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SOME RECENT RESULTS IN RARE EVENT ESTIMATION

VIRGILE CARON!, ARNAUD GUYADER?, MIGUEL MUNOZ ZUNIGA® AND BRUNO TUFFIN?

Abstract. This article presents several state-of-the-art Monte Carlo methods for simulating and
estimating rare events. A rare event occurs with a very small probability, but its occurrence is important
enough to justify an accurate study. Rare event simulation calls for specific techniques to speed up
standard Monte Carlo sampling, which requires unacceptably large sample sizes to observe the event
a sufficient number of times. Among these variance reduction methods, the most prominent ones are
Importance Sampling (IS) and Multilevel Splitting, also known as Subset Simulation. This paper offers
some recent results on both aspects, motivated by theoretical issues as well as by applied problems.

Résumé. Cet article propose un état de 'art de plusieurs méthodes Monte Carlo pour I’estimation
d’événements rares. Un événement rare est par définition un événement de probabilité tres faible, mais
d’importance pratique cruciale, ce qui justifie une étude précise. La méthode Monte Carlo classique
s’avérant prohibitivement cotiteuse, il importe d’appliquer des techniques spécifiques pour leur estima-
tion. Celles-ci se divisent en deux grandes catégories : échantillonnage préférentiel d’un c6té, méthodes
multi-niveaux de 'autre. Nous présentons ici quelques résultats récents dans ces domaines, motivés par
des considérations tant pratiques que théoriques.

INTRODUCTION

Reliability analysis is a current important topic, aiming at verifying if energy, telecommunication or trans-
portation systems (for example) satisfy the societal needs. A similar type of analysis is required in many other
important fields, including finance, physics, biology, etc. But the constantly evolving and increasingly sophis-
ticated systems, due to technology changes, induce an increasing complexity of the underlying mathematical
models. As a consequence, the traditional analysis methodologies become non-applicable to solve the consid-
ered models, due to too stringent assumptions that would not allow to represent reality sufficiently well and/or
because they require a too long computational time to give a meaningful result. Monte Carlo simulation then
becomes a relevant tool, just requiring to generate independent copies of the system, from which an estimator
and confidence intervals can easily be derived [1[45].

A difficulty is nevertheless that many problems usually mean investigating the probability of rare events. In
that case, standard Monte Carlo requires in average a very long time to observe the rare event only once, for
instance 10° independent copies on average for an event of probability 10~9, a typical target. Specific techniques
have therefore to be implemented. Among the most prominent ones are Importance Sampling and Multilevel
Splitting (sometimes called Subset Simulation).
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Importance Sampling (IS) has emerged in the Monte Carlo literature as a general and powerful tool to reduce
the variance of an estimator, which, in the case of rare event estimation, also means increasing the occurrence
of the rare event. The generic idea of IS is to change the probability laws of the system under study to sample
more frequently the events that are more “important” for the simulation. Of course, using a new distribution
results in a biased estimator if no correction is applied. Therefore the simulation output needs to be translated
in terms of the original measure. This is done by multiplication with a so-called likelihood ratio. IS has received
substantial theoretical attention. We refer to Robert and Casella [38] for a discussion on IS from a general point
of view, and to Bucklew [9], L’Ecuyer, Mandjes and Tuffin [27], and Rubino and Tuffin [39], for the application
of IS in the context of rare event estimation. Recent contributions to IS are presented in Sections [2] and [3] of
the present article.

Multilevel splitting (also called splitting, importance splitting, or subset simulation) is an alternative tech-
nique for accelerating the rate of occurrence of the rare event of interest. Here, we do not change the probability
laws driving the model. Instead, we use a selection mechanism to favor the trajectories deemed likely to lead to
the rare event. The main idea is to decompose the paths to the rare event of interest into shorter subpaths whose
probability is not so small, encourage the realizations that take these subpaths (leading to the event of interest)
by giving them a chance to reproduce (a bit like in selective evolution), and discourage the realizations that go
in the wrong direction by killing them with some positive probability. In the end, an unbiased estimator can
be recovered by multiplying the contribution of each trajectory by the appropriate weight. Multilevel splitting
was introduced by Kahn and Harris [24] in the early fifties in the field of particle transmission. We refer the
reader to the tutorial of L’Ecuyer, Le Gland, Lezaud and Tuffin [26| for an in-depth review and a thorough list
of references, and to Section [T} for more details.

This paper is divided into four independent sections. Section [I} authored by Arnaud Guyader via a collabo-
ration with Nick Hengartner and Eric Matzner-Lgber, proposes a new multilevel splitting type algorithm when
the rare event is described by the tail distribution of a function of a random vector. In Section [2] Bruno Tuffin
outlines an approximation of the optimal IS estimator in a general Markovian context (joint works with Pierre
L’Ecuyer, Gerardo Rubino and Samira Saggadi). Section by Virgile Caron and based on his PhD thesis under
the supervision of Michel Broniatowski, presents an approximation of the optimal IS density when dealing with
a long random walk conditioned to an average of its summands. Finally, Miguel Munoz Zuniga describes a new
algorithm for rare event estimation in a challenging context, namely for a high computational time model and
a relatively large input dimension. This latter is based on works with Josselin Garnier, Emmanuel Remy and
Etienne de Rocquigny.

1. MULTILEVEL SPLITTING IN A STATIC CONTEXT

Suppose X is a random vector in R? with law x that we can simulate, and ® is a mapping from R¢ to R, also
called a score function. Because of the complexity of the underlying process, we view ® as black box, that is,
we do not have an analytic expression for ® but we can readily evaluate ®(X) for any given instance X. Then
given a threshold ¢ which lies far out in the right hand tail of the distribution of ®(X), we seek to estimate the
very low probability p = P(®(X) > q).

A Standard Monte Carlo that uses an i.i.d. N-sample Xi,..., X to estimate p by the fraction p,. = #{i :
®(X;) > q}/N is not practical when p is very small. Indeed, in order to obtain a reasonable precision of the
estimate given by the relative variance V(p,,.)/p?, which is equal to (1 —p)/(Np), one needs to select a sample
size N of order p~!. For instance, a random sample of one billion observations is needed to estimate a target
probability of 1079,

Importance sampling, which draws samples according to an auxiliary law 7 and weights each observation
X =z by w(x) = du(x)/dn(z) can decrease the variance of the estimated probability which in turn greatly
reduces the need for such large sample sizes. Unfortunately, when ® is a black box, these weights cannot be
computed, and hence importance sampling is not available to us.

Multilevel splitting (also called splitting, importance splitting or subset simulation) was introduced by Kahn
and Harris [24] and is another powerful algorithm for rare event estimation. We refer the reader to the tutorial
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of L’Ecuyer, Le Gland, Lezaud and Tuffin [26] for an in-depth review and a detailed list of references on
splitting in the specific case of stochastic processes. Indeed, it turns out that since the pioneering work of Kahn
and Harris in the early fifties and until the 2000’s, most of the applications of multilevel splitting methods
were dedicated to the estimation of rare events in a dynamic context, typically for Markovian processes. In the
present contribution, we will rather focus on splitting methods in a static context, which means the estimation
of a rare event for a random vector, not for a random process.

The basic idea of multilevel splitting, adapted to our static context, is to fix a set of increasing levels
—o00o=Lo< Ly <Ly<--- <Ly, =g, and to decompose the tail probability as follows

nofl

P(®(X)>q) = [] P(®(X) > Lyni1|®(X) > Lyn).

Each conditional probability p,, = P(®(X) > L;,41|®(X) > L,,) is then estimated separately. Two practical
issues associated with the implementation of multilevel splitting are the need for computationally efficient
algorithms for estimating the successive conditional probabilities, and the optimal selection of the sequence of
levels.

To our knowledge, the first instance in which static rare event simulation using multilevel splitting was
proposed is a paper by Au and Beck [2]. But these authors call it “Subset Simulation” and do not make any
connection with multilevel splitting, which is why people in the rare event community do not systematically
mention this work afterwards. The next work where a reversible transition kernel was introduced to deal with
such static rare events is due to Del Moral, Doucet and Jasra [16].

The paper of Cérou, Del Moral, Furon and Guyader [13] proposes to adaptively select the levels using the
(1 — po)-quantiles of the conditional distributions of ®(X) given that ®(X) > L,,, where pg is held fixed (for
example pg = 3/4). Considering the following decomposition of the probability p

p=rop,® where ng= |logp/logpo] and 719=ppy"° € (po,1]

their tail probability estimate writes p = 7g pgo and it turns out that when the number of particles N tends to
infinity, the best precision that one can achieve by applying this technique is

v v B (), 1)

Nooo N po - log po

It is noteworthy that a very similar approach has been independently proposed by Rubinstein [40] and Botev and
Kroese [6] in the context of combinatorial optimization, counting and sampling, demonstrating the performance
of this algorithm via an extensive simulation study.

Interestingly, since the mapping v : po — (1 — pg)/(—pologpy) is nonincreasing on (0, 1), one can deduce
from equation that the larger pg, the lower the variance, with

lim N x V(p) = —p®logp. (2)

po—1—

Hence the idea to choose pg as large as possible. However, with an adaptive method, the largest possible value
is clearly po = 1 — 1/N. This is the main idea of the so-called Last Particle Algorithm presented hereafter. We
refer the reader to the paper by Guyader, Hengartner and Matzner-Lgber [22] for details and proofs, and to
Cérou, Guyader, Lelievre and Pommier [14] for the application of this algorithm in the context of molecular
dynamics. Before proceeding, let us mention that this algorithm bears a resemblance to the “Nested Sampling”
approach which was proposed by Skilling in the context of sampling from general distributions and estimating
their normalising constants [15}44].
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1.1. The Last Particle Algorithm

Consider the following idealized algorithm:
e Start with an i.i.d. sample (X7, Xs,..., Xy) from g and initialize Ly = —oo and

Xi=X1,...,. X5 = Xn.

e Form=1,2,..., set
L,, = min(®(X"),..., (X)),
and define for all t =1,2,..., N:

K+ xm if ®(X™) > Ly, (3)
i X* ~ L(X|®(X) > L) if ®(X™) = Lo,

where X* is independent of {X7*,..., X%}
e Stopping rules:
(a) To estimate a tail probability p given a quantile g, continue until m = M where M = max{m :

L < ¢} and set p= (1 — %)M . Note that the number M of iterations is a random variable.

(b) To estimate a quantile ¢ given a tail probability p, continue until iteration m = [%—‘ , and

set § = L,,. Note that this time, the number m of iterations is deterministic.

Simulating exactly according to L(X|®(X) > L,,) at step is impossible in general and we propose to do so
approximately using Markov Chain Monte Carlo techniques. However, for the theoretical analysis of Section
1.2 we will consider only the case where that simulation could be done perfectly, and this is the reason why we
call it the Idealized Last Particle Algorithm.

For the practical implementation, to draw X* at step , we run a Markov chain with a suitable p-symmetric
and one-step p-irreducible kernel K. That is: K satisfies the detailed balance property with u; and from any
initial point z, the Radon-Nikodym derivative dK (x,dz’)/du(dx’) is strictly positive. Either, one knows such a
kernel K or otherwise could use a Metropolis-Hasting kernel K based on a one-step p-irreducible instrumental
kernel Q(z,dx’) (see for example [38]). This latter is possible when the law p is known up to a normalizing
constant, that is p(dz) o« f(x)dx, which is usually the case in Bayesian statistics (among others).

Example: Let us suppose that X has a standard Gaussian distribution on R. Then let us present two ways
to get such a transition kernel K:

(1) Direct construction: fix ¢ > 0 and denote K the transition kernel defined by

d
1+0%\2 1+ 02 ?
K(z,dz') = ( 5o ) exp (W A(dx'),

where \ stands for Lebesgue’s measure on R%. Denoting W a Gaussian standard variable on R? inde-
pendent of X, the transition X ~~ X’ proposed by K is thus X' = (X +oW)/V1 + o2.
(2) Metropolis-Hastings kernel: fix o > 0 and denote @ the transition kernel defined by

% / 2
Q(x,dx’) = (27302> exp <x202:c||> A(dx').

Denoting W a Gaussian standard variable on R? independent of X, the transition X ~» X’ proposed
by Q is this time X’ = X + ocW. Then, starting from @, the transition kernel K constructed by

X

V1402

/
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Metropolis-Hastings is p-symmetric and one-step p-irreducible.

With this kernel K at disposal, let us now detail how one can approximately satisfy step of the idealized
algorithm. For this, we fix an integer T' and we assume that L,, is reached at a unique point of the sample,
which is always the case when ®(X) has a continuous cdf. To simplify the writings, let us suppose without loss
of generality that L,, = ®(X{*). Then it suffices to apply the following procedure to get the Practical Last
Particle Algorithm:

Pick an integer R randomly between 2 and N

Let X" = X

Fort=1:T
From X]"*! draw a new particle X* ~ K (X["*1))
If ®(X*) > L,y,, then let X" = X*

Endfor

If T = +o00, then the Practical and the Idealized Last Particle Algorithms coincide. But this is of course
unrealistic, and, as for any Markov Chain Monte Carlo method, the tuning of T" depends on the choice of the
kernel K. To conclude with these practical considerations, let us emphasize that the choice of the kernel K is
crucial in order to make this method efficient.

1.2. Properties of the Idealized Last Particle Algorithm

In what follows, we consider the case of the Idealized Last Particle Algorithm, which means that step of
the previous algorithm is perfectly matched at each iteration. Again, even if this is somehow unrealistic, this
gives us some insights into the properties of the proposed algorithm. Besides this very strong assumption, we
only suppose that the random variable ®(X) has a continuous cdf. This ensures that there are no ties for the
“last particle” at each iteration.

1.2.1. Estimation of a low probability

Considering a quantile ¢ such that P(®(X) > ¢q) = p, we can prove that the random number of steps M
specified by stopping rule (a) of the Idealized Last Particle Algorithm has a Poisson distribution, namely that
M ~ P(—=Nlogp).

This being noted, it is readily seen that the estimator p = (1 — 1/N)M is a discrete random variable with

distribution
1\™ N(=N1 m
plo= (1o L) |=piCENoen)™ o
N m/!

It follows that p is an unbiased estimator of p with variance:
R 1
V(p) = p? (p ¥ — 1) : (4)

Notice that in practice, the number N of particles is typically larger than 100, so that V(p) ~ —p?logp/N,
which is according to the best achievable precision when applying a multilevel technique.

From the law of p, one can deduce some confidence intervals as well. Let a be a fixed number between 0 and
1 and denote by Z;_,/2 the quantile of order 1 — /2 of the standard Gaussian distribution. Let us denote

Zlfa/Z Z12704/2 212704/2
by =P + —logp -
P+ =Ppexp 8Pt TN oN |

then I;_o(p) = [p—, P+] is a 100(1 — a))% confidence interval for p.



244 ESAIM: PROCEEDINGS

Comparing our estimator with the one obtained through Standard Monte Carlo is instructive. Recall that
the Standard Monte Carlo estimate p,,. for the tail probability has relative variance % = 11\7—;’. Comparing
the latter with the relative variance of our estimator p as specified by reveals that, for the same precision,
Standard Monte Carlo requires about (—plogp)~! more particles than the method presented here.

However, considering that the simulation of ®(X) has an algorithmic cost equal to 1, the Standard Monte
Carlo estimator has a lower complexity, namely C,,. = N, than our algorithm whose expected complexity value
is C(p) = —kN log N logp. Indeed, it requires:

e A sorting of the initial sample, whose cost is (in expectation) in O(N log N) via a quicksort algorithm;
e Around —N logp steps, whose cost is decomposed in:
— T proposed kernel transitions,
— the dichotomic search and the insertion of the new particle at the right place in the ordered sample,
whose cost is in O(log N) via a min-heap algorithm.
To take into account both computational complexity and variance, Hammersley and Handscomb have proposed
to define the efficiency of a Monte Carlo procedure as “inversely proportional to the product of the sampling
variance and the amount of labour expended in obtaining this estimate” [23]. In this respect, p is more efficient
than p,,. whenever V(p) - C(p) < V(Pme) - Cime, that is

1—p

_p’logp
p(log p)?

N

p(1 —p)
N

(—kNlog Nlogp) < N & klogN <

That inequality is satisfied when p goes to zero since the right-hand side goes then to infinity. For example, let
us fix N =200 and k£ = 10, then one can check numerically that the condition

L—p

10log(200) < ——
p(logp)?

is true as soon as p < 1.0 x 107%. The take-home message here is that our estimator is useful compare to

Standard Monte Carlo only if the probability to estimate is low enough. Finally, we refer the reader to [22] for

a discussion on asymptotic efficiency properties.

1.2.2. Estimation of an extreme quantile

Consider this time the problem of estimating the quantile ¢ for a given p such that P(®(X) > ¢) = p. Using
stopping rule (b) of the Idealized Last Particle Algorithm, a natural estimator for the quantile ¢ is § = L,

log(p)
log(1-N—1) |*

Given sufficient smoothness of the distribution at the quantile ¢, we obtain an asymptotic normality result
for our estimator. Specifically, if the cdf F' of Y = ®(X) is differentiable at point ¢, with density f(g) # 0, then

where m = [

VR0 o N (0. 1) (5)

N—o0 f(q)?

Under the same assumptions, the Standard Monte Carlo estimator defined as Gme = Y(|(1-p)n)), Where
Y(q) < -+ <Y{, are the order statistics of ®(X1),...,®(Xy), satisfies the following central limit theorem (see
for example [42], Theorem 7.25)

Viline - 0) 2o w0 (0. 2521,

N—o0 f(q)?

This proves again that in order to achieve the same precision in terms of variance of the estimator, Standard
Monte Carlo requires about (—plogp)~! more particles than the estimator proposed here. Nonetheless, to be
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completely fair, one shall also take into account the respective algorithmic complexities of both estimators. The
conclusion is then just the same as in Section [1.2.1

Yet, expression () is of limited use to construct confidence intervals as it requires the knowledge of f(q). But
it turns out that exploiting a connection with Poisson processes allows us to derive non asymptotic confidence
intervals for ¢ without having to estimate the density at the quantile ¢. Indeed, fix a € (0,1), denote by Z;_, />
the quantile of order 1 — «/2 of the standard Gaussian distribution, define

m_ = {—Nlogp—zl—a/z\/Tlong
mt = [—Nlonger_a/Q\/Tlng—‘

and consider Ly, , L+ the associate levels. Then it can be established that a 100(1 — )% confidence interval
for the quantile q is I1—o(q) = [Lm_, Lm+]-

Two important remarks are in order. First, the computational price to pay to obtain the confidence interval is
the cost of running the algorithm until step m™ in order to get the upper confidence bound L,,+. This requires
the algorithm to run around Z;_,/2+/—N logp additional steps. Secondly, let us emphasize that compared to
the CLT type result given by , the great interest of this property lies in the fact that it does not require any
estimation of the probability density function f.

2. APPROXIMATION OF ZERO-VARIANCE IMPORTANCE SAMPLING ESTIMATORS AND
APPLICATION TO RELIABILITY MODELS

We recall in this section the general principles of Importance Sampling (IS) variance reduction technique,
one of the two major methods to deal with rare event simulation. We describe the characterization of the
(non-implementable) zero-variance IS estimator, and how it can be approached. An efficient implementation
approximating the zero-variance change of measure is obtained under a general and a Markovian framework, and
applied to reliability-oriented problems, outperforming the other existing methods. Specifically, the resulting
estimators are shown to have a bounded relative error as the system becomes more and more reliable (in a
specified way), and can even have a vanishing relative error in some cases.

2.1. Importance Sampling

2.1.1. General framework

Consider in general the computation of an expectation p = E[L(Y)] = [ h(y)dP(y) by simulation, with & a
function and a Y random variable obeying some probability law P. IS basically consists in a change of variable
in the integral, rewriting

j=E[X] = / h(y)dP(y) = / h() W gp(y) = £ YL,

with P another probability measure and L = dP/dP called the likelihood ratio. The above equality holds under
the condition dP(y) # 0 when h(y)dP(y) # 0. By this transformation, we therefore consider the random variable
h(Y)L(Y) instead of h(Y), and the probability law P instead of P to generate Y, but the expectation does not
change. Using this new framework, an unbiased estimator of y is

=Y HILY)
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with (Y;, 1 <i < n)iid. copies of Y, generated according to P. How to select the probability law P? The idea
is to reduce the variance of the estimator with respect to the initial one, i.e., choose P so that

F*[M(Y)L(Y)] = E[(h(Y)L(Y))?] = p* < o*[1(Y)].

Note that determining a probability law leading to a variance reduction is not an easy task in general: some
counter-intuitive results can be obtained [27].
But it is known that the change of measure with

)
P = g™

is actually optimal in the sense that it is the one minimizing the variance among all possible IS choices [1}/27].
If h > 0, it actually leads to E[(h(Y)L(Y))?] = (E[h(Y)])?, i.e., 62(h(Y)L(Y)) = 0. We therefore have the zero-
variance change of measure, always providing as an output the exact result p. Unfortunately, implementing
the estimator based on this change of measure requires to know E[|A(Y)|] in the computation of the likelihood
ratio, but it is what we are trying to compute. If we knew it, there would be no need to resort to simulation.
All this is not bad though, the optimal form provides us with an idea on what a good IS should look like.

2.1.2. Importance Sampling applied to Markov chains

Consider the more specific framework of a (discrete time) Markov chain (Y}),>0 defined on a state space S,
with transition matrix P = (P(y,2))y,zcs and initial probabilities mo(y) = P[Yy = y]. Let X = h(Yo,...,Y;)
function of the sample path up to a stopping time 7 and define p(y) = E,[X] the expectation of X given that
we start in Yy = .

In this context, IS replaces the probabilities of paths P[(Yp, ..., Y:) = (Yo, - -, ¥r)] = 7m0 (o) H]T;ll P(y;—1,Y5),
by P[(Yo,...,Ys) = (o, -..,y-)] such that E[r] < co. For computational simplicity, it is very often considered

an IS measure such that we still have a discrete time Markov chain, replacing P(y, z) by P(y, z) and mo(y) by
7o(y). The likelihood ratio is then

Oy---y T ﬁO(YO) Y 1 :

P(Y;1,Y;)

j=1
and can be updated at each time step.

If we restrict ourselves to the case when X =3 77_, ¢(Yj-1,Y;) is an additive and positive cost (but this can
be generalized) on transitions, there is actually a Markov chain change of measure yielding a zero variance:

- Py, 2)(cly,2) +u(z) Py, 2)(cly,z) + u(z))
P02 = s ) e, w) + p(@) (o) ' ©)

Here again though, implementing this IS scheme requires the knowledge of the quantities u(y) Vy € S, i.e.,
what we are looking for.

2.1.3. Zero-Variance Approzimation

Even if @ is not implementable, it gives us some insight on the IS transition matrices of interest. One
suggestion that we are going to consider in the next sections is to use a rough approximation fi(y) of all u(y)
and to plug them into the zero-variance IS expression @ The approximation of the zero-variance change of

measure is then
p Py 2)(c(y, 2) + A(z))

Note that there exists other ways to try to approach the zero-variance IS estimator; see also [4,/5,[17}/18].




ESAIM: PROCEEDINGS 247

(a) Highly Reliable Markovian System (b) Static Reliability Graph

FIGURE 1. Examples of reliability problems

2.2. Application to Highly Reliable Markovian Systems

The first type of reliability models we are interested in are the so-called highly reliable Markovian systems
(HRMS) often used to represent the evolution of multicomponent systems in reliability settings [30] and whose
state space increases exponentially with the number of component classes. Assume that we have a number ¢ of
types of components, and n; components of type i. Those components may fail or be repaired (in both cases
possibly in a grouped way), so that the model is usually represented by a continuous time Markov chain, but we
can consider the embedded discrete time Markov chain at the instants of change of state, Y = (YU ))jzo, with

YO = (Yl(j ), . ,Yc(] )) and where Yi(j ) is the number of operational components of type i at the j-th change
of state. Figure a) shows an example of such a problem with ¢ = 2 and two components of each type. The
goal is to compute the probability that the system reaches a failed state (represented in grey in Figure a))
before coming back to the fully-operational one. Denote by p(y) this probability given that we start in state y.
Usually failures are rare compared with repairs, so that we can introduce a rarity parameter € such that failures
have a probability O(e) (except from the fully-operational state: a transition is in this case necessarily a failure)
while repair probabilities are ©(1) (a function f is said to be ©(e?) if there are constants ¢; and ¢y such that
cre? < f(e) < cge? for e sufficiently small). The previously designed IS methods applied to this problem were
trying to increase the probability of component failures [35,/43]. We rather chose to implement a zero-variance IS
estimator based on Equation (€]). In this context, c(y,z) = 0 (no cost associated to a transition), but u(y) = 1
if y is a failed state while u(y) = 0 if y is the state with all components operational. For all states y that are not
failed or fully operational, we proposed in [30] to replace u(y) by fi(y), the probability of the most likely path
from y to a failed state (which can be computed in general in a polynomial time). To get the intuition behind
our approximation, remark that as e — 0, fi(y) = O(u(y)), i.e., the probability of the path is of the same order
in terms of € as u(y).

It can be proved that the produced estimator satisfies bounded relative error (BRE) under mild conditions,
and can even have vanishing relative error (VRE) under slightly stronger conditions [30]. BRE (also called
strong efficiency) means that the standard deviation of the estimator divided by its mean is kept bounded as
e — 0, while for VRE it converges to 0 when € — 0 [25]. In other words, the sample size required to get a
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confidence interval with a predefined relative accuracy is not sensitive to the rarity of the event when BRE is
satisfied; when VRE is satisfied this relative accuracy gets better with the rarity.

To briefly illustrate the efficiency of the method, consider a system made of ¢ = 3 types of components, n; = 6
components of type i, and such that the system is down whenever fewer than two components of any one type
are operational. Assume that a component of type i fails with rate \; with \; = &, Ay = 1.5¢, and A3 = 2¢2,
while any failed component gets repaired with rate p = 1. The transition probabilities of the embedded discrete
time Markov chain, from a given state, are then the rate of the considered transition divided by the sum of
rates of transitions from this state. For e = 1072, the relative error is 0.79, and reducing to 0.204 for e = 1073.
Actually, VRE can be shown to be satisfied.

2.3. Application to Static Reliability Analysis Models

The second class of problem is the static network reliability estimation, where we want to compute the
probability that a set of nodes K of a graph is connected, when links fail randomly. This class of problems
belongs to the NP-hard family and Monte Carlo simulation is therefore a relevant tool to provide an estimation.
For example, looking at Figure b)7 we want to investigate the probability that the set IC of grey nodes are not
connected (which is in most cases the rare event) given that for each link e, there is a probability ¢. = O(e) that
the link is failed (and thus can be removed from the graph). Failures of links are considered independent. If we
have m links on the graph, a (random) configuration is given by the vector Y = (Y1,...,Y,,) with Y, = 1 if link
e works, 0 otherwise. The state of the system is then ¢(Y'), where ¢(Y') = 1 iff K not connected in configuration
Y, so that

pn=EpY) = > oPY =y

ye{0,1}m

represents the unreliability of the graph that we wish to compute.

The general principle if we want to apply the (Markovian) zero-variance context of Equation @ is to sample
the links one after the other, with an IS probability that depends on the state of previously sampled links. We
thus define an order on the m links and define pg(y1,...,yk—1), with y; € {0,1}, as the unreliability of the
graph given the states of the links 1 to k — 1: if y; = 1 the link ¢ is operational, otherwise it is failed. With
those notations, u = p1(). Under such a sequential construction, it is easy to show that sampling the i-th link
as failed using IS probability

Gi— qiti+1(y1 -, Yi-1,0) (1)
i (Y, Yie1,0) + (L= g it (Y1, - Y1, 1)

will yield a zero variance |28].

But again, this IS scheme is not implementable, since it requires to know all the p;(y1,...,y;—1). What
is proposed in [2§| is to replace p;y1(y1,-..,Yi—1,¥;) in by a heuristic approximation fi;11(y1, ..., Yi—1,Y:)
which is the the probability of the most probable mincut on the links ¢ > m + 1, the state of each link i < m
being fixed to y;. Recall that a cut is a set of edges such that, if we remove them, the nodes in K are not in the
same connected component, and a mincut (minimal cut) is a cut that contains no other cut than itself. The
intuition is, somewhat similarly to the HRMS case, that the unreliability is the probability of union of all cuts,
the most crucial one(s) being the mincut(s) with highest probability.

With this IS scheme, it can be shown that BRE is satisfied in general by the estimator when the unreliability
of each link e is ¢¢ = O(¢) and more exactly it is a polynomial in € for a rarity parameter ¢. Here again, VRE
is satisfied for graphs verifying some properties identified in [28]. VRE was never obtained by the variance
reduction schemes previously proposed in the literature.

As a last remark, this IS technique can be combined with other existing variance reduction techniques or
graph reduction techniques, for an additional efficiency improvement [11}29].

For many numerical illustrations of the efficiency of the methods, we advise the reader to go to [11}28}29].
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2.4. Conclusion

We have highlighted in this section how the zero-variance IS estimator can be characterized and then efficiently
approached if we have at our disposal a heuristic, even a rough one, of the value(s) of interest. We have briefly
recalled how this can be applied to two types of reliability models and hope that it will trigger similar applications
in other fields.

3. APPROXIMATION OF ZERO-VARIANCE IMPORTANCE SAMPLING ESTIMATORS FOR
LIGHT-TAILED SUMS

Improving Importance Sampling estimators for rare event probabilities requires sharp approximations of the
optimal Importance Sampling density, leading to a nearly zero-variance estimator. This section presents a
sharp approximation of the density of long runs of a random walk conditioned by an average of a function of
its summands as their number tends to infinity. This is achieved when the event is defined by the fact that the
end value of this random walk belongs to some countable union of intervals. Using this approximation in the
implementation of an IS scheme can provide strongly efficient estimators.

3.1. Introduction

In this section, we consider the problem of efficient estimation of the probability of large deviations for a sum
of independent, identically distributed, light-tailed and non-lattice random variables. This is a very specific case,
since most of the rare events which are studied in the literature are not of this form; see e.g. [37] for a queuing
application or |20] for applications in credit risk-modeling. Nevertheless the problem considered here, besides
being of independent importance, may also be considered as a building block for more complex problems.

Consider X7} = (X4, ...,X,) n i.i.d. random variables with known common density px on R, and u a real
valued measurable function defined on R. Define U := «(X) and

U17n = Zn: Ui.
i=1

We intend to estimate
P, :=P (U, €nA)

for large but fixed n and where A is a countable union of intervals of R. The case where A = A,, := (ay, 00)
where a,, is a convergent sequence is studied in details in [8].

The state-independent IS scheme for rare event estimation (see [10] or [41]), rests on two basic ingredients:
the sampling distribution is fitted to the so-called dominating point (which is the point where the quantity to
be estimated is mostly captured; see [36]) of the set to be measured; independent and identically distributed
replications under this sampling distribution are performed. More recently, a state-dependent algorithm leading
to a strongly efficient estimator is provided by [5] when u(z) = z and A = (a;c0) (or, more generally in R?, with
a smooth boundary and a unique dominating point). Indeed, adaptive tilting defines a sampling density for the
i—th r.v. in the run which depends both on the target event (U; ,, € nA) and on the current state of the path up
to step i — 1 for A independent of n. Jointly with an ad hoc stopping rule controlling the excursion of the current
state of the path, this algorithm provides an estimate of P, with a coefficient of variation independent upon
n. This result shows that nearly optimal estimators can be obtained without approximating the conditional
density.

Our proposal is somehow different since it is based on a sharp approximation result of the conditional density
of long runs. The approximation holds for any point conditioning of the form (U, , = nv); sampling v in
A according to the distribution of Uy, conditioned upon (U, € nA) produces the estimator; by its very
definition this procedure does not make use of any dominating point, since it randomly explores the set A.
Indeed, our proposal hints on two choices: first do not make use of the notion of dominating point and explore
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all the target set instead (no part of the set A is neglected); secondly, do not use i.i.d. replications, but merely
sample long runs of variables under a proxy of the optimal sampling scheme.

The basic estimate of P, is defined as follows: generate L i.i.d. samples XJ*(I) := (X1(1),.., X (I)) with
underlying density px and define

L
(n) Z e (X0(1

where
En i={(z1,..yxn) ER": (u(x1) + ... +u(x,)) € nA}l.
The Importance Sampling estimator of P, with sampling density g on R" is

L
(A fg (1, (7)) (5)

where P, (1) is called "importance factor' and can be written

[ px (vi()
Ball) ==y

where the L samples Y*(1) := (Y1(l),...,Yn(1)) are i.i.d. with common density g¢; the coordinates of Y7*(1)
however need not be i.i.d.

The optimal choice for g is the density of X7 := (X4, ...,X,,) conditioned upon (X7 € &,), leading to a zero
variance estimator. We will propose an IS sampling density which approximates this conditional density very
sharply on its first components y1, ..., yx where k = k,, is very large, namely k/n — 1. However, but in the
Gaussian case, k should satisfy (n — k) — oo by the very construction of the approximation. The IS density on
R™ is obtained multiplying this proxy by a product of a much simpler adaptive IS scheme following [5].

We rely on [7] where the basic approximation used in the present section can be found. All proofs of the
results in the present section can be found in [§]. The extension to the d-dimensional case is in [12].

3.2. Notations and assumptions

3.2.1. Conditional densities and their approximations

Throughout the section the value of a density pz of some continuous random vector Z at point z may be
written pz(z) or p(Z = z), which may prove more convenient according to the context.
Let p,, denote the density of X} under the local condition (Ui, = nwv)

Pnov (le = Ylk) = P(le = Y1k| Uy, =nv) 9)

where Y} belongs to R*.
We will also consider the density p, 4 of X’f conditioned upon (Uy, € nA)

Pra (X =Y{) = p(X} = Y| Uy, € nA).
The approximating density of p,, is denoted g¢.,; the corresponding approximation of p,4 is denoted g, 4.

Explicit formulas for those densities are presented in the next section. The capital symbols Py, et G, denote
the corresponding probability measures.
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3.2.2. Tilted densities and related quantities

The real valued measurable function u is assumed to be unbounded; standard transformations show that this
assumption is not restrictive. It is assumed that U = « (X) has a density py w.r.t. the Lebesgue measure on
R and that the characteristic function of the random variable U belongs to L" for some r > 1.

The r.v. U is supposed to fulfill the Cramer condition: its moment generating function ¢y is finite in a non
void neighborhood of 0. Define the functions m(t), s*(t) and pus3(t) as the first, second and third derivatives of
log ¢y (t), and m~! denotes the reciprocal function of m.

Denote (tu(2))

o exp (tu(x
with m(t) = « and « belongs to the support of Py, the distribution of U. It is assumed that this implicit
definition of ¢ makes sense for all « in the support of U. Conditions on ¢y (t) which ensure this fact are referred

to as steepness properties, and are exposed in (3], page 153.

3.3. Conditioned samples

The starting point is the approximation of p,, defined in @ on RF for large values of k under the point
condition

(U =nv)

when v belongs to A. We refer to [7] for this result.
We introduce a positive sequence ¢,, which satisfies

lim e,vVn —k =00 (E1)

n—oo

lim €, (logn)® = 0. (E2)

n—oo

Define a density gn,(y¥) on R¥ as follows. Set

go(y1lvo) = my(y1)

with yo arbitrary and, for 1 <i < k — 1, define g(y;11|y?) recursively.
Set t; the unique solution of the equation

it = 5 o)

where w1 ; == u(y1) + ... + uly;).
Define

9(yi+1191) = Cipx (yir1)n (@B + v, @, u(yir1))
where C; is a normalizing constant and n (u, 7, z) is the normal density function on R with mean p and variance
T at z. Here

a=s%t)(n—1i—1)
pis (t:)

p=tit 253 (t)(n—i— 1)
Set
k—1 ,
gno (UF) == 90wl o) [ 9(wisalvh)- (10)

=1
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Theorem 1. Assume and . Then (i)

Pro (XF = YF) = g00(YF) (1 + 0p,, (€ (logn)?))

and (i)
Pro (XF = V) = g, (V) (1 + 06, (€ (log n)?)).
As stated above the optimal choice for the sampling density is p,4. It holds

Praat) = / Do (X5 = 2%) p( Uy /0 = 0] Uy, € nA)do (11)

so that, in contrast with [5] or [10], we do not consider the dominating point approach but merely realize a sharp
approximation of the integrand at any point of A and consider the dominating contribution of all those distribu-
tions in the evaluation of the conditional density p,4. When A = (a, o), the density p(U; ,/n = v| Uy, € nA)
can be well approximated by an exponential density allowing a simpler expression for .

3.4. Adaptive IS estimator for rare event probability

The IS scheme produces samples Y := (Y7, ..., Y}) distributed under g, 4, which is a continuous mixture of
densities gy, as in with p (Uy,n/n =v|U;y, € nA).

Simulation of samples Uy, /n under this density can be performed through Metropolis-Hastings algorithm,
since

n _ P(Uiyn/n=0vU, €nA)
r(v,v'") == -
p(Uypn/n=2|U;y, € nA)
turns out to be independent of the event {U,, € nA}. The proposal distribution of the algorithm should be
supported by A.
The density gna is extended from R onto R™ by completing the n — k remaining coordinates in two steps,
according to the method developed in [5],

Tn

n
gna Wisalvt) = TI =™ @) T = @)

i=k+1 i=Tp+1

where 7, is defined by
Tn = Tn1 NTn2 AN
with

. ‘ o ‘ _N-3/2
Tn,1 = kérilin{ml > A} T2 kgén{m’ <(n—1) }.

where A is a constant depending on A. The stopping criterion is based on two simple facts. The first stopping
time is used, when we are approaching a scaling for which the large deviations asymptotics are no longer appli-
cable. The second stopping time is used when there is no need for applying importance sampling sequentially
as the event of interest is not rare anymore, see 5] for details.

We now define our IS estimator of P,. Let Y{*(I) := Y1(I), ..., Y, (1) be generated under g, 4. Let

5 [0 px (Yi(1))

P,(1) = (V7)) le, (Y1"(1)

and define

“LR A

h \
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in accordance with .
Let us conclude this section with two remarks:

(1) Using arguments from [8] and [5], P, is strongly efficient when A = (a,00) and A > 2a. Indeed, on the
k first coordinates, the approximation of the zero-variance change of measure coincide with the true
density. On the n — k last coordinates, using large deviation arguments, |5] proves the strong efficiency
of ]3;

(2) The performance of these methods for an ill-behaved set, when this set is non connected, and bears
some asymmetry with respect to the underlying probability model has been studied in [§]. As noticed
in [21], this case leads to overwhelming loss in relative accuracy for the probability to be estimated.
Simulated results enlighten the gain of the present approach over state-dependent Importance Sampling
schemes. Using different arguments, Dupuis and Wang [17] are led to a similar result.

4. ADAPTIVE DIRECTIONAL STRATIFICATION FOR THE CONTROLLED ESTIMATION OF
RARE EVENT PROBABILITIES

In the context of structural reliability, a small probability to be assessed, a high computational time model
and a relatively large input dimension are typical constraints which brought together lead to an interesting
challenge. Indeed, in this framework many existing stochastic methods fail in estimating the failure probability
with robustness.

Therefore, the aim of this section is to present a method introduced to overcome the specific constraints
mentioned above. This new method turns out to be competitive compared with the existing techniques. It is
a variant of accelerated Monte Carlo simulation method, named ADS-2 - Adaptive Directional Stratification.
It combines, in a two steps adaptive strategy, the stratification into quadrants and the directional simulation
techniques. Two ADS-2 estimators and their properties are presented.

4.1. Introduction

One way to assess the reliability of a structure from physical considerations is to use a probabilistic approach:
it includes the joint probability distribution of the random input variables of a numerical deterministic model
representing the physical behavior of the studied structure, for instance its failure margin. We consider a real-
valued failure function, G : D C R? — R, whose p-dimensional input vector X = (X!, ..., X?) is random. Then,
we assume that the probability density function of the random vector X exists and is known.

In this context, we want to assess the failure probability Py:

Py =P(G(X) < 0) = /G( )<Of(x)dx (12)

Furthermore, four key features characterize our agenda. (Cp): G may be complex and greedy in computational
resources: even when involving high performance computing, industrial constraints limit the number of evalua-
tions of G to a few thousands. (C4): no continuity or derivability assumptions are considered for G. (Cs): the
failure is a rare event, which means that Py is very small. In this work, we will consider that a small probability
is a probability lower than 1073, (Cj3): the results must be robust, i.e. with explicit and trustworthy error
control.

The first three constraints correspond to our working hypotheses and the last constraint is the key goal
motivating this research. Here, we consider the accelerated Monte Carlo methods and try to develop a specific
one, which “converges” as fast as possible and enables to obtain an estimation error control in a reasonable
number of simulations. A full analysis of the following method can be found in [33}[34].
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4.2. Preliminary: stratification, directional sampling and optimization

The idea is to take advantage of the possibilities offered by the stratification and directional simulation
methods: optimal allocation result, adaptive strategy, efficient small probability estimation and reasonable
calculation time.

We first move the problem into a “spherical space”: the Gaussian space, using the Nataf transformation,
U = Tn(X) [31]. In other words, the expectation estimation becomes: Py = P(g(U) < 0) with g = G o Tiy'
and U a random vector with Gaussian and independent components.

Then, U can be decomposed into the product RA (R and A independent) with R? a chi-square random
variable and A a random vector uniformly distributed over the unit sphere S,_1 C RP [19]. We will denote
L(A) the distribution of A. Then, Denoting fr the probability density function of R and using the conditional
expectation properties, we have: Py = E(&(A)) with £(a) = [ 1(ra)<0fr(r)dr a bounded function.

The directional sampling method is based on the fact that we are able to calculate £(a) for any a. Indeed,
the conditional expectation &(a), which is the probability: P(g(Ra) < 0), is then given as a function of the
chi-square cumulative distribution function and r, ;(a) and 7 ;(a) respectively the upper and the lower bounds
of the i-th interval where g(ra) < 0 [32]. r, ;(a) and 7 ;(a) are approximated thanks to root-finding algorithms
as the dichotomic or the Brent methods. A stopping criterion for the dichotomic algorithm in the directional
sampling method, applied to the estimation of small failure probability, can be found in [34].

At this point, we introduce the stratification method by partitioning the “directional space”, in other words
the space where A takes its values, that is to say the (p — 1)-dimensional unit sphere S,_1 C RP, into m strata
and we denote I := {1,...,m}. The natural strata adapted to directional draws are cones and partitioning S,_1
is equivalent to make a partition of the general space into cones. Let us denote by (¢;);cr a partition of S,_4
into m strata.

Let us denote by n the total number of directional draws, e.g. the number of directions we want to simulate.
Let us consider an allocation of the n directional draws in each stratum described by the sequence w = (w;);er
such that > " w; = 1. The number of draws in the i-th stratum is n; = [nw;| with [.] the floor function
(we neglect the rounding errors in the analysis). We can express the expectation Py as: Py = Y -, p; P; with
P, =E(£(A7), A" ~ L(A|A € ¢;) and p; = P(A € g;).

Now, we estimate P; by drawing n; directions in the i-th stratum. This can be done by using a simple
rejection method. We get: P, = n%z;“:l §(A;) with (A;)jzl,___m a family of independent and identically
distributed (i.i.d.) random vectors with distribution L(A|A € g;).

We obtain the following unbiased estimator by coupling the Directional Sampling and the Stratification

A A 2 2 .
methods: PP = 37", p; P; and its variance is given by 0%,g¢/n with 03,6 = Y7 75 where o7 = V({(A")).
The DSS estimator is consistent and asymptotically normal. Like in the standard stratification method, we
can determine the optimal distribution of directional draws in each stratum in order to minimize the variance
estimator, which can be useful for the design of an adaptive strategy. The unique optimal solution wept,

indicates that we must give large weights to the strata with the largest uncertainties, i.e. variances.

%

4.3. ADS-2 method
4.3.1. General principle of the ADS-2 method

Now, we have all the tools to set up our 2-steps adaptive method with an estimator coupling stratification and
directional sampling. We will call this estimator the 2-adaptive directional stratification (ADS-2) estimator. It
will be denoted by P;*P572,

Let us explain our strategy. We split the total number n of directional draws into two parts: ~;(n)n and
~2(n)n such that 21‘2:1 vi(n) =1 and (y;(n))i=1,2 are functions of variable n. The first part, v (n)n, will be
used to estimate the optimal allocation minimizing the variance (learning step), and the second part, v2(n)n,
will be used to estimate the failure probability (estimation step), using the estimation of the optimal allocation.

For instance, we can take v1(n) = n!~! with [ € (0, 1), or v1(n) =71 with 41 € (0,1) and, in an obvious way,
we have y2(n) = 1 —~v1(n). Let us set the strata as the quadrants of the Gaussian space, denoted by (g;);er with
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m = 2P the number of quadrants. Indeed, without any other information, the most natural choice is quadrants,
which are well adapted for directional draws and enable a good survey of the Gaussian space. Also, without
prior information, we should choose a prior uniform allocation. We denote it (w;);ecs, and as we considered
quadrants: w; = p; = 1/m for all i € I. Our method can be readily extended to the case in which a prior
information is available on the optimal allocation. From now on, n; = |y1(n)nw;| for all i € I stands for the
number of draws achieved in each stratum in the estimation step. Let us suppose that we use the directional
and stratification estimator JSJPSS . The next idea is to replace the initial allocation by an estimation of the
optimal allocation, Wept, , made with the v (n)n first draws. But first, we need to define our estimators.

4.3.2. The non-recycling ADS-2 estimator

The non-recycling ADS-2 estimator does not use the ;1 (n)n first draws for the expectation estimation. It only
uses the second part of draws, ya(n)n:

m NjVL"‘
ma 1 ¢ .
PRS2 =0 pigar D 6(AL ) (13)
i=1 =1
where
N = [(1 —e(n))ni" + e(n)pin] (14)

with n}" = [72 (n)nVV[”J and (WZ"T)lzlm given by an empirical estimation of the theoretical optimal allo-
cation Wopg,. Besides, e(n) € (0,1] enables in the estimation step to draw some directions in a stratum even
if the estimated allocation returns zero, which can give a correction to the bias brought by a wrong estimation
of an allocation. For a limited number of simulations, we should take e(n) as small as possible: we propose
e(n) = 2/(np;) = 2PT/n. The non-recycling estimator is consistent, unbiased and we can get an expression of

its variance

V(P = ii/ﬁa? x E([(l - e(n))w(n)zni)# +e(n)pi] _1)

j=1Pi%;

for all n.

Two central limit theorems can be proved for the non-recycling estimator. Straightforwardly, to get a confi-
dence interval on the estimator, we assume that the error is Gaussian with variance the estimated variance of
the estimator.

4.3.3. Improvement of the non-recycling ADS-2 estimator

When the physical dimension grows, the number of strata of the ADS-2 method increases exponentially:
indeed, in dimension p, the number of quadrants is 2P. As a minimum of simulations is required to explore each
quadrant, the number of directional simulations needed can be too large with respect to the restricted number
of simulations we are limited to (Cj).

Now, the idea is to get, with the simulations performed in the first step (learning step), a sort of the random
variables in function of their influence on the failure event. Then, we only stratify the most important ones.
We use the simulations done in the first step to detect the important variables and to estimate the optimal
allocation in the new strata.

In the second step, we get the final estimation with this allocation. To determine if a random variable will
be stratified, we propose the following method. We first index the quadrants. The input index k € 1,...;,p
is given the tag i, which takes its values in {—1,1} and corresponds to the input sign. Thus, each quadrant
i € {1,...,m} is characterized by a p-uple i = (i1, ...,4,). From now on, for the strata indexation, we will use, in
an equivalent way, either the indexation i € {1,...,m} or its associated multi-index i = (i1, ...,4,) € {—1,1}7.
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Then, we define the sequence T = (Tk)k=1,...p by:

Ty = Y o Pl tieniy) = Plirin o Lingaiy)
ae{—1,1},1%k

with P(“ .i,) the estimation of the expectation in the quadrant (i1, ...,4,) obtained during the learning step.
Thus, T, aggregates the differences of the expectations between the quadrants along dimension k. The larger
Ty, is, the more influential the k-th input is. Then, we sort sequence T by decreasing order and we decide to
stratify only over the p’ < p first dimensions, the other inputs being simulated without stratification.
Next, we estimate the optimal allocation to be achieved in the new m’ = 2¢' hyper-quadrants. Consequently,
the final ADS-2% estimator is given by:

N ()
pADS=2t (g sz Nm Z £(A7) (15)
with
N (R) = (1- e(n))%(n)nwimi(ﬂ) + e(n)pin| (16)

and (A%);—1 . nnr(g) a family of i.i.d. random vectors with distribution L(AJA € ¢;(n)).

4.4. Comparison of ADS with the directional simulation and the subset simulation methods

In this section, we apply the ADS methods to the hyperplanes Hy and Hs defined by Hy : >0 z; = ks
and Hy : x, = ka. Hj has one influential variable and H; has all its variables influential. We denote by N the
total number of runs of the method. We define the estimated percentage of estimations fallen in the estimated
two-sided symmetric 95% confidence interval as:

2

OA,ADS—2

100 : Pt _ HADS—2 k
- N kz: Pre[Pr ;P with  Pm = Py + 0497,5%77

/\

5APS=2 the k-th failure probability and standard

deviation estimations. We denote C'V the estimated coefficient of variation.

We compare in tables 4.1 the ADS-2" method with the Subset Simulation method (SS), also called multilevel
splitting, which is built to overcome the curse of dimensionality and responds to the four constraints presented
in section (see for example [2]). Also, the results obtained with the ADS-2 method are presented. The SS
results have been obtained using the open-source Matlab toolbox: FERUM (Finite Element Reliability Using
Matlab) version 4.0.

where ag7 59 is the 97,5% Gaussian quantile, ]5]24,?5_2 and &;,
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Method n NG CV (%) PCI  Method n NG  CV (%) PCI
SS 500 3300 60 7 SS 300 1989 65 86
SS 700 4600 51 88 SS 500 3330 51 88
SS 1000 6700 42 81 SS 700 4630 43 85
DS 600 3100 42 86 SS 1000 6800 36 93
DS 900 4501 35 90 DS 200 3154 62 70
ADS-2 1200 3219 55 61 DS 400 6672 50 82
ADS-2 1750 4675 46 61 DS 600 10100 42 82
ADS-2 2550 6760 39 76 ADS-2 300 2033 16 90
ADS-2% (p' =3) 1200 3139 41 78 ADS-2 500 3340 13 93
ADS-2% (p' =3) 1800 4799 31 83 ADS-2 650 4426 11 96
ADS-2% (p' =2) 1500 3962 30 90 ADS-2T (p' =3) 700 2487 21 92
ADS-2" (p' =1) 1500 3957 28 92 ADS-2% (p' =3) 1200 4333 16 94

(a) Hyperplane Hy. Py =105 p=5. N = 100. (b) Hyperplane Hz. Py =107%. p=5. N = 100.

Table 4.1 Results on two different hyperplanes.

Table 4.1 confirms the efficiency of the ADS-2% method in comparison with the ADS-2 method. Moreover, in
comparison with the SS method and for approximately the same CV and PCI, the ADS-2* method (p' =3)
enables to reduce the number of calls to the failure function by approximately a factor 2. Also, for a better
choice of p’ (equal to 1), we can reduce the CV of 25% for approximately the same number of calls to the failure
function. Finally, the same study has been performed on H; and Hj for p going from 5 to 8 and Py = 107°
and 1078, As predictable, the SS method is completely robust with respect to the increase of the dimension
and gives almost exactly the same results. On H;, the ADS-2 method always outperforms the SS method: for
instance in dimension 7 for a failure probability of 1078, we divide by a factor 2 the C'V with the half number
of calls to the failure function used for SS (8000) while keeping a good PCI. In the worst case, i.e. when
considering Hz, Py = 1078 and p = 7, the results between SS and ADS-27" are equivalent. Finally, we can see
in tables 4.1 that the ADS methods outperform the simple directional simulation method, slightly on Hs and
completely on Hj.

4.5. Discussion and conclusion

The ADS-2 strategy concentrates the runs into the most important parts of the sample space, which results
in an asymptotic optimal error variance. For a limited number of simulations, theoretical and numerical results
show that a relevant solution to get a confidence interval on the estimation is to consider the error Gaussian
and to consider the non-asymptotic estimation of the variance of the estimator.

Furthermore, when the number of simulations is limited, the most natural assumption will be to choose
~v1(n) = 71, in order to have a sufficient number of draws in both learning and estimation steps of the ADS-2
method. A numerical study over this parameter has been performed in [34]. Also in order to avoid a constant
bias on the estimation, it is important to choose a non zero value for the parameter e(n) which enables, during
the estimation step, to perform some simulations in the quadrants which are not detected as important ones in
the learning step.

Finally, we compare the ADS-2 and ADS-2" methods to the subset simulation method which is one of the
most relevant methods to use in the context described in section Il The results show that in the considered
configurations the ADS-27 method outperforms the subset simulation method. Hence, the ADS methods are
very efficient when the following conditions are met: a number of calls to the failure function of a few thousand,
an order of magnitude of the failure probability less than 104, a dimension less than 7, no regularity assumption
on the failure function, and a need for explicit and trustworthy error controls.
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