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ABSTRACT

We consider particle filters in a model where the hidden
states and the observations form jointly a Markov chain,
which means that the hidden states alone do not necessar-
ily form a Markov chain. This model includes as a special
case non–linear state–space models with correlated Gaus-
sian noise. Our contribution is to study propagation of er-
rors, stability properties of the filter, and uniform error esti-
mates, using the framework of LeGland and Oudjane [5].

1. EXTENSIONS OF HIDDEN MARKOV MODELS

In the classical HMM situation, the hidden state sequence���������
	���
is a Markov chain taking values in the space�

. It is not observed, but instead an observation sequence����������	���
taking values in the space � is available, with

the property that given the hidden states
���������
	���

, the
observations

����������	���
are mutually independent, and

the conditional probability distribution of
� �

depends only
on the hidden state

� �
at the same time instant. In addition,

when ��� � varies, all the conditional probability distribu-
tions ��� � � ���! �" � �$# �&% are assumed absolutely contin-
uous w.r.t. a nonnegative measure ')(�+* �, �- on � which does
not depend on � . The situation is completely described by
the initial distribution and local characteristics

��� �$. �/�!��% #10 . * �,��- �

��� ��� �2�!��34" ����576 # ��% #98 � * � � �,�)3:- �

��� ��� �;�! 2" ��� # �&% #=< � * � �  �-�' (� * �! �-?>
1.1. Conditionally Markovian observations

Alternatively, the following more general assumption could
be made : given the hidden states

��� � ���@	���
, the ob-

servations
�A� � ���2	B��

form a Markov chain, and the con-
ditional probability distribution of

� �
given

� �A576
depends
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only on the hidden state
���

at the same time instant. The
situation is completely described by the joint initial distri-
bution and local characteristics

��� � . �/�!� �C� . �/�! !% #B07. * �!�)- <D. * � �  �-�'�(. * �! �- �

��� � � �;�,�)3E" � ��5F6+# �&% #18G� * � � �!��3H- �

��� ��� �/�, �34" �)�A576 #  �C��� # ��3I%
#=< � * ��3 �  �  �3I-�'�(�+*  � �, �3J-?>

Particle filters for these models, which include switching
autoregressive models, have already been investigated in
Cappé [1] and in Del Moral and Jacod [2].

1.2. Jointly Markovian hidden states and observations

Even more generally, the following assumption could be
made that hidden states

���������K	L��
and observations����������	���

form jointly a Markov chain, and that the tran-
sition kernel can be factorized as

��� ��� �2�!��3 �C��� �;�, �3M" ����5F6 # � �C����576 #  N%
#9O � * � �  �  �3 � �!��3H-P'&(� *  � �! �3Q- � (1)

where
O � * � �  �  �3 � �,�)3H- is a nonnegative measure on

�
for

any �9� � and any  �  �3R�1� , and where '�(�S*  � �, �3J- is a
nonnegative measure on � for any  =�1� . Particle filters
for these models have already been investigated in Crişan
and Doucet [3], where even the joint Markov property is re-
moved, and in Desbouvries and Pieczynski [4]. Notice that
when �;� � and  ��/� vary, all the conditional probability
distributions ��� � � �1�! �3T" � �A576�# � �U� �A576�#  N% are ab-
solutely continuous w.r.t. a nonnegative measure '�(� *  � �! �3Q-
on � which does not depend on � . Indeed, integrating (1)
w.r.t. �)3M� � yields

��� � � �/�! V3E" � ��576R# � �U� �A576R#  N%
#1O � * � �  �  �3 � � -?'�(� *  � �! �3Q-�> (2)



Not only is the decomposition (2) necessary, but it is also a
sufficient condition for the decomposition (1) to hold. In-
deed, if the decomposition (2) holds, then the decomposi-
tion (1) holds with
O � * � �  �  3 � �!� 3 - # �<!� * � �  �  3 - �8 � * � �  �  3 � �!� 3 - � (3)

where by definition�8 � * � �  �  3 � �,� 3 - # O � * � �  �  �3 � �!��3H-O � * � �  �  3 � � -
# ��� ��� �;�!� 3 " ����576 # � �U�)��5F6 #  �U�)� #  3 % �

and � <!� * � �  �  3 - #BO � * � �  �  3 � � - �
for any � � �

and any  �  �3 � � . In full generality, for
any � � �

and any  �  �3 � � , the nonnegative measureO � * � �  �  �3 � �,�)3H- can be factorized as
O � * � �  �  3 � �!� 3 - #�� � * � �  �  3 � � 3 -�� � * � �  �  3 � �,� 3 - � (4)

into the product of a nonnegative importance weight func-
tion

� � * � �  �  �3 � �)3Q- , and an importance probability distri-
bution � � * � �  �  �3 � �!��3H- . The decomposition (4) is clearly
not unique. As much as possible, a clear distinction should
be made between results and estimates� which depend only on the nonnegative kernel

O �
,� which depend on the specific importance decomposi-

tion
* � � � � � - of the nonnegative kernel

O �
.

In practice, the importance decomposition should be such
that, for any � � � and any  �  �3��/� , it is easy� to evaluate the weight function

� � * � �  �  �3 � ��3J- ,� to simulate a r.v.
�

according to the probability dis-
tribution � � * � �  �  V3 � �!��3H- ,

Another meaningful criterion for the choice of the impor-
tance decomposition is the optimization of error estimates
for associated particle schemes, see Remark 4.3 below.

2. OPTIMAL BAYESIAN FILTER AND
FEYNMAN–KAC FORMULAS

For any test function � defined on
�	��
 6

� � � * �$.� � -+" ��.� � %
#

������������� � * � .� � - O . * �,� . - ��
���E6 O � * � ��576,� �,� � -��� ����� ��� OT. * �,� . - ��

���46 O � * � ��576 � �!� � -
�

where by definition and with an abuse of notation
O . * �,��- # O . * ��.N� �!�)- �

O � * � � �!��3H- # O � * � �C����576,�C���V� �,�)3Q- > (5)

Given the observations, the objective of filtering is to es-
timate the hidden states, and to this effect the probability
distribution

0M� * �,��- # ��� � � �;�,�
" � . �
����� �C� � % �

is introduced. The evolution of the sequence
� 04� �&� 	 ��

taking values in the space � * � - of probability distributions
on
�

, is very easily derived using the following Feynman–
Kac formula. Let��� � � � � # � ������� � � � * � � - OT. * �,� . - ��

���46 O � * � ��576 � �!� � -
for any test function � defined on

�
. Clearly� 0 � � � � # ��� � � � ���� � ��! � and

��� � � � � # �"� � 5F6A� O � � � �
hence� 0 � � � � # ��� � � � ��"� � ��! � #

��� � 576 � O � � ��"� � 576 � O � ! � #
� 0 � 576A� O � � �� 0 � 5F6 � O � ! � �

and the transition from
0 � 5F6 to

0 � is described by the fol-
lowing diagram

0 � 576$#%#&#&#'#&#&#)( 0 � # 0 � 576 O �* 0 � 576 O � - * � - #+*O � * 0 � 576 - >
Remark 2.1. Proceeding as in LeGland and Oudjane [5,
Remark 2.1], it can be shown that the normalizing constant* 0 � 576 O � - * � - is a.s. positive, hence the probability distri-
bution

*O � * 0 � 5F6 - is well–defined. Moreover, the likelihood
of the model is given by

OT. * � -
��
���E6 * 0M�A5767O � - * � - � (6)

with the usual abuse of notation (5).

3. PARTICLE APPROXIMATION

By definition, and for a given importance decomposition (4)

0 O � * �,� 3 - #
� � � � * � � � 3 - 0 * �!�)-�� � * � � �,� 3 - �

with the usual abuse of notation. On the product space�-, �
, let . / * � � �)3H-10#2( ��3 denote the projection on

the (second) space
�

. For any probability distribution
0

on



the space
�

, the probability distribution
0�� � � is defined

on the product space
� ,2�

by

* 0�� � � - * �,� � �!� 3 - #B0 * �!�)- � � * � � �,� 3 - >
It follows that

0 O � * �!� 3 - #
� � � � * � � � 3 - * 0�� � � - * �!� � �!� 3 -

# * � � * 0�� � � - -�� . 5F6 * �!� 3 - �
i.e. the nonnegative measure

0 O �
on the space

�
is the

marginal of the nonnegative measure
� � * 0�� � � - on the

product space
� ,��

, with importance weight function
� �

and importance probability distribution
0�� � � . It follows

also that*O � * 0 - * �,� 3 - # * � � � * 0�� � � -C-�� . 576 * �!� 3 - �
where

�
denotes the projective product. The weighted parti-

cle approximation of the probability distribution
� � � * 0��� � - is defined by� � � * 0�� � � -�� � � �	��
 * 0�� � � -

#

�  �E6 � � * �� ��576 � � � -
�� �46 � � * �� ���5F6 � � �� -

� * �� ��5F6 � � � - �

where
� * �� ��5F6 � � � - ��� # !,� ����� ��� 

is an
�

–sample with
probability distribution

0�� � � , which can be achieved in
the following manner : independently for any

� # !,� ����� ���
�� ��576�� 0 * �,��- and

�

��� � � * ��


��576 � �!� 3 - �

and the corresponding particle approximation for the mar-
ginal probability distribution

*O � * 0 - # * � � � * 0�� � � - -�� . 5F6
is defined by*O � * 0 -�� * ��� �	��
 * 0�� � � - -�� . 576

#

�  �E6 � � * �� ��5F6 � � � -
�� �E6 � � * �� ��A576 � � �� -

� �

� >

Let
� 0 
� ���B	 ��

denote the particle filter approximation,
associated with the importance decomposition (4), to the
optimal filter

� 0 � ��� 	 ��
. The transition from

0 
� 576 to0 
� is described by the following diagram

0 
� 576 #%#&#2#&#&#&#)( 0 
� # * � � ��� 
 * 0 
� 5F6 � � � -C-�� . 576 >

In practice, the particle approximation

0 
 � # 
�  �E6��

� � �


� �

is completely described by the set
� �

� � �


� ��� # !!� ����� ��� 

of particles locations and weights, and the transition from� �

��576 � �


��5F6 ��� # !,� ����� ��� 

to
� �

� � �


� ��� # !!� ����� ��� 

consists of the following steps

1. Independently for any
� # !,� ����� ���

, generate�� �A576 � 0 
 ��576 * �!�)- and
�

�!� � � * ��


�A576 � �!� 3 -?>

2. For any
� # !,� ����� ���

, compute the weight

�

� #�� � * �� ��576 � � � -#" �


�� �E6 � � * �� ��A576 � � �� -V% �
and set 0 
 � # 
�  �46$�


� � �


� >

4. ERROR ESTIMATES

From now on, mathematical expectation
� � � % is taken only

w.r.t. the additional randomness coming from the simulated
r.v.’s, but not w.r.t. the observations. The following bias esti-
mate does not depend on the importance decomposition (4).

Lemma 4.1. For any (possibly random) probability distri-
butions

0 � 0 3 on
�

, it holds

%�&�'( �) ( ) �E6 � " � 0*� � � # 0 3 � � � � � � *,+ � . � -F"
- %�&�'( �) ( ) �E6 � " � 0 # 0 3 � + �F" %.&�'/10 � O � * � � � -?>

In contrast, the following variance estimate depends explic-
itly on the specific importance decomposition (4).

Lemma 4.2. For any (possibly random) probability distri-
bution

0
on
�

, it holds

%�&�'( �) ( ) �E6 � " � � 
 * 0�� � � - # 02� � � � � � *,+ � .M- �F"
- !3 � � %�&�'/14 /�560

� � � * � � � 3 - * 0 O � - * � -N% 6.7�8 >
Remark 4.3. In statistical applications, it is important to
accurately estimate the likelihood (6) of the model, i.e. to
estimate

* 0 ��5F6 O � - * � - # � 0 ��576 O ����! � , for the test func-
tion

+:9 !
. It is easy to show that the ; 8 –error for the

particle approximation of (6) is minimum for the particle



scheme associated with the decomposition (3) of the non-
negative kernel

O � * � � �,�)3:- , i.e. for the decomposition

O � * � � �!� 3 - # � < � * ��- �8 � * � � �,� 3 - >
with the usual abuse of notation.

Assumption A The importance weight function is bounded%�&�'/14 /	5 0
� � � * � � � 3 - ��� >

4.1. Rough estimates on a finite time horizon

If Assumption A holds, then the following notations are in-
troduced

��� # %.&�'/ 0
� O � * � � � -

* 0M��5F67O � - * � -
- %�&�'/14 / 5 0

� � � * � � � 3 -
* 0M��576FO � - * � -

# ��� * � - �

and in view of Remark 2.1,
�&�

and
��� * � - are a.s. finite.

Theorem 4.4. If for any
��	 !

, Assumption A holds, then%�&�'( �) ( ) �E6 � " � 0 
 � # 0M� � + �F"
- !3 � ��

���7. � � 57� 
 6 � �  � 
 6�� � � * � - �

where
� �  � 
 6$# � � ����� � � 
 6 , and with the convention that� �  ��
 6 # !

.

4.2. Stability and uniform estimates

Without any assumption on the nonnegative kernel
O �

, the
error estimate obtained in Theorem 4.4 grows exponentially
with the time horizon

�
. If the nonnegative kernel

O �
is

mixing, then the local errors are forgotten exponentially fast,
and it is possible, proceeding as in LeGland and Oudjane [5,
Section 4], to obtain error estimates which are uniform w.r.t.
the time index

�
.

Definition 4.5. The nonnegative kernel
O �

is mixing, if
there exist a constant

� ��� � - !
, and a nonnegative mea-

sure ' � defined on
�

, possibly depending on
* �7��5F6 �U�)� - ,

such that

� � ' � *
	 - - O � * � � 	 - - !
� � ' � *
	 - �

for any � � � and any Borel subset
	�� �

, and let

 � # * ! # � 8 � -#" * !�� � 8 � - � ! >
If
O �

is mixing, then

* 0 O � - * � - 	 � 8 � * 0 ��576 O � - * � - �

for any probability distribution
0

on
�

, hence a.s.

�����
� 0����

�
� * 0 O � - * � -�� � �

in view of Remark 2.1. If in addition Assumption A holds,
then the following notation is introduced

� � * � - #
%�&�'/14 /�560

� � � * � � � 3 -
�����

� 0����
�
� * 0 O � - * � -

�

and � � * � - is a.s. finite.

Theorem 4.6. If for any
� 	 !

, Assumption A holds, and
the nonnegative kernel

O �
is mixing, then

%�&�'( �) ( ) �E6 � " � 0 
� # 0 � � + �F"
- !3 � � � � � � � � 576� 8� � ��! #"%$

� 5 8�
���46  �  � 
'& � �

� 8 � 
 8 � 8 � 
 6 % �
where  �  � 
'& #  � �����  � 
'& , and

� � # � � � � * � - .
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