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Abstract

This paper discusses a novel strategy for simulating rare events and
an associated Monte Carlo estimation of tail probabilities. Our method
uses a system of interacting particles and exploits a Feynman-Kac rep-
resentation of that system to analyze their fluctuations. Our precise
analysis of the variance of a standard multilevel splitting algorithm
reveals an opportunity for improvement. This leads to a novel method
that relies on adaptive levels and produces, in the limit of an idealized
version of the algorithm, estimates with optimal variance.

The motivation for this theoretical work comes from problems oc-
curring in watermarking and fingerprinting of digital contents, which
represents a new field of applications of rare event simulation tech-
niques. Some numerical results show performance close to the idealized
version of our technique for these practical applications.

1 Introduction

Monte Carlo approach is a common tool to estimate the expectation of
any function of a random object when analytical or numerical methods are
not available. However, if the function is non-zero on a set which has a
very small probability, then the naive Monte Carlo method will return the
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estimate zero, unless the sample size is so large that it becomes intractable.
Typically we want to estimate precisely and in a reasonable time the small
probability, say 10−9 or below, of an extreme event. A naive Monte Carlo
method is impractical as it would require an excessively large sample.
To circumvent this difficulty, importance sampling (see e.g. Bucklew [5])
changes the law of the simulated random objects, and reweighs the sample
consequently. The difficulty is then to choose the appropriate change of
probability in order to achieve a good estimate. This is not always obvious,
especially when there is no large deviation result to consider.
Importance splitting or multilevel splitting is another approach that is well
adapted when the random object is a Markovian process. The basic idea
is to reinforce trajectories that approach the targeted set by splitting (or
branching) them and discarding the others. This very powerful approach
in fact dates back to Kahn and Harris [17] and Rosenbluth and Rosen-
bluth [23]. We refer the reader to the paper by Glasserman et al. [14] which
contains a precise review on these methods as well as a detailed list of refer-
ences. Recently, the connection between importance splitting for Markovian
processes and particle methods for Feynman-Kac models has lead to some
improvements and to a rigorous framework for mathematical analysis (see
Del Moral [9]).
Unlike most of the previous works concerning rare event estimation and
simulation, the present work deals with rare events for a fixed probability
distribution. We are simply concerned here with events of the type {X ∈ A}
for some random vector X, with p = P(X ∈ A) = P(Φ(X) > L) ≪ 1, where
Φ is a mapping from Rd to R, and where there is no dynamical model
for X, i.e. X is not a process indexed by the time. In order to use the
framework developed for Markov processes (see Cérou et al. [7], Cérou and
Guyader [8], Del Moral and Lezaud [11]), we construct a family of Markov
transition kernels Mk whose invariant measures are the successive laws of X
restricted on smaller and smaller sets, the smallest being A. As usual when
using a splitting technique in rare event simulation, we decompose the rare
event in not so rare nested events, whose product of probabilities equals the
probability of the rare event.
Del Moral et al. [10] and Johansen et al. [16] were first to use fixed-levels
algorithms for static rare events. These articles were written in a different
framework, and thus do not deal with the practical details of our precise
setting. In the present article, we detail both a fixed and an adaptive multi-
levels algorithm, the adaptive one consisting in optimally placing the levels
on the fly.
Recently and independently from the authors of the present work, Botev and
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Kroese [3] proposed the same approach. These authors work on a similar
algorithm, including the use of quantiles of the random variable Φ(X) on the
swarm of particles in order to estimate the next level. The main difference is
their two stage procedure (like in Garvels [13]): they first run the algorithm
just to compute the levels, and then they restart from the beginning with
these proposed levels. Actually we prove that by computing the levels on the
fly (within the same run as the one to compute the rare event probability), we
only pay a small bias on the estimate. Note also that [3] does not address
the general construction of the transition kernels Mk, since the authors
only tackle examples where they can derive a Gibbs sampler at each step.
This is mainly possible because their function Φ is linear, which is a severe
restriction.
Another related approach is the recent work on combinatorial counting of
Rubinstein [24]. This article presents some optimizations for counting prob-
lems in which X has a uniform distribution over a discrete but very large
state space. The author uses what he calls a cloning procedure, where the
number of offspring is fixed (i.e. the same for all the particles in the sample)
but adaptive to keep the number roughly constant, while removing redun-
dant particles after the MCMC step. This is a main difference since we
use a resampling with replacement procedure. But clearly results in [24]
show that the adaptive procedure is well suited for SAT problems, or other
hard finite set optimization problems. We would also like to mention that
these last two papers [3][24] have demonstrated the performance of their
algorithms via an extensive simulation study, to which we now lay out the
mathematical foundations.
Finally, Botev and Kroese [4] very recently revisited the different variants of
splitting procedures for static rare event simulation. They also provide a nice
discussion about a test for the stationarity of the MCMC step. They mainly
claim that from a practical point of view, one should favor the variants
without bias in the desired estimates. Although this is arguably the best
choice for some applications, we think that a more precise theoretical study
of the other (biased) versions can be of interest even for practitioners in
other application areas.
The paper is organized as follows. Section 2 describes and analyses the
fixed-levels algorithm. Section 3 provides the adaptive levels version, and
theoretically analyzes an idealized version, which proves to be optimal in
terms of asymptotic variance of the estimator. Section 4 deals with the
tuning of the algorithm and especially the choice and the iteration of the
transition kernel which is at the core of the method. Section 5 shows the
relevance of our algorithm for watermarking and fingerprinting, which con-
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stitute a new application area of rare event simulation techniques. These
numerical results also show that the performance of the idealized version is
almost reached by the actual algorithm. Finally, all the proofs are gathered
in the appendix.

2 The fixed-levels method

2.1 Assumptions and ingredients

We assume that X is a random vector on Rd for some d > 0, and denote by
µ its probability distribution on the underlying probability space (Ω,F ,P).
We denote by A the rare set of interest, and we assume that A = {x ∈Rd s.t. Φ(x) ≥ L} for some function Φ : Rd 7→ R and some real number L.
We also assume that we know how to draw i.i.d. samples from µ.
Our algorithm makes use of the following ingredients. An increasing se-
quence {L0, . . . , Ln} in R, with L0 = −∞ and Ln = L defines a sequence
of corresponding sets Ak = {x ∈ Rd, Φ(x) ≥ Lk}. These sets are thus
nested: Rd = A0 ⊃ A1 ⊃ · · · ⊃ An = A. We now need to choose sequence
{L0, . . . , Ln} in such a way that pk = P(X ∈ Ak+1|X ∈ Ak) is not too
small. For indices k > n, we assume that Lk = Ln. We also need to choose
a Markov transition kernel K on Rd which is µ-symmetric, that is

∀(x, y) ∈ Rd ×Rd, µ(dx)K(x, dy) = µ(dy)K(y, dx).

As a consequence, K has µ as an invariant measure.
As we will see in the sequel, the choice of the Lk’s can be made adaptive and
is thus not an issue. However, the choice of the kernel K is crucial. Even
if any µ-symmetric kernel would eventually do the job, we need to carefully
choose it to make the algorithm efficient as discussed in section 4.
Consider now a Markov chain (Xk)k≥0 defined by: L(X0) = µ and the
inhomogeneous transitions kernels P(Xk ∈ dy|Xk−1 = x) = Mk(x, dy), with

Mk(x, dy) = 1Ac
k
(x) δx(dy) + 1Ak

(x)(K(x, dy)1Ak
(y) +K(x,Ac

k) δx(dy)).

Moving a particle according to Mk is then twofold: firstly a new transition
according to K is proposed, and secondly we accept this transition only if it
stays in Ak, keeping the old position otherwise. For k ∈ {0, . . . , n}, denote
µk(dx) =

1
µ(Ak)

1Ak
(x)µ(dx) the normalized restriction of µ on Ak.

We should also note at this point that instead of a µ-symmetric kernel K to
construct theMk, one can use at level k, any kernel, if available, for which µk

is invariant. In some applications this can be done directly trough a Gibbs
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sampler (see [24]). We have chosen to adopt here a Metropolis-Hastings
approach because it is somehow more general, and we will not particularly
discuss this case. But from a practical point of view, if such a family of
kernels Mk is readily available, then it is much advisable to use it.
The following stationarity property holds for µ and µk.

Proposition 1. The measures µ and µk are both invariant by the transition
kernel Mk.

The proof is a straightforward computation and thus will be omitted.
From a general point of view, a Feynman-Kac representation for µk is a
formula of the form

µk(ϕ) =
E[ϕ(Xk)

∏k−1
m=0 Gm(Xm)]E[∏k−1

m=0 Gm(Xm)]
,

where the potentials Gm are positive functions, and (Xk)k≥0 is a non ho-
mogeneous Markov chain with transitions Mk. If we know how to draw
realizations of the Markov chain, then we can compute µk(ϕ) with a Monte
Carlo approach. But naive Monte Carlo is not efficient, because most of the
realizations of the chain have small values for the product of the potentials.
Anyway, in this form a much nicer Monte Carlo algorithm can be used. It
mainly consists in keeping a cloud of particles (ξjk), with time 0 ≤ k ≤ n
and particle index 1 ≤ j ≤ N . Then for each time step k, discard those
with small potential Gk, and branch the others, with a rate proportional to
Gk(ξ

j
k). Then apply the Markov transition Mk to all the surviving particles,

and iterate on the time step.
This approach has given birth to a huge amount of literature, and is often
referred to as Sequential Importance Sampling (SIS) or Sequential Monte
Carlo (SMC). See the monograph by Del Moral [9] for a theoretical overview
and Doucet et al. [12] for examples of applications. In our context, the
Feynman-Kac representation for µk has the following form.

Proposition 2. For every test function ϕ, for k ∈ {0, . . . , n}, the Feynman-
Kac representation is as follows

µk(ϕ) =
E[ϕ(Xk)

∏k−1
m=0 1Am+1

(Xm)]E[∏k−1
m=0 1Am+1

(Xm)]
,

where (Xk)k≥0 is a Markov chain given by the following conditions: X0 ∼ µ
and the inhomogeneous transition kernels (Mk)k≥1.
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2.2 The fixed-levels algorithm

Proposition 2 shows that the framework of Feynman-Kac formulae does
apply, and thus this grants access to the approximation of the associated
measures using an interacting particle method as studied by Del Moral in [9].
Basically, at each iteration k, it consists in selecting the particles according
to the potentials, here 1Ak+1

, and then in propagating the particles according
to the transitions given by Mk+1.
The approximation of the rare event probability stems from the following
obvious property

p = P(X ∈ An) =

n−1
∏

k=0

P(X ∈ Ak+1|X ∈ Ak) =

n−1
∏

k=0

µk(Ak+1)

and finally

p =
n−1
∏

k=0

E[1Ak+1
(Xk)

∏k−1
m=0 1Am+1

(Xm)]E[∏k−1
m=0 1Am+1

(Xm)]
,

where the last equality comes from Proposition 2. We approximate at each
stage pk = P(X ∈ Ak+1|X ∈ Ak) by the proportion of the particles already
in the next set, and the total probability is estimated as the product of
those. This gives the algorithm 1.

Algorithm 1

Parameters

N the number of particles, the sequence {L0, . . . , Ln} of levels.

Initialization

Draw an i.i.d. N -sample (ξj0)1≤j≤N , of the law µ.

Iterations

for k = 0 to n− 1 /* level number */

Let Ik = {j : ξjk ∈ Ak+1}.
Let p̂k = |Ik|

N
.

for j ∈ Ik, let ξ̃
j
k+1 = ξjk
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for j 6∈ Ik, let ξ̃
j
k+1 be a copy of ξℓk where ℓ is chosen randomly in

Ik with uniform probabilities.

for j = 1 to N /* particle index */

Draw a new particle ξ̂jk+1 ∼ K(ξ̃jk+1, .).

If ξ̂jk+1 ∈ Ak+1 then let ξjk+1 = ξ̂jk+1, else ξjk+1 = ξ̃jk+1.

endfor

endfor

Output

Estimate the probability of the rare event by p̂ =

n−1
∏

k=0

p̂k.

The last set of particles is a (non independent) sample that provides
an approximation of the law µn of the rare event.

2.3 Fluctuations analysis

Del Moral has extensively studied in a very general context the asymptotic
behavior of the interacting particle model as the number N of particles goes
to infinity [9]. For example, it is well known that the estimate p̂ is unbiased.
The next proposition presents a precise fluctuation result in our context
of rare event analysis. It does not correspond exactly to algorithm 1. The
difference is that the proposition assumes that the resampling is done using a
multinomial procedure, which gives a higher variance than that of Algorithm
1. This does not make much difference for the following discussion, as the
best possible variance is the same. We have made this choice here because
the terms of the variance for the multinomial procedure are a bit simpler
to analyse and to relate to simple quantities characterizing the underlying
Markov chains.

Proposition 3. Let p̂ denote the estimate given by the fixed-levels algorithm,
then √

N
p̂− p

p

D−−−−−→
N→+∞

N (0, σ2),
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with

σ2 =
n−1
∑

k=0

1− pk
pk

+

n−1
∑

k=1

1

pk
E[( P(Xn−1 ∈ An|Xk)P(Xn−1 ∈ An|Xk−1 ∈ Ak)

− 1

)2
∣

∣

∣

∣

∣

Xk−1 ∈ Ak

]

.

The samples are not independent due to the splitting of successful particles.
In fact the variance is lower bounded

σ2 ≥
n−1
∑

k=0

1− pk
pk

,

with equality if and only if for all k = 1, . . . , n−1 and knowing that Xk−1 ∈
Ak, one has P(Xn−1 ∈ An|Xk) ⊥ Xk.

This means that equality holds if, between step k and step n− 1, the algo-
rithm forgets the initial position Xk. In order to reach this goal, a possible
route is to begin step k by applying an infinite number of times (and not
only one time as is the case in Algorithm 1) the transition kernel Mk with
stationary distribution µk = L(X|X ∈ Ak). We will discuss this point in
details in section 4.

This will motivate us in the sequel to study an idealized version of the
algorithm with at each step the possibility (never met in practice) to draw
directly an i.i.d. sample of µk. As we will see from numerical results,
the theoretical performance derived for this idealized version can almost be
achieved by the actual algorithm at a reasonable cost.
Anyway, from now on, we assume that at each step k it is possible to draw
an i.i.d. sample of the law of X conditionally on the event {X ∈ Ak} =
{Φ(X) > Lk}. Then the relative variance of the estimator reduces to:

σ2 =
n−1
∑

k=0

1− pk
pk

.

Thus, for a fixed value of p and a fixed number n of levels, this asymptotic
variance would be minimal if pk ≡ p0 for all k. This is indeed a simple
constrained optimization problem:

arg min
p0,...,pn−1

n−1
∑

k=0

1− pk
pk

s.t.

n−1
∏

k=0

pk = p.

8



In this case, the minimal asymptotic variance is simply n1−p0
p0

, with p0 = p
1

n .
This optimal situation corresponds to the case where the levels are evenly
spaced in terms of probability of success: as far as multilevel splitting for
Markov processes is concerned, this point was also mentioned in Glasserman
et al. [14], Lagnoux [18] and Cérou et al. [7]. The following section addresses
this crucial issue for the adaptive version of the algorithm. Before this, this
section ends with two remarks.

Remarks:

1. If one’s particular interest is the variance of p̂ rather than a convergence
in distribution like the CLT-type result of Proposition 3, then we can
turn to the recent non asymptotic results obtained in Cérou et al. [6,
corollary 5.2]. Under some regularity conditions (mainly about the
mixing property of the kernel K), there exist positive constants αk,
for 0 ≤ k ≤ n− 1, such that for all N ≥ N0 =

∑n−1
k=0

αk

pk
,E([ p̂− p

p

]2
)

≤ 4
N0

N
.

If we assume an i.i.d. sample, then all the αk’s are all equal to 1, and
N0 =

∑n−1
k=0

1
pk
.

2. Finally, there is a maybe small, but non-zero, probability that the par-
ticle system dies at some stage. This may typically happen when two
consecutive levels are too far apart, or when the number of particles
is too small. A first solution to this problem is given in Le Gland and
Oudjane [19]. The idea is to go on sampling new particles until a given
number of them have reached the given level. The price to pay is a
possibly very long computation time. A second solution is proposed
in the next section.

3 The adaptive method

3.1 The algorithm

As we may not have a great insight about the law µ and/or the mapping
Φ, typically when Φ is a ‘black box’, the choice of the levels L1, . . . , Ln−1

might prove to be quite problematic. We propose from now on to adaptively
choose the level sets, ensuring not only that the particle system never dies
but also that the asymptotic variance of the estimate p̂ is minimized.
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The method is indeed simple to implement. We choose a prescribed success
rate p0 between two consecutive levels. In practice, 0.75 ≤ p0 ≤ 0.8 works
well. At step k, the algorithm sorts the particles ξjk according to their

scores Φ(ξjk). Then it sets the next level to the (1 − p0) empirical quantile

L̂k+1, which means that a proportion p0 of the particles scores are above
it. Starting from this sample of p0N particles which are independently and
identically distributed according to the law L(X|Φ(X) > L̂k+1), an i.i.d.
sample of size N is drawn with the same distribution, and the rest of the
algorithm is unchanged.
The algorithm then stops when some L̂n̂0+1 ≥ L, and the probability is
estimated by p̂ = r̂0 pn̂0

0 , where r̂0 denotes the number of particles in the
last iteration being above level L. The number n̂0 of steps is random, but
if N is large enough, then Lemma 1 in Appendix proves that, outside an
event of exponentially small probability, n̂0 is actually fixed by the ratio of
the logarithms

n0 =

⌊

logP(X ∈ A)

log p0

⌋

=

⌊

log p

log p0

⌋

. (1)

As mentioned above, this variant enforces evenly spaced levels in terms of
probability of success, and therefore a minimal asymptotic variance for the
estimate p̂ of p. The pseudo-code for the adaptive algorithm is given in
Algorithm 2 below.
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Algorithm 2

Parameters

N the number of particles, the numberN0 < N of succeeding particles,
and let p0 = N0/N .

Initialization

Draw an i.i.d. N -sample (ξj0)1≤j≤N of the law µ.

Compute L̂1, the (1− p0) quantile of Φ(ξj0), j = 1, . . . , N .

k = 1;

Iterations

while L̂k < L do

Starting from an i.i.d. p0N -sample with law L(X|Φ(X) > L̂k),
draw an i.i.d. N -sample (ξjk)1≤j≤N with the same law.

Compute L̂k+1, the (1− p0) quantile of Φ(ξjk), j = 1, . . . , N .

k = k + 1;

endwhile

LetNL the number of particles ξjk−1, j = 1, . . . , N , such that Φ(ξjk−1) ≥
L.

Output

Estimate the probability of the rare event by p̂ =
NL

N
pk−1
0 .

The last set of particles is a (non independent) sample that provides
an approximation of the law µn of the rare event.
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Remarks:

1. In this algorithm, the step drawing an N -sample starting from a p0N -
sample is of course the trickiest one. The analytical study of this
idealized version in the next subsection assumes it can be done per-
fectly, although this will never be met in practice. In section 4, we
propose a way to implement it in practice, at least approximately, and
section 5 shows its practical efficiency on two examples.

2. When X takes its values in a discrete space, it is likely that several
values of Φ(ξjk) are the same as the value of the 1−p0 quantile. In this
case, one needs to be careful to count the exact number of particles
Nk in Ik = {j : Φ(ξjk) ≥ Lk+1}. And replace the last estimate by
p̂ =

∏

Nk/N .

3. The costs of adaptive levels is a higher complexity by a factor logN
(due to the quick sort), and a slight loss of accuracy due to a bias. Yet,
Proposition 4 proves that this bias becomes negligible compared to the
standard deviation as N increases and provides an explicit formula,
which allows to correct this bias and to derive confidence intervals.
Experimental results of section 5.1 illustrate this.

4. Estimation of quantiles: Some applications require the estimates
of quantiles of the random variable Φ(X). This can be done at no
additional cost within the previous algorithm. For α ∈ (0, 1), define
the α-quantile by qα = sup{x : P (Φ(X) ≤ x) ≤ α}. When the
algorithm is in step k, with a set of particles {ξjk, j = 1, . . . , N}, such
that pk+1

0 ≤ 1−α < pk0 , then let r = 1−(1−α)p−k . An estimate of the

quantile qα is then given by the r quantile of the sample {Φ(ξjk), j =
1, . . . , N}.

3.2 Bias and variance

The assumption of a continuous cumulative distribution function (cdf) F
of Φ(X) is now required to derive the properties of the adaptive algorithm.
Let us write the rare event probability as

p = r0 p
n0

0 , with n0 =

⌊

log p

log p0

⌋

and r0 = p p−n0

0 ,

so that r0 ∈ (p0, 1]. In the same way we write p̂ = r̂0 p
n̂0

0 , with n̂0 the
number of steps before the algorithm stops. A first theorem shows a CLT-
type convergence.

12



Theorem 1. If F is continuous, then we have

√
N (p̂ − p)

D−−−−−→
N→+∞

N (0, σ2),

where

σ2 = p2
(

n0
1− p0
p0

+
1− r0
r0

)

.

Unlike the fixed-levels version of the algorithm, the adaptive version is bi-
ased. Nevertheless, the next result shows that the bias is of order 1/N , and
is thus negligible compared to the standard deviation given in Theorem 1.

Proposition 4. If F is continuous, then we have

N
E[p̂]− p

p
−−−−−→
N→+∞

n0
1− p0
p0

.

Thus the bias is positive and of order 1
N

when N goes to infinity:E[p̂]− p

p
∼ 1

N

n0(1− p0)

p0
.

Putting all things together, we can write the following expansion:

p̂ = p

(

1 +
1√
N

√

n0
1− p0
p0

+
1− r0
r0

Z +
1

N
n0

1− p0
p0

+ oP( 1

N

))

,

where Z is a standard Gaussian variable.

Remarks:

1. The above formula shows that, although algorithm 2 introduces a bias,
it performs better than algorithm 1 in terms of mean square error (bias
included).

2. In this regard the remark 3.2 page 489 of [3] might be misleading: if
the levels are chosen from start, or using a preliminary run, then the
resulting probability estimate is unbiased, even if the level crossing
probabilities are indeed dependent (see Cérou et al. [7]).

3. It is worth mentioning that the bias is always positive, giving a slightly
overvalued estimate. As rare event analysis usually deals with catas-
trophic events, it is not a bad thing that the real value be a bit lower
than the provided estimate. Moreover, if one wants to correct it, the
explicit formula of Proposition 4 allows to do so.
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4 Tuning the algorithm

4.1 Choice of the kernel K

There is no completely general method for finding the best transition kernel
K because it depends on the application. But in the very classical case of
a Gibbs measure given by a bounded potential, we can use the Metropolis
algorithm, as first proposed by Metropolis et al. [21], or the more general
version later proposed by Hastings [15].

4.2 Less dependent sample

As mentioned in section 2.3, for the fixed-levels version of the algorithm we
always have

σ2 ≥
n−1
∑

k=0

1− pk
pk

.

The equality holds if and only if for all k, knowing that Xk−1 ∈ Ak, one hasP(Xn−1 ∈ An|Xk) ⊥ Xk.

To reach this goal, a simple idea is to iterate the transition kernel Mk at each
step as it provides more independence among particles. This is well docu-
mented in the MCMC literature, e.g. Tierney [26] in the case of Metropolis-
Hastings kernels.
This means that the more the kernel is iterated, the closer (in distribution)
we get to an independent sample. Thus, at each step of Algorithm 2 (adap-
tive levels), we can think of iterating the kernel a fixed number of times (for
example 20 times in the simulations of section 5.1).

4.3 Mixing property of the kernel K

We have written the algorithms using a unique kernelK for all the iterations.
Usually it is quite easy to construct not only one, but a family of kernels
that are all µ-symmetric, but with different mixing properties. This is useful
when applying K to the current particles, most of the transitions are refused
(their scores are below the current threshold). In this case, we propose a
change to another kernel which is less mixing, i.e. in some way with “smaller
steps”, and thus with a lower probability of going below the current level Lk.
On the other hand, when almost all the transitions are accepted, it means
that the kernel is poorly mixing, and that we could decrease the variance
by choosing a kernel K that is more mixing, i.e. with “larger step”. For
example, this is tuned by the parameter α in section 5.1.
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5 Applications

Our motivation comes from problems occurring in the protection of digital
contents. Here the term watermarking refers to a set of techniques for
embedding/hiding information in a digital file (typically audio or video),
such that the change is not perceptible, and very hard to remove. See the
web site of the Copy Protection Working Group [22] for details.
In order to be used in an application, a watermarking technique must be
reliable. Here are two application scenarii where a wrong estimation of the
probability of error could lead to a disaster.

Copy protection. Assume commercial contents are encrypted and water-
marked and that future consumer electronics storage devices have a water-
mark detector. These devices refuse to record a watermarked content since
it is copyrighted material. The probability of false alarm is the probability
that the detector considers an original piece of content (which has not been
watermarked) as protected. The movie that a user shot during his holidays
could be rejected by his storage device. This absolutely non user-friendly
behavior really scares consumer electronics manufacturers. In the past, the
Copy Protection Working Group of the DVD forum evaluated that at most
one false alarm should happen in 400 hours of video [22]. As the detection
rate was one decision per ten seconds, this implies a probability of false
alarm in the order of 10−5. An accurate experimental assessment of such a
low probability of false alarm would demand to feed a real-time watermark-
ing detector with non-watermarked content during 40,000 hours, i.e. more
than 4 years! Proposals in response of the CPTWG’s call were, at that time,
never able to guarantee this level of reliability.

Fingerprinting. In this application, users’ identifiers are embedded in a
purchased content. When this content is found in an illegal place (e.g. a
P2P network), the copyright holders decode the hidden message, find an
identifier, and thus they can trace the traitor, i.e. the customer who has
illegally broadcast his copy. However, the task is not that simple because
dishonest users might collude. For security reason, anti-collusion codes have
to be employed. Yet, these solutions (also called weak traceability codes,
see Barg et al. [2]) have a non-zero probability of error (defined as the
probability of accusing an innocent). This probability should be, of course,
extremely low, but it is also a very sensitive parameter: anti-collusion codes
get longer (in terms of the number of bits to be hidden in content) as the

15



probability of error decreases. Fingerprint designers have to strike a trade-
off, which is hard to conceive when only rough estimation of the probability
of error is known. The major issue for fingerprinting algorithms is the fact
that embedding large sequences implies also assessing reliability on a huge
amount of data, which may be practically unachievable without using rare
event analysis.

5.1 Zero-bit watermarking
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Figure 1: Detection region for zero-bit watermarking.

In this example of zero-bit watermarking, X is a Gaussian vector in Rd,
with zero mean and identity covariance matrix, Φ(X) = |〈X,u〉|

‖X‖ where u is

a fixed normalized vector (see Merhav and Sabbag [20]). Then the region
A = {x ∈ Rd s.t. Φ(x) ≥ L} is a double hypercone as shown on Figure 1. For
a Gaussian distribution, the obvious choice for the kernel is the following:
if we start from any point x, then the new position is given by

x′ =
x+ αW√
1 + α2

,

where W is a N (0, Id) Rd valued random vector and α a positive number.
This simple setup allows us to compare our estimates of the rare event
probability with the result of a numerical integration. For example, in our
simulations d = 20 and L = 0.95, so that p = P(Φ(X) ≥ L) ≈ 4.70 · 10−11

(tail probability of a Fisher distribution). For such a low probability, it
is of course out of question to run a classical Monte Carlo algorithm. Our
algorithm with adaptive levels was run with 20 iterations of the kernel Mk at
each step. The choice of the mixing parameter α = 0.3 has experimentally
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proved to be a good trade-off, see discussion in section 4.3 above for details.
The proportion of particles surviving from one step to another has been
fixed to p0 = 0.75, so that

n0 =

⌊

log p

log p0

⌋

= 82 and r0 = p p−n0

0 ≈ 0.83.
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Figure 2: Theoretical and empirical relative standard deviations with 100
simulations.

For several numbers of particles, ranging from N = 100 to N = 5, 000, we
have run the algorithm 100 times in order to estimate the variance. Figure 2
shows in log-log plots the convergence of the normalized standard deviation
to minimum achievable, which is that of i.i.d. samples at each stage, that is
(see Theorem 1):

√

Var

(

p̂− p

p

)

∼ 1√
N

√

n0
1− p0
p0

+
1− r0
r0

.

Clearly this indicates that even if we use the mixing kernel a finite number
of times (here only 20 times), the empirical variance is on the same level as
it would be for an independent sample (that is in the limit of infinite ap-
plications of the kernel), and therefore our theoretical results in this setting
give a good picture of the accuracy of the actual algorithm.
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Anyway, from a practical point of view, one would like to obtain an esti-
mation of p by running only one time the algorithm. In this aim, Theorem
1 and Proposition 4 allow us to construct confidence intervals. Indeed, we
have

p̂− p

p
≈ N

(

n0(1− p0)/p0
N

,
n0(1− p0)/p0 + (1− r0)/r0

N

)

,

so that an approximate 95% confidence interval for p is given by I = [p̂−, p̂
+],

where

p̂+− = p̂

(

1− n̂0(1− p0)/p0
N

± 2

√

n̂0(1− p0)/p0 + (1− r̂0)/r̂0
N

)

.

This is illustrated on Figure 3, where 100 such confidence intervals have been
drawn for N = 500 particles. In this example, 2 of them do not contain the
true value p = 4.704 · 10−11. Once again, we would like to emphasize that
the explicit formula for the bias (cf. Proposition 4) allows to cancel it, and
consequently that this existence of a bias in the adaptive method is not a
problem at all.
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Figure 3: 95% confidence intervals for p = 4.704 ·10−11 with 100 simulations
and N = 500 particles.

5.2 Tardos probabilistic codes

We are interested here in embedding an identifier in each copy of a purchased
content. Then a copy, which is the result of a collusion, is found on the web,
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and we want to decide whether or not it can be originated from a certain
user. The rare event will be to consider an innocent as guilty.
The embedded message, called a fingerprint, consists of a sequence of bits
X = (X1, . . . ,Xm), where each Xi is independent from the others, and
drawn from a Bernoulli’s B(pi). The pi’s are themselves i.i.d. random vari-
ables, drawn from a given distribution with density f on [0, 1]. Then we find
a copy with fingerprint y = (y1, . . . , ym) ∈ {0, 1}m. We conclude that a user
is guilty if the score

Φ(X) =

m
∑

i=1

yigi(Xi)

is larger than some value L, for some given functions gi’s. This approach
was proposed by Tardos in [25], where he derives optimal choices for f and
the gi’s.
To apply our algorithm, we need to choose the kernel K. As the Xi’s are
independent, we randomly choose r indices {j1, . . . , jr} ∈ {1, . . . ,m}, with r
being a fixed parameter. Then for each jℓ, we draw a new X ′

jℓ
independently

from the Bernoulli distribution B(pjℓ).
For such codes, we first present the equivalent of Figure 2 on Figure 4.
We consider the probability of accusing an innocent using a code of length
m = 200. The algorithm was run with p0 = 1/2. As we do not have any
other estimates on the rare event probability, we just plugged the mean of
the estimates given by the runs of our algorithm with the largest number of
particles (3200) in the theoretical variance given by theorem 1. This best
estimate on the probability of the rare event is 2.6× 10−9. Again, with only
20 applications of the kernel at each iteration, we see that the performance
of the algorithm is close to that of the idealized version. It is noticeable that
this remains true even if in this case the assumption on the cdf F of Φ(X)
of section 3.2 is clearly not fulfilled. Figure 5 shows the distribution of the
number of steps as a function of the number of particles. We can see that
for 800 particles and more, the number of steps can be seen practically as
deterministic. All these results illustrate the efficiency of our algorithm for
discrete problems.
Using our adaptive algorithm, we made some additional numerical experi-
ments on such codes. More precisely, we can easily estimate the probability
of false detection (false positive) for some code length m, and collusion size
c. The collusion strategy is to randomly pick up the symbols of pirated copy
among the c colluders’ sequences. We can also estimate the probability of
not accusing someone guilty (false negative). The results for m = 200, and
c = 2, 3, 4 are shown on Figure 6. From these curves, one can then decide
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Figure 4: Theoretical and empirical relative standard deviations with 100
simulations for an example of Tardos code.
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Figure 5: Distribution of the number of steps.
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Figure 6: Mappings of the false positive probability (blue) and false negative
probability (red) against the threshold. m = 200, c ∈ {2, 3, 4}. The score of
a particle is the mean of the c colluders scores.

how to set the threshold L to minimize the total error.

A Proofs

A.1 Proof of Proposition 2

We use induction to show thatE[ϕ(Xk)

k−1
∏

m=0

1Am+1
(Xm)

]

= µ(Ak) µk(ϕ).
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The case k = 0 is obvious. Then assume the property be true for k. We
write, using the Markov property and Proposition 1,E[ϕ(Xk+1)

k
∏

m=0

1Am+1
(Xm)

]

= µk(Mk+1(ϕ)1Ak+1
)× µ(Ak)

= µk+1(Mk+1(ϕ)) × µ(Ak+1)

= µk+1(ϕ)× µ(Ak+1).

Then taking the case ϕ = 1 we have E [∏k
m=0 1Am+1

(Xm)
]

= µ(Ak+1),

which concludes the proof.

A.2 Proof of Proposition 3

Adopting the notations of Proposition 9.4.1 page 301 of [9], the application
of the first formula of page 304 leads to

Var(p̂) = E[W γ
n−1(1)

2] = γ2n−1

n−1
∑

k=0

ηk

(

(

Qk,n−1(1)

ηkQk,n−1(1)
− 1

)2
)

,

In our context this can be rewritten as follows

Var(p̂)

p2
=

n−1
∑

k=0

E[( P(Xn−1 ∈ An|Xk)P(Xn−1 ∈ An|Xk−1 ∈ Ak)
− 1

)2
∣

∣

∣

∣

∣

Xk−1 ∈ Ak

]

(2)

where by convention X−1 = X0. This leads to

Var(p̂)

p2
=

n−1
∑

k=0

(E [P(Xn−1 ∈ An|Xk)
2
∣

∣Xk−1 ∈ Ak

]P(Xn−1 ∈ An)2
− 1

)

.

Now one can readily check thatE [P(Xn−1 ∈ An|Xk)
2
∣

∣Xk−1 ∈ Ak

]

=E [P(Xn−1 ∈ An|Xk)
21Ak+1

(Xk)
∣

∣Xk−1 ∈ Ak

]

,

and this is equivalent toE [P(Xn−1 ∈ An|Xk)
2
∣

∣Xk−1 ∈ Ak

]

=E [P(Xn−1 ∈ An|Xk)
21Ak+1

(Xk)1Ak
(Xk−1)

]P(Xk−1 ∈ Ak)
.
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Since {Xk ∈ Ak+1} implies {Xk−1 ∈ Ak}, this last expression can be sim-
plifiedE [P(Xn−1 ∈ An|Xk)

2
∣

∣Xk−1 ∈ Ak

]

=
E [P(Xn−1 ∈ An|Xk)

21Ak+1
(Xk)

]P(Xk−1 ∈ Ak)
,

and rewritten asE [P(Xn−1 ∈ An|Xk)
2
∣

∣Xk−1 ∈ Ak

]

=E [P(Xn−1 ∈ An|Xk)
2
∣

∣Xk ∈ Ak+1

]

× P(Xk ∈ Ak+1)P(Xk−1 ∈ Ak)
.

Since pk = P(Xk ∈ Ak+1|Xk−1 ∈ Ak) and {Xk ∈ Ak+1} ⇒ {Xk−1 ∈ Ak},
we deduceP(Xn−1 ∈ An|Xk−1 ∈ Ak) = pk P(Xn−1 ∈ An|Xk ∈ Ak+1),

so thatE [P(Xn−1 ∈ An|Xk)
2
∣

∣Xk−1 ∈ Ak

]P(Xn−1 ∈ An|Xk−1 ∈ Ak)2
=
E [P(Xn−1 ∈ An|Xk)

2
∣

∣Xk ∈ Ak+1

]

pk P(Xn−1 ∈ An|Xk ∈ Ak+1)2
.

Now it remains to notice thatE [P(Xn−1 ∈ An|Xk)
2
∣

∣Xk ∈ Ak+1

]P(Xn−1 ∈ An|Xk ∈ Ak+1)2
=

1 +E[( P(Xn−1 ∈ An|Xk)P(Xn−1 ∈ An|Xk ∈ Ak+1)
− 1

)2
∣

∣

∣

∣

∣

Xk ∈ Ak+1

]

,

so that coming back to (2) gives the desired result

Var(p̂)

p2
=

n−1
∑

k=0

1− pk
pk

+

n−1
∑

k=0

1

pk
E[( P(Xn−1 ∈ An|Xk)P(Xn−1 ∈ An|Xk−1 ∈ Ak)

− 1

)2
∣

∣

∣

∣

∣

Xk−1 ∈ Ak

]

,

where the first term (i.e., for k = 0) of the second sum is equal to zero since
by convention X−1 = X0.
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A.3 Proof of Theorem 1

In order to simplify the writings, we will suppose that p0N is an integer.
Then, for all real numbers L and L′ such that L < L′, let us denote

F (L,L′) = P(Φ(X) ≤ L′|Φ(X) > L) =
F (L′)− F (L)

1− F (L)
,

with the convention that F (L,L′) = 0 if F (L) = 1.
We first notice the following crucial point: given L̂k, the random vectors ξjk,

for j ∈ {1, . . . , N}, are i.i.d., and thus so are the random variables Φ(ξjk).

Since F is continuous, given L̂k, the random variable F (L̂k, L̂k+1) has the
same distribution as the random variable U((1−p0)N), where (Ui)1≤i≤N is a
sample of i.i.d. random variables with uniform law on [0, 1], and for all
N ≥ 1

U(1) ≤ U(2) ≤ . . . ≤ U(N).

Let us denote GN the empirical cdf of (Ui)1≤i≤N and G(x) = x the cdf of
the uniform law on [0, 1]. Then from the basic identities ‖GN − G‖∞ =
‖G−1

N −G‖∞ and U((1−p0)N) = G−1
N (1− p0), we can deduce that

|U((1−p0)N) − (1− p0)| ≤ ‖GN −G‖∞.

Using Dvoretzky-Kiefer-Wolfowitz (DKW) inequality (see for example [27]),
we have then for all ε > 0P(‖GN −G‖∞ > ε) ≤ 2 exp(−2Nε2),

henceP(|F (L̂k, L̂k+1)− (1− p0)| > ε) = P(|U((1−p0)N) − (1− p0)| > ε)

≤ 2 exp(−2Nε2)

Using Borel-Cantelli lemma, we conclude that

F (L̂k, L̂k+1)
a.s.−−−−→

N→∞
1− p0. (3)

From the theory of order statistics (see for example [1], Theorem 8.5.1, p.
223), we also deduce the convergence in distribution

√
N(1− F (L̂k, L̂k+1)− p0)

D−−−−→
N→∞

N (0, p0(1− p0)). (4)
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To prove the result of Theorem 1, we proceed by induction, assuming that:

√
N

(

k
∏

m=1

(1− F (L̂m−1, L̂m))− pk0

)

D−−−−→
N→∞

N (0, σ2
k).

For the next step, we use the decomposition

√
N

(

k+1
∏

m=1

(1− F (L̂m−1, L̂m))− pk+1
0

)

=
√
N

(

k
∏

m=1

(1 − F (L̂m−1, L̂m))− pk0

)

(1− F (L̂k, L̂k+1)− p0) (5)

+p0
√
N

(

k
∏

m=1

(1− F (L̂m−1, L̂m))− pk0

)

+ pk0
√
N(1− F (L̂k, L̂k+1)− p0).

The almost sure convergence of equation (3) and the induction hypothesis
ensure that the first term converges in probability to 0 when N goes to
infinity. To prove the convergence in distribution of the other terms of (5),
let us introduce the characteristic function

φN (t) = E[exp(it(p0√N

(

k
∏

m=1

(1− F (L̂m−1, L̂m))− pk0

)

+pk0
√
N(1− F (L̂k, L̂k+1)− p0

))

]

.

Conditioning with respect to L̂1, . . . , L̂k gives

φN (t) = E[exp(it(p0√N

(

k
∏

m=1

(1− F (L̂m−1, L̂m))− pk0

)))

×E [exp(it(pk0√N(1− F (L̂k, L̂k+1)− p0

))

|L̂1, . . . , L̂k

]

]

.

Thanks to the strong Markov property of the L̂k’s, this can be reduced to

φN (t) = E[exp(it(+p0
√
N

(

k
∏

m=1

(1− F (L̂m−1, L̂m))− pk0

)))

×E [exp(it(pk0√N(1− F (L̂k, L̂k+1)− p0

))

|L̂k

]

]

,
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and we can remark thatE [exp(it(pk0√N(1− F (L̂k, L̂k+1)− p0

))

|L̂k

]

= E [exp (it(pk0√N(1− U((1−p0)N) − p0

))]

,

where U((1−p0)N) is independent of L̂1, . . . , L̂k. This leads to

φN (t) = E[exp(it(+p0
√
N

(

k
∏

m=1

(1− F (L̂m−1, L̂m))− pk0

)))]

×E [exp(it(pk0√N(1− U((1−p0)N) − p0

))]

.

Thanks to the induction hypothesis and to equation (4), it comes

p0
√
N

(

k
∏

m=1

(1− F (L̂m−1, L̂m))− pk0

)

+pk0
√
N
(

1− F (L̂k, L̂k+1)− p0

)

D−−−−→
N→∞

N
(

0, p20σ
2
k + p2k+1

0 (1− p0)
)

.

Putting all pieces together gives finally

√
N

(

k+1
∏

m=1

(1− F (L̂m−1, L̂m))− pk+1
0

)

D−−−−→
N→∞

N (0, σ2
k+1) (6)

with σ2
k+1 = p20σ

2
k + p2k+1

0 (1 − p0). From this recursion we deduce that for
all k ≥ 1

σ2
k = kp2k−1

0 (1− p0).

It remains to deal with the last step. For the sake of simplicity, we suppose
that log p/ log p0 is not an integer. Let us first consider an alternative algo-
rithm defined as follows: we run algorithm 2 with the deterministic number
of steps n0 and denote p̂d = r̂d pn0

0 the corresponding estimator, where

r̂d =
1

N

N
∑

j=1

1
{Φ(ξjn0

)≥L}
. (7)

In this expression, knowing L̂n0
, the random variables (1

{Φ(ξjn0
)≥L}

)1≤j≤N

are i.i.d. Bernoulli trials with parameter

r = P(1
{Φ(ξjn0

)≥L}
= 1

∣

∣

∣
L̂n0

)

= 1−F (L̂n0
, L) =

p

1− F (L̂n0
)
=

r0p
n0

0

1− F (L̂n0
)
.
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Then we can write

√
N(r0 − r) =

√
N
(

1− F (L̂n0
)− pn0

0

) r0

1− F (L̂n0
)
.

Now we use the almost sure convergence

1− F (L̂n0
)

a.s.−−−−→
N→∞

pn0

0 ,

and the convergence in distribution from equation (6)

√
N
(

1− F (L̂n0
)− pn0

0

)

D−−−−→
N→∞

N (0, σ2
n0
),

to conclude that

√
N(r0 − r)

D−−−−→
N→∞

N
(

0, n0
1− p0
p0

r20

)

.

From this we deduce that

√
N(r0 − r̂d)

D−−−−→
N→∞

N
(

0, n0
1− p0
p0

r20 +
1− r0
r0

)

.

Since p̂d = r̂d pn0

0 , it comes

√
N(p̂d − p)

D−−−−→
N→∞

N
(

0, p2
(

n0
1− p0
p0

+
1− r0
r0

))

.

Coming back to the “true” estimator p̂, we have

√
N(p̂− p) =

√
N(p̂− p)1n̂0=n0

+
√
N(p̂− p)1n̂0 6=n0

,

but one can readily see that p̂1n̂0=n0
= p̂d1n̂0=n0

almost surely, so that

√
N(p̂− p) =

√
N(p̂d − p) +

√
N(p̂− p̂d)1n̂0 6=n0

,

and the proof of Theorem 1 will be complete if we show that

√
N(p̂− p̂d)1n̂0 6=n0

P−−−−→
N→∞

0.

In this aim, let us first remark that for all ε > 0P(|√N(p− p̂)1n̂0 6=n0
| > ε) ≤ P(n̂0 6= n0),

then the following lemma allows us to conclude.
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Lemma 1. Denoting c = min
(

p0 − p
1

n0 , p
1

n0+1 − p0

)

, we haveP(n̂0 6= n0) ≤ 2(n0 + 1)e−2Nc2 .

As a consequence
n̂0

a.s.−−−−→
N→∞

n0.

Proof. Let us denote B = {n̂0 = n0} the event for which the algorithm
stops after the correct number of steps. The following equalities are straight-
forward:

B =
{

L̂n0
≤ L < L̂n0+1

}

=
{

1− F (L̂n0+1) < 1− F (L) ≤ 1− F (L̂n0
)
}

=

{

n0+1
∏

m=1

(1− F (L̂m−1, L̂m)) < p ≤
n0
∏

m=1

(1− F (L̂m−1, L̂m))

}

.

For all m = 1, . . . , n0 + 1, if we denote

Bm =
{

p
1

n0 − p0 < 1− p0 − F (L̂m−1, L̂m) < p
1

n0+1 − p0

}

,

we have P(B) ≥ P(B1 ∩ · · · ∩Bn0+1)

≥ 1−
n0+1
∑

m=1

(1−P(Bm)).

Denoting c = min
(

p0 − p
1

n0 , p
1

n0+1 − p0

)

, the DKW inequality implies

1−P(Bm) ≤ P(|1 − p0 − F (L̂m−1, L̂m)| > c) ≤ 2e−2Nc2 ,

so that the result of Lemma 1 is provedP(B) = P(n̂0 = n0) ≥ 1− 2(n0 + 1)e−2Nc2 .
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A.4 Proof of Proposition 4

As for the analysis of the standard deviation, we first notice that

N(p̂− p) = N(p̂d − p) +N(p̂− p̂d)1n̂0 6=n0
, (8)

and applying Lemma 1 yields

N E [|p̂ − p̂d|1n̂0 6=n0
] ≤ N P(n̂0 6= n0) −−−−→

N→∞
0,

so that only the first term of the right-hand-side of equation (8) is worth
considering for the convergence of N E[p̂ − p]. Recall that the estimate is
then p̂d = r̂d pn0

0 , where r̂d is defined as in equation (7), so thatE[r̂d] = E [E [r̂d ∣∣∣L̂n0

]]

= E[r] = E[ p

1− F (L̂n0
)

]

.

Then the normalized bias isE[p̂]− p

p
= E[ pn0

0

1− F (L̂n0
)

]

− 1

= E[F (L̂n0
)− F (Ln0

)

1− F (L̂n0
)

]

= E [ W

a−W

]

with W = F (L̂n0
)−F (Ln0

) = F (L̂n0
)−(1−pn0

0 ), and a = 1−F (Ln0
) = pn0

0 .
If we remark that

1− F (L̂n0
) =

n0−1
∏

k=0

(

1− F (L̂k, L̂k+1)
)

with the convention L̂0 = −∞, then the result of equation (3) implies

W

a
=

F (L̂n0
)− (1− pn0

0 )

pn0

0

a.s.−−−−−→
N→+∞

0.

We may now rewrite E[p̂]− p

p
=

1

a
E[W 1

1− W
a

]

,
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and the asymptotic expansion (1− x)−1 = 1 + x+ o(x) leads toE[p̂]− p

p
=

1

a
E[W ] +

1

a2
E[W 2] +

1

a2
o(E[W 2]). (9)

Then we will use the following lemma.

Lemma 2. E[W ] = E[F (L̂n0
)− (1− pn0

0 )] = 0

and E[W 2] = Var(F (L̂n0
)− F (Ln0

)) =
n0

N
p2n0−1
0 (1− p0) + o

(

1

N

)

.

The proof of this lemma is left to the next subsection. Coming back to (9),
we have obtained E[p̂]− p

p
=

1

N

(

n0
1− p0
p0

)

+ o

(

1

N

)

,

which ends the proof of Proposition 4.

A.5 Proof of Lemma 2

First of all, some notation. Let (Ui)1≤i≤N be an i.i.d. family of random
variables uniformly distributed on (0, 1). We denote by U(i) the ith largest
sample: 0 ≤ U(1) ≤ · · · ≤ U(N) ≤ 1. For simplicity, we will assume that

p0 = N0

N
for some 1 ≤ N0 ≤ N . Then it is well known from the theory of

order statistics (see for example e.g. [1] formula (2.2.20) page 14) thatE[U(N−N0)] = 1− p0. (10)

Expectation of W . We will prove that it is equal to zero by induction
on n0. For n0 = 1, F (L̂1) has the same law as U(N−N0), thus the result is

obvious by equation (10). Now assume that E[F (L̂n0−1)] = 1−pn0−1
0 . From

the decomposition

n0
∏

k=1

(1− F (L̂k−1, L̂k)) = 1− F (L̂n0
),
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we deduceE[1− F (L̂n0
)] = E[ n0

∏

k=1

(1− F (L̂k−1, L̂k))

]

= E[E[1− F (L̂n0−1, L̂n0
)|L̂n0−1]

n0−1
∏

k=1

(1− F (L̂k−1, L̂k))

]

.

Since E[1− F (L̂n0−1, L̂n0
)|L̂n0−1] = E[1− U(N−N0)] = p0,

the induction property for n0 − 1 impliesE[1− F (L̂n0
)] = p0 E[n0−1

∏

k=1

(1− F (L̂k−1, L̂k))

]

= pn0

0 ,

which proves that W has zero mean.

Variance of W . From the proof of Theorem 1, we know that

√
N

(

n0
∏

k=1

(1− F (L̂k−1, L̂k))− pn0

0

)

D−−−−−→
N→+∞

N (0, σ2
n0
),

where σ2
n0

= n0(1− p0)p
2n0−1
0 . So we have

√
N
(

1− F (L̂n0
)− pn0

0

)

D−−−−−→
N→+∞

N (0, σ2
n0
),

and by symmetry,

√
N(F (L̂n0

)− F (Ln0
))

D−−−−−→
N→+∞

N (0, σ2
n0
).

It means that

Var(F (L̂n0
)− F (Ln0

)) =
1

N
σ2
n0

+ o

(

1

N

)

,

which concludes the proof of Lemma 2.
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