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Abstract

Bagging is a simple way to combine estimates in order to improve their
performance. This method, suggested by Breiman in 1996, proceeds
by resampling from the original data set, constructing a predictor from
each subsample, and decide by combining. By bagging an n-sample,
the crude nearest neighbor regression estimate is turned into a consis-
tent weighted nearest neighbor regression estimate, which is amenable
to statistical analysis. Letting the resampling size kn grows appropri-
ately with n, it is shown that this estimate may achieve optimal rate
of convergence, independently from the fact that resampling is done
with or without replacement. Since the estimate with the optimal rate
of convergence depends on the unknown distribution of the observa-
tions, adaptation results by data-splitting are presented.
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1 Introduction

1.1 Bagging

Ensemble methods are popular machine learning algorithms which train mul-
tiple learners and combine their predictions. The success of ensemble al-
gorithms on many benchmark data sets has raised considerable interest in
understanding why such methods succeed and identifying circumstances in
which they can be expected to produce good results. It is now well known
that the generalization ability of an ensemble can be significantly better
than that of a single predictor, and ensemble learning has therefore been a
hot topic during the past years. For a comprehensive review of the domain,
we refer the reader to Dietterich [11] and the references therein.

One of the first and simplest ways to combine predictors in order to im-
prove their performance is bagging (bootstrap aggregating), suggested by
Breiman [2]. This ensemble method proceeds by generating subsamples from
the original data set, constructing a predictor from each resample, and decide
by combining. It is one of the most effective computationally intensive pro-
cedures to improve on unstable estimates or classifiers, especially for large,
high dimensional data set problems where finding a good model in one step is
impossible because of the complexity and scale of the problem. Bagging has
attracted much attention and is frequently applied, although its statistical
mechanisms are not yet fully understood and are still under active investiga-
tion. Recent theoretical contributions to bagging and related methodologies
include those of Friedman and Hall [14], Bühlmann and Yu [4], Hall and
Samworth [18], Buja and Stuetzle [5], and Biau and Devroye [1].

It turns out that Breiman’s bagging principle has a simple application in
the context of nearest neighbor methods. Nearest neighbor predictors are
one of the oldest approaches to regression and classification (Fix and Hodges
[12, 13], Cover and Hart [8], Cover [6, 7], Györfi [16], Venkatesh, Snapp and
Psaltis [28], Psaltis, Snapp and Venkatesh [25]). A major attraction of nearest
neighbor procedures is their simplicity. For implementation, they require only
a measure of distance in the sample space, along with samples of training
data, hence their popularity as a starting point for refinement, improvement
and adaptation to new settings (see for example Devroye, Györfi and Lugosi
[10], Chapter 19). Before we formalize the link between bagging and nearest
neighbors, some definitions are in order. Throughout the paper, we suppose
that we are given a sample Dn = {(X1, Y1), . . . , (Xn, Yn)} of i.i.d. R

d × R-
valued random variables with the same distribution as a generic pair (X, Y )
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satisfying EY 2 <∞. The space R
d is equipped with the standard Euclidean

metric. For fixed x ∈ R
d, our mission is to estimate the regression function

r(x) = E[Y |X = x] using the data Dn. With this respect, we say that a
regression function estimate rn(x) is consistent if E[rn(X) − r(X)]2 → 0 as
n→ ∞. It is universally consistent if this property is true for all distributions
of (X, Y ) with EY 2 <∞.

1.2 Bagging and nearest neighbors

Recall that the 1-nearest neighbor (1-NN) regression estimate sets rn(x) =
Y(1)(x) where Y(1)(x) is the observation of the feature vector X(1)(x) whose
Euclidean distance to x is minimal among all X1, . . . ,Xn. Ties are broken
in favor of smallest indices. It is clearly not, in general, a consistent estimate
(Devroye, Györfi and Lugosi [10], Chapter 5). However, by bagging, one may
turn the 1-NN estimate into a consistent one, provided that the size of the
resamples is sufficiently small.

We proceed as follows, via a randomized basic regression estimate rkn
in

which 1 ≤ kn ≤ n is a parameter. The elementary predictor rkn
is the 1-NN

rule for a random subsample Sn drawn with (or without) replacement from
{(X1, Y1), . . . , (Xn, Yn)}, with Card(Sn) = kn. We apply bagging, that is,
we repeat the random sampling an infinite number of times, and take the
average of the individual outcomes. Thus, the bagged regression estimate r⋆

n

is defined by
r⋆
n(x) = E

⋆ [rkn
(x)] ,

where E
⋆ denotes expectation with respect to the resampling distribution,

conditionally on the data set Dn.

The following result, proved in [1], shows that for an appropriate choice of kn,
the bagged version of the 1-NN regression estimate is universally consistent:

Theorem 1.1 If kn → ∞ and kn/n→ 0, then r⋆
n is universally consistent.

In this theorem, the fact that resampling is done with or without replacement
is irrelevant. Thus, by bagging, one may turn the crude 1-NN procedure into
a consistent one, provided that the size of the resamples is sufficiently small.
To understand the statistical forces driving Theorem 1.1, recall that if we let
V1 ≥ V2 ≥ . . . ≥ Vn ≥ 0 denote deterministic weights that sum to one, then
the regression estimate

n
∑

i=1

Vi Y(i)(x),
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with (X(1)(x), Y(1)(x)), . . . , (X(n)(x), Y(n)(x)) the reordering of the data such
that

‖x − X(1)(x)‖ ≤ . . . ≤ ‖x −X(n)(x)‖
is called a weighted nearest neighbor regression estimate. It is known to be
universally consistent provided V1 → 0 and

∑

i>εn Vi → 0 for all ε > 0 as
n→ ∞ (Stone [27], Devroye [9], and Problems 11.7, 11.8 of Devroye, Györfi
and Lugosi [10]). The crux to prove Theorem 1.1 is to observe that r⋆

n is in
fact a weighted nearest neighbor estimate with

Vi = P(i-th nearest neighbor of x is the 1-NN in a random selection).

Then, a moment’s thought shows that for the “with replacement” sampling

Vi =

(

1 − i− 1

n

)kn

−
(

1 − i

n

)kn

,

whereas for sampling “without replacement”, Vi is hypergeometric:

Vi =























(

n− i

kn − 1

)

(

n

kn

) , i ≤ n− kn + 1

0, i > n− kn + 1.

The core of the proof of Theorem 1.1 is then to show that, in both cases, the
weights Vi satisfy the conditions V1 → 0 and

∑

i>εn Vi → 0 for all ε > 0 as
n→ ∞. These weights have been independently exhibited by Steele [26], who
also shows on practical examples that substantial reductions in prediction
error are possible by bagging the 1-NN estimate. Note also that this new
expression for the 1-NN bagged estimate makes any Monte-Carlo approach
unnecessary to evaluate the estimate. Indeed, up to now, this predictor
was implemented by Monte-Carlo, i.e., by repeating the random sampling T
times, and taking the average of the individual outcomes. Formally, if Zt =
rkn

(x) is the prediction in the t-th round of bagging, the bagged regression
estimate was approximately evaluated as

r⋆
n(x) ≈ 1

T

T
∑

t=1

Zt,

where Z1, . . . , ZT are the outcomes in the individual rounds. Clearly, writing
the 1-NN bagged estimate as an (exact) weighted nearest neighbor predictor
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makes such calculations useless.

On the other hand, the fact that the bagged 1-NN estimate reduces to a
weighted nearest neighbor estimate may seem at first sight somehow disap-
pointing. Indeed, we get the ordinary kn-NN rule back by the choice

Vi =

{

1/kn if i ≤ kn

0 otherwise,

and, with an appropriate choice of the sequence (kn), this regression estimate
is known to have optimal asymptotic properties (see Chapter 6 in Györfi,
Kohler, Krzyżak and Walk [17] and the references therein). Thus, the ques-
tion is: Why would one care about the bagged nearest neighbor rule then?
The answer is twofold. First, bagging the 1-NN is a very popular technique
for regression and classification in the machine learning community, and most
— if not all — empirical studies report practical improvements over the tra-
ditional kn-NN method. Secondly (and most importantly), analysing 1-NN
bagging is part of a larger project trying to understand the driving forces be-
hind the random forests estimates, which were defined by Breiman in [3]. In
short, random forests are some of the most successful ensemble methods that
exhibit performance on the level of boosting and support vector machines.
These learning procedures typically involve a resampling step, which may be
interpreted as a particular 1-NN bagged procedure based on the so-called
“layered nearest neighbor” proximities (Lin and Jeon [24], Biau and Devroye
[1]).

Thus, in the present paper, we go one step further in bagging investigation
and study the rate of convergence of E [r⋆

n(X) − r(X)]2 to 0 as n → ∞. We
will start our analysis by stating a comprehensive theorem on the rate of
convergence of general weighted nearest neighbor estimates (subsection 2.1).
Then, this result will be particularized to 1-NN bagging, by distinguishing
the “with replacement” (subsection 2.2) and the “without replacement” (sub-
section 2.3) cases. For the sake of clarity, technical proofs are postponed to
section 3.

Throughout the document, we will be interested in rate of convergence results
for the class F of (1, C, ρ, σ2)-smooth distributions (X, Y ) such that X has
compact support with diameter 2ρ, the regression function r is Lipschitz with
constant C and, for all x ∈ R

d, σ2(x) = V[Y |X = x] ≤ σ2 (the symbol V

denotes variance). It is known (see for example Ibragimov and Khasminskii

[19, 20, 21]) that for the class F , the sequence (n− 2

d+2 ) is the optimal minimax
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rate of convergence. In particular,

lim inf
n→∞

inf
rn

sup
(X,Y )∈F

E[rn(X) − r(X)]2

((ρC)dσ2)
2

d+2 n− 2

d+2

≥ ∆

for some positive constant ∆ independent of C, ρ and σ2. Here the infimum
is taken over all estimates rn, i.e., over all square integrable measurable
functions of the data. As a striking result, we prove in subsections 2.2 and
2.3 that, irrespectively of the resampling type, for d ≥ 3 and a suitable choice
of the sequence (kn), the estimate r⋆

n is of optimum rate for the class F , that
is

lim sup
n→∞

sup
(X,Y )∈F

E[r⋆
n(X) − r(X)]2

((ρC)dσ2)
2

d+2 n− 2

d+2

≤ Λ

for some positive Λ independent of C, ρ and σ2. Since the parameter kn of
the estimate with the optimal rate of convergence depends on the unknown
distribution of (X, Y ), especially on the smoothness of the regression func-
tion, we present in subsection 2.4 adaptive (i.e., data-dependent) choices of
kn which preserve the minimax optimality of the estimate.

We wish to emphasize that all the results are obtained by letting the resam-
pling size kn grows with n in such a manner that kn → ∞ and kn/n → 0.
These results are of interest because the majority of bagging experiments
employ relatively large resample sizes. In fact, much of the evidence against

the performance of bagged nearest neighbor methods is for full sample size
resamples (see the discussion in Breiman [2], Paragraph 6.4), except the
notable results of Hall and Samworth [18] and Steele [26], who also report
encouraging numerical results in the context of regression and classification.

2 Rates of convergence

2.1 Weighted nearest neighbor estimates

As an appetizer, we start our analysis of the 1-NN bagged regression estimate
from a larger point of view, by offering a general theorem on the rate of
convergence of weighted nearest neighbor estimates, i.e., estimates of the
form

rn(x) =
n
∑

i=1

Vi Y(i)(x)

with nonnegative weights satisfying the constraints
∑n

i=1 Vi = 1 and V1 ≥
V2 ≥ . . . ≥ Vn ≥ 0. Let us first recall various topological definitions that will
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be used in the paper. We first define the well-known notion of covering num-
bers which characterize the massiveness of a set (Kolmogorov and Tihomirov
[22]). As put forward in Kulkarni and Posner [23], these quantities play a
key role in the context of nearest neighbor analysis. Let B(x, ε) denote the
open Euclidean ball in R

d centered at x of radius ε.

Definition 2.1 Let A be a subset of R
d. The ε-covering number N (ε) [=

N (ε,A)] is defined as the smallest number of open balls of radius ε that cover

the set A. That is

N (ε) = inf

{

r ≥ 1 : ∃x1, . . . ,xr ∈ R
d such that A ⊂

r
⋃

i=1

B(xi, ε)

}

.

A set A ⊂ R
d is bounded if and only if N (ε) < ∞ for all ε > 0. Note

that as a function of ε, N (ε) is nonincreasing, piecewise-constant and right-
continuous. The following discrete function, called the metric covering radius,
can be interpreted as a pseudo-inverse of the function N (ε):

Definition 2.2 The metric covering radius N−1(r) [= N−1(r, A)] is defined

as the smallest radius such that there exist r balls of this radius which cover

the set A. That is

N−1(r) = inf

{

ε > 0 : ∃x1, . . . ,xr ∈ R
d such that A ⊂

r
⋃

i=1

B(xi, ε)

}

.

We note that N−1(r) is a nonincreasing discrete function of r.

Throughout the paper, we will denote by µ the distribution of X, which will
be assumed to be a bounded random variable. Recall that the support S(µ)
of µ is defined as the collection of all x with µ(B(x, ε)) > 0 for all ε > 0.
Letting ρ = N−1(1,S(µ)), we observe that 2ρ is an upper bound on the
diameter of S(µ). We are now in a position to state the main result of this
subsection. We let the symbol ⌊.⌋ denote the integer part function.

Theorem 2.1 Let rn(x) =
∑n

i=1 Vi Y(i)(x) be a weighted nearest neighbor

estimate of r(x). Suppose that X is bounded, and set ρ = N−1(1,S(µ)).
Suppose in addition that, for all x and x′ ∈ R

d,

σ2(x) = V[Y |X = x] ≤ σ2

and

|r(x) − r(x′)| ≤ C‖x − x′‖,
for some positive constants σ2 and C. Then
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(i) If d = 1,

E [rn(X) − r(X)]2 ≤ σ2
n
∑

i=1

V 2
i + 16ρ2C2

n
∑

i=1

Vi
i

n
.

(ii) If d = 2,

E [rn(X) − r(X)]2 ≤ σ2

n
∑

i=1

V 2
i + 8ρ2C2

n
∑

i=1

Vi
i

n

[

1 + ln
(n

i

)]

.

(iii) If d ≥ 3,

E [rn(X) − r(X)]2 ≤ σ2

n
∑

i=1

V 2
i +

8ρ2C2

1 − 2/d

n
∑

i=1

Vi

⌊n

i

⌋−2/d

.

Proof of Theorem 2.1 Setting

r̃n(x) =

n
∑

i=1

Vi r(X(i)(x)),

the proof of Theorem 2.1 will rely on the variance/bias decomposition

E [rn(X) − r(X)]2 = E [rn(X) − r̃n(X)]2 + E [r̃n(X) − r(X)]2 . (2.1)

The first term is easily bounded by noting that, for all x ∈ R
d,

E [rn(x) − r̃n(x)]2

= E

[

n
∑

i=1

Vi

(

Y(i)(x) − r(X(i)(x))
)

]2

= E

[

n
∑

i=1

V 2
i

(

Y(i)(x) − r(X(i)(x))
)2

]

= E

[

n
∑

i=1

V 2
i σ

2
(

X(i)(x)
)

]

≤ σ2

n
∑

i=1

V 2
i . (2.2)

To analyse the bias term in (2.1), we will need the following result, which
bounds the convergence rate of the expected i-th nearest neighbor squared
distance in terms of the metric covering radii of the support of the distribu-
tion µ of X. Proposition 2.1 is a generalization of Theorem 1, page 1032 in
Kulkarni and Posner [23], which only reports results for the rate of conver-
gence of the nearest neighbor. Therefore, this result is interesting by itself.
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Proposition 2.1 Suppose that X is bounded. Then

E‖X(i)(X) − X‖2 ≤ 8i

n

⌊n/i⌋
∑

j=1

[

N−1 (j,S(µ))
]2
.

For any bounded set A in the Euclidean d-space, the covering radius satisfies
N−1(r,A) ≤ N−1(1,A)r−1/d (see [22]). Hence the following corollary:

Corollary 2.1 Suppose that X is bounded, and set ρ = N−1(1,S(µ)). Then

(i) If d = 1,

E‖X(i)(X) −X‖2 ≤ 16ρ2i

n
.

(ii) If d = 2,

E‖X(i)(X) − X‖2 ≤ 8ρ2i

n

[

1 + ln
(n

i

)]

.

(iii) If d ≥ 3,

E‖X(i)(X) −X‖2 ≤ 8ρ2⌊n/i⌋− 2

d

1 − 2/d
.

Thus, to prove Theorem 2.1, it suffices to note from (2.1) and (2.2) that

E [rn(X) − r(X)]2 ≤ σ2
n
∑

i=1

V 2
i + E [r̃n(X) − r(X)]2 .

Next,

E [r̃n(x) − r(x)]2 = E

[

n
∑

i=1

Vi

(

r(X(i)(x)) − r(x)
)

]2

≤ E

[

n
∑

i=1

Vi

∣

∣r(X(i)(x)) − r(x)
∣

∣

]2

≤ C2
E

[

n
∑

i=1

Vi

∥

∥X(i)(x) − x
∥

∥

]2

≤ C2

[

n
∑

i=1

Vi E‖X(i)(x) − x‖2

]

(by Jensen’s inequality).
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Therefore, integrating with respect to the distribution of X, we obtain

E [r̃n(X) − r(X)]2 ≤ C2

[

n
∑

i=1

Vi E‖X(i)(X) − X‖2

]

,

and the conclusion follows by applying Corollary 2.1. �

Theorem 2.1 offers a general result, which can be made more precise according
to the weights definition. Taking for example

Vi =

{

1/kn if i ≤ kn

0 otherwise,

we get the ordinary kn-NN rule back. Here,

n
∑

i=1

V 2
i =

1

kn

and

n
∑

i=1

Vi

⌊n

i

⌋−2/d

=
1

kn

kn
∑

i=1

⌊n

i

⌋−2/d

≤ 1

kn

kn
∑

i=1

⌊

n

kn

⌋−2/d

=

⌊

n

kn

⌋−2/d

≤ ξ

(

n

kn

)−2/d

for some positive ξ. Therefore, in this context, according to Theorem 2.1, for

d ≥ 3, there exists a sequence (kn) with kn ∝ n
2

d+2 such that

E [rn(X) − r(X)]2 ≤ Λ

(

(ρC)dσ2

n

)

2

d+2

,

for some positive constant Λ independent of ρ, C and σ2. This is exactly
Theorem 6.2, page 93 of Györfi, Kohler, Krzyżak and Walk [17], which states
that the standard nearest neighbor estimate is of optimum rate for the class F
of (1, C, ρ, σ2)-smooth distributions (X, Y ) such that X has compact support
with covering radius ρ, the regression function r is Lipschitz with constant
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C and, for all x ∈ R
d, σ2(x) = V[Y |X = x] ≤ σ2 (note however that the

ordinary kn-NN predictor is not optimal for higher smoothness, see Problem
6.2 in [17]).

The adaptation of Theorem 2.1 to the 1-NN bagged regression estimate needs
more careful attention. This will be the topic of the next two subsections.

2.2 Bagging with replacement

This bagging-type is sometimes called moon-bagging, standing for m out
of n bootstrap aggregating. As seen in the introduction, in this case, the
weighted nearest neighbor regression estimate takes the form

r⋆
n(x) =

n
∑

i=1

Vi Y(i)(x),

where

Vi =

(

1 − i− 1

n

)kn

−
(

1 − i

n

)kn

.

From now on, Γ(t) will denote the Gamma function, i.e.,

Γ(t) =

∫ ∞

0

xt−1e−xdx, t > 0.

In order to make full use of Theorem 2.1, we first need a careful control of
the term

∑n
i=1 V

2
i . This is done in the next proposition.

Proposition 2.2 For i = 1, . . . , n, let

Vi =

(

1 − i− 1

n

)kn

−
(

1 − i

n

)kn

.

Then
n
∑

i=1

V 2
i ≤ 2kn

n

(

1 +
1

n

)2kn

.

The message of Proposition 2.2 is that, when resampling is done with re-
placement, the variance term of the bagged NN estimate is O(kn/n). Let us
now turn to the bias term analysis.

Proposition 2.3 For i = 1, . . . , n, let

Vi =

(

1 − i− 1

n

)kn

−
(

1 − i

n

)kn

.

Then
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(i) If d = 1,
n
∑

i=1

Vi
i

n
≤ 2

kn

(

1 +
1

n

)kn

.

(ii) If d = 2,

n
∑

i=1

Vi
i

n

[

1 + ln
(n

i

)]

≤ 2

kn

(

1 +
1

n

)kn

[1 + ln(kn + 1)] .

(iii) If d ≥ 3,
n
∑

i=1

Vi

⌊n

i

⌋−2/d

≤ 1

nkn

+ αd

(

1 +
1

n

)kn

kn
− 2

d ,

where

αd = 2Γ

(

d− 2

d

)

Γ

(

d+ 2

d

)

.

The take-home message here is that, for d ≥ 3, the squared bias is O(k
−2/d
n ).

Finally, putting all the pieces together, we obtain

Theorem 2.2 Suppose that X is bounded, and set ρ = N−1(1,S(µ)). Sup-

pose in addition that, for all x and x′ ∈ R
d,

σ2(x) = V[Y |X = x] ≤ σ2

and

|r(x) − r(x′)| ≤ C‖x − x′‖,
for some positive constants σ2 and C. Then

(i) If d = 1,

E [r⋆
n(X) − r(X)]2 ≤ 2σ2kn

n

(

1 +
1

n

)2kn

+
32ρ2C2

kn

(

1 +
1

n

)kn

.

(ii) If d = 2,

E [r⋆
n(X) − r(X)]2 ≤ 2σ2kn

n

(

1 +
1

n

)2kn

+
16ρ2C2

kn

(

1 +
1

n

)kn

[1 + ln(kn + 1)] .
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(iii) If d ≥ 3,

E [r⋆
n(X) − r(X)]2 ≤ 2σ2kn

n

(

1 +
1

n

)2kn

+
8ρ2C2

1 − 2/d

[

1

nkn

+ αd

(

1 +
1

n

)kn

kn
− 2

d

]

,

where

αd = 2Γ

(

d− 2

d

)

Γ

(

d+ 2

d

)

.

By balancing the terms in Theorem 2.2, we are led to the following corollary:

Corollary 2.2 Under the assumptions of Theorem 2.2,

(i) If d = 1, there exists a sequence (kn) such that kn → ∞, kn/n → 0,
and

E [r⋆
n(X) − r(X)]2 ≤ Λ

ρCσ√
n
,

for some positive constant Λ independent of ρ, C and σ2.

(ii) If d = 2, there exists a sequence (kn) such that kn → ∞, kn/n → 0,
and

E [r⋆
n(X) − r(X)]2 ≤ (Λ + o(1)) ρCσ

√

lnn

n
,

for some positive constant Λ independent of ρ, C and σ2.

(iii) If d ≥ 3, there exists a sequence (kn) with kn ∝ n
d

d+2 such that

E [r⋆
n(X) − r(X)]2 ≤ Λ

(

(ρC)dσ2

n

)

2

d+2

,

for some positive constant Λ independent of ρ, C and σ2.

Two important remarks are in order.

1. First, we note that, for d ≥ 3 and a suitable choice of kn, the bagged 1-
NN estimate achieves both the minimax n−2/(d+2) rate and the optimal
order of magnitude ((ρC)dσ2)2/(d+2) in the constant, for the class F
of (1, C, ρ, σ2)-smooth distributions (X, Y ) such that X has compact
support with covering radius ρ, the regression function r is Lipschitz
with constant C and, for all x ∈ R

d, σ2(x) = V[Y |X = x] ≤ σ2.
Seconds, the bound is valid for finite sample sizes, so that we are in
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fact able to approach the minimax lower bound not only asymptotically
but even for finite sample sizes. On the other hand, the estimate with
the optimal rate of convergence depends on the unknown distribution
of (X, Y ), and especially on the covering radius ρ and the smoothness
of the regression function measured by the constant C. It is to correct
this situation that we present adaptation results in subsection 2.4.

2. For d = 1, the obtained rate is not optimal, whereas it is optimal up to
a log term for d = 2. This low-dimensional phenomenon is also known
to hold for the traditional kn-NN regression estimate, which does not
achieve the optimal rates in dimensions 1 and 2 (see Problems 6.1 and
6.7 in [17], Chapter 3).

2.3 Bagging without replacement

We briefly analyse in this subsection the rate of convergence of the bagged
1-NN regression estimate, assuming this time that, at each step, the kn obser-
vations are distinctly chosen at random within the sample set Dn. This alter-
native aggregation scheme is called subagging (for subsample aggregating)
in Bühlmann and Yu [4]. We know that, in this case, the weighted nearest
neighbor regression estimate takes the form

r⋆
n(x) =

n
∑

i=1

ViY(i)(x),

where

Vi =























(

n− i

kn − 1

)

(

n

kn

) , i ≤ n− kn + 1

0, i > n− kn + 1.

Due to the fact that there is no repetition in the sampling process, the
analysis turns out to be simpler. To prove Theorem 2.3 below, we start
again by a control of the variance term

∑n
i=1 V

2
i .

Proposition 2.4 For i = 1, . . . , n, let

Vi =























(

n− i

kn − 1

)

(

n

kn

) , i ≤ n− kn + 1

0, i > n− kn + 1.
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Then
n
∑

i=1

V 2
i ≤ kn

n

1

(1 − kn/n + 1/n)2
.

Thus, as for bagging with replacement, the variance term of the without
replacement bagged 1-NN estimate is O(kn/n). The bias term may be treated
by resorting to Theorem 2.1, via complex calculations due to the complicate
form of the bagging weights. However, a much simpler route may be followed.
Recall that

r̃⋆
n(x) =

n
∑

i=1

Vi r(X(i)(x)),

and observe that
r̃⋆
n(x) = E

⋆
[

r(X⋆
(1)(x))

]

,

where X⋆
(1)(x) is the nearest neighbor of x in a random subsample Sn drawn

without replacement from {(X1, Y1), . . . , (Xn, Yn)} with Card(Sn) = kn, and
E

⋆ denotes expectation with respect to the resampling distribution, condi-
tionally on the data set Dn. This is the basic ingredient for the proof of the
next proposition.

Proposition 2.5 Suppose that X is bounded, and set ρ = N−1(1,S(µ)).
Suppose in addition that, for all x and x′ ∈ R

d,

|r(x) − r(x′)| ≤ C‖x − x′‖,

for some positive constant C. Then

(i) If d = 1,

E [r̃⋆
n(X) − r(X)]2 ≤ 16ρ2C2

kn
.

(ii) If d = 2,

E [r̃⋆
n(X) − r(X)]2 ≤ 8ρ2C2

kn
(1 + ln kn).

(iii) If d ≥ 3,

E [r̃⋆
n(X) − r(X)]2 ≤ 8ρ2C2

1 − 2/d
kn

− 2

d .

Thus, for d ≥ 3, E [r̃⋆
n(X) − r(X)]2 = O(k

−2/d
n ). Combining Proposition 2.4

and Proposition 2.5 leads to the desired theorem:
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Theorem 2.3 Suppose that X is bounded, and set ρ = N−1(1,S(µ)). Sup-

pose in addition that, for all x and x′ ∈ R
d,

σ2(x) = V[Y |X = x] ≤ σ2

and

|r(x) − r(x′)| ≤ C‖x − x′‖,
for some positive constants σ2 and C. Then

(i) If d = 1,

E [r⋆
n(X) − r(X)]2 ≤ kn

n

σ2

(1 − kn/n+ 1/n)2
+

16ρ2C2

kn
.

(ii) If d = 2,

E [r⋆
n(X) − r(X)]2 ≤ kn

n

σ2

(1 − kn/n+ 1/n)2
+

8ρ2C2

kn

(1 + ln kn).

(iii) If d ≥ 3,

E [r⋆
n(X) − r(X)]2 ≤ kn

n

σ2

(1 − kn/n + 1/n)2
+

8ρ2C2

1 − 2/d
k
− 2

d

n .

By balancing the variance and bias terms, we obtain the following useful
corollary:

Corollary 2.3 Under the assumptions of Theorem 2.3,

(i) If d = 1, there exists a sequence (kn) such that kn → ∞, kn/n → 0,
and

E [r⋆
n(X) − r(X)]2 ≤ (Λ + o(1))

ρCσ√
n
,

for some positive constant Λ independent of ρ, C and σ2.

(ii) If d = 2, there exists a sequence (kn) such that kn → ∞, kn/n → 0,
and

E [r⋆
n(X) − r(X)]2 ≤ (Λ + o(1)) ρCσ

√

lnn

n
,

for some positive constant Λ independent of ρ, C and σ2.
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(iii) If d ≥ 3, there exists a sequence (kn) with kn ∝ n
d

d+2 such that

E [r⋆
n(X) − r(X)]2 ≤ (Λ + o(1))

(

(ρC)dσ2

n

)

2

d+2

,

for some positive constant Λ independent of ρ, C and σ2.

As in bagging with replacement, Corollary 2.3 expresses the fact that, for d ≥
3, the without replacement bagged 1-NN estimate asymptotically achieves
both the minimax n−2/(d+2) rate of convergence and the optimal order of
magnitude ((ρC)dσ2)d/(d+2) in the constant, for the class F of (1, C, ρ, σ2)-
smooth distributions (X, Y ).

2.4 Adaptation

In the previous subsections, the parameter kn of the estimate with the optimal
rate of convergence for the class F depends on the unknown distribution of
(X, Y ), especially on the smoothness of the regression function measured by
the Lipschitz constant C. In this subsection, we present a data-dependent
way of choosing the resampling size kn and show that, for bounded Y , the
estimate with parameter chosen in such an adaptive way achieves the optimal
rate of convergence (irrespectively of the resampling type). To this aim, we
split the sample Dn = {(X1, Y1), . . . , (Xn, Yn)} in two parts of size ⌊n/2⌋
and n − ⌊n/2⌋, respectively (assuming n ≥ 2). The first half is denoted
by Dℓ

n (learning set) and is used to construct the bagged 1-NN estimate
r⋆
⌊n/2⌋(x,Dℓ

n) = r⋆
k,⌊n/2⌋(x,Dℓ

n) (for the sake of clarity, we make the dependence

of the estimate upon k explicit). The second half of the sample, denoted by
Dt

n (testing set), is used to choose k by picking k̂n ∈ K = {1, . . . , ⌊n/2⌋} to
minimize the empirical risk

1

n− ⌊n/2⌋
n
∑

i=⌊n/2⌋+1

(

Yi − r⋆
k,⌊n/2⌋(Xi)

)2
.

Define the estimate
r⋆
n(x) = r⋆

k̂n,⌊n/2⌋(x,D
ℓ
n),

and note that r⋆
n depends on the entire data Dn. If |Y | ≤ L < ∞ almost

surely, a straightforward adaptation of Theorem 7.1 in [17] shows that, for
any δ > 0,

E[r⋆
n(X) − r(X)]2 ≤ (1 + δ) inf

k∈K
E[r⋆

k,⌊n/2⌋(X) − r(X)]2 + Ξ
lnn

n
,

for some positive constant Ξ depending only on L, d and δ. Immediately
from Corollary 2.2 and Corollary 2.3 we can conclude:
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Theorem 2.4 Suppose that |Y | ≤ L almost surely, and let r⋆
n be the bagged

1-NN estimate with k ∈ K = {1, . . . , ⌊n/2⌋} chosen by data-splitting, irre-

spectively of the resampling type. Then (lnn)(d+2)/(2d)n−1/2 ≤ ρC together

with d ≥ 3 implies, for n ≥ 2,

E[r⋆
n(X) − r(X)]2 ≤ (Λ + o(1))

(

(ρC)d

n

)

2

d+2

,

for some positive constant Λ which depends only on L and d.

Thus, the expected error of the estimate obtained via data-splitting is boun-
ded from above up to a constant by the corresponding minimax lower bound
for the class F of regression functions, with the optimal dependence in C
and ρ.

3 Proofs

3.1 Proof of Proposition 2.1

All the covering and metric numbers we use in this proof are pertaining to
the bounded set S(µ). Therefore, to lighten notation a bit, we set N (ε) =
N (ε,S(µ)) and N−1(r) = N−1(r,S(µ)).

Let X′ be a random variable distributed as and independent of X, and let,
for ε > 0,

FX(ε) = P (‖X− X′‖ ≤ ε |X)

be the conditional cumulative distribution function of the Euclidean distance
between X and X′. Set finally

D(i)(X) = ‖X(i)(X) −X‖.
Clearly,

P
(

D2
(i)(X) > ε

)

= E
[

P
(

D(i)(X) >
√
ε |X

)]

= E

[

i−1
∑

j=0

(

n

j

)

[

FX

(√
ε
)]j [

1 − FX

(√
ε
)]n−j

]

. (3.1)

Take B1, . . . ,BN (
√

ε/2) a
√
ε/2-covering of S(µ), and define an N (

√
ε/2)-

partition of S(µ) as follows. For each ℓ = 1, . . . ,N (
√
ε/2), let

Pℓ = Bℓ −
ℓ−1
⋃

j=1

Bj .
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Then Pℓ ⊂ Bℓ and
N (

√
ε/2)
⋃

ℓ=1

Bℓ =

N (
√

ε/2)
⋃

ℓ=1

Pℓ,

with Pi ∩ Pm = ∅. Also,
N (

√
ε/2)

∑

ℓ=1

µ(Pℓ) = 1.

Thus, letting pℓ = µ(Pℓ), we may write

FX

(√
ε
)

≥ P(∃ ℓ = 1, . . . ,N (
√
ε/2) : X ∈ Pℓ and X′ ∈ Pℓ |X)

= E





N (
√

ε/2)
∑

ℓ=1

1[X∈Pℓ]1[X′∈Pℓ]

∣

∣

∣

∣

∣

∣

X





=

N (
√

ε/2)
∑

ℓ=1

pℓ1[X∈Pℓ].

As a by-product, we remark that, for all ε > 0, FX (
√
ε) > 0 almost surely.

Moreover

E

[

1

FX (
√
ε)

]

≤ E

[

1
∑N (

√
ε/2)

ℓ=1 pℓ1[X∈Pℓ]

]

= E





N (
√

ε/2)
∑

ℓ=1

1

pℓ
1[X∈Pℓ]



 ,

leading to

E

[

1

FX (
√
ε)

]

≤ N
(√

ε

2

)

. (3.2)

Consequently, combining inequalities (3.1), (3.2) and technical Lemma 3.1,
we obtain

P
(

D2
(i)(X) > ε

)

= E

[

1

FX (
√
ε)

i−1
∑

j=0

(

n

j

)

[

FX

(√
ε
)]j+1 [

1 − FX

(√
ε
)]n−j

]

≤ i

n+ 1
E

[

1

FX (
√
ε)

]

≤ i

n
N
(√

ε

2

)

.
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Thus, since P(D2
(i)(X) > ε) = 0 for ε > 4[N−1(1)]2, we obtain

E
[

D2
(i)(X)

]

=

∫ ∞

0

P(D2
(i)(X) > ε)dε

=

∫ 4[N−1(1)]2

0

P(D2
(i)(X) > ε)dε

≤ 4
[

N−1
(⌊n

i

⌋)]2

+
i

n

∫ 4[N−1(1)]2

4[N−1(⌊n/i⌋)]2
N (

√
ε/2)dε.

Since N (
√
ε) = j for N−1(j) ≤ √

ε < N−1(j − 1), we get

E
[

D2
(i)(X)

]

≤ 4
[

N−1
(⌊n

i

⌋)]2

+
4i

n

∫ [N−1(1)]2

[N−1(⌊n/i⌋)]2
N (

√
ε)dε

≤ 4
[

N−1
(⌊n

i

⌋)]2

+
4i

n

⌊n/i⌋
∑

j=2

∫ [N−1(j−1)]2

[N−1(j)]2
j dε

= 4
[

N−1
(⌊n

i

⌋)]2

+
4i

n



2
[

N−1(1)
]2 −

⌊n

i

⌋ [

N−1
(⌊n

i

⌋)]2

+

⌊n/i⌋−1
∑

j=2

[

N−1(j)
]2





≤ 8i

n

[

N−1(1)
]2

+
4i

n

[

N−1
(⌊n

i

⌋)]2

+
4i

n

⌊n/i⌋−1
∑

j=2

[

N−1(j)
]2
,

where the last statement follows from the inequality

−4i

n

⌊n

i

⌋

+ 4 ≤ 4i

n
.

In conclusion, we are led to

E
[

D2
(i)(X)

]

≤ 8i

n

⌊n/i⌋
∑

j=1

[

N−1(j)
]2
,

as desired.

3.2 Proof of Corollary 2.1

For any bounded set A in the Euclidean d-space, the covering radius satisfies
N−1(r,A) ≤ N−1(1,A)r−1/d (see [22]). Consequently, using Proposition 2.1,
we obtain
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(i) For d = 1,

E‖X(i)(X) − X‖2 ≤ 8ρ2i

n

⌊n/i⌋
∑

j=1

j−2

≤ 8ρ2i

n

[

1 +

∫ ⌊n/i⌋

1

x−2dx

]

≤ 16ρ2i

n
.

(ii) For d = 2,

E‖X(i)(X) − X‖2 ≤ 8ρ2i

n

⌊n/i⌋
∑

j=1

j−1

≤ 8ρ2i

n

[

1 +

∫ ⌊n/i⌋

1

x−1dx

]

≤ 8ρ2i

n

[

1 + ln
(n

i

)]

.

(iii) For d ≥ 3,

E‖X(i)(X) −X‖2 ≤ 8ρ2i

n

⌊n/i⌋
∑

j=1

j−
2

d

≤ 8ρ2i

n

∫ ⌊n/i⌋

0

x−
2

d dx

=
8ρ2⌊n/i⌋− 2

d

1 − 2/d
.

In the last statement, we used the inequality i/n ≤ 1/⌊n/i⌋.

3.3 Proof of Proposition 2.2

An easy calculation shows that

n
∑

i=1

V 2
i =

n
∑

i=1

[

(

1 − i− 1

n

)kn

−
(

1 − i

n

)kn

]2

= 2

n−1
∑

i=0

(

1 − i

n

)kn

[

(

1 − i

n

)kn

−
(

1 − i+ 1

n

)kn

]

− 1.
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Let the map f : R → R be defined by f(x) = (1 − x)kn . Then, by the mean
value theorem,

0 ≤
(

1 − i

n

)kn

−
(

1 − i+ 1

n

)kn

≤ −1

n
f ′
(

i

n

)

=
kn

n

(

1 − i

n

)kn−1

.

Thus,
n
∑

i=1

V 2
i ≤ 2kn

n

n−1
∑

i=0

(

1 − i

n

)2kn−1

− 1.

In addition, let the map g : R → R be defined by g(x) = (1 − x)2kn−1.
Observing that

∫ 1

0

g(x)dx =
1

2kn
,

we obtain

n
∑

i=1

V 2
i ≤ 2kn

[

1

n

n−1
∑

i=0

g

(

i

n

)

−
∫ 1

0

g(x)dx

]

= 2kn

n−1
∑

i=0

∫ (i+1)/n

i/n

[

g

(

i

n

)

− g(x)

]

dx.

Invoking again the mean value theorem, we may write, for all x ∈ [i/n, (i+
1)/n],

0 ≤ g

(

i

n

)

− g(x) ≤ −1

n
g′
(

i

n

)

.

Therefore,
n
∑

i=1

V 2
i ≤ 2kn

n2

n−1
∑

i=0

[

−g′
(

i

n

)]

.

Clearly,

1

n

n−1
∑

i=0

[

−g′
(

i

n

)]

≤ −
∫ 1−1/n

−1/n

g′(x)dx = g

(

−1

n

)

− g

(

1 − 1

n

)

.

Putting all the pieces together, we finally obtain

n
∑

i=1

V 2
i ≤ 2kn

n

[

(

1 +
1

n

)2kn−1

−
(

1

n

)2kn−1
]

≤ 2kn

n

(

1 +
1

n

)2kn

.

This concludes the proof of the proposition.
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3.4 Proof of Proposition 2.3

We distinguish between the cases d = 1, d = 2 and d ≥ 3.

(i) If d = 1, for i = 1, . . . , n, by definition of the Vi’s,

n
∑

i=1

Vi
i

n
=

n
∑

i=1

[

(

1 − i− 1

n

)kn

−
(

1 − i

n

)kn

]

i

n
.

Thus

n
∑

i=1

Vi
i

n
=

n
∑

i=1

[

(

1 − i

n
+

1

n

)kn

−
(

1 − i

n

)kn

]

i

n

=

n
∑

i=1

[

kn
∑

j=1

(

kn

j

)

1

nj

(

1 − i

n

)kn−j
]

i

n

=

kn
∑

j=1

(

kn

j

)

1

nj−1

[

1

n

n
∑

i=1

i

n

(

1 − i

n

)kn−j
]

.

For all j = 1, . . . , kn, we use the inequality

1

n

n
∑

i=1

i

n

(

1 − i

n

)kn−j

≤ 2

∫ 1

0

x(1 − x)kn−jdx,

which is clearly true for j = kn, without the factor 2 in front of the
integral. For j < kn, it is illustrated in Figure 1, where we have plotted
the function f(x) = x(1 − x)kn−j. The factor 2 is necessary because f
is not monotonic on [0, 1].

Consequently,

n
∑

i=1

Vi
i

n
≤ 2

kn
∑

j=1

(

kn

j

)

1

nj−1

∫ 1

0

x(1 − x)kn−jdx.

Recalling the general formula

∫ 1

0

xp−1(1 − x)q−1dx =
Γ(p)Γ(q)

Γ(p+ q)
, p, q > 0, (3.3)
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i0+1
n

i0
n

n−1
n 1

1
2n

(

f( i0
n ) + f( i0+1

n )
)

≤
∫

i0+1

n

i0

n

f(x)dx

Figure 1: Illustration of
1

n

n
∑

i=1

i

n

(

1 − i

n

)kn−j

≤ 2

∫ 1

0

x(1 − x)kn−jdx.

we obtain

n
∑

i=1

Vi
i

n
≤ 2

kn
∑

j=1

(

kn

j

)

1

nj−1

Γ(2)Γ(kn − j + 1)

Γ(kn − j + 3)

= 2

kn
∑

j=1

(

kn

j

)

1

nj−1

1

(kn − j + 1)(kn − j + 2)

= 2

kn
∑

j=1

(

kn

j − 1

)

1

nj−1

1

j(kn − j + 2)

= 2

kn−1
∑

j=0

(

kn

j

)

1

nj

1

(j + 1)(kn − j + 1)
.

Observing finally that (j+1)(kn − j+1) ≥ kn for all j = 0, . . . , kn − 1,
we conclude

n
∑

i=1

Vi
i

n
≤ 2

kn

kn−1
∑

j=0

(

kn

j

)

1

nj
≤ 2

kn

(

1 +
1

n

)kn

.
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(ii) For d = 2, a reasoning similar to the one reported in statement (i)
above can be followed, to show that

n
∑

i=1

Vi
i

n

[

1 + ln
(n

i

)]

≤ 2

[

1

kn

(

1 +
1

n

)kn

−
kn
∑

j=1

(

kn

j

)

1

nj−1

∫ 1

0

x(1 − x)kn−j ln x dx

]

. (3.4)

Denoting by Hn the n-th harmonic number, i.e.,

Hn = 1 +
1

2
+ . . .+

1

n
,

we have, for all m ≥ 0 (see for example [15], formula (4.253.1)),

−
∫ 1

0

x(1 − x)m ln x dx =
Hm+2 − 1

(m+ 1)(m+ 2)
.

Thus we may write

−
kn
∑

j=1

(

kn

j

)

1

nj−1

∫ 1

0

x(1 − x)kn−j ln x dx

=

kn
∑

j=1

(

kn

j

)

1

nj−1

Hkn−j+2 − 1

(kn − j + 1)(kn − j + 2)

=

kn−1
∑

j=0

(

kn

j

)

1

nj

Hkn−j+1 − 1

(j + 1)(kn − j + 1)
.

For all j = 0, . . . , kn − 1, we have (j + 1)(kn − j + 1) ≥ kn, as well as

Hkn−j+1 − 1 =
1

2
+ . . .+

1

kn − j + 1

≤
∫ kn−j+1

1

dx

x

= ln(kn − j + 1)

≤ ln(kn + 1).
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Therefore,

−
kn
∑

j=1

(

kn

j

)

1

nj−1

∫ 1

0

x(1 − x)kn−j lnx dx

≤ ln(kn + 1)

kn

kn−1
∑

j=0

(

kn

j

)

1

nj

≤ ln(kn + 1)

kn

(

1 +
1

n

)kn

. (3.5)

Combining inequalities (3.4) and (3.5) leads to the desired result.

(iii) For d ≥ 3, we note that for all i = 1, . . . , n− 1,

⌊n

i

⌋− 2

d ≤
(

i/n

1 − i/n

)
2

d

,

and set consequently

Sn =
1

nkn

+

n−1
∑

i=1

[

(

1 − i− 1

n

)kn

−
(

1 − i

n

)kn

]

(

i/n

1 − i/n

)
2

d

.

We obtain

Sn =
1

nkn

+

n−1
∑

i=1

[

kn
∑

j=1

(

kn

j

)

1

nj

(

1 − i

n

)kn−j
]

(

i/n

1 − i/n

)
2

d

=
1

nkn

+

kn
∑

j=1

(

kn

j

)

1

nj−1

[

1

n

n−1
∑

i=1

(

1 − i

n

)kn−j− 2

d

(

i

n

)
2

d

]

≤ 1

nkn

+ 2

kn
∑

j=1

(

kn

j

)

1

nj−1

∫ 1

0

x
2

d (1 − x)kn−j− 2

d dx.

Applying formula (3.3) again, together with the identity

Γ

(

p +
d− 2

d

)

= Γ

(

d− 2

d

) p
∏

ℓ=1

(

ℓ− 2

d

)

,
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we obtain

Sn ≤ 1

nkn

+ αd

kn
∑

j=1

(

kn

j

)

1

nj−1

1

(kn − j + 1)

kn−j
∏

ℓ=1

(

1 − 2

dℓ

)

(with αd = 2Γ((d− 2)/d) Γ((d+ 2)/d)

=
1

nkn

+ αd

kn
∑

j=1

kn!

j!(kn − j + 1)!

1

nj−1

kn−j
∏

ℓ=1

(

1 − 2

dℓ

)

=
1

nkn

+ αd

kn
∑

j=1

1

nj−1

(

kn

j − 1

)

1

j

kn−j
∏

ℓ=1

(

1 − 2

dℓ

)

=
1

nkn

+ αd

kn−1
∑

j=0

1

nj

(

kn

j

)

1

j + 1

kn−j−1
∏

ℓ=1

(

1 − 2

dℓ

)

.

Thus, by technical Lemma 3.2,

Sn ≤ 1

nkn

+ αd

kn−1
∑

j=0

(

kn

j

)

k
− 2

d

n

nj

≤ 1

nkn

+ αd

(

1 +
1

n

)kn

k
− 2

d

n .

This concludes the proof of Proposition 2.3.

3.5 Proof of Proposition 2.4

We have, for i = 1, . . . , n− kn + 1,

Vi =

(

n− i

kn − 1

)

(

n

kn

)

=
kn

n− kn + 1

kn−2
∏

j=0

(

1 − i

n− j

)

≤ kn

n− kn + 1

kn−2
∏

j=0

(

1 − i

n

)

=
kn

n− kn + 1

(

1 − i

n

)kn−1

.
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This yields

n
∑

i=1

V 2
i ≤ k2

n

(n− kn + 1)2

n−kn+1
∑

i=1

(

1 − i

n

)2(kn−1)

≤ k2
n n

(n− kn + 1)2

1

n

n
∑

i=1

(

1 − i

n

)2(kn−1)

.

Observing finally that

1

n

n
∑

i=1

(

1 − i

n

)2(kn−1)

≤
∫ 1

0

(1 − x)2(kn−1)dx

=
1

2kn − 1
,

we conclude that

n
∑

i=1

V 2
i ≤ k2

n n

(2kn − 1)(n− kn + 1)2
≤ kn

n

1

(1 − kn/n+ 1/n)2
.

3.6 Proof of Proposition 2.5

Recall that

r̃⋆
n(x) =

n
∑

i=1

Vi r(X(i)(x)),

and observe that
r̃⋆
n(x) = E

⋆
[

r(X⋆
(1)(x))

]

,

where X⋆
(1)(x) is the nearest neighbor of x in a random subsample Sn drawn

without replacement from {(X1, Y1), . . . , (Xn, Yn)} with Card(Sn) = kn, and
E

⋆ denotes expectation with respect to the resampling distribution, condi-
tionally on the data set Dn. Consequently, by Jensen’s inequality,

E [r̃⋆
n(x) − r(x)]2 = E

[

E
⋆
[

r
(

X⋆
(1)(x)

)

| Dn

]

− r(x)
]2

= E
[

E
⋆
[

r
(

X⋆
(1)(x)

)

− r(x) | Dn

]]2

≤ E

[

E
⋆
[

(

r
(

X⋆
(1)(x)

)

− r(x)
)2 | Dn

]]

= E
[

r
(

X⋆
(1)(x)

)

− r(x)
]2

≤ C2
E‖X⋆

(1)(x) − x‖2.

Since Card(Sn) = kn, we conclude by applying Corollary 2.1, with i = 1 and
replacing n by kn.
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3.7 Two technical lemmas

Lemma 3.1 For j = 0, . . . , n− 1, let the map ϕn,j(p) be defined by

ϕn,j(p) =

(

n

j

)

pj+1(1 − p)n−j , 0 ≤ p ≤ 1.

Then, for all i = 1, . . . , n,

sup
0≤p≤1

i−1
∑

j=0

ϕn,j(p) ≤
i

n+ 1
.

Proof of Lemma 3.1 Each map ϕn,j is nonnegative, continuously increas-
ing on the interval [0, (j+1)/(n+1)] and decreasing on [(j+1)/(n+1), 1]. Con-
sequently, the supremum of the continuous function

∑i−1
j=0 ϕn,j(p) is achieved

at some point p⋆ of the interval [1/(n+ 1), i/(n+ 1)]. That is,

sup
0≤p≤1

i−1
∑

j=0

ϕn,j(p) =

i−1
∑

j=0

ϕn,j(p⋆)

= p⋆

i−1
∑

j=0

(

n

j

)

pj
⋆(1 − p⋆)

n−j

≤ p⋆

n
∑

j=0

(

n

j

)

pj
⋆(1 − p⋆)

n−j

= p⋆ ≤
i

n+ 1
.

�

Lemma 3.2 For each d ≥ 3, each kn ≥ 1, and j = 0, . . . , kn − 1, we have

1

j + 1

kn−j−1
∏

ℓ=1

(

1 − 2

dℓ

)

≤ k
− 2

d
n .

Proof of Lemma 3.2 First, since 0 ≤ 1 − x ≤ e−x for all x ∈ [0, 1],

kn−j−1
∏

ℓ=1

(

1 − 2

dℓ

)

≤ exp

(

−2

d

kn−j−1
∑

ℓ=1

1

ℓ

)

.

Thus, using 1 + 1/2 + . . .+ 1/p ≥ ln(p+ 1), we deduce

kn−j−1
∏

ℓ=1

(

1 − 2

dℓ

)

≤ (kn − j)−
2

d .
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To conclude, we use the fact that, for j = 0, . . . , kn − 1,

1

j + 1
(kn − j)−

2

d ≤ k
− 2

d

n .

To see this, note that the inequality may be written under the equivalent
form

(

1 − j

kn

)− 2

d

≤ 1 + j = 1 + kn · j
kn
.

The result can easily be deduced from a comparison between the maps ϕ :
x 7→ (1− x)−2/d and ψ : x 7→ 1 + knx on the interval [0, 1 − 1/kn]. Just note

that ϕ(0) = ψ(0), ϕ(1 − 1/kn) = k
2/d
n ≤ kn = ψ(1 − 1/kn) since d ≥ 3, and

ϕ is convex while ψ is affine. �
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