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ABSTRACT
Assessing that a probability of false alarm is below a given
significance level is a crucial issue in watermarking. We pro-
pose an iterative and self-adapting algorithm which estimates
very low probabilities of error. Some experimental investiga-
tions validates its performance for a rare detection scenario
where there exists a close form formula of the probability of
false alarm. Our algorithm appears to be much quicker and
more accurate than a classical Monte Carlo estimator. It even
allows the experimental measurement of error exponents.

Index Terms— Watermarking, False alarm, Rare event
analysis.

1. INTRODUCTION

Watermarking establishes a durable link between a piece of
digital content and some meta-data by embedding the latter
deeply in the former. In order to be useful, especially for dig-
ital long-term preservation application, a watermarking tech-
nique must be reliable. We introduce here the concept of reli-
ability as the guarantee that not only watermark decoding er-
rors very rarely happen, but also that their frequency or their
probability is assessed to be below a given level.

In this paper, we focus on zero-bit watermarking which
hides the presence of a secret mark in host contents such as
still images. No message is embedded at the encoding side.
The blind detector just looks for the presence or the absence
of the mark in order to state whether the observed content is
protected. This particular subclass of watermarking is used
for instance in copy-protection application.

A big issue concerning watermark detection is to evaluate
the probability of false alarm Pfa, i.e. how often the detector
deems as watermarked a content which has not been. This
figure of merit appears at the top on the list of requirements.
The good thing with this feature is that one doesn’t have to
know how to watermark a content in order to estimate this
probability. For instance, even if the embedder of a zero-bit
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watermarking technique is not yet finalized, one can still es-
timate the probability of false alarm whenever the parameters
at the detection side are fixed.

The bad thing about this feature is that its value is typ-
ically very low especially for digital preservation scenarios,
usually never bigger than 10−6. Experimental assessments
then need millions of images and last very long, slowing the
fine-tuning of the watermark detector. Technology providers
claiming any result concerning this feature, actually have ei-
ther very high probabilities (which are measurable with accu-
racy), either low probabilities with strongly inaccurate mea-
sures.

A last problem is that everything is a matter of trade-off
in watermarking: If a technique is not ranked first in a ro-
bustness benchmark, its designers can complain and pretend
this is because its probability of false alarm is lower than for
the other competitors. Nobody can verify this statement if
their order of magnitude is lower than 10−6. This explains
why benchmarking watermarking techniques is so difficult,
and why efforts towards watermarking standardization have
always failed until now.

This issue gave birth to a collaboration between a team of
statisticians experts in rare event analysis and watermarkers.
This paper presents a general framework for experimentally
assessing the probability of false alarm of a wide class of wa-
termarking techniques. For illustration purpose, we apply it
to the well known normalized correlation watermark detector.
Sec. 2 presents our main assumptions and typical estimations
so far used by the watermarking community. Sec. 3 presents
the main algorithm and its use on synthetic data. Sec. 4 val-
idates its correctness and stresses its excellent performance.
The last section tackles the experimental measurement of er-
ror exponents, which is, as far as we know, a first time in the
watermarking literature.

2. PROBLEM STATEMENT

2.1. Assumptions

Our assumptions focus on the structure of the watermark de-
tector. This algorithm takes as inputs an image I and a secret
key K and yields a binary decision: D(I,K) = 1 if the im-
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Fig. 1. Structure of a watermark detector.

age is deemed as watermarked, 0 else. DefineH0 the assump-
tion that the image I is not watermarked. The probability of
false alarm is defined by Pfa = Prob[D(I,K) = 1|H0].

We assume the detection consists in three steps (Fig. 1):

• L real features are extracted from the input image, and
stored in a vector x ∈ RL,

• From this vector, a score s(x) ∈ R is calculated. It
represents the likelihood that the input image is indeed
watermarked: the greater the score, the more confident
the detector is to yield a positive decision,

• The final decision is the comparison of this score with
a threshold τ : D(I,K) = 1(s(x)>τ).

The secret key serves during the feature extraction and/or the
likelihood calculation. We assume that τ is the only parameter
in the detector tackling the probability of false alarm. Hence,
for a given extraction procedure and a given score function,
the issue is to know the map: Pfa = f(τ). These assump-
tions cover many watermark detectors, because this structure
is indeed advised by the detection theory, and especially the
Neyman-Pearson theorem [1].

2.2. Prior Art

The problem is easily solved when the probability density
function pS of the score is known under hypothesis H0. The
map is then just the integration of the tail of the pdf: Pfa =∫ +∞
τ

pS(s)ds. However, this first choice is almost never pos-
sible: a simple statistical model doesn’t capture the reality,
mathematical derivations are too cumbersome with a complex
model. The score often writes as a sum of many and more or
less independent random extracted features. This explains the
abusive resort to the Central Limit Theorem to evaluate Pfa
in literature. However, the convergence rate to the Gaussian
law is very crucial and depends on the third moment of the
extracted features (in the most simple case) as stated by the
Berry-Esséen bound [2]. Roughly speaking, a small probabil-
ity of error amounts to integrate the tail of the pdf, where the
CLT approximation by a Gaussian law is indeed very bad.

A better way is to establish upper bounds (e.g. Chernoff’s
bound, union bound). The tightness of the bound, which is
usually good only over a small range of parameter values, is
then an issue. Numerical approximations of the probability
formula also exist like the Beaulieu and the DFT methods
used when the score is the sum of i.i.d. random variables [3].

When these approaches are not possible, then the last
choice is the experimental estimation. However, many wa-
termarking articles were only running the Monte Carlo (MC)

method, which is very inefficient for a low Pfa. This naive
approach consists in running n experiments and to count
the number of times k that the detector failed. Then, Pfa
is estimated by the error frequency: P̂fa = k/n. This
estimator is unbiased (E[P̂fa] = Pfa) and its variance,
Var[P̂fa] = Pfa(1 − Pfa)/n, asymptotically goes to zero.
However, one needs around P−1

fa experiments to make it work
(i.e. k 6= 0), and even worse, its relative standard deviation is

given by
√

Var[P̂fa]/E[P̂fa] ≈ 1/
√
Pfan. For a decent ac-

curacy, n must be several times bigger than P−1
fa : the smaller

the probability, the harder its estimation.

3. OUR ALGORITHM

Our algorithm pertains to the field of rare event analysis under
static distribution. We present it when a relevant statistical
model of x is available.

3.1. Key idea

The key idea is to factorize a probability into a product of
bigger probabilities. Let AN = A be the rare event, and
AN−1 a related event such that when AN occurs, AN−1 has
also occured. However, when AN−1 occurs, it doesn’t imply
that AN is true. Hence, AN−1 is less rare an event than AN .
This justifies the first equality in the following equation, the
second one being just the Bayes rule:

Prob[AN ] = Prob[AN , AN−1]
= Prob[AN |AN−1].Prob[AN−1]. (1)

Repeating the process, we finally obtain:

Prob[AN ] = Prob[AN |AN−1]Prob[AN−1|AN−2]
... Prob[A2|A1]Prob[A1] (2)

provided that {Aj}Nj=1 is a sequence of nested events. Know-
ing that estimation of a probability is easier when its value
is bigger, we have succeeded in decomposing a hard problem
into N much easier problems. In our case, the rare event AN
occurs when x ∈ AN . A sequence of nested events trans-
lates then in a sequence of subsets AN ⊂ AN−1 . . . ⊂ A1.
The indicator function of these sets is as follows: x ∈ Aj
if s(x) > τj . Nested events are created for a sequence of
increasing thresholds: τ1 < τ2 < · · · < τN = τ.

The algorithm estimates Prob[s(x) > τ1] as p̂1, and the
N −1 conditional probabilities Prob[s(x) > τj |s(x) > τj−1]
as p̂j for 2 ≤ j ≤ N . It returns P̂fa = p̂1ΠN

j=2p̂j . The dif-
ficulty is now to give the appropriate values to the thresholds
{τi}N−1

1 . The probabilities to be estimated must not be very
weak in order to maintain a reasonable complexity. More-
over, it can be shown that the variance of P̂fa is minimized
when the probabilities {pi}Ni are equal [4]. However, to set
the correct value of the thresholds, we would need the map



τ = F−1(p) which we have not. Otherwise, we would al-
ready know what the value of Pfa = F (τ) is. The idea is to
set them adaptively.

3.2. Description of the adaptive levels estimator

3.2.1. Requirements

Our algorithm needs two random processes. The GENER-
ATE process creates random vectors statistically independent
and distributed as pX. The MODIFY process has two inputs:
a random vector x and the strength µ ∈ R

+. It randomly
modifies x to create a vector output y, such that:

• ∂E[d(x,y)]/∂µ > 0, for a given distance d(., .) in RL.

• pY = pX. The MODIFY process lets the pdf invariant.

3.2.2. Initialization

Our algorithm starts by estimating p1 = Prob[s(x) > τ1]
with a classical MC approach. GENERATE creates n vectors
{xi}ni=1, and their scores s(xi) are stored in a vector sx. In-
stead of returning p̂1 for a given threshold τ1, we indeed act
the other way around. We set p1 = p = k/n for an integer
k < n, parameter of the algorithm, and we return τ̂1 as the
k-th biggest score.

3.2.3. Iteration

The j-th iteration starts by selecting good vectors: once the
intermediate threshold τ̂j is set to the value of the k-th biggest
score in {s(xi)}ni=1, the k vectors with the biggest scores are
stored in a pool Pk. These good vectors are then duplicated:
a vector w is picked up at random in Pk and MODIFY trans-
forms it into a vector z. If its score is still bigger than τ̂j ,
then the modification is successful and z enters the pool Pn.
Else, the modification is rejected and w enters in Pn. This
is repeated n times and the (j + 1)-th iteration starts with a
population of n vectors in Pn.

3.2.4. Ending

The algorithm ends when the intermediate threshold is above
τ. Suppose this happens at the N -th iteration: τ̂N > τ. The
closing step counts the number k′ of vectors in Pn whose
scores are bigger than τ, and computes the estimation P̂fa =
(k/n)N−1k′/n. If this stopping condition hasn’t been met,
the algorithm stops after Nmax iterations, and P̂fa = 0. Al-
gorithm 1 summarizes the estimator in pseudo-code.

3.3. Properties

In expectation, the expected number of iterations is

E[N ] = blogP−1
fa / log p−1c+ 1, (3)

and the number of calls to the score function is Nn, propor-
tional to logP−1

fa . Hence, our estimator is far less complex
than a classical MC.

From [5], the method inherits the asymptotic properties of
consistency and normality as proven in [6]. With equations:

P̂fa
a.s.−−−−−→

n→+∞
Pfa, (4)

√
n(P̂fa − Pfa) L−−−−−→

n→+∞
N (0, σ2), (5)

with

σ2 & P 2
fa

(
(N − 1)

n− k
k

+
n− k′

k′

)
. (6)

We can also show that, in the asymptotic regime, the bias
decreases inversely proportional with n:

E

[
P̂fa − Pfa

Pfa

]
=

1
n

N(n− k)
k

+ o(n−1), (7)

which means that E[(P̂fa − Pfa)/Pfa] & αn−1, where α
is always a positive number. A remarkable fact is that the
bias is positive, so that estimations tend to over-estimate the
probability of rare event. In concrete situations, the rare event
often corresponds to a catastrophic scenario to be prevented,
and over-estimating is then a nice property.

Algorithm 1: Estimation of Prob[s(x) > τ ]
Data: τ, k, n, Nmax, statistical model x ∼ pX
begin

for i = 1 to n do
xi = GENERATE(pX); sxi = SCORE(xi);

N = 1;
τ̂N = HIGHER SCORE(sx, k);
while τ̂N < τ and N < Nmax do

t = 1;
for i = 1 to n do

if sxi ≥ τ̂N then
yt = xi; syt = sxi; t = t+ 1;

Π = RAND PERM(k);
for i = 1 to n do

j = Π ( mod (i, k) + 1);
z = MODIFY(yj , µ);
if SCORE(z) > τ̂N then

xi = z; sxi = SCORE(z);
else

xi = yj ; sxi = syj ;

N = N + 1; τ̂N = HIGHER SCORE(sx, k);
k′ = 0;
for i = 1 to n do if sxi > τ then k′ = k′ + 1;
return P̂fa = k′kN−1

nN ;
end



4. EXPERIMENTAL INVESTIGATIONS

This section applies the algorithm with a normalized corre-
lation scoring: s(x) = xTu/‖x‖, with u a secret unitary
vector. This function is widely used in the watermarking liter-
ature (e.g. in the watermark detector of the last international
challenge BOWS-2 [7]). Moreover, its probability of false
alarm has been widely studied when pX is isotropic (e.g. a
white Gaussian law): M. Miller and J. Bloom propose an
algorithm based on solid angle numerical evaluation [8], P.
Comesaña et al. [9] use asymptotic development. Strangely
enough, nobody found that Pfa has indeed a simple closed
form expression. With a change of basis and the definition of
F-distribution [10], we have:

Pfa = 1− Iτ2(1/2, (L− 1)/2), (8)

where I is the regularized incomplete beta function. The
GENERATE process is the Mersenne Twister pseudo-random
generator coded in Matlab randn command so that x ∼
N (0, IL). The MODIFY process is y = (x + µn)/

√
1 + µ2

with n ∼ N (0, IL).

4.1. The role of the modification strength µ

The main shortcoming of our algorithm is that the parame-
ter µ needs a manual fine-tuning. The algorithm as described
above works fine for the problem studied in this section when
µ = 0.2. The strength of the modification fixes the dynamic
of the system. There is a trade-off to be found between two
undesirable effects. The goal of this subsection is to exper-
imentally show and explain these two effects and to find a
trick to circumvent this manual fine-tuning shortcoming. The
others parameters are set as follows: L = 20, τ = 0.95,
n = 6400. This gives Pfa = 4.704 ∗ 10−11. A greater or a
lower value than 0.2 have negative impacts as we shall see.

As the estimator goes, the set Aj is smaller and smaller,
and the modification process is more and more likely to move
vectors out of this set when the strength is too big. Let us
define the filtering rate of the modification process as the ra-
tio of rejected modification. Figure 2 shows this filtering rate
along the iteration number. Typically, a factor µ greater than
0.5 (red curves) yields a filtering rate of 100% for the last it-
erations. This implies that the vectors in the stacks are not
renewed any longer. Thus, threshold τ̂j saturates and the al-
gorithm does not converge. It stops thanks to the constraint
on the maximum number of iterations.

We seize the opportunity of this case study where the true
map Pfa = F (τ) is known to plot the relative error along
the ROC curve (pj − F (τ̂j))/F (τ̂j) in Figure 3. We observe
that, when the filtering rate is too high, the relative error has a
peak followed by an exponential decay towards−1. The peak
is explained by the fact that the vectors and their scores are
no longer renewed, so that the thresholds quickly converge
towards the supremum of these scores. Once the thresholds

saturate to this supremum, F (τ̂j) became fixed, and the rela-
tive error has an exponential decay due to the term pj . When
this latter becomes negligible compared to F (τ̂j), the relative
error tends to −1.
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Fig. 2. Filtering rate for 10 estimator runs, µ ∈ {0.7, 0.01}.

The impact of a small µ is not noticeable in the filter-
ing rate which is far below the saturation phenomenon (see
Fig. 2). Yet, Fig. 3 shows very strong relative errors (blue
curves) in the first iterations. Factor µ is so weak that mod-
ified particules are almost located at the same place as the
previous ones. This prevents us from exploring the space due
to a low dynamic and from moving the vectors towards the ac-
ceptance region. Hence, the scores of the modified particules
are almost the same scores than the previous ones. This is al-
most as if µ = 0, i.e. classical Monte Carlo. The behavior of
the relative error is then strongly dependent on the initializa-
tion process which yields the first stack of vectors. The selec-
tion process keeps a thiner and thiner portion pj of this initial
cloud of particules and the intermediate thresholds converge
to the maximum of the initial scores. Once this is achieved,
the intermediate thresholds saturate to this maximum value,
and we again observe an exponential decay toward−1 (Fig. 3
- blue curves).

The best trade-off can be stated in the following terms:
find the maximum value of µ such that the filtering rate is
below a given level. We modify Alg. 1 as follows. µ is set
to one at the beginning. For each iteration, we measure the
filtering rate. If this latter is bigger than the level, we reduce
the value of µ and repeat the iteration until the filtering rate is
below the level. The value of µ is thus now found adaptively.
However, the number of detection trials is no longer fixed.
Experimentally, we decrease µ by a factor 1.1 anytime the
filtering rate is above 0.7.
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Fig. 3. Relative errors, same estimator runs as used in Fig. 2.

4.2. The role of p = k/n

Parameter p strikes a trade-off between the speed and the ac-
curacy of the estimator. (3) tells us that the lower p is, the
faster is the estimation. However, (6) and (7) show that the
relative variance and the bias are decreasing functions of p.

We keep the same experimental setup, and try two
values for p (3/4 and 1/2) while increasing n. We run
1,000 estimations {P̂ (i)

fa } to measure the relative bias as

(Mean({P̂ (i)
fa }) − Pfa)/Pfa, the relative standard devia-

tion Std({P̂ (i)
fa })/Pfa, and the relative maximum deviation

(Max({P̂ (i)
fa })−Pfa)/Pfa. Figures 4 and 5 plot these values

against the number of particles n.
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Fig. 4. Statistics over 1,000 estimation runs with p = 1/2.

Observe first the excellence of the estimator. n = 12, 800
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Fig. 5. Statistics over 1,000 estimation runs with p = 3/4.

(last point on curves) represents around 1,000,000 detection
trials for p = 3/4 or around 430, 000 for p = 1/2. Any
estimation yielded a result between 4.0∗10−11 and 5.7∗10−11

with p = 3/4, or between 3.6 ∗ 10−11 and 6.0 ∗ 10−11 with
p = 1/2. The relative standard deviation represents less than
10%. A classical MC estimator would need more than 2.1012

detection trials to achieve such a precision!
Surprisingly enough, the measured variance and bias fol-

low the laws (6) and (7) known for the asymptotic regime even
for a small n 1. Yet, the asymptotic regime is only achieved
if the estimations are Gaussian distributed. An Arderson Dar-
ling test [11] reveals that this is the case only for the biggest
values of n. This happens quicker for p closer to one: {P̂ (i)

fa }
are deemed Gaussian distributed when n equals 6, 400 for p =
3/4 whereas this hypothesis is clearly rejected for p = 1/2.
Fig.(6) shows that the empirical distribution of the estimations
for a very large value of n exactly matches the distribution
N (Pfa, σ2/n) (with σ2 given by (6)) except a positive offset
due to the bias.

! !"# $ $"# # #"# %

& '(
!''

(

)(

$(

%(

*(

'((

Fig. 6. Empirical distribution of 200 estimations for n =
50, 000, p = 3/4 vs. the asymptotic distribution.

1The bias is not measured with enough precision with only 1,000 trials
for n = 12, 800 because its order of magnitude is 0.001 times the value of
Pfa.



Our conclusions of this experiment are the following ones.
There are two typical use cases of our algorithm. If the user
looks for the order of magnitude of the probability to be es-
timated, then the choice p = 1/2 with around n = 2, 000
particules gives a fast estimation (around 68,000 detection tri-
als). This is especially true since the variance (6) and the bias
(7) are not drastically bigger than the ones for p = 3/4. If
the issue is to assess an estimation with a given accuracy and
confidence range, then the estimator must be in the asymp-
totic regime where the pdf of the estimation error is known.
This experiment shows that a ratio 3/4 (i.e. closer to one) is
advised. Each estimation lasts longer but, in the end, this is
the quickest way to achieve the asymptotic regime.

A faster way to yield a confidence interval is to observe
the number of iterations of several independent estimations.
For p = 1/2 and n ≥ 800, more than two thirds of the es-
timations end at N = 34 iterations (see Fig. 7), which gives
a confidence interval of [pN , pN+1] = [2.91, 5.82] ∗ 10−11.
For p = 3/4 and n ≥ 1, 600, more than two third of the es-
timations end at N = 82 iterations (see Fig. 8), which gives
a confidence interval of [pN , pN+1] = [4.26, 5.69] ∗ 10−11.
Once again, a bigger p provides more accurate results but at
the cost of slower estimations.

Fig. 7. Confidence intervals are smaller as n increases. Per-
centage of estimations over 1,000 runs for p = 1/2.

5. ERROR EXPONENTS MEASUREMENTS

A watermarking scheme is deemed as sound if its probability
of false alarm and its probability of false negative decrease
exponentially with the dimension L of the signals under an

Fig. 8. Confidence intervals are smaller as n increases. Per-
centage of estimations over 1,000 runs for p = 3/4.

embedding power constraint. Within this class, the compari-
son of two watermarking schemes can be based on their ex-
ponential decreasing rates, i.e. their error exponents defined
as follows:

Efa(τ) = − lim
L→+∞

1
L

logPfa, (9)

Efn(τ) = − lim
L→+∞

1
L

logPfn. (10)

There are very few watermarking schemes where error
exponents have closed form expressions [12]: For instance,
the additive spread spectrum with a single nappe hypercone
detection region, the improved sign embedder with a dual
nappe hypercone detection region. Furthermore, these the-
oretical expressions do not foresee a noisy channel (i.e. at-
tack) to calculate Efn(τ). In practice, it is extremely hard
to estimate these error exponents. As far as we know, it has
never been proposed in the watermarking community. The
reason is that huge values of L should imply very very low
probabilities of errors impossible to be estimated. This is
no longer a problem with our algorithm, and we simply es-
timate the error exponents by Êfa(τ) = − log P̂fa(τ)/L and
Êfn(τ) = − log P̂fn(τ)/L with a big enough L.

For the false negative, the rare event is that a water-
marked (and possibly attacked) vector has a score below a
small threshold. At each step, the estimator sets τ̂j as the k-th
highest scores. Hence, the intermediate thresholds are indeed
decreasing. We can also study the impact of an attack on Efn
as soon as the attack vector n has a statistical model with the
two following properties:



• We are able to generate vectors distributed as pn,

• There exists a modification process with a controllable
strength that lets this distribution invariant.

We now work with couples of vectors {x,n}, and their score
is the detection function applied to the attacked and water-
marked vector: s(w(x) + n), where w(.) : RL 7→ R

L is
the watermark embedding function. The replication pro-
cess changes both vectors in a couple, each one with its
distribution invariant modification process. Another tech-
nical detail is that our algorithm is run only once, storing
the intermediate thresholds in order to estimate the mapping
{Efn(τ̂j), τ̂j}. The same holds for the false alarm error
exponents {Efa(τ̂ ′j), τ̂j ′}. An interpolation finally gives
{Efa(τ̂j), Efn(τ̂j)}.

The experimental setup is the following: L = 4000,
host vectors are Gaussian distributed with variance σX = 1.
The embedding power equals Pe = 0.1. We test three
watermarking schemes: Additive spread spectrum scheme
with s(x) = xTu/‖x‖, ‘improved’ sign embedder with
s(x) = |xTu|/‖x‖ as detailed in [12], and the JANIS scheme
with order 2 [13]. For the first two schemes, the relationship
between Efa(τ) and the threshold τ is perfectly known [12].
However, there is no expression for Efn(τ) under an attack
(here a Gaussian white noise with variance σ2

N = 0.1). For
the JANIS scheme, we have to estimate both Efa(τ) and
Efn(τ). Fig. 9 shows the results.
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Fig. 9. Error exponents experimental measurements. Efn
against Efa. Solid line: Theoretical curves (without noise).
Dash-dot line: Experimental curve (without noise). Dotted
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N = 10.Pe).

From an experimental point of view, the measurements
are good with only a small inaccuracy. We blame two short-
comings. L is not big enough and the ratio L−1 logPfa (idem
with the false negative exponent) does not reflect the rate of

the exponential decay. A better way would be to estimate
log(Pfa) for several values of L and to estimate the exponent
with a linear regression. Second, these plots were obtained
very rapidly with our algorithm working with n = 3, 200 and
k = n/2. Therefore, the accuracy of the estimation of Pfa
itself is not at best. But, we are indeed interested in show-
ing that error exponents can be measured very rapidly: The
experimental curves for the additive and ‘improved’ sign em-
bedder have the right shape (in particular for the ‘improved’
sign scheme, Efn goes to infinity when Efa goes to zero). In
the same way, the range of the measurements is limited by the
Nmax, which is here set to 200.

From a watermarking point of view, it is quite difficult to
announce which scheme performs better. All of them share
the same detection complexity. The improved scheme has the
advantage of an infinite Efn when there is no attack. JA-
NIS performances curve seems to be better only at high Efa.
Yet, performances of course collapse with the presence of an
attack, but JANIS seems to be the most robust of the three
compared schemes.

6. APPLICATION

The probability of false alarm of the technique [7] used for
the international challenge BOWS-2 (Break Our Watermark-
ing Technique, 2nd edition) has been experimentally assessed
with this algorithm. The detector extracts some wavelet
transform coefficients and makes Nc normalized correla-
tions {xi}Nc

i=1 with secret vectors. The detection is positive if
s(x) = maxi |xi| is above a threshold. Hence, the acceptance
region is composed of several dual hypercones, possibly in-
tersecting. Denotes Pfa(1) the probability of being in one
dual hypercones, a union bound limits the total probability of
false alarm: Pfa ≤ NcPfa(1), with equality if no intersec-
tion. Considering that the secret vectors are independent over
the all secret key ensemble, the expected total probability of
false alarm is given by EK [Pfa] = 1−(1−Pfa(1))Nc . How-
ever, for a given secret key K, we didn’t find any other way
than our experimental assessment to evaluate the probability
of false alarm [7].

7. CONCLUSION

We presented an efficient estimator of probability of rare
event defined as Prob[s(x) > τ|X ∼ pX] knowing the dis-
tribution pX. The performances of the algorithm have been
validated with a scenario where this probability has a closed
form expression. This framework is very useful for experi-
mentally assessing the probability of false alarm of zero-bit
watermarking technique. However, the estimation is accurate
provided that the statistical model of the extracted features
match the reality. Our future works investigate whether it is
possible to directly apply our estimator on images in order to
get rid off this assumption.
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