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Abstract

We present an enhanced version of the splitting method, called the smoothed

splitting method (SSM), for counting associated with complex sets, such as the
set defined by the constraints of an integer program and in particular for count-
ing the number of satisfiability assignments. Like the conventional splitting
algorithms, ours uses a sequential sampling plan to decompose a “difficult”
problem into a sequence of “easy” ones. The main difference between SSM
and splitting is that it works with an auxiliary sequence of continuous sets in-
stead of the original discrete ones. The rationale of doing so is that continuous
sets are easier to handle. We show that while the proposed method and its
standard splitting counterpart are similar in their CPU time and variability,
the former is more robust and more flexible than the latter. In particular, it
makes it simpler for tuning the parameters.
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1 Introduction: The Splitting Method

The goal of this work is to present a new Monte Carlo method, called the smoothed

splitting method (SSM), for counting on discrete sets associated with NP-hard dis-
crete combinatorial problems and in particular counting the number of satisfiability
assignments. The main idea of the SSM is to work with an auxiliary sequence of con-
tinuous sets instead of discrete ones. The motivation of doing so is that continuous
problems are typically easier than the discrete ones. We show that although numer-
ically the proposed method performs similar to the standard splitting one [15, 16]
(in terms of CPU time and accuracy), the former one is more robust than the latter.
In particular, tuning the parameters in SSM is simpler than in its standard splitting
counterpart.

Before proceeding with SSM we present the splitting method for counting, fol-
lowing [15, 16]. For relevant references on the splitting method see [2], [4], [5], [7],
[8], [9], [10], [11], which contain extensive valuable material as well as a detailed
list of references. Recently, the connection between splitting for Markovian pro-
cesses and interacting particle methods based on the Feynman-Kac model with a
rigorous framework for mathematical analysis has been established in Del Moral’s
monograph [6].

The main idea of the splitting method for counting is to design a sequential
sampling plan, with a view of decomposing a “difficult” counting problem defined
on some set X ∗ into a number of “easy” ones associated with a sequence of related
sets X0,X1, . . . ,XT and such that XT = X ∗. Similar to randomized algorithms [12],
[13] splitting algorithms explore the connection between counting and sampling
problems and in particular the reduction from approximate counting of a discrete
set to approximate sampling of elements of this set, where the sampling is performed
by the classic MCMC method [18]. Very recently, [1] discusses several splitting
variants in a very similar setting, including a discussion on an empirical estimate
of the variance of the rare event probability estimate.

A typical splitting algorithm comprises the following steps:

1. Formulate the counting problem as that of estimating the cardinality |X ∗| of
some set X ∗.

2. Find a sequence of sets X = X0,X1, . . . ,XT such that X0 ⊃ X1 ⊃ · · · ⊃ XT =
X ∗, and |X | = |X0| is known.

3. Write |X ∗| = |XT | as

|X ∗| = |X0|
T∏

t=1

|Xt|
|Xt−1|

= |X0|ℓ, (1)

where ℓ =
∏T

t=1
|Xt|

|Xt−1|
. Note that ℓ is typically very small, like ℓ = 10−100,

while each ratio

ct =
|Xt|

|Xt−1|
(2)

should not be small, like ct = 10−2 or bigger. Clearly, estimating ℓ directly
while sampling in X0 is meaningless, but estimating each ct separately seems
to be a good alternative.

4. Develop an efficient estimator ĉt for each ct and estimate |X ∗| by

|̂X ∗| = |X0| ℓ̂ = |X0|
T∏

t=1

ĉt, (3)

where ℓ̂ =
∏T

t=1 ĉt is an estimator of ℓ =
∏T

t=1
|Xt|

|Xt−1|
.
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It is readily seen that in order to obtain a meaningful estimator of |X ∗|, we have
to resolve the following two major problems:

(i) Put the well known NP-hard counting problems into the framework (1) by
making sure that X0 ⊃ X1 ⊃ · · · ⊃ XT = X ∗ and each ct is not a rare-event
probability.

(ii) Obtain a low variance estimator ĉt of each ct = |Xt|/|Xt−1|.

In Section 2, we briefly recall the SAT problem, which we will focus on in order
to present our new method. In Section 3, which is our main one, we show how to
resolve problems (i) and (ii) for the SAT problem by using the smoothed splitting
method (SSM), which presents an enhanced version of the splitting method (cf.
Appendix). Section 4 is devoted to the theoretical analysis of SSM in an idealized
version, which we call i.i.d. SSM. In Section 5 numerical results for both the SSM
and splitting algorithm are presented. Their efficiencies are compared for several
SAT instances. Finally, in Section 6 some concluding remarks are given.

2 Presentation of the SAT problem

The most common SAT problem comprises the following two components:

• A set of n Boolean variables {x1, . . . , xn}, representing statements that can
either be TRUE (=1) or FALSE (=0). The negation (the logical NOT) of a variable
x is denoted by x. For example, TRUE = FALSE. A variable or its negation is
called a literal.

• A set ofm distinct clauses {S1, S2, . . . , Sm} of the form Sj = zj1∨zj2∨· · ·∨zjq ,
where the z’s are literals and the ∨ denotes the logical OR operator. For
example, 0 ∨ 1 = 1.

The binary vector x = (x1, . . . , xn) is called a truth assignment, or simply an
assignment. Thus, xi = 1 assigns truth to xi and xi = 0 assigns truth to xi, for
each i = 1, . . . , n. The simplest SAT problem can now be formulated as: find a
truth assignment x such that all clauses are true.

Denoting the logical AND operator by ∧, we can represent the above SAT problem
via a single formula as

F = S1 ∧ S2 ∧ · · · ∧ Sm,

where the Sj’s consist of literals connected with only ∨ operators. The SAT formula
is then said to be in conjunctive normal form (CNF).

The problem of deciding whether there exists a valid assignment, and, indeed,
providing such a vector, is called the SAT-assignment problem.

It is shown in [18] that the SAT-assignment problem can be modeled via rare-
events with ℓ given by

ℓ = E

[1{∑m
j=1 Cj(X)=m}

]
, (4)

where X has a “uniform” distribution on the finite set {0, 1}n. It is important to
note that here each Cj(x) = 1{∑n

k=1 ajkxk≥bj} can be also written alternatively as

Cj(x) = max
k

{0, (2 xk − 1) ajk}.

Here Cj(x) = 1 if clause Sj is TRUE with truth assignment x and Cj(x) = 0 if it is
FALSE, A = (ajk) is a given clause matrix that indicates if the literal corresponds to
the variable (+1) , its negation (-1), or that neither appears in the clause (0). If for
example xk = 0 and ajk = −1, then the literal xj is TRUE. The entire clause is TRUE
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if it contains at least one true literal. In other words, ℓ in (4) is the probability that
a uniformly generated SAT assignment (trajectory) X is valid, that is, all clauses
are satisfied, that is

S(x) = min
1≤j≤m

Cj(x) ≥ 1,

which is typically very small.

3 Smoothed Splitting Method

Before presenting the SSM algorithm we shall discuss its main features having in
mind a SAT problem.

To proceed, recall that the main idea of SSM is to work within a continuous
space rather than a discrete one. As a result this involves a continuous random
vector Y instead of the discrete random vector X distributed Ber(p = 1/2). For
example for a SAT problem one needs to adopt the following steps:

1. Choose a random vector Y of the same size as X , such that the components
Y1, . . . , Yn, are i.i.d. uniformly distributed on the interval (0, 1). Clearly the
Bernoulli componentsX1, . . . , Xn can be written asX1 = 1{Y1>1/2}, . . . , Xn =1{Yn>1/2}.

2. Instead of the former 0−1 variables x or x̄ we will use for each clause a family
of functions from (0, 1) to (0, 1). In particular, for each occurrence of x or x̄,
we consider two functions, say gε(y) and hε(y) = gε(1− y) indexed by ε ≥ 0.
These functions need to be increasing in ε, which means that

0 < ε ≤ ε′ ⇒ gε(y) ≤ gε′(y), ∀y ∈ (0, 1). (5)

and for ε = 0, g0(y) = 1{y>1/2}, h0(y) = g0(1 − y) = 1{y≤1/2}. Possible
choices of gε(y) are:

gε(y) = (2y)1/ε1{0<y< 1
2 }

+ 1{y> 1
2}

(6)

or

gε(y) = 1{ 1
2−ε<y< 1

2}

(
y

ε
+ 1− 1

2ε

)
+ 1{y> 1

2 }
. (7)

or
gε(y) = 1[1/2−ε,1](y). (8)

3. For each clause Cj , we consider the approximate ε-clauseCjε, where we replace
x by gε(y), x̄ by hε(y), and ∨ by +. Note also that the statement “Cj is true”
is replaced in the new notations by Cjε ≥ 1.

4. Nested sets. For each ε ≥ 0, consider the subset (or event) Bε of (0, 1)n

defined as

Bε = {y ∈ (0, 1)n : ∀j ∈ {1, . . . ,m}, Cjε(y) ≥ 1} = {y ∈ (0, 1)n : Sε(y) ≥ 1},

where Sε(y) = min1≤j≤m Cjε(y). Then it is clear from the above that for
ε1 ≥ ε2 ≥ 0, we have the inclusions B0 ⊂ Bε2 ⊂ Bε1 . Note that B0 is the
event for which all the original clauses are satisfied and Bε is an event on which
all the approximate ε-clauses are satisfied. Note also that εt, t = 1, . . . , T,
should be a decreasing sequence, with T being the number of nested sets, and
εT = 0. In our SSM algorithm below (see section 3.2), we shall choose the
sequence εt, t = 1, . . . , T, adaptively, similar as the sequence mt, t = 1, . . . , T,
is chosen in the splitting Algorithm 7.1.
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3.1 The SSM Algorithm with fixed nested subsets

Below we outline the main steps of the SSM algorithm.

1. InitializationGenerateN i.i.d. samplesY1
1, . . . ,Y

1
N of distribution U((0, 1)n).

2. Selection Keep only those samples for which all the ε1-clauses (constructed
with gε1 and hε1) are satisfied. Reorder them 1, . . . , N1. Set p̂1 = N1/N .

3. Cloning Draw N − N1 clones from the previous sample (with equal proba-
bilities). Together with it we have again a sample of size N .

4. Mutation For all N −N1 new samples apply the Gibbs sampler (see subsec-
tion 3.3 below) one or several times.

5. Selection/Cloning/Mutation for ε2, . . . , εT . This yields the estimates
p̂2, . . . , p̂T−1.

6. Final Estimator Select the samples that satisfy all the original clauses. Let
NT be their number. Estimate p̂T = NT /N . From this last sample, construct
a discrete sample X1, . . . , XNT

by Xj,k = 1{Yj,k>1/2}, 1 ≤ k ≤ n, which is
not independent, but identically distributed on the instances of x that satisfy
all the original clauses. An estimate of ℓ is given by ℓ̂ =

∏T
t=1 p̂t, so that an

estimate of |X ∗| is given by 2nℓ̂ = 2n
∏T

t=1 p̂t.

A crucial issue in this algorithm is to choose the successive levels ε1, ε2, etc., so
that the variance of the estimator ℓ̂ is as small as possible. The following subsection
explains how to do it adaptively.

3.2 The SSM Algorithm with adaptive nested subsets

Say that we implemented the algorithm up to iteration t, and want to choose εt+1.
Let Yt

1, . . . ,Y
t
N the current sample satisfying all the εt-clauses. Choose (as usual in

adaptive rare-event simulation) a given rate of success ρ, with 0 < ρ < 1. Then the
appropriate choice for εt+1 would be a value ε > 0 such that the number of replicas
in the current sample Yt

1, . . . ,Y
t
N that satisfy all the ε-clauses is equal (close) to

ρN . A simple way of doing this is to perform a binary search in the interval [0, εt]
bearing in mind that εt ≥ εt+1.

The following algorithm summarizes the above.

Algorithm 3.1. [Adaptive Choice of εt+1] Given the parameters ρ and εt proceed
as follows:

1. Set εlow = 0, εhigh = εt and εt+1 =
εhigh

2 .

2. While the proportion of replicas in the current sampleYt
1, . . . ,Y

t
N that satisfy

all εt+1-clauses is not close to ρ, do the following:

(a) Calculate the εt+1 performance Sεt+1(Y) of the trajectories conveniently
defined as the minimum over all Cεt+1(Y) corresponding to the trajectory
Y. [Recall that by saying that Y is a satisfying trajectory, we mean that
Sεt+1(Y) ≥ 1].

(b) If the number of εt+1 satisfying trajectories is larger than ρN set εhigh =
εt+1.

(c) If the number of εt+1 satisfying trajectories is smaller than ρN set εlow =
εt+1.
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(d) Set εt+1 =
εlow+εhigh

2 .

3. Deliver εt+1 as the new adaptive level.

We are now in a position to describe the adaptive smoothed splitting algorithm,
which is the one that will be used in the simulations.

Algorithm 3.2. [SSM Algorithm for Counting]
Fix the parameter ρ, say ρ ∈ (0.01, 0.5) and the sample size N such that Ne =

ρN is an integer which denotes the size of the elite sample at each step. Choose
also the function gε(y), say the one given in (8), and ε0 accordingly (e.g. ε0 = 1/2
for (8)). Then execute the following steps:

1. Acceptance-Rejection Set a counter t = 1. Generate an i.i.d. sample
Y1

1, . . . ,Y
1
N each uniformly on (0, 1)n. Obtain the first ε̂1 using Algorithm

3.1 and let Ŷ1 = {Ŷ1

1, . . . , Ŷ
1

Ne
} be the elite sample. Note that Ŷ

1

1, . . . , Ŷ
1

Ne
∼

U(Bε̂1), the uniform distribution on Bε̂1 .

2. Splitting (Cloning) Given the elite sample {Ŷt

1, . . . , Ŷ
t

Ne
} at iteration t,

reproduce ρ−1 times each vector Ŷ
t

i. Denote the entire new population by

Ycl = {(Ŷt

1, . . . , Ŷ
t

1), . . . , (Ŷ
t

Ne
, . . . , Ŷ

t

Ne
)}.

To each of the cloned vectors of the population Ycl apply the MCMC (and in
particular the Gibbs sampler Algorithm 3.3) for bt burn-in periods. Denote
the new entire population by {Yt+1

1 , . . . ,Yt+1
N }. Note that each vector in the

sample Yt+1
1 , . . . ,Yt+1

N is distributed uniformly in Bε̂t .

3. Adaptive choice Obtain ε̂t+1 using Algorithm 3.1. Note again that each

vector of Ŷ
t+1

1 , . . . , Ŷ
t+1

Ne
of the elite sample is distributed uniformly in Bε̂t+1

.

4. Stopping rule If ε̂t+1 = 0 go to step 5, otherwise set t = t + 1 and repeat
from step 2.

5. Final Estimator Denote T̂ + 1 the current counter, and

r̂ =
|{i ∈ {1, . . . , N} : S0(Y

T̂+1
i ) ≥ 1}|

N
> ρ,

and deliver ℓ̂ = r̂ × ρT̂ as an estimator of ℓ and |X̂ ∗| = 2n ℓ̂ as an estimator
of |X ∗|.

Remark: Differences between Splitting and SSM Algorithms

1. SSM Algorithm 3.2 operates on a continuous space, namely (0, 1)n, while
splitting Algorithm 7.1 operates on a discrete one, namely {0, 1}n. As a
consequence their MCMC (Gibbs) samplers are different.

2. In the discrete case the performance function S(X) represents the number of
satisfied clauses, while in the continuous one it depends on both ε and the gε.
It is crucial to note that in the discrete case all clauses are satisfied at the last

iteration only while in the continuous case each clause is εt-satisfied at each

iteration t.

3. The screening step is omitted in the SSM Algorithm 3.2.

4. The stopping rules in both algorithms are the same. In particular, at the last
iteration the SSM Algorithm 3.2 transforms its vectors from the continuous
space to the discrete one.
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3.3 Gibbs Sampler

Starting from Y = (Y1, . . . , Yn), which is uniformly distributed on

Bε = {y ∈ (0, 1)n : ∀j ∈ {1, . . . ,m}, Cjε(y) ≥ 1} = {y ∈ (0, 1)n : Sε(y) ≥ 1},
a possible way to generate Ỹ with the same law asY is to use the following standard
systematic Gibbs sampler:

Algorithm 3.3. [Systematic Gibbs Sampler]

1. Draw Ỹ1 from the conditional pdf g(y1|y2, . . . , yn).

2. Draw Ỹk from the conditional pdf g(yk|ỹ1, . . . , ỹk−1, yk+1, . . . , yn), 2 ≤ k ≤
n− 1.

3. Draw Ỹn from the conditional pdf g(yn|ỹ1, . . . , ỹn−1).

In order to avoid the acceptance-rejection step for all k ∈ {1, . . . , n}, while

generating each component Ỹk, one can use the following procedure:

• Denote by Ik the set of ε-clauses Cjε in which gε(Yk) is involved.

• For all j ∈ Ik, denote by Z1, . . . , Zq−1 the other gε(Yi)’s or hε(Yi)’s involved
in clause Cjε. Denote

rj = g−1
ε (1− Z1 − · · · − Zq−1), (9)

and
r = sup

j∈Ik

rj . (10)

• Denote by Jk the set of ε-clauses Cjε in which hε(Yk) = gε(1−Yk) is involved.

• For all j ∈ Jk, denote by Z1, . . . , Zq−1 the other gε(Yi)’s or hε(Yi)’s involved
in clause Cjε. Denote

Rj = 1− g−1
ε (1− Z1 − · · · − Zq−1), (11)

and
R = inf

j∈Ik

Rj . (12)

• Sample Ỹk uniformly in the interval [r, R].

Remark: It is readily seen that r < R and Ỹ = (Ỹ1, . . . , Ỹn) has the same
distribution as Y. This is so since the initial point Y = (Y1, . . . , Yn) belongs to
and is uniformly distributed in Bε. Note that our simulation results clearly indicate
that one round of the Gibbs Algorithm 3.3 suffices for good experimental results.
Nonetheless, if one wants the new vector Ỹ to be independent of its initial position
Y, then in theory the Gibbs sampler would have to be applied an infinite number
of times. This is what we call the i.i.d. SSM in section 4, and this is the algorithm
that we will analyze from a theoretical point of view.

4 Statistical Analysis of i.i.d. SSM

It is possible to obtain exact results about the estimator ℓ̂ in an assumed situation
(never encountered in practice) that each step begins with an N i.i.d. sample. We
call this idealized version “the i.i.d. smoothed splitting algorithm” - i.i.d. SSM. This
would typically correspond to the situation where at each step the Gibbs sampler
is applied an infinite number of times, which is not realistic but will be our main
hypothesis in Subsection 4.1. The following theoretical results do not exactly match
the algorithm which is used in practice, but can be expected to provide insight.
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4.1 Statistical Analysis of i.i.d. SSM

The aim of this subsection is to precise the statistical properties of the estimator ℓ̂
obtained by the i.i.d. SSM.

Let us denote by s the number of solutions of the SAT problem at hand, and
by S the union of s hypercubes (with edge length 1/2) which correspond to these
solutions in the continuous version: this means that for all y = (y1, . . . , yn) ∈ (0, 1)n,
y belongs to S if and only if x = (1y1≥1/2, . . . ,1yn≥1/2) is a solution of the SAT
problem.

With these notations, the probability that we are trying to estimate is

ℓ = P(Y ∈ S)
where Y is a uniform random vector in the hypercube (0, 1)n. Recall that for any
ε ≥ 0

Bε = {y ∈ (0, 1)n : ∀j ∈ {1, . . . ,m}, Cjε(y) ≥ 1} = {y ∈ (0, 1)n : Sjε(y) ≥ ε},
so that we have the following Bayes formula for the splitting algorithm

ℓ = P(B0) = P(B0|BεT )× · · · ×P(Bε1 |Bε0),

where ε0 is large enough (possibly infinite) so that P(Bε0) = 1 (for example ε0 = 1/2
when gε is defined by formula (8) and ε0 = +∞ when gε is defined by formula (6)
or (7)).

Let us now describe briefly the smoothed splitting algorithm in this framework.
As previously, ρ is the fixed proportion of the elite sample at each step. For sim-
plicity, we will assume that ρN is an integer.

Starting with an N i.i.d. sample (Y1
1, . . . ,Y

1
N ), with Y1

i uniformly distributed
in (0, 1)n for all i ∈ {1, . . . , N}, the first step consists in applying a binary search
to find ε̂1 such that

|{i ∈ {1, . . . , N} : Y1
i ∈ Bε̂1}|

N
= ρ.

Such an ε̂1 is not unique, but this will not matter from the theoretical point of view,
as will become clear in the proof of Theorem 4.1 below.

Knowing ε̂1 and using a Gibbs sampler, the elite sample of size ρN allows ideally
(which means: for the i.i.d. SSM) to draw an N i.i.d. sample (Y2

1, . . . ,Y
2
N ), with

Y2
i uniformly distributed in Bε̂1 . Using a binary search , one can then find ε̂2 such

that
|{i ∈ {1, . . . , N} : Y2

i ∈ Bε̂2}|
N

= ρ,

and iterate the algorithm, with only the last step being different: the algorithm stops

when for an N i.i.d. sample (YT̂+1
1 , . . . ,YT̂+1

N ), with YT̂+1
i uniformly distributed

in Bε̂
T̂
, the proportion of points which satisfy the SAT problem is larger than ρ:

|{i ∈ {1, . . . , N} : YT̂+1
i ∈ B0}|

N
= r̂ > ρ.

In summary, the “ideal” smoothed splitting estimator is defined as

ℓ̂ = r̂ ρT̂ ,with r̂ ∈ (ρ, 1],

whereas the true probability of the rare event may be decomposed as

ℓ = r ρT ,with T =

⌊
log ℓ

log ρ

⌋
and r = ℓρ−T ∈ (ρ, 1].

Let us summarize now the statistical properties of this “ideal” estimator.
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Theorem 4.1. The ideal estimator ℓ̂ has the following properties:

1. Strong consistency:

ℓ̂
a.s.−−−−→

N→∞
ℓ

2. Number of steps: P(T̂ 6= T ) ≤ 2(T + 1)e−2Nα2

where α = min(ρ− ℓ
1
T , ℓ

1
T+1 − ρ).

3. Asymptotic normality:

√
N

ℓ̂− ℓ

ℓ

D−−−−→
N→∞

N (0, σ2)

where

σ2 = T
1− ρ

ρ
+

1− r

r
.

4. Positive bias:

N
E[ ℓ̂ ]− ℓ

ℓ
−−−−→
N→∞

T
1− ρ

ρ
.

Proof. We first prove the strong consistency. Let us denote by F (ε) the
Lebesgue measure of Bε

∀ε ∈ R F (ε) = P(Y ∈ Bε).

By convention, we will assume that Bε = ∅ for ε < 0. One can readily see that F (ε)
has the following properties:

• F (ε) = 0 when ε < 0,

• F (0) = ℓ,

• F (ε) = 1 when ε ≥ ε0, or limε→+∞ F (ε) = 1 in the infinite case (cf. for
example formulae (6) or (7)),

• F is a non decreasing and continuous function on (0, ε0).

We will also make use of the mapping F (ε, ε′), defined for 0 ≤ ε′ ≤ ε ≤ ε0 as

F (ε, ε′) = P(Y ∈ Bε′ |Y ∈ Bε) =
F (ε′)

F (ε)
.

With these notations, let us recall the following point: by construction and by
assumption on the i.i.d. SSM, given ε̂t−1, the random vectors Yt

1, . . . ,Y
t
N are i.i.d.

with uniform distribution in Bε̂t−1
. For all i = 1, . . . , N , let us define

ε(Yt
i) = inf{ε ∈ [0, ε̂t−1] : Sε(Y

t
i) ≥ 1}.

Then the random variables D1 = ε(Yt
1), . . . , DN = ε(Yt

N ) are i.i.d. with cdf
F (ε̂t−1, .).

Thus, given ε̂t−1, ε̂t is an empirical quantile of order ρ for the i.i.d. sample
(D1, . . . , DN). Denoting by FN (ε̂t−1, .) the empirical cdf of F with this sample, we
have

|F (ε̂t−1, ε̂t)− ρ| ≤ |F (ε̂t−1, ε̂t)− FN (ε̂t−1, ε̂t)|+ |FN (ε̂t−1, ε̂t)− ρ| .
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By construction of ε̂t, we know that the second term of this inequality is less than
1/N , so that the almost sure convergence to 0 follows for it. For the first term, de-
noting by ‖f‖∞ the supremum norm of f , and using the Dvoretsky-Kiefer-Wolfowitz
inequality (see for example [19] p. 268), we know that for any η > 0P(‖F (ε̂t−1, .)− FN (ε̂t−1, .)‖∞ ≥ η) ≤ 2e−2Nη2

,

which guarantees the almost sure convergence via the Borel-Cantelli Lemma. Thus
we have proved that for all t

F (ε̂t−1, ε̂t)
a.s.−−−−→

N→∞
ρ

Next, since the product of a finite and deterministic number of random variables
will almost surely converge to the product of the limits, we conclude that for all t

ρt −
t∏

k=1

F (ε̂k−1, ε̂k)
a.s.−−−−→

N→∞
0.

Finally we have to proceed with the last step. We will only focus on the general case
where log ℓ/ log ρ is not an integer. Recall that T = ⌊log l/ log ρ⌋ is the “correct”
(theoretical) number of steps i.e. the number of steps that “should” be done,

whereas T̂ is the true and random number of steps of the algorithm. From the
preceding results, we have that almost surely for N large enough

T+1∏

k=1

F (ε̂k−1, ε̂k) < ℓ <

T∏

k=1

F (ε̂k−1, ε̂k),

so that, almost surely for N large enough, the algorithm stops after T̂ = T steps.
Therefore, in the following, we can assume that T̂ = T .

Using the same reasoning as previously, we have

|F (ε̂T , 0)− FN (ε̂T , 0)| a.s.−−−−→
N→∞

0.

By definition, T satisfies

T∏

k=1

F (ε̂k−1, ε̂k) F (ε̂T , 0) = F (0) = ℓ,

which implies

F (ε̂T , 0)
a.s.−−−−→

N→∞

ℓ

ρT
,

and also

FN (ε̂T , 0)
a.s.−−−−→

N→∞

ℓ

ρT
.

Putting all things together, we get

ℓ̂ = FN (ε̂T , 0)× ρT
a.s.−−−−→

N→∞

ℓ

ρT
× ρT = ℓ,

which concludes the proof of the consistency.
Let us prove now the exponential upper bound for the probability that T̂ differs

from T . To this end, let us denote by A = {T̂ = T } the event for which the
algorithm stops after the correct number of steps, and which can be written as
follows

11



A = {ε̂T+1 = 0 < ε̂T }

=

{
T+1∏

k=1

F (ε̂k−1, ε̂k) = ℓ̂ <

T∏

k=1

F (ε̂k−1, ε̂k)

}
.

For all k = 1, . . . , T + 1, if we denote

Ak =
{
ℓ

1
T − ρ < ρ− F (ε̂k−1, ε̂k) < ℓ

1
T+1 − ρ

}
,

we have P(A) ≥ P(A1 ∩ · · · ∩ AT+1)

≥ 1−
T+1∑

k=1

(1−P(Ak)).

Denoting α = min
(
ρ− ℓ

1
T , ℓ

1
T+1 − ρ

)
, the Dvoretsky-Kiefer-Wolfowitz inequality

implies

1−P(Ak) ≤ P(|ρ− F (ε̂k−1, ε̂k)| > α) ≤ 2e−2Nα2

,

so that the result is provedP(A) = P(T̂ = T ) ≥ 1− 2(T + 1)e−2Nα2

.

By the way, this is another method to see that

T̂
a.s.−−−−→

N→∞
T.

For the asymptotic normality and bias properties, we refer the reader to Theorem
1 and Proposition 4 of [3]: using the notations and tools of smoothed splitting, the
proofs there can be adapted to yield the desired results.

4.2 Remarks and comments

Number of steps With an exponential probability, the number of steps of the
algorithm is T = ⌊log ℓ/ log ρ⌋.

Bias The fact that this estimator is biased stems from the adaptive character of
the algorithm. This is not the case with a sequence of fixed levels (ε1, . . . , εT ).
However, this bias is of order 1/N , so that when N is large enough, it is clearly
negligible relative to the standard deviation. Moreover, the explicit formula for this
bias allows us to derive confidence intervals for ℓ which take this bias into account.

Estimate of the rare-event cardinality The previous discussion focused on
estimation of the rare-event probability, which in turn provides an estimate of the
actual number of solutions to the original SAT problem by taking |X̂ ∗| = 2n ℓ̂. In
fact, typically the number of solutions is small and can be determined by actual
counting the different instances in the last sample of the algorithm (see also Section

7.4). This estimator will be denoted by |X̂ ∗
dir|. Typically it under estimates the

true number of solutions |X ∗|, but at the same time it has a smaller variance as
compared to the product estimator.
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Mixing properties We will focus first on gε as per (8). With this function,
for a given ε, we can split the region explored by the Gibbs sampler in several
small (sub) hypercubes or hyperrectangles, as shown schematically in Figure 1. To
each vertex of the whole hypercube (0, 1)n that represents a solution of the original
SAT problem, corresponds a sub-hypercube of edge length 1/2 + ε, including the
central point with coordinates (1/2, . . . , 1/2). And around this point, we have a
sub-hypercube of edge length 2ε, which is common to all those elements.

For the other parts of the domain, which do not correspond to a solution, things
become a bit more complicated. It is a union of ε-thin “fingers” extending outwards
in several directions (a subspace). The corresponding sub-domain being explored
depends on the minimum number of variables that need to be taken in (1/2−ε, 1/2+
ε) in order to satisfy all the ε-clauses. The domain is then a rectangle of length
1/2 + ε on the “free” variables, and of length 2ε in the other directions, that is on
the (1/2− ε, 1/2+ ε) constrained variables. Again, all those rectangles include the
small central sub-hypercube.

The union of all these sub-hypercubes/rectangles is the domain currently ex-
plored by the Gibbs sampler. The geometry of the whole domain is then quite
complex.

Not a solution (not all clauses satisfied)

True solution
ε

( 1
2
, . . . ,

1
2
)

2ε

Figure 1: Partial mixing of the Gibbs sampler.

It is clear that starting with any one of these sub-hypercubes/rectangles we can
reach any other point within it in one iteration of the Gibbs sampler. Moreover, as
long as the Markov chain stays within the same sub-hypercube/rectangle, any other
point is accessed with uniform probability. This means that the mixing properties
of our Gibbs sampler are the best possible as long as we are restricted to one sub-

hypercube. Actually this suffices to make the algorithm work.
For gε as per (6) or (7), the same picture mostly holds, but the mixing properties

within each sub-hypercube is not that easy to analyze. This is somehow compen-
sated by an ability to deal with the inter-variable relations: the geometry of the
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domain explored around the centre point reflects these constraints, and thus has a
much more complicated shape. These gε functions work in practice better than (8).

5 Numerical Results

Below we present numerical results with both SSM Algorithm 3.2 and its counter-
part Algorithm 7.2 for several SAT instances. In particular we present data for
three different SAT models: one of a small size, another of a moderate size and the
third of large size. To study the variability in the solutions we run each problem 10
times and report the statistic.

To compare the efficiencies of both algorithms we run them on the same set of
parameters ρ and b, where b is the number of cycles in the systematic Gibbs sampler.
If not stated otherwise we set b = 1 and ρ = 0.2. From our numerical results follows
that although both algorithms perform similarly (in terms of the CPU time and
variability) the SSM is more robust than its splitting counterpart. In particular we
shall see that SSM Algorithm 3.2 produces quite reliable estimator for a large set
of b including b = 1, while its splitting counterpart Algorithm 7.2 is quite sensitive
to b and thus, requires tuning.

Below we use the following notations:

1. N
(e)
t and N

(s)
t denote the actual number of elites and the one after screening,

respectively.

2. m∗
t and m∗t denote the maximal and minimal value of mt.

3. εt denotes the adaptive ε parameter at iteration t.

4. ρt = N
(e)
t /N denotes the adaptive proposal rarity parameter at iteration t.

5. RE denotes the relative error. Note that for our first, second and third model
we used |X ∗| = 15, |X ∗| = 2258 and |X ∗| = 1, respectively. They were

obtained by using the direct estimator |X̂ ∗
dir| with a very large sample, namely

N = 100, 000.

5.1 Smoothed Splitting Algorithm

In all our numerical results we use gε(y) in (7).

5.1.1 First Model: 3-SAT with instance matrix A = (20× 80)

Table 1 presents the performance of smoothed Algorithm 3.2 for the 3-SAT problem
with an instance matrix A = (20 × 80) with N = 1, 000, ρ = 0.2 and b = 1. Since
the true number of solution is |X ∗| = 15, following the notations of Section 4, we
have that

ℓ =
15

220
= r ρT ,with T =

⌊
log ℓ

log ρ

⌋
=

⌊
log(15/220)

log 0.2

⌋
= 6

and

r = ℓρ−T =
15

220
0.2−6 ≈ 0.22.

Each run of the algorithm gives an estimator :

|X̂ ∗| = 220 × ℓ̂ = 220 × (r̂ ρT̂ ) = 220 × (r̂ 0.2T̂ ),with r̂ ∈ (ρ, 1] = (0.2, 1].
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In Table 1 , the column “Iterations” corresponds to T̂+1 for each of the 10 runs (the
theoretical value is thus T + 1 = 7). It is indeed 7 most of the time, but sometime
jumps to 8, which is not a surprise since r = 0.22 ≈ 0.2.

Concerning the relative error of |X̂ ∗| (RE of |X̂ ∗|), Theorem 4.1 states that it
should be approximately equal to

1√
N

√
T
1− ρ

ρ
+

1− r

r
≈ 0.17,

while we find experimentally (see Table 1) a relative error of 0.228. There are two
main reasons for this: first we performed only 10 runs, and second we set b = 1,
while the analysis of the i.i.d. SSM suggests b to be large. All together, it gives the
correct order of magnitude.

Concerning the relative bias of |X̂ ∗|, Theorem 4.1 states that it should be ap-
proximately equal to

1

N
×
(
T
1− ρ

ρ

)
≈ 0.024,

while experimentally (see Table 1) we find a relative bias of 0.018. The comments
on the bias are the same as for the relative error above.

Table 1: Performance of smoothed Algorithm 3.2 for SAT 20× 80 model.

Run N0 Iterations |X̂ ∗| RE of |X̂ ∗| |X̂ ∗
dir| RE of |X̂ ∗

dir| CPU

1 7 13.682 0.088 15 0 1.207
2 7 16.725 0.115 15 0 1.192
3 7 24.852 0.657 15 0 1.189
4 8 12.233 0.184 15 0 1.383
5 7 14.217 0.052 15 0 1.248
6 8 12.564 0.162 15 0 1.341
7 7 19.770 0.318 15 0 1.174
8 7 17.073 0.138 15 0 1.192
9 8 12.448 0.170 15 0 1.338
10 8 9.089 0.394 15 0 1.399

Average 7.4 15.265 0.228 15 0 1.266

Table 2 presents the dynamics for a run of the smoothed Algorithm 3.2 for the
same model.

Table 2: Dynamics of smoothed Algorithm 3.2 for SAT 20× 80 model.

t |X̂ ∗| |X̂ ∗
dir| Nt εt ρt

1 2.07E+05 0 197 0.4816 0.1970
2 4.11E+04 0 199 0.3735 0.1990
3 8.18E+03 1 199 0.2942 0.1990
4 1.63E+03 2 199 0.2245 0.1990
5 323.950 8 199 0.1658 0.1990
6 64.142 14 198 0.1074 0.1980
7 15.458 15 241 0.1074 0.2410

In Figure 2, we give an illustration of the asymptotic normality, as given by
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theorem 4.1. The Figure compares the cdf of the limit Gaussian distribution, and
the empirical distribution on 100 runs. Here ρ = 1/2.
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Figure 2: Asymptotic normality: empirical (100 runs) and limiting Gaussian cdf’s,
1000 replicas (left) and 10, 000 (right).

5.1.2 Second model: Random 3-SAT with instance matrix A = (75×325)
taken from www.satlib.org.

Table 3 presents the performance of smoothed Algorithm 3.2. We set N = 10, 000,
ρ = 0.2 and b = 1 for all iterations. Table 4 presents the dynamic of Algorithm 3.2.
The results are self-explanatory.

Table 3: Performance of the smoothed Algorithm 3.2 for SAT 75× 325 model.

Run N0 Iterations |X̂ ∗| RE of |X̂ ∗| |X̂ ∗
dir| RE of |X̂ ∗

dir| CPU

1 28 2210.2 0.021 2254 0.0018 519.7
2 28 2750.5 0.218 2232 0.0115 518.0
3 28 1826.1 0.191 2248 0.0044 523.6
4 28 2403.3 0.064 2254 0.0018 524.3
5 28 2189.6 0.030 2250 0.0035 519.3
6 28 1353.6 0.401 2254 0.0018 524.5
7 28 2572.8 0.139 2214 0.0195 528.6
8 28 2520.0 0.116 2246 0.0053 525.2
9 28 2049.2 0.092 2208 0.0221 521.8
10 28 2827.3 0.252 2244 0.0062 528.8

Average 28 2270.3 0.153 2240.4 0.0078 523.4
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Table 4: Dynamics of smoothed Algorithm 3.2 for the random 3-SAT with matrix
A = (75× 325).

t |X̂ ∗| |X̂ ∗
dir| Nt εt ρt

1 7.55E+21 0 1999 0.5856 0.1999
2 1.51E+21 0 1999 0.5389 0.1999
3 3.02E+20 0 2000 0.5062 0.2000
4 6.03E+19 0 1998 0.4789 0.1998
5 1.21E+19 0 2000 0.4530 0.2000
6 2.41E+18 0 2000 0.4285 0.2000
7 4.82E+17 0 1999 0.4056 0.1999
8 9.65E+16 0 2001 0.3836 0.2001
9 1.93E+16 0 1999 0.3623 0.1999
10 3.86E+15 0 1999 0.3421 0.1999
11 7.71E+14 0 1999 0.3231 0.1999
12 1.54E+14 0 2000 0.3049 0.2000
13 3.07E+13 0 1994 0.2874 0.1994
14 6.15E+12 0 1999 0.2707 0.1999
15 1.23E+12 0 1999 0.2546 0.1999
16 2.46E+11 0 2003 0.2385 0.2003
17 4.92E+10 0 1999 0.2233 0.1999
18 9.83E+09 0 1998 0.2087 0.1998
19 1.96E+09 0 1999 0.1941 0.1999
20 3.93E+08 0 1999 0.1797 0.1999
21 7.86E+07 0 2000 0.1655 0.2000
22 1.57E+07 0 1999 0.1514 0.1999
23 3.14E+06 0 1999 0.1368 0.1999
24 6.28E+05 9 2000 0.1210 0.2000
25 1.26E+05 37 1999 0.1025 0.1999
26 25088.0 198 1999 0.0789 0.1999
27 5015.1 819 1999 0.0418 0.1999
28 2625.4 1954 5235 0.0418 0.5235

It follows from Table 3 that the average relative error of the product estimator
|X̂ ∗| is RE = 0.163 and of the direct estimator |X̂ ∗

dir| is only RE = 0.038.

5.1.3 Third Model: Random 3− 4-SAT with instance matrix A = (122×
663).

Our last model is the random 3-SAT with the instance matrix A = (122×663) and a
single valid assignment, that is |X ∗| = 1, taken from http://www.is.titech.ac.jp/ watan-
abe/gensat.

Table 5 presents the dynamic of the smoothed Algorithm 3.2. We setN = 50, 000
and ρ = 0.4 for all iterations. The results are self-explanatory.
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Table 5: Dynamics of smoothed Algorithm 3.2 for SAT 122× 663 model.

t |X̂ ∗| |X̂ ∗
dir | Nt εt ρt

1 2.13E+36 0 20000 0.6239 0.4000
7 8.71E+33 0 20000 0.5044 0.4000
13 3.57E+31 0 19998 0.4423 0.4000
19 1.45E+29 0 19999 0.3899 0.4000
25 5.95E+26 0 19999 0.3442 0.4000
31 2.44E+24 0 19999 0.3038 0.4000
37 9.98E+21 0 20000 0.2677 0.4000
43 4.09E+19 0 19999 0.2353 0.4000
49 1.68E+17 0 20001 0.2060 0.4000
55 6.87E+14 0 20000 0.1793 0.4000
61 2.81E+12 0 19998 0.1548 0.4000
67 1.15E+10 0 19999 0.1320 0.4000
73 4.72E+07 0 19999 0.1106 0.4000
79 1.93E+05 0 19999 0.0900 0.4000
85 790.75 0 20001 0.0688 0.4000
91 3.237 0 20000 0.0420 0.4000
92 1.295 1 20000 0.0362 0.4000
93 0.978 1 37798 0.0299 0.7559

We found that the the average CPU time is about 3 hours for each ran, the
average relative error for the product estimator |X̂ ∗| is RE = 0.15, while for the

direct estimator |X̂ ∗
dir| it is RE = 0.1. This means that in 9 out of 10 runs SSM

finds the unique SAT assignment.

5.2 Splitting Algorithm

5.2.1 First Model: 3-SAT with instance matrix A = (20× 80)

Table 6 presents the performance of the improved splitting Algorithm 7.2 for the
3-SAT problem with an instance matrix A = (20 × 80) with N = 1, 000, ρ = 0.2
and b = 1.

Table 6: Performance of splitting Algorithm 7.2 for SAT 20× 80 model.

Run N0 Iterations |X̂ ∗| RE of |X̂ ∗| |X̂ ∗
dir| RE of |X̂ ∗

dir| CPU

1 10 17.316 0.154 15 0 0.641
2 10 15.143 0.010 15 0 0.640
3 10 12.709 0.153 15 0 0.645
4 9 16.931 0.129 15 0 0.566
5 10 13.678 0.088 15 0 0.644
6 9 15.090 0.006 15 0 0.565
7 9 10.681 0.288 15 0 0.558
8 10 13.753 0.083 15 0 0.661
9 10 14.022 0.065 15 0 0.646
10 10 13.445 0.104 15 0 0.651

Average 9.7 14.277 0.108 15 0 0.622
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Table 7 presents the dynamics for a run of the improved splitting Algorithm 7.2
for the same model.

Table 7: Dynamics of Algorithm 7.2 for 20× 80 SAT model.

t |X̂ ∗| |X̂ ∗
dir| Nt N

(s)
t m∗

t m∗t ρt
1 2.34E+05 0 223 223 78 59 0.223
2 6.87E+04 0 294 294 78 73 0.294
3 2.59E+04 0 377 375 78 75 0.377
4 7.33E+03 1 283 277 80 76 0.283
5 1.63E+03 2 222 211 80 77 0.222
6 200.28 8 123 96 80 78 0.123
7 15.221 15 76 15 80 79 0.076
8 15.221 15 1000 15 80 80 1.000
9 15.221 15 1000 15 80 80 1.000

5.2.2 Second model: Random 3-SAT with instance matrix A = (75×325)
taken from www.satlib.org.

Table 8 presents the performance of the improved splitting Algorithm 7.2. We set
N = 10, 000 and ρ = 0.1 and b = η for all iterations until Algorithm 7.2 reached the
desired level 325, (recall that b is the number of Gibbs cycles and η is the number
of splitting of each trajectory). After that, at the last iteration, we switched to
N = 100, 000. Table 9 presents the dynamic of Algorithm 7.2. The results are self-
explanatory.

Table 8: Performance of the improved splitting Algorithm 7.2 for SAT 75 × 325
model.

Run N0 Iterations |X̂ ∗| RE of |X̂ ∗| |X̂ ∗
dir| RE of |X̂ ∗

dir| CPU

1 24 2458.8 0.089 2220 0.017 640.8
2 24 1927.8 0.146 2224 0.015 673.8
3 24 1964.6 0.130 2185 0.032 664.5
4 24 2218.9 0.017 2216 0.019 661.3
5 24 2396.9 0.062 2191 0.030 678.1
6 24 2271.8 0.006 2230 0.012 661
7 24 2446.1 0.083 2202 0.025 695
8 24 2090.5 0.074 2200 0.026 711.7
9 24 2147.7 0.049 2213 0.020 696.8
10 24 2395 0.061 2223 0.016 803.3

Average 24 2231.8 0.072 2210.4 0.021 688.6
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Table 9: Dynamics of improved Algorithm 7.2 for the random 3-SAT with matrix
A = (75× 325).

t |X̂ ∗| |X̂ ∗
dir | Nt N

(s)
t m∗

t m∗t ρt
1 3.97E+21 0 1052 1052 304 259 0.105
2 5.35E+20 0 1346 1346 307 292 0.135
3 5.60E+19 0 1046 1046 309 297 0.105
4 6.36E+18 0 1137 1137 310 301 0.114
5 1.16E+18 0 1824 1824 313 304 0.182
6 1.68E+17 0 1449 1449 317 306 0.145
7 1.95E+16 0 1159 1159 315 308 0.116
8 5.81E+15 0 2981 2981 316 310 0.298
9 1.63E+15 0 2806 2806 318 311 0.281
10 4.29E+14 0 2630 2630 318 312 0.263
11 1.05E+14 0 2449 2449 318 313 0.245
12 2.31E+13 0 2204 2204 319 314 0.220
13 4.58E+12 0 1979 1979 321 315 0.198
14 8.28E+11 0 1807 1807 321 316 0.181
15 1.43E+11 0 1723 1723 321 317 0.172
16 2.08E+10 0 1459 1459 323 318 0.146
17 2.82E+09 0 1356 1356 323 319 0.136
18 3.52E+08 0 1247 1247 323 320 0.125
19 3.38E+07 0 962 962 324 321 0.096
20 2.58E+06 0 762 761 324 322 0.076
21 1.21E+05 12 468 466 325 323 0.047
22 2268.8 179 188 179 325 324 0.019
23 2268.8 2232 100000 2232 325 325 1

It is interesting to note that if we set b = 1 instead of b = η, the average relative
error of both the product and the direct estimators of Algorithm 7.2 substantially
increases. They become 0.27 and 0.16 instead of 0.072 and 0.009, respectively (see
Table 8). This is in turn worse than 0.163 and 0.0038, the average relative errors
of the product and the CAP-RECAP estimators of SSM Algorithm 3.2. It is also
important to note that by setting b 6= 1 in the SSM Algorithm 3.2, in particular
setting b = η we found that both relative errors remain basically close to these for
b = 1. This means that one full cycle of the Gibbs sampler suffices for Algorithm
3.2, while the splitting Algorithm 7.1 requires tuning of b. In other words, the SSM
Algorithm 3.2 is robust with respect to b, while its counterpart Algorithm 7.1 is
not.

5.2.3 Third Model: Random 3− 4-SAT with instance matrix A = (122×
663)

Table 10 presents the dynamic of the improved Algorithm 7.2. Similar to SSM
Algorithm 3.2 we set N = 10, 000 and ρ = 0.1 for all iterations until Algorithm 7.2
has reached the desired level 663. After that we switched to N = 100, 000 for the
last iteration. Again, as for the second model, we set here b = η instead of b = 1 as
for SSM Algorithm 3.2. The results are self- explanatory.
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Table 10: Dynamics of Algorithm 7.2 for the random 3 − 4-SAT with matrix A =
(122× 663).

t |X̂ ∗| |X̂ ∗
dir| Nt N

(s)
t m∗

t m∗t ρt
1 5.91E+35 0 5562 5562 624 567 0.111
3 1.03E+34 0 8163 8163 630 614 0.163
5 1.44E+32 0 6723 6723 634 622 0.134
7 5.97E+30 0 9547 9547 636 627 0.191
9 1.30E+29 0 6732 6732 639 631 0.135
11 4.48E+27 0 15499 15499 644 635 0.310
13 3.72E+26 0 13976 13976 646 637 0.280
15 2.47E+25 0 12564 12564 647 639 0.251
17 1.29E+24 0 11054 11054 647 641 0.221
19 5.42E+22 0 9888 9888 649 643 0.198
21 1.71E+21 0 8492 8492 650 645 0.170
23 3.72E+19 0 7134 7134 651 647 0.143
25 5.80E+17 0 5789 5789 653 649 0.116
27 5.88E+15 0 4820 4820 655 651 0.096
29 3.81E+13 0 3827 3827 657 653 0.077
31 1.42E+11 0 2804 2799 658 655 0.056
33 2.73E+08 0 2038 2021 659 657 0.041
35 2.20E+05 0 1223 968 661 659 0.024
37 17.942 1 345 17 663 661 0.007
39 1.035 1 100000 1 663 663 1.000

We found that the the average CPU time is about 2 hours for each ran, the av-
erage relative error for the product estimator |X̂ ∗| is RE = 0.23, while for the direct

estimator |X̂ ∗
dir| it is RE = 0.4. This means that in 6 out of 10 runs Algorithm 7.2

the unique SAT assignment (compare this with 9 out of 10 runs for SSM Algorithm
3.2).

6 Conclusions and Further Research

In this paper we presented a new Monte Carlo method, called the smoothed splitting

method (SSM), for counting on discrete sets associated with NP-hard combinato-
rial problems and in particular counting the number of satisfiability assignments.
The main idea of SSM is to work with an auxiliary sequence of continuous sets
instead of a discrete one. The motivation for this is that continuous problems are
typically easier to handle. We showed that the SSM estimator is consistent. We
also discussed its complexity properties and showed numerically that although the
proposed method performs similarly to the standard splitting one [15, 16] (in terms
of CPU time and variability), the former one is, however, more robust than the
latter. In particular we found that the tuning of the parameters in SSM is typically
simpler than of its standard splitting counterpart.

As for further research we suggest to combine both the splitting and MMS meth-
ods and as result to generate an adaptively sequence of tuples {εt,mt}, rather than
a sequence {εt} for fixed m representing the total number of constraints (clauses).

Another possible further improvement is the following. If we are interested in
getting all the solutions to the original SAT problem, a possible way to improve
the algorithm could be to clone only particles in the centre sub-hypercube (see
discussion in section 4.2). Although this would imply checking very often if a given
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particle can give a solution different from those already found, it could also force the
particles to explore more carefully the centre hypercube and find a way to solutions
not yet explored.

7 Appendix

7.1 Splitting Algorithms for Counting

Below, following [16], we present two versions of the splitting algorithm for counting:
the so-called basic version and the improved version.

To proceed with the splitting method note that ℓ in (1) can be written as

ℓ = Ef

[
I{S(X)≥m}

]
, (13)

where X ∼ f(x), f(x) is a uniform distribution on the set of points of X = X0,
m is a fixed parameter, like the total number of constraints in an integer program,
and S(X) is the sample performance, like the number of feasible solution generated
by the constraints of the integer program. It can be also written (see(1)) as

ℓ =

T∏

t=1

ct, (14)

where

ct = |Xt|/|Xt−1| = Eg∗

t−1
[I{S(X)≥mt−1}]. (15)

Here
g∗t−1 = g∗(x,mt−1) = ℓ(mt−1)

−1f(x)I{S(x)≥mt−1}, (16)

ℓ(mt−1)
−1 is the normalization constant and similar to (1) the sequence mt, t =

0, 1, . . . , T represents a fixed grid satisfying −∞ < m0 < m1 < · · · < mT = m. Note
that in contrast to (1) we use in (14) a product of T terms instead of a product of m
terms. Note that T might be a random variable. The later case is associated with
adaptive choice of the level sets {m̂t}Tt=0 resulting in T ≤ m. Since for counting
problems the pdf f(x) should be uniformly distributed on X , which we denote by
U(X ), it follows from (16) that the pdf g∗(x,mt−1) must be uniformly distributed
on the set Xt = {x : S(x) ≥ mt−1}, that is, g∗(x,mt−1) must be equal to U(Xt).
Although the pdf g∗t−1 = U(Xt) is typically not available analytically, it is shown in
[15, 16] that one can sample from it by using the MCMC method and in particular
the Gibbs sampler, and as the result to update the parameters ct and mt adaptively.
This is one of the most crucial issues of the cloning method.

Once sampling from g∗t−1 = U(Xt) becomes available, the final estimator of ℓ
(based on the estimators of ct = Eg∗

t−1
[I{S(X)≥mt−1}], t = 0, . . . , T ), can be written

as

ℓ̂ =

T∏

t=1

ĉt =
1

NT

T∏

t=1

Nt, (17)

where

ĉt =
1

N

N∑

i=1

I{S(Xi)≥mt−1} =
Nt

N
, (18)

Nt =
∑N

i=1 I{S(Xi)≥mt−1}, Xi ∼ g∗t−1 and g∗−1 = f .
We next show how to cast the problem of counting the number of feasible solu-

tions of the set of integer programming constraints into the framework (13)- (16).

22



Example 7.1. Counting on the set of an integer programming constraints
Consider the set X ∗ containing both equality and inequality constraints of an integer
program, that is,

∑n
k=1 aikxk = bi, i = 1, . . . ,m1,

∑n
k=1 ajkxk ≥ bj, j = m1 + 1, . . . ,m1 +m2,

x = (x1, . . . , xn) ≥ 0, xk is integer ∀k = 1, . . . , n.

(19)

Our goal is to count the number of feasible solutions (points) of the set (19). We
assume that each component xk, k = 1, . . . , n has d different values, labeled 1, . . . , d.
Note that the SAT problem represents a particular case of (19) with inequality
constraints and where x1, . . . , xn are binary components. If not stated otherwise we
will bear in mind the counting problem on the set (19) and in particular counting
the number of true (valid) assignments in a SAT problem.

It is shown in [16] that in order to count the number of points of the set (19)
one can associate it with the following rare-event probability problem

ℓ = Ef

[
I{S(X)=m}

]
= Ef

[
I{

∑
m
i=1 Ci(X)=m}

]
, (20)

where the first m1 terms Ci(X)’s in (20) are

Ci(X) = I{
∑

n
k=1 aikXk=bi}, i = 1, . . . ,m1, (21)

while the remaining m2 ones are

Ci(X) = I{
∑

n
k=1 aikXk≥bi}, i = m1 + 1, . . . ,m1 +m2 (22)

and S(X) =
∑m

i=1 Ci(X). Thus, in order to count the number of feasible solutions
on the set (19) one can consider an associated rare-event probability estimation
problem (20) involving a sum of dependent Bernoulli random variables Ci i = m1+

1, . . . ,m, and then apply |̂X ∗| = ℓ̂|X |. In other words, in order to count on X ∗

one needs to estimate efficiently the rare event probability ℓ in (20). A rare-event
probability estimation framework similar to (20) can be readily established for many
NP-hard counting problems [16].

It follows from above that the proposed algorithm will generate an adaptive
sequence of tuples

{(m0, g
∗(x,m−1)), (m1, g

∗(x,m0)), (m2, g
∗(x,m1)), . . . , (mT , g

∗(x,mT−1))} (23)

Here as before g∗(x,m−1) = f(x) = U(X ), g∗(x,mt) = U(Xt), and mt is obtained
from the solution of the following non-linear equation

Eg∗

t−1
I{S(X)≥mt} = ρ, (24)

where ρ is called the rarity parameter [18]. Typically one sets 0.1 ≤ ρ ≤ 0.01.

7.2 Basic Splitting Algorithm

Let N , ρt and Nt be the fixed sample size, the adaptive rarity parameter and the
number of elite samples at iteration t, respectively (see [16] details). Recall [16] that

the elite sample X̂1, . . . , X̂Nt
corresponds to the largest subset of the population

{X1, . . . ,XNt
}, for which S(X i) ≥ m̂t, that is m̂t is the (1 − ρt) sample quantile

of of the ordered statistics values of S(X1), . . . , S(XN ). It follows that the number
of elites Nt = ⌈Nρt⌉, where ⌈·⌉ denotes rounding to the largest integer.
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In the basic version at iteration t we split each elite sample ηt =
⌈
ρ−1
t

⌉
times.

By doing so we generate
⌈
ρ−1
t Nt

⌉
≈ N new samples for the next iteration t + 1.

The rationale is based on the fact that if all ρt are not small, say ρt ≥ 0.01, we have
at each iteration t enough stationary elite samples, and all what the Gibbs sampler
has to do for the next iteration is to generate N ≈

⌈
ρ−1
t Nt

⌉
new samples uniformly

distributed on Xt+1.

Algorithm 7.1. [Basic Splitting Algorithm for Counting] Given the initial param-
eter ρ0, say ρ0 ∈ (0.01, 0.25) and the sample size N , say N = nm, execute the
following steps:

1. Acceptance-Rejection Set a counter t = 1. Generate a sampleX1, . . . ,XN

uniformly on X0. Let X̂0 = {X̂1, . . . , X̂N0} be the elite samples. Take

ĉ0 = ℓ̂(m̂0) =
1

N

N∑

i=1

I{S(Xi)≥m̂0} =
N0

N
(25)

as an unbiased estimator of c0. Note that X̂1, . . . , X̂N0 ∼ g∗(x, m̂0), where
g∗(x, m̂0) is a uniform distribution on the set X1 = {x : S(x) ≥ m̂0}.

2. Splitting Let X̂t−1 = {X̂1, . . . , X̂Nt−1} be the elite sample at iteration
(t−1), that is the subset of the population {X1, . . . ,XN} for which S(Xi) ≥
m̂t−1. Reproduce ηt−1 =

⌈
ρ−1
t−1

⌉
times each vector X̂k = (X̂1k, . . . , X̂nk) of

the elite sample {X̂1, . . . , X̂Nt−1}, that is take ηt−1 identical copies of each

vector X̂k. Denote the entire new population (ηt−1Nt−1 cloned vectors plus

the original elite sample {X̂1, . . . , X̂Nt−1}) by
Xcl = {(X̂1, . . . , X̂1), . . . , (X̂Nt−1 , . . . , X̂Nt−1)}. To each of the cloned vec-
tors of the population Xcl apply the MCMC (and in particular the random
Gibbs sampler) for a single period (single burn-in). Denote the new entire pop-
ulation by {X1, . . . ,XN}. Note that each vector in the sample X1, . . . ,XN

is distributed g∗(x, m̂t−1), where g∗(x, m̂t−1) has approximately a uniform
distribution on the set Xt = {x : S(x) ≥ m̂t−1}.

3. Estimating ct Take ĉt =
Nt

N (see (18)) as an estimator of ct in (16). Note

again that each vector of X̂1, . . . , X̂Nt
of the elite sample is distributed

g∗(x, m̂t), where g∗(x, m̂t) has approximately a uniform distribution on the
set Xt+1 = {x : S(x) ≥ m̂t}.

4. Stopping rule If mt = m go to step 5, otherwise set t = t + 1 and repeat
from step 2.

5. Final Estimator Deliver ℓ̂ given in (17) as an estimator of ℓ and |X̂ ∗| = ℓ̂|X |
as an estimator of |X ∗|.

Note that at iteration t Algorithm 7.1 splits each elite sample ηt =
⌈
ρ−1
t

⌉
times.

By doing it generates
⌈
ρ−1
t Nt

⌉
≈ N new samples for the next iteration t + 1. The

rationale is based on the fact that if all ρt are not small, say ρt ≥ 0.01, we have
at each iteration t enough stationary elite samples, and all what the Gibbs sampler
has to do for the next iteration is to generate N ≈

⌈
ρ−1
t Nt

⌉
new samples uniformly

distributed on Xt+1.
Figure 3 presents a typical dynamics of the splitting algorithm, which terminates

after two iterations. The set of points denoted ⋆ and • is associated with these two
iterations. In particular the points marked by ⋆ are uniformly distributed on the
sets X0 and X1. (Those, which are in X1 correspond to the elite samples). The
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points marked by • are approximately uniformly distributed on the sets X1 and X2.
(Those, which are in X2 = X ∗ likewise correspond to the elite samples).

Figure 3: Dynamics of Algorithm 7.1.

7.3 Enhanced Splitting Algorithm for Counting

Note that the basic Algorithm 7.1 assumes that the burn in period b = 1 and thus
we split each elite sample

ηt−1 =

⌈
N

N
(e)
t−1

⌉
− 1 (26)

times. The advantage of such policy is that we can run all N Gibbs processes in
parallel and thus obtain a substantial speed up. Its disadvantage is that the such
generated trajectories are dependent in a batch-wise fashion, where dependence is

caused by splitting the elites, and each batch is of size

⌈
N

N
(e)
t−1

⌉
.

To overcome this difficulty at least partially we introduce an enhanced version
of splitting Algorithm 7.1, which contains (i) a modified splitting step and (ii) a
new screening step.

(i) Modified splitting step Here we allow the burn in parameter b ≥ 1.
Let us assume for a moment that ηt = η is fixed. For given N define the burn

in parameter bt−1 (the number of Gibbs cycles) at iteration t− 1 as

bt−1 =

⌈
N

ηN
(e)
t−1

⌉
. (27)

It follows from (27) that for one extreme, when η is from (26), we have bt−1 = 1
and thus, our basic splitting Algorithm 7.1. For another extreme, when η = 1 (no

splitting), we proceed with all N
(e)
t−1 elites for additional bt−1 =

⌈
N

N
(e)
t−1

⌉
burn in

periods (cycles). This means that each of the N
(e)
t−1 Markovian trajectories will run

for

⌈
N

N
(e)
t−1

⌉
additional burn in periods. Clearly, when ρ−1 = N and η = 1, we have
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(at each iteration) only a single trajectory with b = N burn in periods. Note finally,
that in the general case (27), that is when

1 ≤ η ≤
⌈

N

N
(e)
t−1

⌉
− 1

we run in parallel ηN
(e)
t−1 Markov trajectories. In this case the elites samples are

derived similar to the case b = 1, that is by ordering the N values of the sample
functions S(Xi), i = 1, . . . , N which are in turn derived after each cycle of the
Gibbs sampler.

We found numerically that low variance estimators of |X ∗| are obtained when

1. The splitting parameter η is small, like η = 1 or η = 2.

2. ρ is not small, like 0.5 ≥ ρ ≥ 0.1.

If not stated otherwise we assume below that η = 1 and ρ = 0.1.
(ii) Screening step. Since the IS pdf g∗(x,mt) must be uniformly distributed

for each fixed mt, the splitting algorithm checks at each iteration whether or not

all elite vectors X̃1, . . . , X̃N
(e)
t

are different. If this is not the case, we screen out

(eliminate) all redundant elite samples. We denote the resulting elite sample as

X̂1, . . . , X̂N
(e)
t

and call it, the screened elite sample. Note that this procedure

prevents (at least partially) the empirical pdf associated with X̂1, . . . , X̂N
(e)
t

from

deviating from the uniform.
With this to hand, we recapitulate from Rubinstein [16] the enhanced splitting

algorithm.

Algorithm 7.2. [Enhanced Splitting Algorithm for Counting] Given the parameter
ρ, say ρ ∈ (0.5, 0.1) and the sample size N , say N = nm, execute the following
steps:

1. Acceptance-Rejection - same as in Algorithm 7.1.

2. Screening Denote the elite sample obtained at iteration (t− 1) by

{X̃1, . . . , X̃N
(e)
t−1

}. Screen out the redundant elements from the subset

{X̃1, . . . , X̃N
(e)
t−1

}, and denote the resulting (reduced) one as {X̂1, . . . , X̂N
(e)
t−1

}.

3. Modified Splitting Given the sizeN
(e)
t−1 of the screened elites {X̂1, . . . , X̂N

(e)
t−1

}
at iteration (t − 1), set the splitting parameter η to be small, like η = 1 or
η = 2 and calculate bt−1 according to (27). Reproduce ηt−1 times each vector

X̂k = (X̂1k, . . . , X̂nk) of the screened elite sample {X̂1, . . . , X̂N
(e)
t−1

}, that is,
take ηt−1 identical copies of each vector X̂k obtained at the (t − 1)-th iter-

ation. Denote the entire new population (ηt−1N
(e)
t−1 cloned vectors plus the

original screened elite sample {X̂1, . . . , X̂N
(e)
t−1

}) by
Xcl = {(X̂1, . . . , X̂1), . . . , (X̂N

(e)
t−1

, . . . , X̂
N

(e)
t−1

)}. To each of the cloned vectors

of the population Xcl apply the MCMC (and in particular the Gibbs sampler)
for bt−1 burn-in periods. Denote the new entire population by {X1, . . . ,XN}
and the corresponding functions values by S(Xi), i = 1, . . . , N . Note that
each S(Xi), i = 1, . . . , N is obtained after each of the N loops of the
Gibbs sampler. Note also that Xi, i = 1, . . . , N is distributed g∗(x, m̂t−1),
which in turn presents an approximately uniform distribution on the set
Xt = {x : S(x) ≥ m̂t−1}.
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4. Estimating ct - same as in Algorithm 7.1.

5. Stopping rule -the same as in Algorithm 7.1.

6. Final estimator - same as in Algorithm 7.1.

Note that The basic Algorithm 7.1 (with b = 1 and without screening) represents
a particular case of the enhanced Algorithm 7.2.

7.4 Direct Splitting Algorithm

The direct estimator below can be viewed as an alternative to the estimator |X̂ ∗|
obtained by Algorithm 7.1. This estimator is based on direct counting of the num-
ber of screened samples obtained immediately after crossing the level m. Such a
counting estimator, denoted by |X̂ ∗

dir|, is associated with the empirical distribution

of the uniform distribution g∗(x,m). We found numerically that |X̂ ∗
dir| is extremely

useful and very accurate. Note that it is applicable only for counting problems with
|X ∗| not too large. Specifically |X ∗| should be less than the sample size N , that is
|X ∗| < N . Note also that counting problems with values small relative to |X | are
the most difficult ones and in many counting problems one is interested in the cases
where |X ∗| does not exceed some fixed quantity, say N . Clearly, this is possible

only if N ≥ N . It is important to note that |X̂ ∗
dir| is typically much more accurate

than its counterpart, the standard estimator |X̂ ∗| = ℓ̂|X |. The reason is that |X̂ ∗
dir|

is obtained directly by counting all distinct values of Xi, i = 1, . . . , N satisfying
S(Xi) ≥ m, that is it can be written as

|̂X ∗
dir| =

N∑

i=1

I
{S(X

(d)
i

)≥m}
, (28)

where X
(d)
i = Xi, if Xi 6= Xj , ∀j = 1, . . . , i − 1 and X

(d)
i = 0, otherwise. Note

that we set in advance X
(d)
1 = X1. Note also that there is no need here to calculate

ĉt at any step.

Algorithm 7.3. [ Direct Algorithm for Counting] Given the rarity parameter ρ,
say ρ = 0.1, the parameters a1 and a2, say a1 = 0.01 and a2 = 0.25, such that
ρ ∈ (a1, a2), and the sample size N , execute the following steps:

1. Acceptance-Rejection - same as in Algorithm 7.2.

2. Screening - same as in Algorithm 7.2.

3. Splitting - same as in Algorithm 7.2.

4. Stopping rule - same as in Algorithm 7.2.

5. Final Estimator For mT = m, take a sample of size N , and deliver |X̂ ∗
dir| in

(28) as an estimator of |X ∗|.
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