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Abstract: The estimation of rare event probability is a crucial issue in areas such
as reliability, telecommunications, aircraft management. In complex systems,
analytical study is out of question and one has to use Monte Carlo methods.
When rare is really rare, which means a probability less than 10−9, naive Monte
Carlo becomes unreasonable. A widespread technique consists in multilevel
splitting, but this method requires enough knowledge about the system to decide
where to put the levels at hand. This, unfortunately, is not always possible.
In this article, we propose an adaptive algorithm to cope with this problem: The
estimation is asymptotically consistent, costs just a little bit more than classical
multilevel splitting, and has the same efficiency in terms of asymptotic variance.
In the one-dimensional case, we rigorously prove the a.s. convergence and the
asymptotic normality of our estimator, with the same variance as with other
algorithms that use fixed crossing levels. In our proofs we mainly use tools from
the theory of empirical processes, which seems to be quite new in the field of
rare events.
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418 Cérou and Guyader

1. INTRODUCTION

Let �Xt�t≥0 be a strong Markov process with values in �. Suppose that
X0 = x0 > 0, the origin 0 is an attractive point and M � 0 is a barrier
that the process is very unlikely to reach. We would like to estimate the
probability that �Xt� reaches M before coming back to 0: This is our rare
event. A typical example is given in Figure 1.

For the sake of simplicity, we suppose that the trajectories are
continuous. The point 0 is “attractive” means that if we define

T0 = inf�t ≥ 0 � Xt = 0��

the stopping time T0 is such that: ��T0� < +�.
Since �Xt� tends to decrease to 0, it is clear that if we denote

TM = inf�t ≥ 0 � Xt = M��

we have

��TM < T0� ≈ 0	

Let us consider the situation when this very small probability
��TM < T0� = 
 is strictly positive. We want to get an estimation 
̂ of 
.

When the process �Xt�t≥0 is not simple, the usual way to cope with
this kind of problem is to use Monte Carlo techniques. The most natural
one is to simulate n i.i.d. trajectories of the process, to count those who
reach M before 0, and to compute the ratio. Unfortunately, when the
event is really rare, this is completely unrealistic. Another idea, called
Importance Sampling, is to simulate trajectories with respect to another
reference probability, so that the rare event becomes less rare, and then
to correct the estimation via the importance function (which corresponds
to a Radon–Nikodym derivative). But it is a difficult problem to find
another suitable reference probability, especially when the system in
study is very complex.

In such a situation, a classical method is the one of multilevel
splitting: the idea dates back to 1951 with the work of Kahn and
Harris in the setting of particle transmission [12]. Roughly speaking,
the principle is to multiply the trajectories that approach the event of
interest and to let the others die. It is much more simple to implement
than importance sampling, but it requires some a priori knowledge on
the system also; precisely, when and how many times shall one split
the trajectories? Hereafter we propose a new method, called adaptive
multilevel splitting, which uses the splitting idea, but where the splitting
levels are determined during the simulations.

The article is organized as follows. Section 2 describes the algorithm
and the estimator of the rare event probability. Section 3 proves
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Adaptive Multilevel Splitting for Rare Event Analysis 419

Figure 1. An example of trajectory for the Markov process.

the consistency of the estimator. Section 4 establishes the asymptotic
normality, with a very simple expression of the variance. Section 5
illustrates these results on a toy example. Finally, Section 6 compares
this adaptive algorithm with existing versions of multilevel splitting and
shows how the method can be used in various situations.

2. THE ALGORITHM

The structure of the algorithm is the following: to approach the barrier
M of interest, we proceed in several steps. Except the first and the last
ones, all steps are equivalent. In what follows, n denotes the number of
particles which are simulated, and k denotes the number of particles that
we do not throw away from one step to another.

• Step 1: simulate n i.i.d. trajectories
(
X

j
t

)
t≥0

according to the law of the
process �Xt�t≥0 and with common initial condition

∀j ∈ �1� 	 	 	 � n� X
j
0 = x0 > 0	

Wait until all trajectories have reached 0: for the jth particle, this
requires time T

j
0 , with ��T j

0 � = �x0
�T0� < +�. Denote

S1
n�j = sup

0≤t≤T
j
0

Xj
t �
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420 Cérou and Guyader

Figure 2. The first step of the algorithm, with n = 4 and k = 1.

and sort the sample
(
S1
n�1� 	 	 	 � S

1
n�n

)
in increasing order:

S1
n��1� ≤ · · · ≤ S1

n��n−k� ≤ · · · ≤ S1
n��n�	

Keep in memory the quantity (see Figure 2)

q̂1 = S1
n��n−k�	

• Step 2: Keep
(
S1
n��n−k+1�� 	 	 	 � S

1
n��n�

)
unchanged, but denote them simply(

S2
n�n−k+1� 	 	 	 � S

2
n�n

)
. Simulate �n− k� trajectories

(
X

j
t

)
t≥0

from initial
point q̂1. Wait until all these �n− k� trajectories have reached 0: for
the jth particle, this requires time T

j
0 , with ��T j

0 � = �q̂1
�T0� < +�.

For each j ∈ �1� 	 	 	 � n− k�, denote

S2
n�j = sup

0≤t≤T
j
0

Xj
t �

and sort the sample
(
S2
n�1� 	 	 	 � S

2
n�n−k� S

2
n�n−k+1� 	 	 	 � S

2
n�n

)
in increasing

order:

S2
n��1� ≤ · · · ≤ S2

n��n−k� ≤ · · · ≤ S2
n��n�	

Keep in memory the quantity (see Figure 3)

q̂2 = S2
n��n−k�	

• Repeat the procedure until iteration N̂ such that q̂N̂+1 ≥ M . Among
the sample

(
SN̂
n�1� 	 	 	 � S

N̂
n�n

)
, there is a proportion r̂ > 0 of them that are

actually bigger than M .
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Figure 3. The second step of the algorithm, with n = 4 and k = 1.

• Compute the probability estimate. If we denote p = k
n
, then the

estimate of the rare event is simply


̂n = r̂pN̂ 	

3. CONSISTENCY

Thanks to the strong Markov property of the process and the continuity
of its trajectories, at the end of step l, it is clear that, given q̂l−1, the
random variables �Sl

n�j�1≤j≤n are i.i.d. according to the following law :

Sl
n�j ∼ �

(
sup

0≤t≤T0

X
x0
t

∣∣ sup
0≤t≤T0

X
x0
t ≥ q̂l−1

)
�

with the convention that q̂0 = x0. We can write it a little bit simpler:

Sl
n�j ∼ �

(
sup

0≤t≤T0

X
q̂l−1
t 	 q̂l−1

)
	

Let us also denote S = sup0≤t≤T0
X

x0
t , and F its distribution function.

We suppose that F is continuous. (Note that this property is not implied
by the continuity of trajectories.) We now define F a deterministic
function of two variables �q1� q2� as follows:

F�q1� q2� = ��S ≤ q2 	 S > q1�	

Since F is continuous, we have the obvious identity

F�q1� q2� =
F�q2�− F�q1�

1− F�q1�
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422 Cérou and Guyader

Thus, each Sl
n�j has the distribution function F�q̂l−1� 	�. Note that at each

step, the algorithm chooses q̂l so that F�q̂l−1� q̂l� is close to q = �1− p�.
Since F is continuous, the random variables Ul

n�1� 	 	 	 � U
l
n�n, with

Ul
n�j = F

(
q̂l−1� S

l
n�j

)
�

are identically distributed with uniform law on �0� 1� and row-wise
independent. In fact, the proof of consistency mainly relies on this simple
argument. Before stating the theorem, we sum up the assumptions on
our model.

Hypothesis (���). The strongly Markov process �Xt�t≥0 starts from
x0 > 0, with 0 as an attractive point. �Xt�t≥0 has time-continuous
trajectories and the distribution function F of the random variable
S = sup0≤t≤T0

X
x0
t is continuous.

Theorem 1. Under assumption ���, we have


̂n
a	s	−−→

n→� 


In order to prove this theorem, will need two simple lemmas.

Lemma 1. Let �Un�j�1≤j≤n be a triangular array of identically distributed
random variables with uniform law on �0� 1� and row-wise independent.
Let kn = �np�, then

Un��n−kn�

a	s	−−→
n→� q = 1− p	

Proof. Let us denote by �n the empirical distribution function of
�Un�j�1≤j≤n, and G the distribution function of the uniform law on �0� 1�,
that is the identity on �0� 1�. First note the basic identity �n −G� =
�−1

n −G� (see [17], p. 86), and Un��n−kn�
= �−1

n

(
1− kn

n

)
. We have also

	Un��n−kn�
− q	 ≤ ∥∥�−1

n −G
∥∥
� + 	p− kn/n		

Using Dvoretsky–Kiefer–Wolfowitz (DKW) inequality (see [15, 18]) we
have

�
(
�n −G� >

1
log n

− 	q − kn/n	
)
≤ 2 exp

[
− 2n

(
1

log n
− 	p− kn/n	

)2]
�

which implies that

�
(
	Un��n−kn�

− q	 > 1
log n

)
≤ 2 exp

[
−2n

(
1

log n
− 	p− kn/n	

)2]
	

We conclude using Borel-Cantelli lemma and the convergence of the
series on the right-hand-side, having noted that 	p− kn/n	 ≤ 1

n
.
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Lemma 2. Let �Vn�j�1≤j≤n be a triangular array of random variables row-
wise independent and identically distributed. Let Hn be the distribution
function of the nth row, and �n its empirical distribution function. Then

Hn −�n� a	s	−−→
n→� 0	

Proof. This is again a simple application of DKW inequality, since

�
(
�n −Hn� >

1
log n

)
≤ 2 exp

[
−2n

(
1

log n

)2]
	

We conclude using Borel–Cantelli lemma and the convergence of the
series on the right-hand-side. �

Proof of the Theorem. First of all, we shall see that for all l :

F
(
q̂l−1� q̂l

) a	s	−−→
n→� 1− p	 (1)

This property is a direct application of Lemma 1.
Then, we should notice that

l∏
k=1

�1− F�q̂k−1� q̂k��=
l∏

k=1

1− F�q̂k�

1− F�q̂k−1�
= 1− F�q̂l�=�

(
sup

0≤t≤T0

X
x0
t > q̂l 	 q̂l

)
	

Next we will show that for all l∣∣∣∣ l∏
k=1

�1− F�q̂k−1� q̂k��− pl

∣∣∣∣ a	s	−−→
n→� 0	

We already have the convergence for l = 1. Then we proceed by
induction. Assume that the previous convergence is true for some l ≥ 1.
Then we use that the product of two random variables will a.s. converge
to the product of the limits.

Now we focus on the last step. Assume first that log 

log p is not an

integer. Let N = � log 

log p�. Then we have that a.s. for n large enough,

N+1∏
k=1

�1− F�q̂k−1� q̂k�� < 
 <
N∏
k=1

�1− F�q̂k−1� q̂k���

that is,

1− F�q̂N+1� < 
 < 1− F�q̂N ��

which implies that

q̂N < M < q̂N+1�
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424 Cérou and Guyader

so that, a.s. for n large enough, the algorithm stops after N̂ = N
iterations. Let us denote by �n�N the empirical distribution function of
the

{
SN
n�j� 1 ≤ j ≤ n

}
. Using Lemma 2, we have that a.s.

	F�q̂N �M�− �n�N �M�	 ≤ F�q̂N � 	�− �n�N� a	s	−−→
n→� 0	

On the other hand, using the definition of N , we have that

N∏
k=1

�1− F�q̂k−1� q̂k�� · �1− F�q̂N �M�� = 1− F�M� = 
�

which implies:

lim
n→+��1− �n�N �M�� = 


pN
a.s.

So we get

lim
n→+� 
̂n = lim

n→+�pN �1− �n�N �M�� = pN 


pN
= 
�

which gives the estimate consistency.
Finally, we consider the case when log 


log p is an integer. Again we set
N = log 


log p . In this case, using the same arguments, we have

N∏
k=1

�1− F�q̂k−1� q̂k��
a	s	−−→

n→� pN = 
	

So, for n large enough, the algorithm stops after N̂ = N or N̂ = �N + 1�
steps. We have to consider two cases: either q̂N ≥ M , or q̂N < M , and the
estimate may be written as


̂n = pN−1�1− �n�N �M��	�q̂N≥M� + pN �1− �n�N+1�M��	�q̂N<M�	

We also have, using Lemma 2 in the same way as we did in the first part
of the proof:

lim
n→+��1− �n�N−1�M�� = p�

and

lim
n→+��1− �n�N �M�� = 1	

Then we get

	
̂n − 
	 ≤ ∣∣pN−1�1− �n�N �M��− pN
∣∣ · 	�q̂N≥M�

+ ∣∣pN �1− �n�N+1�M��− pN
∣∣ · 	�q̂N<M��

where both terms tend a.s. to 0, which concludes the proof. �
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Adaptive Multilevel Splitting for Rare Event Analysis 425

Remark. If we suppose that F−1 is continuous, the proof is shorter, since
we do not need then Lemmas 1 and 2. Indeed, in that case, classical
results say that empirical quantiles converge almost surely towards the
true quantiles (see for example [18], Lemma 21.2, p. 305).

4. ASYMPTOTIC NORMALITY

Now we are interested in the variance of this estimation. Let us denote
r = 
p−N , so that r verifies p < r ≤ 1.

Theorem 2. Under the assumptions we have made so far, we have

√
n�
− 
̂n�

�−−−→
n→+� 
 �0� �2��

with

�2 = 
2
(
N
1− p

p
+ 1− r

r

)
	

In order to prove this theorem, we will need the following lemmas.

Lemma 3. Let �Un�j�1≤j≤n be a triangular array of identically distributed
random variables with uniform law on �0� 1� and row-wise independent.
Let kn = �np�, then

√
n�Un��n−kn�

− q�
�−−→

n→� 
 �0� p�1− p��	

Proof. This is a direct application of [1] (Theorem 8.5.1, p. 223) to
��0� 1�-distributed i.i.d. random variables. �

We recall now a very classical probabilistic result.

Lemma 4. Let �Vn� n ∈ �� and �Wn� n ∈ �� be two sequences of random
variables such that

Vn

�−−→
n→� V and Wn

P−−→
n→� 0�

Then

Vn +Wn

�−−→
n→� V	

and

VnWn

P−−→
n→� 0	
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426 Cérou and Guyader

The following lemma, intuitively clear, is very useful in practice:
roughly speaking, if we are only interested in the order statistics of the
supremum, everything happens as if we had uniform and independent
random variables.

Lemma 5. Let l ≥ 1, q̂l, q̂l+1, F, and kn be as before. For any test function
� � � → � ,

����F�q̂l� q̂l+1�� 	 q̂l� = ����Un��n−kn�
���

with �Un�j�1≤j≤n a triangular array of identically distributed random
variables with uniform law on �0� 1� and row-wise independent.

The last lemma is a little bit more technical.

Lemma 6. Let �rn� be a sequence of random variables and r a deterministic
constant such that

∀n ∈ �� rn ∈ �0� 1�� and r ∈ �0� 1�� rn
a	s	−−→

n→� r�

and
√
n�rn − r�

�−−→
n→� 
 �0� �2��

Let us consider next a triangular array �Bn�j�1≤j≤n of random variables, with
the nth row being conditionally to n i.i.d. Bernoulli trials, of parameter rn
(i.e., for all 1 ≤ j ≤ n, ��Bnj = 1 	 rn� = rn = 1− ��Bnj = 0 	 rn�). Then we
have the following result:

√
n

(
1
n

n∑
j=1

Bnj − r

)
�−−→

n→� 
 �0� s2�

with s2 = �2 + r�1− r�.

Proof. In the sequel the notation o�·� refers to a.s. convergence. Let us
first consider the conditional characteristic function

�n�rn
�t� = �

[
exp

(
it
√
n

(
1
n

n∑
j=1

Bnj − r

)) ∣∣∣∣ rn
]

= e−itr
√
n
(
rne

it√
n + �1− rn�

)n

= exp
[
−itr

√
n+ n log

(
rne

it√
n + �1− rn�

)]
= exp

[
−itr

√
n+ n log

(
rn

(
1+ it√

n
− t2

2n
+ o

(
1
n

))
+ 1− rn

)]

= exp
[
−itr

√
n+ n log

(
1+ itrn√

n
− rnt

2

2n
+ o

(
1
n

))]
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Then taking the expectation and developing the log,

���n�rn
�t��

= �
[
exp

[
− itr

√
n+ n

((
itrn√
n
− rnt

2

2n

)
− 1

2

(
itrn√
n
− rnt

2

2n

)2

+ o

(
1
n

))]]

= �
[
exp

[
it
√
n�rn − r�− 1

2
rn�1− rn�t

2 + o�1�
]]

�

where

1
2
rn�1− rn�t

2 + o�1�
a	s	−−→

n→�
1
2
r�1− r�t2�

and

√
n�rn − r�

�−−→
n→� 
 �0� �2��

from which we get the convergence of the pair and then

���n�rn
�t�� −−→

n→� exp
[
− 1
2
�2t2 − 1

2
r�1− r�t2

]
	

The limit is the characteristic function of a random variable of law

 �0� �2 + r�1− r��, which concludes the proof of the lemma.

Now we are able to prove the theorem.

Proof of the Theorem. We proceed like in the proof of Theorem 1. We
begin by seeing that for all l

√
n�1− F�q̂i� q̂i+1�− p�

�−−−→
n→+� 
 �0� p�1− p��	

This property is a direct application of Lemmas 3 and 5. We will use the
following identity:

ab − cd = �a− c��b − d�+ �a− c�d + �b − d�c	

Now we proceed by induction:

√
n

( l+1∏
k=1

[
1− F�q̂k−1� q̂k�

]− pl+1

)

= √
n

( l∏
k=1

[
1− F�q̂k−1� q̂k�

]− pl

)
�1− F�q̂l� q̂l+1�− p�

+ p
√
n

( l∏
k=1

[
1− F�q̂k−1� q̂k�

]− pl

)
+ pl

√
n
(
1− F�q̂l� q̂l+1�− p

)
	 (2)
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428 Cérou and Guyader

For the first term, using Equation (1), we know that:

1− F�q̂l� q̂l+1�− p
a	s	−−−→

n→+� 0�

and by induction hypothesis

√
n

( l∏
k=1

�1− F�q̂k−1� q̂k��− pl

)
�−−−→

n→+� 
 �0� �2
l �	

So that, thanks to Lemma 4, we have

√
n

( l∏
k=1

[
1− F�q̂k−1� q̂k�

]− pl

)(
1− F�q̂l� q̂l+1�− p

) P−−−→
n→+� 0	

We want to prove that the other terms in Equation (2) both converge in
distribution. For this we use the characteristic function.

�n�t� = �
[
exp

(
it

(
p
√
n

( l∏
k=1

[
1− F�q̂k−1� q̂k�

]− pl

)

+pl
√
n
(
1− F�q̂l� q̂l+1�− p

)))]
	

Thanks to the strong Markov property of the process:

�n�t� = �
[
exp

(
itp

√
n

( l∏
k=1

[
1− F�q̂k−1� q̂k�

]− pl

))

×�
[
exp

(
itpl

√
n�1− F�q̂l� q̂l+1�− p�

) 	 q̂1� 	 	 	 � q̂l]
]

= �
[
exp

(
itp

√
n

( l∏
k=1

�1− F�q̂k−1� q̂k��− pl

))

× �
[
exp

(
itpl

√
n�1− F�q̂l� q̂l+1�− p�

) 	 q̂l]
]
	

Lemma 5 ensures that we can write the last term in another way:

��exp�itpl
√
n
(
1− F�q̂l� q̂l+1�− p�

) 	 q̂l� = �
[
exp

(
itpl

√
n�1− Un��n−kn�

)]
�

which is a deterministic complex number. Thus,

�n�t� = �
[
exp

(
itp

√
n

( l∏
k=1

[
1− F�q̂k−1� q̂k�

]− pl

))]

×�
[
exp

(
itpl

√
n�1− Un��n−kn�

)]
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And now we just have to show that both terms have a Gaussian limit.
By induction hypothesis, we know that

p
√
n

( l∏
k=1

[
1− F�q̂k−1� q̂k�

]− pl

)
�−−−→

n→+� 

(
0� p2�2

l

)
	

By Lemma 3, we know that

pl
√
n�1− Un��n−kn�

�
�−−−→

n→+� 
 �0� p2l+1�1− p��	

Thus,

p
√
n

( l∏
k=1

[
1− F

(
q̂k−1� q̂k

)]− pl

)
+ pl

√
n
(
1− F�q̂l� q̂l+1�− p

)
�−−−→

n→+� 

(
0� p2�2

l + p2l+1�1− p�
)
	

By Lemma 4, we conclude that

√
n

( l+1∏
k=1

�1− F�q̂k−1� q̂k��− pl+1

)
�−−−→

n→+� 
 �0� �2
l+1��

with �2
l+1 = p2�2

l + p2l+1�1− p�. From this recursion, we deduce:

�2
N = Np2N−1�1− p�	

Now we deal with the last step. Let N̂ be the (random) number of steps
of the algorithm. Let us first suppose that log 


log p is not an integer (we recall
that N = � log 


log p�) and assume that the algorithm is deterministically
stopped after �N + 1� steps. Then the estimate is 
̂d�N = pN 
̂N , where


̂N = 1
n

n∑
j=1

	�SNn�j≥M�	

The variables 	�SNn�j≥M� are i.i.d. Bernoulli trials, conditionally to q̂N .
The parameter of the Bernoulli is

rn = �
(
	�SNn�j≥M� = 1 	 q̂N

)
= 1− F�q̂N �M� = 


1− F�q̂N �
	 (3)

We have already shown that

√
n

[ N∏
k=1

(
1− F�q̂k−1� q̂k�

)− pN

]
�−−−→

n→+� 
 �0� �2
N �� (4)
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Then we write, using the definition of F and F:

N∏
k=1

(
1− F�q̂k−1� q̂k�

) = 1− F�q̂N �	

Let r = 
p−N . Using Equation 3, we get:

√
n�rn − r� = 


√
n

[
pN − �1− F�q̂N ��

pN �1− F�q̂N ��

]
	

We know from the proof of Theorem 1 that




pN �1− F�q̂N ��

a	s	−−−→
n→+�




pN

1
pN

	 (5)

So we have that

√
n�rn − r�

�−−−→
n→+� 
 �0� �2

r ��

with

�2
r =


2

p2N+1
N�1− p�	

Then we apply Lemma 6 to get that

√
n�
̂d�N − 
�

�−−−→
n→+� 
 �0� �2��

with

�2 = 
2
(
N
1− p

p
+ 1− r

r

)
	

Then we come back to the true (random) N̂ . Let us consider


̃N = 
̂ 	�N̂=N� + � 	�N̂ �=N��

where � is a random variable whose law is the law of 
̂d�N , conditionally
to N̂ and q̂N̂∧N . Then it is quite obvious to see that 
̃N has the same
law as 
̂d�N , implying they have both the same asymptotic behavior in
distribution. On the other hand we get for all � > 0,

��	√n�
̂− 
̃N �	 > �� ≤ ��	
̂− 
̃N 	 > 0� = ��N̂ �= N� −−−→
n→+� 0�

as we saw in the proof of Theorem 1 that N̂
a	s	−−−→

n→+� N . Now from all this

we conclude that
√
n�
̂− 
� and

√
n�
̃N − 
� both converge to the same

limit in distribution.
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If N = log 

log p is an integer, we combine the reasoning at the end of

the proof of Theorem 1 (i.e., distinction of two cases) and, in each case,
the calculus of variance above to obtain the asymptotic normality with
variance:

�2 = 
2N
1− p

p
	

�

5. NUMERICAL EXAMPLE

We have implemented this algorithm with trajectories following a
Brownian process with drift. Noting Bt a Brownian motion, the process
studied is Xt = Bt + �t, with � < 0 (see Figure 4). The drift was taken
to have a motion going quickly to 0. This process clearly satisfies
assumption � . Moreover, it is simple enough so that analytical results
are well-known about it.

We note Ha�b = H = min�s > 0 � Xs � �a� b��. The expression of the
probability of reaching b before a starting from x ∈ �a� b� is given by [3]:

�x�XH = b� = e��b−x� sinh��x − a�	�	�
sinh��b − a�	�	�

Let us compare this to our numerical results.
The first problem we had to solve was that we were considering a

continuous process, which is impossible in computing. We had to choose
a step �t and consider the process at every k× �t. This step has to be

Figure 4. Brownian motion with negative drift starting from 0.
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432 Cérou and Guyader

Figure 5. Two independent trajectories reaching 50 before 0 starting from 1.

small enough to avoid clipping the process, which could introduce a bias
in the estimation. Examples of trajectories reaching the rare set are given
in Figure 5.

We will illustrate first the a.s. convergence. We ran our algorithm on
the above example with parameters a = 0, b = 12, � = −1, x0 = 1, such
that the rare event probability is 
 ≈ 2	412× 10−10. Figure 6 gives the
relative error as a function of the number n of particles. For n = 20�000
we have an error as low as 5%.

Then we illustrate the asymptotic normality. As we need to run the
algorithm many times to estimate the law of the estimator, we chose
a setting where 
 is not very small, but about 0	1244. Estimating of
the same probability 
 1,000 times gives the histogram of Figure 7.
This confirms the fact that the distribution of the estimating values

Figure 6. Almost sure convergence of the estimator as a function of n.
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Figure 7. Histogram of the differences between � and its estimations, with
n = 1� 000, for 1,000 instances. The curve represents the limit Gaussian
distribution.

tends asymptotically towards a Gaussian distribution. Then we show the
convergence of the variance multiplied by n on Figure 8. In this setting,
we computed the asymptotic value which is about 0	0373, as shown by
the dashed line on the figure. Here we made 250 runs for each value of n.

Figure 8. n× variance of the estimator as a function of n.
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434 Cérou and Guyader

Once this algorithm is implemented, it can be improved to give more
information than only estimating probabilities. The first idea was to keep
the trajectories hitting the rare event in order to know what succession
of events has reached the event we are interested in.

The thing is to keep not only the maxima of the trajectories but
all the trajectories reaching the thresholds. In one dimension, there are
no problems with knowing where the trajectory comes from—they do
not have any choice. The number of different trajectories that can be
created with this algorithm is kN̂−1r̂n, even if we can create only k totally
independent.

The probability of a Brownian motion with drift −0	02 starting from
1 and reaching 50 before 0 is 1	014× 10−9. In a reasonable time (half a
dozen minutes), we can disclose a few trajectories reaching 50 starting
from 1.

Then, after keeping the whole trajectories, we can study the exit time
compared to the theory given by [3] (with the same notation):

�x�H ∈ dt� XH = b� = e��b−x�− �2 t
2 ssx−a�b−a�t� dt

with

ssu�v�t� =
�∑

k=−�

v− u+ 2kv√
2� t3/2

e−
�v−u+2kv�2

2t 	

The convergence of the infinite sum is extremely fast, thereby we can
truncate it and calculate the density of the exit time in b. Moreover
we are able of calculating many trajectories reaching b—which are not
altogether independent. So we have numerical estimations of the exit
time in b. We draw the histogram of these values and compare it to the
theory. We can see on Figure 9 that the numerical results agree with the
theory, which means that the adaptive algorithm gives a good sample of
trajectories reaching b.

Figure 9. Theoretical curve and histogram of the numerical values for the exit
time in b.
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6. COMPARISON WITH EXISTING ALGORITHMS

6.1. Complexity and Variance

Now we want to have an idea about the complexity of the algorithm.
To this aim let us consider the following simplification: We suppose
that the simulation of a trajectory

(
Xx

t

)
0≤t≤T0

, between its starting point
x > 0 and the first time T0 it hits 0, has a cost C which is approximately
constant, independent of the initial condition x.

For the first step, with the assumption above, the cost for simulating
n trajectories is linear in n. The finding of the maxima of the n
trajectories is also linear in n. The sorting of these maxima is, in
expectation, in O�n log n�. Thus the first step of the algorithm has an
expected complexity in O�n log n�. For n large enough, there is a finite
number of steps, that is �N + 1�, with N = � log 


log p�. Finally the total cost
of the algorithm is in O�n log n� operations.

We are now interested in the precision of the estimator. We have
seen above that the variance of 
̂ is

�2 = 
2
(
N
1− p

p
+ 1− r

r

)
�

with p < r < 1. If for simplicity we suppose that 
 = pN , then the
normalized variance is

�2


2
= N

1− p

p
≈ log 


log p
· 1− p

p
	

In real life applications, the only parameter that is fixed a priori is the
small probability 
 to estimate. So the question is: What is the optimal
choice for p? A straightforward study of the variance for p varying
between 
 and 1 proves that �2 decreases when p goes to one.

This result is intuitively clear and merely says that if we want a
precise estimate for 
, we just have to put a lot of intermediate levels.
But, of course, the complexity of the algorithm is then increasing since
the number of levels is log 


log p . So the choice of the parameter p, or
equivalently the choice of the number N of levels, depends on what we
want: a precise estimate or a quick algorithm.

6.2. Classical Multilevel Splitting

A usual way for estimating rare event probability is the multilevel
splitting algorithm. The splitting idea is widespread in Monte Carlo
methods (see for instance [11], p. 131). Its application to rare
event estimation is first due to Kahn and Harris in the setting of
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Figure 10. Multilevel splitting as seen by Lagnoux, with n = 4 and R1 = 2.

particle transmission [12]. In 1970, Bayes proposed to apply it in
the field of waiting queues [2].1 This idea was rediscovered 20 years
later by Villén-Altamirano and Villén-Altamirano [19]: This is what
they call the RESTART method (REpetitive Simulation Trials After
Reaching Thresholds) with applications in telecommunication traffic and
reliability. In a simplified context, the idea has been theoretically studied
by Glasserman et al. in several papers [8–10], and more recently by
Lagnoux [13]. We refer the reader to [10] for a precise discussion and
many references about splitting algorithms and their applications.

We can describe the algorithm in the simplified form of these last
authors on our Markov process example. Let us denote A the event
“reaching M before 0, starting from x0,” then consider A = AN ⊂ AN−1 ⊂
· · · ⊂ A1 an increasing sequence of events. For us, this is equivalent
to considering a decreasing sequence of levels M = MN > MN−1 > · · · >
M1 > x0, each Mi being the threshold between Ai−1 and Ai. Let p1 =
��A1� and pi+1 = ��Ai+1 	Ai�. These probabilities are bigger than 
 =
��A� and thus easier to estimate. Moreover, since the process is Markov,
the following product decomposition holds:


 = p1p2 	 	 	 pN 	

In the version of Lagnoux, the idea of splitting is to simulate n paths
starting from x0, to duplicate R1 times those who have reached M1

before 0 (which happens with probability p1), then to duplicate R2 times
those who have reached M2 before 0 starting from M1 (which happens
with probability p2), etc. (see Figure 10).

An unbiased estimator of 
 is


̃ = nA

nR1 	 	 	 RN

�

1Unfortunately, he introduces some confusion in his paper by using the term
“importance sampling” for what generally is named “importance splitting.”
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Figure 11. Multilevel splitting as seen by Glasserman, with R1 = 2 and R2 = 3.

where nA is the number of trajectories that have reached M before 0.
The complexity of the algorithm is this time in O�n�, which is less than
for the adaptive multilevel splitting algorithm.

As Glasserman et al. noticed, one can also see the multilevel splitting
method in terms of branching processes. Suppose there is initially
one ancestor, his offspring has a binomial distribution �R1� p1�, each
child has himself an offspring with binomial distribution �R2� p2�, etc.
(see Figure 11). Compare to the version of Lagnoux, we see that it is the
same idea, there is only a shift of one step in the splitting.

Suppose that if the number N and the levels �M1� 	 	 	 �MN� are fixed,
we can compute the probabilities �p1� 	 	 	 � pN �, and vice versa. Then, if
the sequence �R1� 	 	 	 � RN � is fixed also, we can compute the variance of
the estimator 
̃: either through direct calculus [13], or via the theory of
branching processes [10]. The natural question that arises then is: What
is the best choice for these sequences, in terms of estimator variance
and complexity? Glasserman et al. [10] have shown that asymptotically
when 
 → 0, the best thing we have to do is to take all the pi’s equal
to p = 
1/N and all the Ri’s equal to R = 1/p (if this quantity is not
an integer, just randomize the algorithm so that ��R� = 1/p). Lagnoux
has shown the same result without any asymptotics on 
. In terms of
branching processes, this result says that the best compromise between
complexity and variance is reached in the critical regime. No surprise
in this story: if R > 1/p, the variance is smaller than simple Monte
Carlo, but the number of paths will explode,2 and if R < 1/p, there is no
substantial gain in estimation compared to naive Monte Carlo.

In relation with this last point, we could have described our
algorithm in a slightly more general way, that means: with parameters

2In this case, most of the computing time is spent with highly correlated
trajectories.
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�k1� n1�� 	 	 	 � �kN � nN � instead of the same couple �k� n� at each step.
Anyway, when n and k go to infinity so that the ratio k/n goes to p, it
is clear that we get closer and closer to the classical splitting algorithm
with regular levels. Thus, the result obtained by preceding authors on the
classical splitting algorithm shows that the best thing we have to do in
our case is to keep the same couple �k� n� at each step.

For the sake of simplicity, let us suppose again that 
 = pN , with
R = 1

p
an integer. Then the variance s2 of the estimator 
̃ in classical

multilevel splitting is just the same3 as for our 
̂:

s2


2
= N

1− p

p
	

The difference between the variances of 
̂ and 
̃ is the following: Since
the adaptive version needs interactions between the n trajectories, its
variance is asymptotic when n goes to infinity. This is not the case
with classical splitting, where the trajectories are independent. On the
other hand, the above formula is only a best case for classical multilevel
splitting (regular levels), whereas it is always asymptotically granted in
the adaptive version, as long as k/n is kept fixed. In other words, in terms
of estimators fluctuations, classical multilevel splitting will never perform
better than adaptive multilevel splitting.

Indeed, in real life applications, it is unfortunately impossible to
have regular levels: the systems are usually so complex that any analytic
calculus about them is just out of question. In this context, our adaptive
algorithm is very useful: the levels �q̂1� 	 	 	 � q̂N � are determined during
the algorithm and they are in fact approximations of the true quantiles
�M1� 	 	 	 �MN�. So, at the expense of a multiplying factor log n in the
complexity, we have an algorithm that is really suitable for applications.

Concerning the issue of fixing the levels, the authors discovered a
posteriori the thesis of Garvels [6]. In Section 3.3.1., he proposes to
estimate them during a trial run, in the same way as we do, and then to
apply classical splitting. He writes: “Care has to be taken that enough
samples are used determining the thresholds, otherwise the thresholds
may become biased and force the real simulation in the wrong area.
A good rule of thumb is to devote 10% of the simulation effort to a
trial run which will determine all the thresholds.” To our knowledge, he
does not mention that both tasks can be treated simultaneously, with a
consistency result and an “optimal” asymptotic variance.

3Note that the formula in [10] (p. 589) seems to be different, but this is only
due to the first step of their algorithm.
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6.3. Multilevel Splitting as a Feynmac–Kac Model

Another variant of multilevel splitting has been recently proposed by
Del Moral [4, 5]. Like in classical multilevel splitting, it requires to
fix the thresholds before beginning simulations (in other words, it
is not adaptive). Anyway, one of the benefits of this version is to
connect multilevel splitting techniques with interacting particle systems
approximations of Feynman–Kac distributions. This last topic has been
studied intensively since the beginning of the 1990s (see [4]), so that
precise and general results can be transposed in the field of rare event
analysis.

We can describe briefly the algorithm in the context of the above
mentioned Markov process: suppose the number N and the levels
M1 < · · · < MN = M are fixed, like in classical splitting. At time 0, the
algorithm starts with n independent copies of the process X that are
stopped when they reach 0 or M1, whatever occurs the first. The particles
which reach 0 before M1 are killed and randomly redistributed among
those having reached the first level, producing offsprings. If the whole
system is killed, the algorithm is stopped. Otherwise, with the offprings,
there are still n particles at the first level M1. In a second step, the n

particles in the first level evolve according to the same rule of the process
X. Here, again, particles that reach 0 before M2 are killed and for each
killed one we randomly choose one of the particles that have reached the
second level and add an offspring to it (see Figure 12). Then the process
goes on to the next level, and so on until the rare event is reached.

For comparison, the cost is the same as for classical splitting, in
O�n�. The asymptotic normality of the estimator is proved, with the same
variance as before, i.e., N · 1−p

p
(by adapting for instance Theorem 12.2.2

in [4] in our framework).

Figure 12. Multilevel splitting as a Feynmac–Kac model, with n = 5.
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6.4. Generalization

The assumptions made to prove the consistency and the asymptotic
normality of 
̂ are, mainly: The process is Markov, the distribution
function F of its supremum is continuous, the process is in one
dimension.

Even if, for now, we do not have theoretical results in more general
cases, the algorithm itself is quite versatile. In the following, we briefly
present two examples where the above assumptions are not satisfied, but
where first experimentations give promising results.

Examples.

• Saturation of a waiting queue buffer. Consider a queue with 0 as a
positive recurrent state. In other words, the tasks are treated faster
than the clients arrive, so that the system is stable. Suppose moreover
that the system has a huge but finite capacity, so that the saturation
will be a rare event. We want to estimate its probability with adaptive
splitting.
The process �Xt�t≥0 is the number of clients in the system. Note first
that in general this process is not Markov. Secondly, �Xt�t≥0 is not
continuous. Consequently, we cannot apply directly our theoretical
results. Nevertheless, there is no problem in adapting our algorithm in
this context. The first steps are described in Figure 13.

• Self avoiding walks. Let us now mention a two-dimensional problem.
We consider self-avoiding walks (saw) in �2, which serves as a model
for molecular chains. We want to calculate the probability of having
long chains and draw some of them. A saw is simply a random walk
on �2, conditioned on the fact that it never visited twice the same site.
The proportion of such trajectories upon all possible chains decreases
very fast with its length n, making it a very rare event. See [14] for a
monograph on saw.

Figure 13. Adaptive algorithm for a waiting queue, with n = 3 and k = 1.
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Figure 14. Adaptive algorithm for self-avoiding walks, with n = 3 and k = 1.

Here again, even if theory is only established for one-dimensional
problems, adapting the algorithm is straightforward. The algorithm is
described in Figure 14. The supremum of the trajectory in previous
examples is just replaced by the length of the random walk until it hits
himself. Note that in general, for multidimensional problems, this is the
difficult question: Which criterion does really measure the fact that we
are approaching the rare event? That is what Garvels et al. call “the
choice of the importance function” [7].

As in the historical paper [16], we focused on the extension of the
chain. The extension of a saw X of length � is defined as

s��� = ��X���2�	

It is proved that the limit

lim
�→+�

s���

��

exists and is finite for some � > 0. But in �2 the exact value of � is
still unknown, and it is conjectured [14] that � = 3/2. In Figure 15, we
present estimates of s��� as a function of �. These were computed for
� ≤ 150 with n = 150�000, and k = 50�000. To estimate � we decided to
remove the beginning because we are not yet in the asymptotic regime.
Keeping the values for 50 ≤ � ≤ 150, and fitting the logarithms with a
simple linear regression, we found � � 1	511, which is compatible with
the conjecture.
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Figure 15. saw extension.

7. CONCLUSION

We have presented a new algorithm for rare event analysis.
This algorithm belongs to the multilevel family, but does not require the
splitting levels to be set in advance. Instead it adapts them on the fly
during the simulation. In the one dimensional case, we showed that there
is no loss in variance compared to the other algorithms with optimal
splitting levels, and only a slight increase in complexity.
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