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ON SOME RECENT ADVANCES ON HIGH DIMENSIONAL BAYESIAN

STATISTICS

Nicolas Chopin1, Sébastien Gadat2, Benjamin Guedj3, Arnaud Guyader4 and
Elodie Vernet5

Abstract. This paper proposes to review some recent developments in Bayesian statistics for high
dimensional data. After giving some brief motivations in a short introduction, we describe new ad-
vances in the understanding of Bayes posterior computation as well as theoretical contributions in non
parametric and high dimensional Bayesian approaches. From an applied point of view, we describe
the so-called SQMC particle method to compute posterior Bayesian law, and provide a nonparametric
analysis of the widespread ABC method. On the theoretical side, we describe some recent advances in
Bayesian consistency for a nonparametric hidden Markov model as well as new PAC-Bayesian results
for different models of high dimensional regression.

Résumé. Nous proposons dans cet article une vue d’ensemble de récents développements en statis-
tiques bayésiennes en grande dimension. Après quelques motivations rappelées en introduction, nous
présentons des avancées à la fois algorithmiques et dans la compréhension théorique de méthodes
de calculs d’a posteriori bayésien. En particulier, nous décrivons l’algorithme particulaire SQMC et
proposons un point de vue non-paramétrique sur la méthode populaire ABC. Nous revenons ensuite
également sur des contributions nouvelles en statistiques bayésiennes non paramétriques et en grandes
dimensions. Dans ce contexte, nous décrivons des résultats de consistance bayésienne a posteriori pour
des modèles non-paramétriques de Markov cachés ainsi que des résultats PAC-bayésiens pour différents
modèles de régression.

1. Introduction

The analysis of Bayesian methods for high dimensional and non parametric models are at the cornerstone of
some new statistical developments. Bayesian methods are tempting owing to their great generality and ability
to incorporate in the statistical approach a belief of what should be the unknown quantity to be estimated
(for example). It is also useful for producing efficient estimators or confidence set. It has recently attracted
a lot of attention thanks to the availability of massive computational resources: in the 2000s, Bayesian works
have been developed to deal with very high dimensional or even non parametric problems. This evolution also
guided by very concrete applications in biostatistics and signal processing (among others) has raised new natural
questions that mainly concern two important points. The first one asks how should be a “good” Bayesian prior
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for high dimensional or non parametric statistical model and what kind of theoretical results on the posterior
distribution could we expect when the number of observations increases? The second imperative question is
how to produce efficient algorithms to make it possible the computation of the posterior distribution and, if
possible, quantify the way these numerical methods approximate this posterior distribution.

1.1. Bayes approaches

In what follows, we will consider a dominated model parameterized by a set of measurable parameters Θ.
We will assume that Θ is included in a metric space and each parameter θ ∈ Θ defines a conditional probability
distribution P(.|θ). As a dominated model, all the previous laws P(.|θ) are absolutely continuous with respect
to a common measure denoted λ, whose density will be referred to as f(.|θ).

A Bayesian prior π on Θ is an initial distribution on Θ that traduces a belief on the distribution of an
unobserved parameter θ living on Θ. We are then interested in statistical inference on Θ (or in a quantity
related to a distribution on Θ) when observing an i.i.d. sample of size n, denoted yn := (Y1, . . . , Yn) in the
sequel. A key ingredient for the analysis of the Bayesian procedures is the likelihood ratio of the sample, written
as `(yn|θ) that satisfies P(dyn|θ) = `(yn|θ)λ(dyn). This likelihood ratio is important since it permits, at least
from a mathematical point of view, to compute the posterior distribution built using the prior distribution and
the famous Bayes’ rule:

π(θ|yn) =
π(θ)`(yn|θ)∫

Θ
π(ϑ)`(yn|ϑ) dϑ

. (1)

We will see in the sequel some very nice results about the behaviour of the posterior distribution, which thus
permit to compute certain quantities (e.g. mean or moments) of the posterior distribution and therefore to
perform Bayesian inference.

1.2. Posterior computation

1.2.1. Bayesian inference

In order to obtain a Bayesian estimator generically given by E[ϕ(θ)|yn], the standard approach is to do a
Monte Carlo procedure to roughly approach the former expectation: one simulates several independent values
θk ∼ π(θ|yn), making k varying between 1 and K, and compute the empirical averages, e.g.

1

K

K∑
k=1

ϕ(θk)

as an approximation of E[ϕ(θ)|yn] =
∫
θ
ϕ(θ)π(θ|yn) dθ.

A practical difficulty with this approach is that it relies on the approximation of the posterior distribution,
and in most cases the denominator in (1) is an intractable integral. Fortunately, standard MCMC (Markov
chain Monte Carlo) algorithms used to simulate from π(θ|yn) require evaluating the posterior density only up
to a constant, and therefore do not require to evaluate this intractable integral. For instance, Algorithm 1
describes one step of a Gaussian Random Walk Hastings-Metropolis (RWHM) algorithm, that is, an algorithm
for simulating a Markov chain that leaves invariant π(θ|yn), using the following proposal mechanism (assuming

Θ = Rd): from a current point θk, propose new point θ? ∼ N(θk,Σ), (a random walk move), and accept/reject
according to (informally) how more compatible is the proposed point to the posterior, relative to the current
point. One sees that Algorithm 1 does not require evaluating the denominator of (1).

Algorithm 1 is just a simple example of possible practical approaches to Bayesian computation and various
methods exist for the inference of θ0 in this context, such as rejection algorithms [Rip06], Markov Chain Monte
Carlo (mcmc) methods (e.g., the Metropolis-Hastings algorithm [MRR+53,Has70]), and Importance Sampling
[Rip06]. For a comprehensive introduction to the domain, the reader is referred to the monographs [RC04]
and [MR07]. However, in some contexts, computation of the posterior is problematic, either because the size
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Algorithm 1 (Gaussian) Random Walk Hastings-Metropolis (RWHM) algorithm

Input: θk, Σ (resp. a point in Rd, and a d× d symmetric positive matrix)

Output: θk+1 (a vector in Rd).
1: Simulate θ? ∼ N(θk,Σ).
2: With probability 1 ∧ r where

r =
π(θ?)`(yn|θ?)
π(θk)`(yn|θk)

take θk+1 = θ?; otherwise keep the parameter unchanged: θk+1 = θk.

of the data makes the calculation computationally intractable, or because calculation is impossible when using
realistic models for how the data arises. Thus, despite their power and flexibility, mcmc procedures and their
variants may prove irrelevant in a growing number of contemporary applications involving very large dimensions
or complicated models. This computational burden typically arises in fields such as ecology, population genetics
and image analysis, just to name a few.

1.2.2. Limitations of standard RWHM

A miminal requirement to apply Algorithm 1 (and many other similar methods) is the possibility to evaluate
the likelihood `(yn|θ) for any θ ∈ Θ. Unfortunately, there are various important cases where the likelihood
itself cannot be exactly computed :

(1) Because the likelihood is an intractable integral: `(yn|θ) =
∫
`(x,yn|θ) dx. Typically, x is interpreted

as a latent variable in this formulation. Examples include hidden Markov models (also covered in Section
3), phylogenetic models (where x is a phylogeny tree, see e.g. [Bea10]), and more generally any model
based on latent variables.

(2) Because the likelihood is un-normalised : `(yn|θ) = gθ(yn)/Z(θ), with Z(θ) =
∫
θ
gθ(yn

′) dyn
′ being

intractable. Examples include Ising models, networks models [Eve12,CF13], models for point processes
[GZ01], among others.

1.2.3. Approximate Bayesian Computation methods

Another pathological situation occurs when the model is so complicated that the only task we can perform
is to sample from it. This type of problem (originally arising in genetics) has motivated a drive to more
approximate approaches, in particular the field of Approximate Bayesian Computation (abc for short).

In a nutshell, abc is a family of computational techniques that offers an almost automated solution in sit-
uations where a systematic evaluation of the likelihood is computationally prohibitive, or whenever suitable
likelihoods are not available. The approach was originally mentioned, but not analyzed, in [Rub84]. It was
further developed in population genetics in [FL97,TBGD97,PSPLF99,BZB02], who gave the name of Approx-
imate Bayesian Computation to a family of likelihood-free inference methods. Since its original developments,
the abc paradigm has successfully been applied to various scientific areas, ranging from archaeological science
and ecology to epidemiology, stereology and protein network analysis. There are too many references to be
included here, but the recent survey [MPRR12] offers both a historical and a technical review of the domain.

1.3. Consistency of Bayesian procedures

1.3.1. Frequentist point of view

As already discussed above, the choice of the prior is a key issue in Bayesian statistics. It can be important
for computational reasons since it may help a lot to use some particular conjugate prior/posterior to accelerate
the evaluation of Bayes estimators (see e.g. [GCSR04]). It is also at the core of Bayesian consistency by adopting
a frequentist point of view. A natural question is the impact of the prior π on the posterior π(·|yn). That is
to say, does the prior still play a role in the posterior when the number of observations increases or does it
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“disappear” in favor of the observations? If another prior is chosen, will the posterior be approximately the
same at least when the number of observations is infinite? An answer to this question is given by the concept of
posterior consistency. Studying posterior consistency implies taking a frequentist point of view, assuming that
the observations come from a real parameter θ0 ∈ Θ, i.e.

yn = (Y1, . . . , Yn) are distributed from P(.|θ0)

and wondering if the posterior concentrates its mass around θ0 when the number of observations increases
(meaning that n −→ +∞).

Definition 1.1 (Consistency). The posterior π(·|yn) is consistent at θ0 if for all neighborhood U of θ0:

P(.|θ0)-a.s., π(U |yn) −→ 1 as n −→ +∞.

Posterior consistency may be seen as a frequentist validation of Bayesian statistics. It also ensures robustness
of the posterior considering two different priors see [GR03].

The first historical answer to such a type of question is given by [Doo49]: in a very general setting, when
the observations are i.i.d. and the model is identifiable, the posterior is consistent at π-almost every θ0. The
exact set of true parameters at which the posterior is consistent is not specified in this theorem and it may be
topologically small. In particular, [Fre65] proved that in the nonparametric case, the couples (π,θ0) for which
the posterior is consistent is very small topologically (meager). This negative result is not a reason to give up
nonparametric or high dimensional Bayesian statistics: on the contrary it is a clear invitation to a careful choice
of a good prior to resolve a given statistical problem.

A general and now usual method to prove consistency was introduced by [Sch65]. Some historical modifica-
tions can also be found in [IH81] but recent advances stand on the seminal work of [Bar88]. Roughly speaking,
Bayesian consistency holds if the prior puts some mass on any closed neighborhood of θ0 and if there exist
exponentially consistent tests to discriminate θ0 against the complementary of all neighborhood of θ0 (for the
considered topology) intersected with a set with an exponential decreasing prior mass. An important under-
lying concept resides on the topology considered on Θ. In particular the neighborhoods mentioned above are
generally defined through metric on probability distributions via distance and weak topology on distributions,
and then transferred to a topology on Θ. Indeed the property of consistency highly depends on the topology
considered on Θ (through the neighborhoods U considered). The finer the topology is, the more difficult it is
to prove the existence of the tests and posterior consistency As an example, famous applications of the results
stated in [Bar88], in the case of density estimation with i.i.d. observations lead to Theorems 1.2 and 1.3. Here,
neighborhoods of θ0 are defined through the Kullback-Leibler divergence between P(.|θ) and P(.|θ0) and the
prior should put a positive weight a on such neighborhood.

Theorem 1.2. ( [Sch65], [GR03]) Let yn be a sequence of i.i.d. observations distributed from fθ0
dλ and π a

probability measure on the set D of densities with respect to λ. If for all ε > 0,

π {f ∈ D : dKL(f, fθ0) < ε} > 0

then the posterior is consistent for the weak topology on D at fθ0
dλ.

For the weak topology, the existence of the tests is a direct consequence of the Hoeffding inequality without
any additional constraint. Considering now a finer topology, namely the L1 one, it is more difficult to prove the
existence of such statistical tests. Particularly, the tests exist if the prior puts mainly its mass on not “too big”
set (in the sense of covering numbers N(., ·, ·)). In particular, it is still possible to deal with the L1 topology
in the framework of density estimation with i.i.d. observations. It can be shown that if the prior puts mainly
its mass on not a “too big” set (in the sense of covering numbers), then an exponentially consistent test exists.
Such consequence is stated in the next result in the framework of density estimation.
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Theorem 1.3. [GR03] Let yn be a sequence of i.i.d. observations distributed from fθ0dλ and π a probability
measure on the set D of densities with respect to λ. We further assume that the following conditions hold:

i) For all ε > 0,

π {f ∈ D : dKL(f, fθ0) < ε} > 0. (2)

ii) For all δ > 0, a subset Fn of D and positive numbers C1 and β1 exist such that

π(Fcn) ≤ C1 exp(−nβ1) and
∑
n>0

N(δ,Fn, L1) exp(−nδ2/2) <∞ (3)

.

then the posterior is consistent for the L1 topology on D at fθ0dλ.

These last theorems can be applied to different priors based on Dirichlet or Gaussian processes (see e.g. [GR03]).

1.3.2. Consistency rate of Bayesian procedures

Finally, consistency is a tool for choosing the prior for a given estimation. To ensure more precisely the
behavior of the posterior distribution, the rate of convergence of the posterior can be studied. The usual
method to study the rates of convergence is given in [GGvdV00], it mainly relies on the method used to prove
consistency and requires, as exhibited in the last Theorem, a fine upper bound on the complexity of the set where
the estimation problem is located. For example, it is commonly necessary to upper bound the covering numbers
(in the Hellinger or Kullback sense) of a particular set {P(.|θ),θ ∈ Θ} and similarly control the weight of closed
neiborhoods of P(.|θ0). These methods have been applied in many various situations such as the problem of the
shape invariant model (see e.g. [BG14]), the estimation either of a spectral density for a stationary time series
or of the transition density of some ergodic Markov processes (see e.g. [CGR05]). Recently, [Ver13] has studied
the case where the observations are dependent, namely linked through a hidden Markov model.

1.3.3. PAC-Bayesian approaches

We can remark in the two previous paragraphs that both consistency and consistency rates are generally
obtained in an asymptotic setting n −→ +∞ although less is known when one is looking for a finite horizon
result. In a nutshell, the PAC-Bayesian approach consists in a technical toolbox, allowing in particular to
derive risk bounds for Bayesian estimators, with arbitrarily high probability (hence the acronym Probably
Approximately Correct) in a finite horizon. The core of the PAC-Bayesian scheme is the concentration of the
empirical excess risk of a Bayesian estimator towards its risk. This is obtained by the means of Bernstein-like
concentration inequalities in the following.

The PAC theory consists in deriving risk bound on randomized estimators (see for example [Val84]). The
PAC-Bayesian theory originates in the two seminal papers [STW97,McA99] and has been extensively formalized
in the context of classification by [Cat04,Cat07] and regression by [Aud04a,Aud04b,Alq06,Alq08,AC10,AC11].
Note also the work of [See02, See03] in the framework of Gaussian processes, and the papers [ALW12, AW12,
SLCB+12] focusing on time series and martingales. In addition, it has been worked out in the sparsity perspec-
tive more recently by [DT08,DT12,AL11,DS12,Suz12,AB13,GA13,Gue13a].

Below, we will review some recent advances in Bayesian statistics in high dimensional or nonparametric
situations. Section 2.1 will describe a sequencial approximation algorithm of posterior distribution sampling
that covers a particular case of hidden Markov models (HMM for short). In such a case, the likelihood is usually
intractable and we will provide an efficient way to get round of such difficulty by using a sequential quasi-Monte
Carlo algorithm. Section 2.2 will discuss on abc algorithms and will offer a nonparametric point of view for
understanding the behaviour of estimators computed from abc algorithms. In Section 3, some recent results
taken from [Ver13] on posterior consistency for HMM are presented. We end the paper with Section 4, which
aims at showing that the PAC-Bayesian approach adapts neatly to the high dimensional context when coupled
with a suitable chosen sparsity-inducing prior.
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2. Bayesian computation

2.1. Sequential Quasi-Monte Carlo and its application to hidden Markov models

2.1.1. Hidden Markov models

Hidden Markov models (HMMs), also known as state-space Markov models, have been widely used in diverse
fields such as speech recognition, genomics, econometrics since their introduction in [BP66]. The books [MZ97]
and [CMR05] provide several examples of applications of HMMs and give a recent (for the latter) state of the
art in the statistical analysis of HMMs. HMMs are stochastic processes (xt,yt)t∈N such that

(a) (xt)t≥0 is an unobserved Markov chain,
(b) the observations yt’s are conditionally independent, given the xt’s.

The name “hidden Markov model” comes from the fact that we only observe the yt component of the process
and we cannot access to the states (xt)t∈N of the Markov chain. One way to fully specify such a model is as
follows: x0 ∼ f0(x0), and

xt|xt−1 ∼fX(xt|xt−1), t ≥ 1

yt|xt ∼fY (yt|xt), t ≥ 0

where f0, fX and fY are conditional probability densities with respect to appropriate dominating measures; in
this paper, we will simply assume that xt, resp. yt, take values in Rdx , resp. Rdy .

One may assume in addition that f0, fX and fY depend on a fixed parameter θ ∈ Θ, f0
θ , fXθ and fYθ ,

leading to the likelihood function, for data y = y0:T observed up to final time T ,

`(y0:T |θ) =

∫
R(T+1)dx

f0
θ(x0)

T∏
t=1

fXθ (xt|xt−1)

T∏
t=0

fYθ (yt|xt) dx0:T

which is an integral of often very large dimension. Except in specific cases (i.e. when the state space is finite;
or when the model is linear and Gaussian), this likelihood cannot be computed exactly, and require some form
of Monte Carlo integration. For notational convenience, we will omit the dependence in θ in what follows.

2.1.2. Particle filtering

Particle filtering algorithms provide some very efficient methods to sample from a posterior distribution even
when this distribution seems very hard to compute. A pseudo-code is given in Algorithm 2 that describes the
simplest particle filtering algorithm (known as the bootstrap filter).

Note that the only requirements to implement Algorithm 2 are (i) to be able to compute fY (yt|xt) for any
(xt,yt) ∈ X × Y; and (ii) to be able to sample x0 ∼ fX(dx0), xt|xt−1 = xt−1 ∼ fX(dxt|xt−1). In particular,
some complicate models are such that the density fX(xt|xt−1) of the Markov transition is intractable, but
Algorithm 2 can still be implemented in this case (provided we can at least sample from fX).

Let us briefly explain the construction of this algorithm. At any time t, we aim to build a filtering distri-
bution (xnt ,W

n
t )1≤n≤N that approximates the true posterior one. It provides some typical samples (xnt )1≤n≤N

associated to a suitable sequence of weights (Wn
t )1≤n≤N such that the filtering distribution satisfies

N∑
n=1

Wn
t ϕ(xnt ) ≈ E [ϕ(xt)|y0:t]

for a given function ϕ : Rdx → R. In addition, the particle filter algorithm computes a quantity LNt that mimics
an approximation of the likelihood `(y0:t). By approximation, we mean consistent estimation, as N → +∞
(under appropriate conditions).

A simple way to motivate Algorithm 2 is through (iterated) importance sampling.
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Algorithm 2 Particle filter

Operations must be performed for all n = 1, . . . , N .
At time 0,

(a0): Sample xn0 ∼ f0(x0)dx0.

(b0): compute weights wn0 = fY (y0|xn0 ), normalised weights Wn
0 = wn0 /

∑N
m=1 w

m
0 , and

LN0 =
{
N−1

∑N
n=1 w

n
0

}
.

Recursively, from time t = 1 to time t = T ,

(at): Sample a1
t , . . . , a

N
t in such a way that E

[∑N
m=1 I (amt = n)

]
= NWn

t−1 for all n ∈ {1, . . . , N}.

(bt): Sample xnt ∼ fX(xt|x
ant
t−1)dxt.

(ct): Compute weights wnt = fY (yt|xnt ), normalised weights Wn
t = wnt /

∑N
m=1 w

m
t , and

LNt = LNt−1

{
N−1

∑N
n=1 w

n
t

}
.

• At time 0, we generate “particles” from f0(dx0), and reweight them, with weights equal to fY (y0|xn0 ),
so as to target the filtering distribution

p(x0|y0) =
f0(x0)fY (y0|x0)

`(y0)
, `(y0) =

∫
Rdx

f0(x0)fY (y0|x0) dx0,

∝ f0(x0)fY (y0|x0).

Note in particular that the average of the weights is an importance sampling estimator of `(y0):

LN0 =
1

N

N∑
n=1

wn0 =
1

N

N∑
n=1

fY (y0|xn0 ) ≈
∫
Rdx

fY (y0|x0)f0(x0) dx0.

• At time t ≥ 1, we have from the previous iteration a weighted sample (xnt−1,W
n
t−1)Nn=1 that targets

p(xt−1|y0:t−1). To progress from time t− 1 to time t, we note that

p(xt−1,xt|y0:t−1) = p(xt−1|y0:t−1)fX(xt|xt−1) (4)

p(xt−1,xt|y0:t) =
p(xt−1,xt|y0:t−1)fY (yt|xt)

`(yt|y0:t−1)
(5)

with `(yt|y0:t−1) =
∫
p(xt−1,xt|y0:t−1)fY (yt|xt) dxt−1dxt. Remark that (4) uses the fact (xt) is

Markov, and (5) is the simple Bayes formula. We then replace in (4) the term p(xt−1|y0:t−1) by
the random probability measure obtained at step t− 1:

N∑
n=1

Wn
t−1δxnt−1

(dxt−1).

It is a mixture of N Dirac masses weighted according to the random weights Wn
t−1 that traduce the

likelihood of observations yt given xnt (the weights increase with the conditional likelihood of yt given
xnt ). It is thus natural to update our approximation of p(xt−1,xt|y0:t−1) as follows:

N∑
n=1

Wn
t−1

{
δxnt−1

(dxt−1)× fX(dxt|xt−1)
}
.
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This immediately suggests Step (at) and (bt) in Algorithm 2: to sample from above, first (Step (at))
choose ancestor xmt−1 with probability Wm

t−1; call ant the so chosen m; then (Step (bt)) sample xnt ∼
fX(xt|x

ant
t−1). Finally, in line of (5), reweight the xnt by computing wnt = fY (yt|xt) (Step (ct)). Note

in particular that the average of the weights approximate the conditional likelihood `(yt|y0:t−1) =
`(y0:t)/`(y0:t−1):

1

N

N∑
n=1

wnt =
1

N

N∑
n=1

fY (yt|xnt ) ≈
∫
fY (yt|xt)p(xt|y0:t−1) dxt.

In practice, one way to implement Step (at) of Algorithm 2, also known as the resampling step, is first to
generate N ordered uniform variables, u(1) ≤ . . . u(N) (see e.g. p.214 of [Dev86] for a well-known method) and
next to use Algorithm 3.

Algorithm 3 Resampling

Require: u1:N (such that 0 ≤ u1 ≤ . . . ≤ uN ≤ 1), W 1:N (normalised weights)
Ensure: a1:N (labels in 1 : N)
s←W 1, m← 1
for n = 1→ N do

while s < un do
m← m+ 1
s← s+Wm

end while
an ← m

end for

The SQMC algorithm described below will be derived from this particular interpretation of particle filtering
as a sequence of T + 1 importance sampling steps (based on random probability measures).

2.1.3. Quasi-Monte Carlo

QMC (Quasi-Monte Carlo) is usually introduced as a way to approximate an integral with respect to the
unit hyper-cube of dimension d: ∫

[0,1]d
ϕ(u) du.

The standard Monte Carlo approximation of this integral is

1

N

N∑
n=1

ϕ(un)

where the un are N independent samples from the uniform distribution U
(
[0, 1]d

)
. In QMC, the same estimator

is used, but the major difference relies on the fact that the points un are generated from a low discrepancy
sequence. Informally, it means that for certain subsets A ⊂ [0, 1]d, the proportion of un that fall in A is close
to the volume of A; in fact closer that if the un were generated randomly. For instance, for d = 1, one may take
un = n/(N + 1). Of course when d > 1, one needs to use more advanced strategies, an exhaustive description
of these more sophisticated methods is beyond the scope of this short survey (see e.g. the book of [Lem09]).

We will simply mention a specific convergence result: under smoothness assumption on ϕ, a well chosen
sequence (un) exists such that ∣∣∣∣∣ 1

N

N∑
n=1

ϕ(un)−
∫

[0,1]d
ϕ(u) du

∣∣∣∣∣ ≤ C (logN)d

N
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This is of course a better convergence rate than standard Monte Carlo.

2.1.4. SQMC (Sequential Quasi-Monte Carlo): dx = 1

The main difficulty when introducing QMC into particle filtering methods (and more generally in any Monte
Carlo approach) relies on the necessity to rewrite the algorithm as a deterministic function of uniform variables.
When this is done, one may simply replace these uniform variables by low-discrepancy sequences, as we did in
the previous section.

• Let’s assume that, at time 0 in Algorithm 2, the xn0 are generated as xn0 = Γ0(un0 ), with un0 ∼ U
(
[0, 1]dx

)
,

and Γ0 a certain deterministic function chosen so that xn0 ∼ f0; for instance, the inverse CDF. Then,
one may simply replace these un0 by points generated by a low-discrepancy sequence.

• Now, consider iteration t ≥ 1. We have seen in Section 2.1.2 that iteration t may be interpreted as an
importance sampling step, where we sample the xnt ’s from:

N∑
n=1

Wn
t−1

{
δxnt−1

(dxt−1)× fX(dxt|xt−1)
}

(6)

and reweight these new particles by fY (yt|xnt ). Thus, we need to rewrite the simulation from (6) as a
deterministic function of uniforms. To do so, assume we have at our disposal a certain function Γt, such
that simulating from fX(dxt|xt−1) amounts to compute xt = Γt(xt−1,v

n
t ), when vnt ∼ U

(
[0, 1]dx

)
.

This can be done as follows: for each n = 1, . . . , N , let unt ∼ U
(
[0, 1]dx+1

)
, and denote unt = (unt ,v

n
t ),

with unt ∈ [0, 1], vnt ∈ [0, 1]dx . Use the first component unt to choose the ancestor xnt−1, through the
inverse CDF method. More precisely, (a) sort the ancestors in ascending order, i.e. find a permutation

σ such that x
σ(1)
t−1 ≤ . . . ≤ x

σ(n)
t−1 ; then (b) find m such that

m−1∑
p=1

W
σ(p)
t−1 ≤ unt ≤

m∑
p=1

W
σ(p)
t−1 (empty sum equals 0)

and call ant the so obtained index, ant = m. Now, to sample from xt conditional on the ancestor, simply

take xnt = Γt(x
ant
t−1,v

n
t ).

It is easy to see that, provided that dx = 1 (i.e. we can indeed order the xnt−1), the approach outlined above
may be implemented in O(N logN) time. If, in addition, we replace the unt ’s by a low-discrepancy sequence
in [0, 1]dx+1, one obtains the SQMC algorithm, described in Algorithm 4. (SQMC stands for Sequential Quasi
Monte Carlo.)

2.1.5. SQMC for dx > 1

Since the SQMC approach described in the previous section relies on the inverse CDF method, it is limited to
situations where the state space is of dimension one, dx = 1. It is nevertheless possible to extend this approach
to dx > 1, by using the Hilbert curve.

The Hilbert curve H is a continuous fractal space-filling curve, H : [0, 1] → [0, 1]d, with H([0, 1]) = [0, 1]d.
This curve is not a bijection, because the equation H(x) = y may have more than one solution in x (for a
fixed y); the set of such points y is of Lebesgue measure 0. In our framework, the interesting point is that the
function H admits however a pseudo-inverse h : [0, 1]d → [0, 1], i.e. a function h such that H(h(y)) = y for all
x ∈ [0, 1]d. The function H is obtained as a limit of the iterative process depicted by Figure 1. We refer to the
book of [Sag94] for more details on the properties of space-filling curves.
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Figure 1. First steps of the iterative process, the limit of which is the Hilbert curve in two
dimensions (Source: Wikipedia).

In the SQMC context, we will use h to transform the N ancestors into points in [0, 1], before using the inverse
CDF as for dx = 1. More precisely, instead of constructing a Monte Carlo approximation of

N∑
n=1

Wn
t−1

{
δxnt−1

(dxt−1)× fX(dxt|xt−1)
}

we construct a low-discrepancy approximation of

N∑
n=1

Wn
t−1

{
δh◦ψ(xnt−1)(dh)× fX(dxt|xt−1)

}
where ψ is some user chosen transformation, from Rdx to [0, 1]d, so that indeed h ◦ ψ(xnt−1) ∈ [0, 1]. Thus, one

may proceed as follows: first, find permutation σ such that h ◦ ψ(x
σ(1)
t−1 ) ≤ . . . ≤ h ◦ ψ(x

σ(n)
t−1 ); then, exactly as

before, and for each n, find m such that

m−1∑
p=1

W
σ(p)
t−1 ≤ unt ≤

m∑
p=1

W
σ(p)
t−1 (empty sum equals 0)

and set ant = n. The rest of the Algorithm is unchanged; see Algorithm 4.
Although we have motivated the Hilbert curve in this short description as a practical way to “project” the

N ancestors into [0, 1], there are more fundamental reasons why the Hilbert curve is a particularly convenient
transformation in the context of SQMC. In a few words, the Hilbert curve (and its inverse) preserves discrepancy
in some sense, that is, if the ancestors xnt−1 have low discrepancy, then so will have the h(xnt−1). This point
turns out to be essential when establishing the convergence properties of SQMC, (see [GC14] for a sharper
description of this important point).

2.1.6. Concluding remarks

The main advantage of SQMC approach over standard particle filtering is the faster convergence, as N →∞.
We refer to [GC14] for a formal convergence results that support this statement, and several simulation studies,
where improvement factors range from 10 to 105 (in the sense that SMC would need 10 to 105 more particles
to reach the same mean square error than SQMC in the considered numerical examples).
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Algorithm 4 SQMC algorithm

At time t = 0,

(a): Generate a QMC point set u1:N
0 in [0, 1]d, and compute xn0 = Γ0(un0 ) for each n = 1, . . . , N .

(b): Compute wn0 = G0(xn0 ) and Wn
0 = wn0 /

∑N
m=1 w

m
0 for each n = 1, . . . , N .

Iteratively, from time t = 1 to time t = T ,

(a): Generate a QMC point set u1:N
t in [0, 1]d+1; let unt = (unt ,v

n
t ) ∈ [0, 1]× [0, 1]d.

(b): Hilbert sort: find permutation σt−1 such that h ◦ ψ(x
σt−1(1)
t−1 ) ≤ . . . ≤ h ◦ ψ(x

σt−1(N)
t−1 ) if d ≥ 2, or

x
σt−1(1)
t−1 ≤ . . . ≤ x

σt−1(N)
t−1 if d = 1.

(c): Find permutation τ such that u
τ(1)
t ≤ ... ≤ uτ(N)

t , generate a1:N
t−1 using Algorithm 3, with inputs

u
τ(1:N)
t and W

σt−1(1:N)
t−1 , and compute xnt = Γt(x

σt−1(ant−1)

t−1 ,v
τ(n)
t ) for each n = 1, . . . , N .

(e): Compute wnt = Gt(x
σt−1(ant−1)

t−1 ,xnt ), and Wn
t = wnt /

∑N
m=1 w

m
t for each n = 1, . . . , N .

More generally, QMC is now widespread in Bayesian statistics and seems to have been slightly overlooked
in Bayesian computation, at least up to now. We expect that the advent of SQMC will hopefully change this
state of affair.

2.2. A nonparametric analysis of Approximate Bayesian Computation (ABC)

Let us recall that `(Y |θ) refers to the distribution (likelihood) of the random variable Y , where θ ∈ Θ is
an unknown parameter that we wish to estimate, with a prior distribution π. In the sequel, we still denote
π(θ) the density of π with respect to the Lebesgue measure on Rp and the (fixed) observation vector is denoted
y0 = (Y 0

1 , . . . , Y
0
n ).

Before we go into more details on abc, some more notations are required. We assume to be given a statistic
S, taking values in Rm. It is a function of the random variable Y , with a dimension m typically much smaller
than the dimension of Y . The statistic S is supposed to admit a conditional density f(s|θ) with respect to
the Lebesgue measure on Rm. Strictly speaking, we should write S(Y ) instead of S. However, since there is
no ambiguity, we continue to use the latter notation. As such, the statistic S should be understood as a low-
dimensional summary of Y . For example, it can be a sufficient statistic for the parameter θ, but not necessarily.
Assuming that the prior distribution on θ is absolutely continuous with respect to the Lebesgue measure on Rp,
the conditional distribution on θ given S = s has a density g(θ|s). According to the Bayes rule, this conditional
density takes the form

g(θ|s) =
f(s|θ)π(θ)

f̄(s)
, where f̄(s) =

∫
Rp
f(s|θ)π(θ)dθ

is the marginal density of S. Finally, we denote by s0 = S(y0) the observed realization of S computed on the
data set y0. Throughout the document, s0 and y0 should be considered as fixed quantities and N will be the
number of simulations (or particles) simulated by the abc algorithm. As stressed in [MPRR12], a classical
formulation of abc is the following one:

Algorithm 5 Pseudo-code of a generic abc algorithm

Require: A positive integer N , an integer kN between 1 and N , an observation vector y0 and s0.
Require: A sampling algorithm of π and a sampling algorithm of observations Y ∼ `n(.|θ).

for i = 1 to N do
Generate θi in Θ from the prior π;
Generate an n sample yi = (Y i1 , . . . , Y

i
n) from the law `n(.|θi).

end for
return The θi’s such that Si = S(yi) is among the kN -nearest neighbors of s0.
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In practice, the parameter N should be chosen very large (typically of the order of 106), while kN is commonly
expressed as a percentile of N . Thus, for example, the choice N = 106 and a percentile kN/N = 0.1% allow to
retain 1000 simulated θi’s.

From a nonparametric perspective, this algorithm falls within the broad family of nearest neighbor-type proce-
dures [FH51,LQ65,Cov68]. In order to better understand the rationale behind it, denote by (θ1,y

1), . . . , (θN ,y
N )

an i.i.d. sample, with common joint distribution `n(y|θ)π(θ). This sample is naturally associated with the
i.i.d. sequence (θ1,S

1), . . . , (θN ,S
N ), where each pair has a density f(s|θ)π(θ). Finally, let S(1), . . . ,S(kN ) be

the kN -nearest neighbors of s0 among S1, . . . ,SN , and let θ(1), . . . ,θ(kN ) be the corresponding θi’s. With this
notation, we see that the generic abc Algorithm 5 proceeds in two steps:

(1) First, simulate an N -sample (θ1,y
1), . . . , (θN ,y

n);
(2) Seconds, return the variables θ(1), . . . ,θ(kN ).

As will become clear in Section 2.2.1, this simple observation opens the way to a mathematical analysis of abc
via statistical methods based on the nearest neighbors. For now, let us just specify that for a fixed s0 ∈ Rm,
the estimate we will consider to infer the posterior density g(.|s0) at some point θ0 ∈ Rp is

ĝN (θ0) =
1

kNh
p
N

kN∑
j=1

K

(
θ0 − θ(j)

hN

)
, (7)

where {hN}N≥0 is a sequence of positive real numbers (bandwidth) and K is a nonnegative Borel measurable
function (kernel) on Rp. To reduce the notational burden, we dropped the dependency of the estimate upon s0,
keeping in mind that s0 is held fixed. The idea is simple: in order to estimate the posterior, just look at the
kN -nearest neighbors of s0 and smooth the corresponding θj ’s around θ0. It should be noted that (7) is a smart
hybrid between a k-nearest neighbor and a kernel density estimation procedure. In particular, it is different from
the Rosenblatt-type [Ros69] kernel conditional density estimates proposed in [BZB02] and analyzed in [Blu10].

To conclude this introduction, we would like to make a few comments on the topics that will not be addressed
in the following. An important part of the performance of the abc approach, especially for high-dimensional
data sets, relies upon a good choice of the summary statistic S. In many practical applications, this statistic
is picked by an expert in the field, without any particular guarantee of success. A systematic approach to
choosing such a statistic, based upon a sound theoretical framework, is currently under active investigation in
the Bayesian community. This important issue will not be pursued further here. As a good starting point,
the interested reader is referred to [JM08], who develop a sequential scheme for scoring statistics according to
whether their inclusion in the analysis will substantially improve the quality of inference. Similarly, we will not
address issues regarding how to enhance efficiency of abc and its variants, as for example with the sequential
techniques of [SFT07] and [BCMR09]. Nor won’t we explore the important question of abc model choice, for
which theoretical arguments are still missing [RCMP11,MPRR11]. Finally, we refer the reader to [BCG12] for
details and proofs concerning the upcoming results.

2.2.1. Distribution of abc outputs

We recall that (θ1,S
1), . . . , (θN ,S

N ) are i.i.d. Rp × Rm-valued random variables, with common probability
density f(θ, s) = f(s|θ)π(θ). Both Rp and Rm are endowed with the Euclidean norm ‖.‖. In this section,
attention is focused on the distribution of the algorithm outputs (θ(1),S

(1)), . . . , (θ(kN ),S
(kN )).

In what follows, we denote by di the (random) distance between s0 and Si. Similarly, we let d(i) be the

distance between s0 and its i-th nearest neighbor among S1, . . . ,SN , that is d(i) = ‖S(i)−s0‖. It turns out that,

conditionally on d(kN+1), one can consider the kN -tuple (θ(1),S
(1)), . . . , (θ(kN ),S

(kN )) as an ordered sample
drawn according to the probability density

1[‖s−s0‖≤d(kN+1)]f(θ, s)∫
Rp

∫
Bm(s0,d(kN+1))

f(θ, s)dθds

,
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where Bm(s0, δ) stands for the closed ball in Rm centered at s0 with nonnegative radius δ. Alternatively, the
(unordered) simulated values may be treated like i.i.d. realizations of variables with common density proportional
to 1[‖s−s0‖≤d(kN+1)]f(θ, s). Thus, given d(kN+1), the accepted θj ’s are i.i.d. realizations of the probability density∫

Bm(s0,d(kN+1))

f(θ, s)ds∫
Rp

∫
Bm(s0,d(kN+1))

f(ϑ, s)dϑds

.

Although this conclusion is intuitively clear, its proof requires a careful mathematical analysis (see [BCG12]).
Moreover, it plays a key role in the mathematical analysis of the conditional density estimate (7) associated with
abc methodology. In fact, investigating abc in terms of nearest neighbors has other important consequences.
Suppose, for example, that we are interested in estimating some finite conditional expectation E[ϕ(θ)|S = s0],
where the random variable ϕ(θ) is bounded. If θ is itself bounded, it includes in particular the important
setting where ϕ is polynomial and one wishes to estimate the conditional moments of θ. Then, provided
kN/ log logN → ∞ and kN/N → 0 as N → ∞, it can be shown the pointwise consistency, which means that
for almost all s0 (with respect to the distribution of S), with probability 1,

1

kN

kN∑
j=1

ϕ
(
θ(j)

)
→ E[ϕ(θ)|S = s0]. (8)

The proof of such a result uses a sharp statistical analysis of the nearest neighbor estimation ability. To be
more precise, let us consider an i.i.d. sample (X1, Z1), . . . , (XN , ZN ) taking values in Rm×R, where the output
variables Zi’s are bounded. Assume that the Xi’s have a density and that our goal is to assess the regression
function r(x) = E[Z |X = x], x ∈ Rm. Then the k-nearest neighbor regression function estimate of r takes the
form

r̂N (x) =
1

kN

kN∑
j=1

Z(j), x ∈ Rm,

where Z(j) is the Z-observation corresponding to X(j), the j-th-closest point to x among X1, . . . ,XN . Denoting
by µ the distribution of X1, it is proved in Theorem 3 of [Dev82] that provided kN/ log logN → ∞ and
kN/N → 0, then for µ-almost all x, r̂N (x) goes to r(x) with probability 1 as N goes to ∞. This result can
be transposed without further effort to our abc setting via the correspondence ϕ(θ)↔ Z and S↔ X, thereby
stating (8).

2.2.2. Mean square error consistency

Our next objective is to estimate the posterior density g(θ0|s0), θ0 ∈ Rp. This estimation step is an
important ingredient of the Bayesian analysis, whether this may be for visualization purposes or more involved
mathematical achievements. As exposed in the introduction, a natural abc-companion estimate of g(θ0|s0)
takes the form (7). Our goal in this section is to investigate some consistency properties of this estimate.
Pointwise mean square error consistency is proved in Theorem 2.1 and mean integrated square error consistency
is established in Theorem 2.2. We stress that this part of the document is concerned with minimal conditions
of convergence. However, the following assumptions on the kernel will be needed:

Assumption [K1] The kernel K is nonnegative and belongs to L1(Rp), with
∫
Rp K(θ)dθ = 1. Moreover, the

function θ ∈ Rp 7−→ sup‖y‖≥‖θ‖ |K(y)| is in L1(Rp).

Assumption set [K1] is in no way restrictive and is satisfied by all standard kernels such as, for example,
the uniform kernel or the Gaussian kernel. In the following, we denote by λp (respectively, λm) the Lebesgue
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measure on Rp (respectively, Rm) and set, for any positive h,

Kh(θ) =
1

hp
K

(
θ

h

)
, θ ∈ Rp.

We note once and for all that Assumption [K1] implies that
∫
Rp Kh(θ)dθ = 1. We are now in a position to

state the two main results of this section.

Theorem 2.1 (Pointwise mean square error consistency). Assume that the kernel K is bounded and satisfies
Assumption [K1]. Assume, in addition, that the joint probability density f is such that∫

Rp

∫
Rm

f(θ, s) log+ f(θ, s)dθds <∞. (9)

Then, for λp ⊗ λm-almost all (θ0, s0) ∈ Rp × Rm, with f̄(s0) > 0, if kN → ∞, kN/N → 0, hN → 0 and
kNh

p
N →∞,

E [ĝN (θ0)− g(θ0|s0)]
2 → 0 as N →∞.

It is easy to see that assumption (9) is mild. It is for example satisfied whenever f is bounded or whenever
f belongs to Lq(Rp × Rm) with q > 1. Theorem 2.2 below says that ĝN is also consistent with respect to the
mean integrated square error criterion. Here again, the regularity assumptions on f and π are minimal.

Theorem 2.2 (Mean integrated square error consistency). Assume that the kernel K belongs to L2(Rp) and
satisfies Assumption [K1]. Assume, in addition, that the joint probability density f and the prior π are in
L2(Rp × Rm) and L2(Rp), respectively. Then, for λm-almost all s0 ∈ Rm, with f̄(s0) > 0, if kN → ∞,
kN/N → 0, hN → 0 and kNh

p
N →∞,

E
[∫

Rp
[ĝN (θ0)− g(θ0|s0)]

2
dθ0

]
→ 0 as N →∞.

2.2.3. Rates of convergence

In this section, we go one step further in the analysis of the abc-companion estimate ĝN by studying its
mean integrated square error rates of convergence. As before, we keep trying to alleviate the assumptions on
the unknown mathematical objects as mild as possible. We introduce the multi-index notation

|β| = β1 + . . .+ βn, β! = β1! . . . βn!, xβ = xβ1

1 . . . xβnn

for β = (β1, . . . , βn) ∈ Nn and x ∈ Rn. If all the k-order derivatives of some function ϕ : Rn → R are continuous
at x0 ∈ Rn then, by Schwarz’s theorem, one can change the order of mixed derivatives at x0, and the notations

Dβϕ(x0) =
∂|β|ϕ(x0)

∂xβ1

1 . . . ∂xβnn
, |β| ≤ k

for the higher-order partial derivatives are thus justified in this situation. Recall that the collection of all
s0 ∈ Rm with

∫
Bm(s0,δ)

f̄(s)ds > 0 for all δ > 0 is called the support of f̄ . We shall need the following set of

assumptions.

Assumption [A1] f̄ has a compact support included in a ball of diameter L > 0 and is three times continu-
ously differentiable.
Assumption [A2] The joint probability density f is in L2(Rp × Rm). Moreover, for fixed s0, the functions

θ0 7→
∂2f(θ0, s0)

∂θi1∂θi2
, 1 ≤ i1, i2 ≤ p and θ0 7→

∂2f(θ0, s0)

∂s2
j

, 1 ≤ j ≤ m,



ESAIM: PROCEEDINGS AND SURVEYS 15

are defined and belong to L2(Rp).
Assumption [A3] f is three times continuously differentiable on Rp × Rm and, for any β satisfying |β| = 3,

sup
s∈Rm

∫
Rp

[
Dβf(θ, s)

]2
dθ <∞.

Assumption [K2] K is symmetric, is in L2(Rp), and for any β such that |β| ∈ {1, 2, 3},
∫
Rp

∣∣∣θβ∣∣∣K(θ)dθ <∞.

Recall that s0 is called a Lebesgue point if

1

λm(Bm(s0, δ))

∫
Bm(s0,δ)

∣∣f̄(s)− f̄(s0)
∣∣ds→ 0 as δ → 0.

Lebesgue’s differentiation theorem asserts that this is true for λm-almost all s0 ∈ Rm. If s0 is a Lebesgue point
of f̄ such that f̄(s0) > 0, then it is readily seen that

0 < ξ0 = inf
0<δ≤L

1

δm

∫
Bm(s0,δ)

f̄(s)ds <∞.

Let us mention that Lebesgue points are commonly encountered when dealing with Nearest Neighbor rule.
This was already pointed in the seminal work of [Dev82], and thereafter extended by considering “Besicovitch”
conditions in [CG06]. Some recent developments in [GKM14] have even established that this kind of “mini-
mal mass assumption” on small balls are unavoidable in general finite dimensional spaces to derive uniform
consistency rates of classification (with any classifier).

Theorem 2.3 (Rates of convergence). Suppose that assumptions [K1]-[K2] and [A1]-[A3] are satisfied. Let
s0 be a Lebesgue point of f̄ such that f̄(s0) > 0. Denote

φ1(θ0, s0) =
1

2

p∑
i1,i2=1

∂2f(θ0, s0)

∂θi1∂θi2

∫
Rp
θi1θi2K(θ)dθ and Φ1(s0) =

1

f̄2(s0)

∫
Rp
φ2

1(θ0, s0)dθ0,

φ2(θ0, s0) =
1

2m+ 4

m∑
j=1

∂2f(θ0, s0)

∂s2
j

and Φ2(s0) =
1

f̄4(s0)

∫
Rp

[
φ2(θ0, s0)f̄(s0)− φ3(s0)f(θ0, s0)

]2
dθ0

φ3(s0) =
1

2m+ 4

m∑
j=1

∂2f̄(s0)

∂s2
j

and Φ3(s0) =
2

f̄3(s0)

∫
Rp
φ1(θ0, s0)

[
φ2(θ0, s0)f̄(s0)− φ3(s0)f(θ0, s0)

]
dθ0.

Then, for m > 4, there exist sequences {kN} with kN ∝ N
p+4

m+p+4 and {hN} with hN ∝ N−
1

m+p+4 such that

E
[∫

Rp
[ĝN (θ0)− g(θ0|s0)]

2
dθ0

]
=

(
mΦ1(s0)

ξ
4/m
0 (m− 4)

+ Φ2(s0) +
mΦ3(s0)

ξ
2/m
0 (m− 2)

+

∫
Rp
K2(θ)dθ + o(1)

)
N−

4
m+p+4 .

Three concluding remarks are in order:

(1) From a practical perspective, the fundamental problem is that of the joint choice of kN and hN in the
absence of a priori information regarding the posterior g(.|s0). Various bandwidth selection rules for
conditional density estimates have been proposed in the literature [BH01,HRL04,FY04]. But most (if
not all) of these procedures pertain to kernel-type estimates and are difficult to adapt to our nearest-
neighbor setting. Moreover, they are tailored to global statistical performance criteria, whereas the
problem here is local since s0 is fixed. Hence, devising a good methodology to automatically select both
kN and hN in function of s0 necessitates a supplemental specific analysis.
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(2) Nevertheless, Theorem 2.3 provides an insight into the proportion of simulated values which should
be accepted by the algorithm. For example, a rough rule of thumb is obtained by taking kN ≈
N (p+4)/(m+p+4), so that a fraction of about kN/N ≈ N−m/(m+p+4) simulations should not be rejected.

(3) At last, it should be noted that the size of the statistic S (the integer m) can dramatically damage
the convergence rate obtained in Theorem 2.3. It is thus a basic fact to choose a sufficient statistic
embedded in the lowest dimensional space possible.

3. Consistency for an example of nonparametric hidden Markov model

3.1. The studied model: hidden Markov models with finite state space

We now turn back to a specific case of HMMs introduced in Section 2.1, when then hidden component
(xt)t∈N lives in a finite state space. We are interested in Bayesian consistency results when the observation time
(denoted n in what follows) is increasing. We would like to emphasize that such a result should be obtained in
a different context as those stated in Section 1.3.1: observations (yt)1≤t≤n are no longer independent here and
a significant amount of work is needed to reach Bayesian consistency.

Frequentist asymptotic properties of estimators of HMMs parameters have been studied since the 1990s.
Consistency and asymptotic normality of the maximum likelihood estimator have been established in the para-
metric case, see [DM01], [DMR04] and [DMOvH11] for the most general consistency results up to now. As
to parametric Bayesian asymptotic results, there are only a few recent results, see [dGS08] when the number
of hidden states is known and [GR14a] when the number of hidden states is unknown. Because parametric
modeling of emission distributions may lead to poor results in practice, in particular for clustering purposes,
recent interest in using non parametric HMMs appeared in applications, see [YPRH11], [GCR14] and references
therein. Theoretical results for estimation procedures in non parametric HMMs have been obtained only very
recently such as in [DLC12] and in [GR13] since even identifiability remained an open problem (see [GCR14]).

The studied model is specified here and can be visualized in Figure 2. We still denote the HMMs (xt,yt)t∈N
where x is a homogeneous Markov chain whose transition kernel was previously denoted fX(xt|xt−1). This
kernel is now simply described as a squared matrix Q since we assume in this paragraph the finiteness of the
state space X where x is living. In the meantime, the conditional probability distribution of yt when xt is given
was previously denoted fY (yt|xt) and is now shortened as fxt(yt).

µ
X X X X

YY Y Y

f
X

f
X

f
X

f
X

Figure 2. Schematic evolution of the HMM with a transition kernel Q and a conditional
distribution fx when x1 ∼ µ.

In what follows, we will assume that Q is strongly irreducible, meaning that there exists q > 0 such that

∀(i, j) ∈ J1, kK Qi,j ≥ q.

The former assumption on the transition kernel Q implies that the Markov chain x possesses a unique invariant
distribution µ with an exponential mixing rate. In the meantime, we also assume the chain is initialized with
its invariant distribution: x1 ∼ µ.
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3.2. Prior structure

In what follows, we assume that the number k of hidden states, as well as q, is known, so that the state
space of the Markov chain is set to {1, . . . , k}. In order to define the set where the prior and the posterior
distributions are living, we naturally introduce the k − 1-dimensional simplex denoted

∆k(q) = {(p1, . . . , pk) : pi ≥ q, i = 1, . . . k ;

k∑
i=1

pi = 1}.

The transition matrix Q may be identified as a k-uple of transition distributions (the lines of the matrix), so
that Q ∈ ∆k(q)k. We denote µ ∈ ∆k(q) the invariant probability measure, that also initializes the Markov

chain at time 1: x1 ∼ µ. We assume that the observation space is Rd endowed with its Borel sigma field. Let
F be the set of probability density functions with respect to a reference measure λ on Rd. Fk is the set of
possible emission densities from xt to yt. It means that for any f = (f1, . . . , fk) ∈ Fk, the distribution of yt
conditionally to xt = i will be fidλ for each value of i between 1 and k.

Let Θ = {θ = (Q, f) : Q ∈ ∆k(q)k, f ∈ Fk}. Remark that a particular θ ∈ Θ implicitely defines a transition

kernel Q and therefore a unique invariant distribution µ. For any θ ∈ Θ, Pθ denotes the probability distribution
of (xt,yt)t∈N when the transitions are parametrized by θ and when the initial state x1 is distributed according
to the invariant distribution µ.

We denote Pl
θ the marginal distribution of y1, . . . ,yl under Pθ,µ and pθl its corresponding density with

respect to λ⊗l under Pθ. For any θ ∈ Θ associated with an initial probability µ, we have:

pθl (y1, . . . , yl) =
∑

(x1,...,xl)∈J1,kKl
µx1

Qx1,x2
. . . Qxl−1,xlfx1

(y1) . . . fxl(yl).

Let π denotes a prior on Θ, we assume that π is a product of probability measures on Θ, π = πQ ⊗ πf such
that πQ is a probability distribution on ∆k(q)k and πf is a probability distribution on Fk.

3.3. Posterior consistency

3.3.1. Topological description

The observations are now distributed from Pθ0 where θ0 = (Q0, f0) so that the distribution of (xt,yt)t≥1

follows a stationary HMM. We are interested in posterior consistency, that is to prove that for all neighborhood
U of θ0, with Pθ0 almost surely:

lim
n→+∞

π(U |yn) = 1.

To make the former equality meaningful, it is necessary to define a neighborhood concept of θ0 and a topology
has to be chosen for a precise definition of U . We choose to study posterior consistency for the problem of
density estimation, i.e. we want to know if the posterior concentrates its mass around the parameters such that
the associated distribution P θl of l consecutive observations is closed to the one associated to the true parameter.
We will use two different topologies as in Theorems 1.2 and 1.3. We first use the weak topology on marginal
distributions (P θ

l )θ∈Θ.

Let us briefly recall the definition of a weak neighborhood of Pl
θ (for the weak topology on probability

measures). For any integer N and any set of bounded continuous functions (hj)1≤j≤N from (Rd)l to R, we
denote

W
(
pθl , ε, (hj)1≤j≤N

)
:=

{
P :

∣∣∣∣∫ hjdP −
∫
hjp

θ
l dλ

⊗l
∣∣∣∣ < ε,∀j ∈ J1, NK

}
. (10)

A weak neighborhood of pθl is a set of probability distributions O such that:

∃N ∈ N ∃ ε > 0 ∃ (hj)1≤j≤N W
(
pθl , ε, (hj)1≤j≤N

)
⊂ O.
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We will also work with the finer topology associated to the L1-distance on the joint densities. Other topologies
may be considered depending on the estimation needed, see for example [Ver13] where a product of the topologies
for the transition matrix and the emission densities is also used.

3.3.2. Main results

In HMMs, yt may not only depend on the previous observation yt−1 but also on the previous observations
yt−2, . . . ,y1. The generalization of the Hoeffding inequalities [Rio00] requires a level of mixing of the chain to
ensure an exponential rate of concentration (and then the existence of a powerful test between two hypotheses).
Since θ0 is such that Q0 ∈ ∆k(q)k with a known q (non adaptive prior on q), we will only consider prior πQ
such that

πQ
{

∆k(q)k
}

= 1 and min
1≤i≤k

µi ≥ q. (11)

This ensures a level of mixing of the Markov chains for the possible parameters and that the associated Markov
chains are irreducible (and thus positive recurrent since X is finite here) and admit a unique stationary proba-
bility measure.

Theorem 3.1 describes a set of assumptions that lead to the posterior consistency for the weak topology, and
may be compared to Theorem 1.2. The following assumption on the neighborhood of θ0 is used:

Assumption [N] For all ε > 0 small enough, there exists a set Θε ⊂ Θ such that π(Θε) > 0 and for all
θ = (Q, f) ∈ Θε,

‖Q−Q0‖ < ε, (12a)

max
1≤i≤k

∫
f0
i (y) max

1≤j≤k
log

(
f0
j (y)

fj(y)

)
λ(dy) < ε, (12b)

For all y ∈ Rd such that

k∑
i=1

f0
i (y) > 0 =⇒

k∑
j=1

fj(y) > 0, (12c)

sup
y :

∑k
i=1 f

0
i (y)>0

max
1≤j≤k

fj(y) < +∞, (12d)

k∑
i=1

∫
f0
i (y)

∣∣∣∣∣∣log

 k∑
j=1

fj(y)

∣∣∣∣∣∣λ(dy) < +∞ (12e)

Theorem 3.1. [Ver13] Assume that the prior π satisfies (11) and that Assumption [N] holds, then for all

weak neighborhood U of P θ0

l (see (10)),

lim
n→∞

π(U |yn) = 1 Pθ0 − a.s.

Theorem 3.1 is proved in [Ver13] using the general method introduced in [Bar88]. Assumption (11) ensures
the existence of tests that discriminate the set of hypotheses Pθ when θ is not in a closed neighborhood of θ0

for the weak topology. These results are derived by using a generalization of Hoeffding’s inequality by [Rio00]
and [GR14a]. Assumption [N] ensures that the prior π gives a positive weight to any Kullback-Leibler
neighborhood of Pθ0 .

It is also possible to derive a stronger result by using the L1- norm, which defines a finer topology than the
weak one. As in the case of density estimation with i.i.d. observations (Theorem 1.3), an additional assumption
on the covering number implies the existence of tests that permit to discriminate Pθ to Pθ0 when dealing with
the L1 distance. For this purpose, we define the distance

∀(f, g) ∈ F d(f, g) = max
1≤i≤k

‖fi − gi‖1.
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Assumption [H] For all n > 0, for all δ > 0 there exists a set Fn ⊂ Fk and positive numbers r1, C1 such
that

πf
(
(Fn)c

)
≤ C1e

−nr1 and such that
∑
n>0

N

(
δ

36l
,Fn, d(·, ·)

)
exp

(
−
nδ2k2q2

32l

)
< +∞. (13)

Theorem 3.2. [Ver13] Assume that the prior π satisfies (11) and that Assumption [N] and Assumption

[H] hold, then for all L1-neighborhood U of P θ0

l , there exists r > 0 such that

lim
n→∞

π(U |yn) = 1 Pθ0 − a.s.

Thanks to the similarities of Assumptions (12b) and (13) with Assumptions (2) and (3) respectively, it may
be possible to use consistent priors in the case of density estimation with i.i.d. observations for the emission
distribution in HMMs. Such examples are given in [Ver13] for instance in the case of translated emission
distributions that is to say when for all 1 ≤ j ≤ k,

fj(·) = g(· −mj)

where for all 1 ≤ j ≤ k, mj is in R and g is a density function on R distributed from a mixture of Gaussians by
Dirichlet process.

4. The PAC-Bayesian paradigm

4.1. Generality on PAC-Bayesian approaches

To illustrate the concepts behind the PAC-Bayesian approach, let us consider the standard regression model
y = fθ0(x) + W , where y is a real-valued response, fθ0 : Rd → R is the unknown regression function de-
pending on some parameter θ ∈ Θ, x is a d-dimensional random variable and W is a real-valued noise term.
Let us assume that we collect an n-sized sample of i.i.d. replications of the random variable (x,y) denoted
(X1, Y1), . . . , (Xn, Yn). For some loss function ` : R×R→ (0,∞), we define the risk (and its empirical counter-
part) of some estimator fθ̂ of fθ0 as

R(fθ̂) = E[`(y, fθ̂(x))], Rn(fθ̂) =
1

n

n∑
i=1

`(Yi, fθ̂(Xi)). (14)

Let R? = R(fθ0), R? is of course the lowest (oracle) risk that can be reached by any predictor fθ. We aim to
obtain some statistical guarantees involving inequalities in deviations of the excess risk of Bayesian estimators
fθ̂ built with a suitable choice of the prior. The nice oracle inequalities we are looking for are generally stated
as follows:

∀ε ∈ (0, 1) P
[
R(fθ̂)−R? ≤ K inf

θ

{
R(fθ)−R? + ∆n,d,M,ε(θ)

}]
≥ 1− ε, (15)

where K ≥ 1 is a constant and ∆n,d,M,ε is a remainder term which decays as n grows. The message of this work
is that when the ambient dimension d is large with respect to the sample size n, it is possible with a properly-
chosen prior to reach convergence rates ∆n,d,M,ε that are not too badly affected by the curse of dimensionality.
Another saliant fact is that this procedure relies on very little assumption on the distribution of the variable
(x,y).

We propose to investigate a semi-parametric form for the regression function, allowing for flexibility. We are
interested in the situation where the unknow fθ can be sparsely decomposed in an additive model

fθ0(x1, . . . , xd) =

d∑
j=1

ψ0
j (xj),
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and we assume that only a few of (ψ0
j )1≤j≤d influences the response y.

This naturally drives us to consider an additive model of the formfθ(x1, . . . ,xd) =

d∑
j=1

mj∑
k=1

θjkφk(xj) , θ ∈ Θ = R
∑d
j=1mj , ‖fθ‖∞ ≤ C

 ,

where m = (m1, . . . ,md) ∈ {0, . . . ,M}d is a model, D = {φ1, φ2, . . . , φM} is a known dictionary composed
of deterministic functions (or preliminary estimators). Furthermore, C is a known constant that controls the
volume of the parameters space in order to be consistent with the learning sample. This additive formulation
(see for example [Sto85,HT86]) achieves a nice compromise between flexibility and interpretation.

The PAC approach produces a priori risk bounds (see [Val84]); the additional Bayesian flavor allows us to
obtain a posteriori bounds. In what follows, we are especially interested in the situation of a sparse oracle fθ0

to recover. As usual, we consider M the set of measures on Θ that are absolutely continuous with respect to
a reference measure dθ. We naturally wish to use a prior probability measure π ∈ M promoting sparsity. For
this purpose, we consider the following constrained optimization problem:

arg min
ρ∈M

{∫
Θ

Rn(fθ)ρ(dθ) +
λ

n
KL(ρ, π)

}
, (16)

where the Kullback-Leibler divergence is defined as

∀ρ ∈M KL(ρ, π) =

∫
Θ

log

[
dρ

dπ
(θ)

]
ρ(dθ).

Indeed, the (frequentist) variational formulation of (16) may be interpreted as a Bayesian formulation (justifying
the interpretation of π as a prior distribution). In fact, it is an exercise to check that (16) has a unique solution,
which is the so-called Gibbs posterior distribution

ρ̂λ(dθ) ∝ exp[−λRn(fθ)]π(dθ).

Hence, the penalization parameter λ > 0 may be seen as an inverse temperature parameter of the Gibbs
distribution. From the Gibbs posterior distribution ρ̂λ, two estimators are considered in this document:

θ̂ ∼ ρ̂λ (Randomized estimator sampled with the posterior),

θ̄ =

∫
Θ

θρ̂λ(dθ) = Eρ̂λθ (Posterior mean).

As shown it will be shown below, PAC-Bayesian theory is a great tool to produce estimators with nearly
minimax optimal properties. The first important result for PAC-Bayesian theory is the standard link between
the Legendre transform of the Kullback-Leibler divergence and a Gibbs fields.

Lemma 4.1 ( [Csi75]). Let (A,A) be a measurable space. For any probability measure µ on (A,A) and any
measurable function h : A→ R such that

∫
(exp ◦h)dµ <∞,

log

∫
(exp ◦h)dµ = sup

m∈M1
µ(A,A)

{∫
hdm−KL(m,µ)

}
,

with the convention ∞ −∞ = −∞. Further, if h is upper-bounded on the support of µ, the supremum with
respect to m in the right-hand term is reached for the Gibbs distribution g defined by

dg

dµ
(a) =

exp ◦h(a)∫
(exp ◦h)dµ

, a ∈ A.
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The second important result is the following concentration inequality (see e.g. [Mas07]).

Lemma 4.2 (Bernstein’s inequality). Let (Ti)
n
i=1 be a collection of real independent random variables. Assume

there exist two positive constants v and w such that

n∑
i=1

ET 2
i ≤ v,

and for any integer k ≥ 3,
n∑
i=1

E[(Ti)
k
+] ≤ k!

2
vwk−2.

Then, for any γ ∈
(
0, 1

w

)
,

E

[
exp

(
γ

n∑
i=1

(Ti − ETi)

)]
≤ exp

(
vγ2

2(1− wγ)

)
.

PAC-Bayesian bounds depend on the Kullback-Leibler divergence and hold for any prior π. In order to obtain
an optimized PAC-Bayesian estimator, two levers are at our disposal: the inverse temperature parameter λ and
the prior π. These two key quantities must be well-tailored to obtain some good oracle inequalities. In particular,
we may consider a sparsity-inducing prior, such as

πs(θ) ∝
∑
m

(
d

|m|0

)−1

β
∑d
j=1mj UnifBm(C)(θ),

where β ∈ (0, 1) and Bm(C) is the `1 sphere of radius C:

Bm(C) =

θ,
d∑
j=1

mj∑
k=1

|θjk| ≤ C

 .

This prior distribution πs defined above satisfies the nice property to favor sparse parameters (it gives a highest
mass to the parameters with a low `0 norm of the coefficients (mj)1≤j≤d).

4.2. Examples

The work [GA13] provides several practical examples detailed below.

4.2.1. Regression models

We consider the standard model
y = ψ?(x) + w,

with two mild assumptions.

Assumption 1: The noise is subexponential:
• For any integer k ≥ 2, E[|w|k] <∞.
• E[w|x] = 0.
• There exist two positive constants L, σ2 such that, for any integer k ≥ 2,

E[|w|k|x] ≤ k!

2
σ2Lk−2.

Assumption 2: |ψ?|∞ ≤ C.

In particular, Assumption 1 is met if w has a Gaussian distribution. As for Assumption 2, it allows to use
concentration inequalities such as Lemma 4.2. From what precedes, we obtain the following oracle inequality.
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Theorem 4.3 ( [GA13]). For any ε ∈ (0, 1), any 0 < λ < n/(4σ2 + 4C2), with probability at least 1− ε,

R(fθ̂)−R(ψ?)
R(fθ̄)−R(ψ?)

}
≤ Kλ × inf

m
inf

θ∈Bm(C)

R(fθ)−R(ψ?) + |m|0
log(d/|m|0)

n
+

log(n)

n

d∑
j=1

mj +
log(2/ε)

n

 ,

where Kλ −−−→
λ→0

1 and Kλ −−−−−−−−−−→
λ→n/(4σ2+C2)

+∞.

4.2.2. Case of Sobolev space

In certain function space, it is possible to derive some minimax optimality properties. Assume that ψ∗ is
indeed an additive form of nonparametric decomposition in a Sovolev space, for example say ψ? =

∑
j∈S? ψ

?
j ,

and let φ1, φ2, . . . refer to the trigonometric basis. Assume that each of the ψ∗j s belong to a Sobolev ellipsoid:

ψ?j ∈ W(rj , `j) =

{
f ∈ L2([−1, 1]) : f =

∞∑
k=1

θkφk and

∞∑
i=1

i2rjθ2
i ≤ `j

}
,

where rj ’s are unknown regularity parameters, casting our results onto the adaptive setting. We obtain the
following oracle inequality.

Theorem 4.4 ( [GA13]). For any real ε ∈ (0, 1), any 0 < λ < n/(4σ2 + 4C2), with probability at least 1− ε,

R(fθ̂)−R(ψ?)
R(fθ̄)−R(ψ?)

}
≤ Kλ ×

∑
j∈S?

`
1

2rj+1

j

(
log(n)

2nrj

) 2rj
2rj+1

+
|S?| log(d/|S?|)

n
+

log(2/ε)

n

 .

The message carried by these inequalities is that if there exists a sparse representation of the regression
function, then the right-hand side terms become negligible and the excess risk of the PAC-Bayesian estimators
mimics the best excess risk one could achieve in the collection. Moreover, the excess loss appears to be minimax
up to a log term.

4.2.3. Logistic Regression

This PAC-Bayesian approach has been extended by [Gue13a] to the logistic regression model: y = {±1},
model

log
P(y = 1|x)

1− P(Y = 1|x)
= ν(x), x ∈ Rd.

The logistic loss function is thus defined as

` : (y, fθ(x)) 7→ log [1 + exp(−yfθ(x))] .

Then the link function ν is estimated by the same collection of additive combinations of elements of the
dictionary, as before. Similar oracle inequalities are provided in [Gue13a].

4.2.4. Binary Ranking

Note that the PAC-Bayesian tools can also be usedto solve the binary ranking problem in a high-dimensional
setting (see e.g. [GR14b]).

The bipartite ranking problem consists in learning from a sample Dn = {(xi,yi)}ni=1 to rank observations
xi, while preserving the order of their associated labels yi ∈ {±1}. We consider this problem in the high
dimensional situation, where the observations (xi)1≤i≤n lie in a space of dimension d, possibly much larger than
the sample size n. A standard approach in this context involves the introduction of a scoring function. We
propose to estimate the optimal scoring function using the so-called Gibbs posterior distribution, which favors
sparse additive estimators. This procedure appears valuable to assess the effect of each covariate on the score
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of an observation. Using elements from the PAC-Bayesian theory, we provide theoretical guarantees about our
method, along with an implementation through MCMC.

4.3. Implementation

Note that the implementation relies on MCMC algorithms, favoring local moves of the Markov Chain. This
is achieved by a so-called Subspace Carlin & Chib approach (see [CC95,PD12]), and is freely available in the R
package [Gue13b], named pacbpred (PAC-Bayesian Prediction)1.
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[Aud04b] J.-Y. Audibert. Théorie statistique de lapprentissage : une approche PAC-Bayésienne. PhD thesis, Université Pierre
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