖x − x′‖2) and the kernel
K(x,x′) = (c2 + ‖x − x′‖2)−α with α > 0.

For x ∈ X , let Kx = K(x, .). According to Moore-Aronszajn’s Theorem
(Aronszajn [1]), there exists a unique Hilbert space HK of functions on X
satisfying the following conditions:

(i) For all x ∈ X , Kx ∈ HK;

(ii) The span of the set {Kx = K(x, .), x ∈ X} is dense in HK ;

(iii) For all f ∈ HK , f(x) = 〈Kx, f〉.

The Hilbert space HK is said to be the reproducing kernel Hilbert space (for
short, RKHS) associated with the kernel K. It can be shown that HK consists
of continuous functions and, provided K is a C∞ Mercer kernel, that the
inclusion

IK : (G, ‖.‖G) = (HK , ‖.‖K) →֒ (F , ‖.‖F) = (C(X ), ‖.‖∞)

is a compact embedding (Cucker and Smale [4], Theorem D). Moreover, as
proved in [4], for all h > d, ε > 0 and R > 0,

lnN
(

ε, IK (BG(R))
)

≤
(

RC

ε

)
2d
h

,

where C is a positive constant independent of ε and R. This readily implies
that for h > d, i ∈ N

⋆ and R > 0,

N−1
(

i, IK (BG(R))
)

≤ RC (ln(i + 1))−
h
2d .

This result has been improved by Zhou [18], who studies convolution-type
kernels on [0, 1]d, i.e., kernels of form K(x,x′) = k(x′ − x). Zhou provides
estimates of lnN (ε, IK (BG(R))) depending on the decay of k̂, the Fourier
transform of k. For example, when k̂ decays exponentially, one has

lnN
(

ε, IK (BG(R))
)

≤ C

(

ln
R

ε

)d+1

,
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where C depends only on the kernel and the dimension. This implies

N−1
(

i, IK (BG(R))
)

≤ R exp

{

−
(

ln(i + 1)

C

)
1

d+1

}

.

This result can typically be applied to the Gaussian kernel.

Motivated by Examples 3.1-3.4 above, we shall impose the following set of
assumptions on the distribution µ of X:

A1 There exists a subspace (G, ‖.‖G) of (F , ‖.‖F) such that the support
S(µ) is bounded in (G, ‖.‖G), that is S(µ) ⊂ BG(R) for some positive
constant R.

A2 There exists a compact embedding

I : (G, ‖.‖G) →֒ (F , ‖.‖F).

A3 There exists a function φ : ]0,∞[→ ]0,∞[ such that

[

N−1
(

i, I (BG(R))
)]2

≤ φ (ln(i + 1)) , i ∈ N
⋆,

where the covering number is taken with respect to ‖.‖F .

The boundedness condition in assumption A1 is standard when establishing
rates of convergence of nonparametric estimates, see e.g. Györfi, Kohler,
Krzyżak and Walk [12]. As noticed in Theorem 7 of Kulkarni and Posner
[11], this condition can be slightly relaxed, at the price of obtaining rates of
convergence in probability.

Assumption A2 means that the balls in G (with respect to ‖.‖G) are totally
bounded as subsets of the space (F , ‖.‖F). This condition is not restrictive,
and it is in particular satisfied by our leading Examples 3.1-3.4. From a prac-
tical perspective, we wish to emphasize that one usually has some latitude
in choosing the space G. This choice will typically be based on the regularity
of the data (curves) to be processed. Roughly speaking, the smoother they
are, the “smaller” the support of µ, and therefore the faster the convergence.
On the other hand, we note that the Lipschitz condition in (2.2) needs to be
valid in (F , ‖.‖F) — typically in (C(X ), ‖.‖∞) — which is a stronger require-
ment than a Lipschitz condition in (G, ‖.‖G). To overcome this difficulty, we
may decide to choose a “smaller” space F , where the Lipschitz condition
will be easier fulfilled. However, this operation may lead to slower rates of
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convergence, since they essentially depend on the difference of regularity (on
the difference of “size” in some sense) between (F , ‖.‖F) and (G, ‖.‖G), as
enlightened by Example 3.2.

Finally, and in view of the presented examples, the requirement A3 should
be understood as a general notation, which will be crucial in the statement
of Lemma 3.1 and Theorem 3.1 below.

We will need the following lemma.

Lemma 3.1 Suppose that the function φ satisfies the following properties:

(i) φ is nonincreasing and limt→∞ tφ(ln t) = ∞;

(ii) φ is differentiable on ]0,∞[ and
φ′(u)

φ(u)
→ 0 as u → ∞;

(iii) One has

∫ ∞

1

φ(ln t)dt = ∞.

Then, as p → ∞,

1

p

p
∑

i=1

φ(ln i) ∼ φ(ln p).

As a consequence, we have

1

p

p
∑

i=1

φ(ln i) . φ(ln p).

Proof of Lemma 3.1 Since φ is a nonincreasing function satisfying (iii),
we have, as p → ∞,

p
∑

i=1

φ(ln i) ∼
∫ p

1

φ(ln t)dt.

Moreover, by assumption (ii), as t → ∞,

φ(ln t) ∼ φ(ln t)

(

1 +
φ′(ln t)

φ(ln t)

)

.

Consequently, using (iii), we deduce that

∫ p

1

φ(ln t) dt ∼
∫ p

1

φ(ln t)

(

1 +
φ′(ln t)

φ(ln t)

)

dt.
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The right term above may be simply evaluated as

∫ p

1

φ(ln t)

(

1 +
φ′(ln t)

φ(ln t)

)

dt = [tφ(ln t)]p1 ∼ pφ(ln p),

by assumption (i). Putting all pieces together, we conclude that

1

p

p
∑

i=1

φ(ln i) ∼ φ(ln p) as p → ∞.

�

We are now in a position to state the main result of the paper, which is a
straightforward consequence of inequality (2.3), Proposition 2.3 and Lemma
3.1.

Theorem 3.1 Suppose that assumptions A1-A3 are satisfied and that the
function φ satisfies the conditions of Lemma 3.1. Suppose in addition that,
for all x and x′ ∈ F ,

σ2(x) = V[Y |X = x] ≤ σ2

and
|r(x) − r(x′)| ≤ L‖x − x′‖F ,

for some positive constants σ2 and L. Then

E [rn(X) − r(X)]2 .
σ2

kn

+ L2φ

(

ln

⌊

n

kn

⌋)

.

Theorem 3.1 can be illustrated in light of Examples 3.1-3.4. For differentiable
functions (Example 3.1), we have φ(t) ∝ t−2m/d, and the result reads

E [rn(X) − r(X)]2 .
σ2

kn
+ L2

(

ln

⌊

n

kn

⌋)− 2m
d

.

Therefore, with the choice kn ∝ (ln n)
2m
d ,

E [rn(X) − r(X)]2 . (ln n)−
2m
d .

Similarly, in Sobolev spaces (Example 3.2), the choice kn ∝ (ln n)
2(s1−s2)

d

leads to
E [rn(X) − r(X)]2 . (ln n)−

2(s1−s2)
d .
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In Besov spaces (Example 3.3), φ(t) ∝ t−2s/d and, with kn ∝ (ln n)
2s
d , we

obtain
E [rn(X) − r(X)]2 . (ln n)−

2s
d .

Finally, in reproducing kernel Hilbert spaces (Example 3.4), attention shows

that the choice kn ∝ (ln n)−
h
d results in

E [rn(X) − r(X)]2 . (ln n)−
h
d .

For convolution-type kernels (Zhou [18]), the choice kn ∝ exp
{

2
(

lnn
C

)
1

d+1

}

implies

E [rn(X) − r(X)]2 . exp

{

−2

(

ln n

C

)
1

d+1

}

.

The general finding here is that these rates of convergence are much slower
than the traditional finite-dimensional rates (see Example 3.1). On the other
hand, to the best of our knowledge, they are the first explicit available rates
for the functional kn-NN estimate. It is an open problem to know whether
these rates are optimal over the smoothness classes we consider.
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