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Abstract

Motivated by promising experimental results, this paper investigates
the theoretical properties of a recently proposed nonparametric esti-
mator, called the Mutual Nearest Neighbors rule, which estimates the
regression function m(x) = E[Y |X = x] as follows: first identify the
k nearest neighbors of x in the sample Dn, then keep only those for
which x is itself one of the k nearest neighbors, and finally take the
average over the corresponding response variables. We prove that this
estimator is consistent and that its rate of convergence is optimal.
Since the estimate with the optimal rate of convergence depends on
the unknown distribution of the observations, we also present adapta-
tion results by data-splitting.

Index Terms — Nonparametric estimation, Nearest neighbor meth-
ods, Mathematical statistics.
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1 Introduction

Let Dn = {(X1, Y1), . . . , (Xn, Yn)} be a sample of independent and identically
distributed (i.i.d.) copies of an R

d ×R-valued random pair (X, Y ) satisfying
EY 2 < ∞. For fixed x in R

d, our goal is to estimate the regression func-
tion m(x) = E[Y |X = x] using the data Dn. A regression function estimate
mn(x) is said to be weakly consistent if the mean integrated squared error
E[mn(X)−m(X)]2 tends to 0 as the sample size n goes to infinity, and is said
to be universally weakly consistent if this property holds for all distributions
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of (X, Y ) with EY 2 < ∞.

Equip the space R
d with the standard Euclidean metric. Then, for x in R

d,
the k Nearest Neighbors (kNN) estimate for the regression function m is
defined by

mkNN
n (x) =

1

k

k
∑

i=1

Y(i,n)(x),

where (X(1,n)(x), Y(1,n)(x)), . . . , (X(n,n)(x), Y(n,n)(x)) denotes a reordering of
the data according to the increasing values of di = di(x) = ‖Xi − x‖ (ties
are broken in favor of smallest indices). This procedure is one of the oldest
approaches to regression analysis, dating back to Fix and Hodges [9, 10], and
is among the most popular nonparametric methods. We refer the reader to
Devroye, Györfi and Lugosi [8] for results and details in the classification
context, and to Györfi, Kohler, Krzyżak and Walk [13] for the regression
framework considered in the present paper. Accordingly, we adhere as much
as possible to their notations.

Let us denote Nk(x) the set of the k nearest neighbors of x in Dn, N ′
k(Xi)

the set of the k nearest neighbors of Xi in (Dn \ {Xi}) ∪ {x}, and

Mk(x) = {Xi ∈ Nk(x) : x ∈ N ′
k(Xi)} ,

the set of the Mutual Nearest Neighbors (MNN) of x. Denoting Mk(x) =
|Mk(x)| the number of mutual nearest neighbors of x, Mk(x) is a random
variable taking values between 0 and k. The mutual nearest neighbors re-
gression estimate is then defined as follows

mn(x) =
1

Mk(x)

∑

i:Xi∈Mk(x)

Yi,

with the convention that 0/0 = 0. Two remarks are in order. First, contrar-
ily to the k-NN estimate, the MNN estimate is symmetric. This means that,
when averaging over the neighbors of x in the sample Dn, we only consider
the points for which x is itself one of the k nearest neighbors.

The second remark is that, compared to the standard kNN rule, there might
be an additional computational cost for applying the MNN procedure. Specif-
ically, we might consider two different situations. In the first one, it is possible
to precompute and sort the distances between all couples of points (Xi,Xj)
in the sample Dn. Since the cost of computing the distance between a pair of
d-dimensional vectors is O(d), and that there are n(n−1)/2 such pairs in Dn,
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and considering that the (quick)sorting of a vector of size n is O(n logn), the
cost of this precomputation is O((d + logn)n2). In this case, after comput-
ing and sorting the pairwise distances, the computational burden of MNN
and kNN are of the same order. Indeed, for a new point x, computing
the distances to the Xi’s and finding the k nearest neighbors has a cost in
O((d+log k)n). For the mutual nearest neighbors, for each of these k nearest
neighbors, one has also to see if x is one of its k nearest neighbors, hence an
additive cost in O(k). In the second situation, the cost of precomputation is
prohibitively expensive, typically due to large sample size n and high dimen-
sion d of the covariates. In this case, the algorithmic cost for the kNN rule
is of course the same as before, that is in O((d+ log k)n), while the cost for
the MNN rule is O((k + 1)(d+ log k)n) = O(k(d+ log k)n).

The term of mutual nearest neighbors seems to date back to Chidananda
Gowda and Krishna in the context of clustering [11, 12]. In the past few
years, it has raised an increasing interest in image analysis for object re-
trieval (see for example Jégou et al. [18] and Qin et al. [22]) as well as for
classification purposes (see Liu et al. [21]). Interestingly, the latter reports
that experimental results show that, on standard data sets, the MNN esti-
mates have better performances than standard nearest neighbors estimates
as well as other widely used classification rules.

Without claiming that MNN estimates always outperform standard nearest
neighbors estimates, a heuristic explanation for this better behavior in some
situations is related to the existence of hubs in high dimensional data. Specif-
ically, a hub is a point which appears in many more kNN lists than the others,
making it very influential in kNN estimates. As explained in Radovanović
et al. [23], hubness is an aspect of the curse of dimensionality as increasing
the dimensionality results in the emergence of hubs under widely applicable
conditions. These authors have also conducted several simulations to show
how the existence of “bad” hubs negatively affects the kNN classifier (see
Section 7.1.2 in [23]). In our context, the existence of hubs might not affect
the performance of MNN estimates and one could even consider the MNN
rule as a variant of the kNN rule which allows to automatically reduce the
role of these hubs.

However, to the best of our knowledge, little if nothing is known about the
theoretical properties of the mutual nearest neighbors estimator. Our goal
in this paper is to investigate its statistical properties, focusing our attention
on the regression viewpoint. In Section 2, we present strong and weak con-
sistency results. In Section 3, we go one step further and show that the rate
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of convergence of this estimate is, in fact, optimal when d ≥ 2. Since the pa-
rameter k = kn of the estimate with the optimal rate of convergence depends
on the unknown distribution of (X, Y ), especially on the smoothness of the
regression function, we also present adaptive (i.e., data-dependent) choices
for kn that preserve the minimax optimality of the estimate.

2 Consistency

To prove the consistency of the MNN estimator, we write

mn(x) =
n
∑

i=1

Wi(x,X1, . . . ,Xn)Yi =
n
∑

i=1

WiYi,

where the weights Wi are non negative random variables defined by

Wi =

{ 1
Mk(x)

if Mk(x) > 0 and Xi ∈ Mk(x)

0 otherwise

This representation brings the MNN estimator into the general framework
of weighted nearest neighbors, as studied for example by Stone [24]. But,
contrarily to the standard kNN estimator for which the weights are deter-
ministically linked to the order statistics X(1,n)(x), . . . ,X(n,n)(x), notice that
this is not the case in our situation.

Nonetheless, in order to control the random weights Wi, we will exploit the
following observation: for all Xi in N ′

k(x), we have the following assertion

‖Xi − x‖ <
d(k+1)

2
=

‖X(k+1,n)(x)− x‖
2

⇒ Xi ∈ Mk(x). (2.1)

Indeed, if not, there would exist k points X̃1, . . . , X̃k, different from Xi, and
such that for all j = 1, . . . , k,

‖X̃j −Xi‖ < ‖Xi − x‖ <
d(k+1)

2
.

By the triangle inequality,

‖X̃j − x‖ < ‖Xi − x‖+ ‖X̃j −Xi‖ < d(k+1),

which implies that there are at least (k + 1) points in the open ball Sx,d(k+1)

centered at x of radius d(k+1), which contradicts the definition of d(k+1).
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Accordingly, let us define the random variable B as the number of nearest
neighbors Xi’s which belong to Sx,d(k+1)/2. Given d(k+1) and defining pk as

pk =
µ(Sx,d(k+1)/2)

µ(Sx,d(k+1)
)
,

where µ stands for the law of X, we will justify in the proof of Theorem
2.1 that B has a binomial distribution with parameters k and pk. As a
consequence, Assertion (2.1) reads as an inequality between random variables

Mk(x) ≥ B. (2.2)

This latter remark is of crucial importance for showing the following consis-
tency results as well as for establishing the rates of convergence of Section 3.
We begin with a strong consistency result.

Theorem 2.1 Suppose that the distribution µ of X is absolutely continuous
on R

d, that Y is bounded and that the regression function m is µ almost
everywhere continuous. If k → ∞, k/n → 0, and k/ log n → ∞, then mn is
strongly consistent, that is

mn(X)−m(X) → 0

with probability one.

The proof of Theorem 2.1 reveals that local convergence in probability holds
without the assumption that k/ logn → ∞. Indeed, for µ almost every x

and for every ε > 0,

P(|mn(x)−m(x)| > ε) → 0

when n goes to infinity, provided that k → ∞ and k/n → 0. Since Y
is bounded, the weak (i.e., L2) consistency of Theorem 2.2 below is just a
straightforward consequence of the dominated convergence theorem.

Notice that a standard way to prove the weak consistency of weighted nearest
neighbors rules is to check the five conditions of Stone’s universal consistency
theorem (see [24], Theorem 1). As is often the case, one of them is in fact
particularly hard to verify in our situation, namely that there exists C ≥ 1
such that for any nonnegative Borel function f on R

d,

E

[

n
∑

i=1

Wif(Xi)

]

≤ C E [f(X)] . (2.3)
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The additional constraints in Theorem 2.2 are sufficient and are in fact the
same as for the layered nearest neighbor estimate studied by Biau and De-
vroye in [4], as well as for the affine invariant nearest neighbor estimate
investigated by Biau et al. in [5].

Theorem 2.2 Suppose that the distribution µ of X is absolutely continuous
on R

d, that Y is bounded and that the regression function m is µ almost ev-
erywhere continuous. If k → ∞ and k/n → 0, then mn is weakly consistent,
that is

E[(mn(X)−m(X))2] → 0.

We may lighten the assumption that X has a density. Indeed, an inspection
of the proof of Theorem 2.1 reveals that consistency holds as long as for µ
almost every x,

lim inf
h→0

µ(Sx,h/2)

µ(Sx,h)
> 0. (2.4)

Interestingly, this condition is linked to the notion of doubling measure in ge-
ometric measure theory. We refer the interested reader to the monographs of
Ambrosio and Tilli [2], Heinonen [14], and to the paper of Ambrosio et al. [1].

Recall that the support S(µ) is defined as the collection of all x with µ(Sx,h) >
0 for all h > 0. In our context, a probability measure µ is said to be dou-
bling on its support S(µ) equipped with the Euclidean norm if there exists
a constant c > 0 such that, for every x in S(µ),

µ(Sx,h/2)

µ(Sx,h)
> c, (2.5)

and µ is said to be asymptotically doubling if, for every x in S(µ),

lim inf
h→0

µ(Sx,h/2)

µ(Sx,h)
> 0.

Thus we can relax the condition of Theorems 2.1 and 2.2 to only requiring
that the probability measure µ is asymptotically doubling almost surely. To
see that this condition is weaker than requiring a density, note that if µ admits
the density f , then a consequence of Lebesgue’s differentiation Theorem (see
for example Theorem A.10 in [8]) is that for µ-almost every x in S(µ),

µ(Sx,h/2)

µ(Sx,h)
=

∫

S
x,h/2

f(u)du
∫

S
x,h

f(u)du
→ 1

2d
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when h tends to 0. Hence µ is asymptotically doubling almost surely.

It is also readily seen that any discrete probability measure is asymptotically
doubling almost surely. Singular continuous probability measures can also
be asymptotically doubling as is seen on the following example. Consider
the uniform distribution on the standard Cantor ternary set C. Recall that
the uniform probability measure µ on C is the weak limit of the uniform
probability measures µN on the sets CN defined for every integer N as the
union of 2N disjoint intervals with common length 3−N . It is easy to see that
for every integer N and for every x in CN ,

1

2
≤ µN(Sx,h/2)

µN(Sx,h)
≤ 1.

Hence, for every x in C,

lim inf
h→0

µ(Sx,h/2)

µ(Sx,h)
≥ 1

2
,

and µ is asymptotically doubling almost surely.

Next, we give an example of a singular continuous distribution that is non-
asymptotically doubling with probability one. Given a sequence (UN) of
independent Bernoulli distributed random variables with respective param-
eters N/(N + 1), which means that for all N ≥ 1, P(UN = 1) = N/(N + 1),
define the random variable

X =

∞
∑

N=1

2UN

3N
.

Note that X takes values in the standard Cantor ternary set C, but that the
law µ of X is not the uniform law on it: obviously, in the triadic expansion
of X, the 2’s are much more likely than the 0’s. Nevertheless, a direct
application of Borel-Cantelli Lemma ensures that µ almost surely, there is
an infinite number of 0’s in the triadic expansion of X. For such an x =
∑∞

N=1 2uN/3
N , consider the infinite set of indices

Ix = {N ≥ 1 : uN = 0} ,
and denote µN the restriction of µ to the set CN defined as above, i.e., the
union of 2N disjoint intervals with common length 3−N . Then, by construc-
tion, for each N in Ix, there exists an h = hN(x) ∈ [1/3N , 2/3N ] such that

µN(Sx,h/2)

µN(Sx,h)
=

1

N
⇒ lim inf

h→0

µ(Sx,h/2)

µ(Sx,h)
= 0.
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Consequently, µ is almost surely not asymptotically doubling. However, even
on this pathological probability space, it is not obvious that we can define a
regression function m and a distribution for Y such that the mutual nearest
neighbors rule would fail to be consistent.

To conclude this section, let us finally notice that, in the context of adapta-
tion to local intrinsic dimension of kNN regression, similar ideas related to
the doubling property also appear in a recent paper by Kpotufe [19].

3 Rates of convergence

In this section, we are interested in rate of convergence results for the class
F of (1, C, ρ, σ2)-smooth distributions (X, Y ) such that X has compact sup-
port with diameter 2ρ, the regression functionm is Lipschitz with constant C
and, for all x ∈ R

d, V[Y |X = x] ≤ σ2 < ∞ (the symbol V denotes variance).

It is known (see for example Ibragimov and Khasminskii [15, 16, 17], Stone
[25, 26], or Györfi et al. [13]) that for the class F , the optimal minimax rate
of convergence is n−2/(d+2). In particular, one has that

lim inf
n→∞

inf
m̂n

sup
(X,Y )∈F

E[m̂n(X)−m(X)]2

((ρC)dσ2)
2

d+2 n− 2
d+2

≥ ∆,

for some positive constant ∆ independent of C, ρ and σ2. Here the infimum
is taken over all estimates m̂n, i.e., over all measurable functions of the data.

It turns out that, for d ≥ 2 and a suitable choice of the sequence (kn), the
MNN estimate mn achieves the optimum rate for the class F , that is

lim sup
n→∞

sup
(X,Y )∈F

E[mn(X)−m(X)]2

((ρC)dσ2)
2

d+2 n− 2
d+2

≤ Λ,

for some positive Λ independent of C, ρ and σ2.

Before precisely stating this result, we need an additional notation. Let µ be
a probability measure on R

d with compact support S(µ) with diameter 2ρ.
We will assume that µ is doubling, as defined in (2.5), and let

p = inf
(x,h)∈S(µ)×(0,2ρ]

µ(Sx,h/2)

µ(Sx,h)
> 0. (3.1)

8



It is readily seen that if µ is absolutely continuous with density f , a sufficient
condition is that there exist two strictly positive real numbers a and A such
that for almost every x in S(µ), we have a ≤ f(x) ≤ A.

Theorem 3.1 Assume that ties occur with probability 0. Suppose that the
law µ of X has a compact support S(µ) with diameter 2ρ, and that µ is
doubling, with p defined as in (3.1). Suppose in addition that, for all x and
x′ ∈ R

d,
σ2(x) = V[Y |X = x] ≤ σ2

and
|m(x)−m(x′)| ≤ C‖x− x′‖,

for some positive constants σ2 and C. Denote by Lm an upper-bound of the
continuous mapping m on the compact S(µ). Then

(i) If d = 1,

E [mn(X)−m(X)]2 ≤ 2σ2

kp
+

16ρ2C2k

n
+ L2

m(1− p)k.

(ii) If d = 2,

E [mn(X)−m(X)]2 ≤ 2σ2

kp
+

32ρ2C2

n
+ L2

m(1− p)k.

(iii) If d ≥ 3,

E [mn(X)−m(X)]2 ≤ 2σ2

kp
+

8ρ2C2⌊n/k⌋−2/d

1− 2/d
+ L2

m(1− p)k.

By balancing the terms in Theorem 3.1, we are led to the following corollary:

Corollary 3.1 Under the assumptions of Theorem 3.1,

(i) If d = 1, there exists a sequence (kn) with kn ∝ √
n such that

E [mn(X)−m(X)]2 ≤ (Λ + o(1))
ρCσ√

n
,

for some positive constant Λ independent of ρ, C and σ2.

(ii) If d ≥ 2, there exists a sequence (kn) with kn ∝ n
2

d+2 such that

E [mn(X)−m(X)]2 ≤ (Λ + o(1))

(

(ρC)dσ2

n

)
2

d+2

,

for some positive constant Λ independent of ρ, C and σ2.
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Two remarks are in order.

1. We note that, for d ≥ 2 and a suitable choice of kn, the MNN estimate
achieves both the minimax n−2/(d+2) rate and the optimal order of mag-
nitude ((ρC)dσ2)2/(d+2) in the constant, for the class F of (1, C, ρ, σ2)-
smooth distributions (X, Y ) such that X has compact support with
covering radius ρ, the regression function m is Lipschitz with constant
C and, for all x ∈ R

d, V[Y |X = x] ≤ σ2.

2. For d = 1, the obtained rate is not optimal. This low-dimensional
phenomenon is also known to hold for the traditional kNN regression
estimate, which does not achieve the optimal rate in dimension 1 (see
Problem 6.1 in [13]).

In Corollary 3.1, the parameter kn of the estimate with the optimal rate of
convergence for the class F depends on the unknown distribution of (X, Y ),
especially on the smoothness of the regression function as measured by the
Lipschitz constant C. To conclude this section, we present a data-dependent
way for choosing the resampling size kn and show that, for bounded Y , the
estimate with parameter chosen in such an adaptive way achieves the optimal
rate of convergence.

To this end, we split the sample Dn = {(X1, Y1), . . . , (Xn, Yn)} in two parts,
denoted by Dℓ

n (learning set) and Dt
n (testing set), of size ⌊n/2⌋ and n−⌊n/2⌋,

respectively. The first half is used to construct the MNN estimate

m⌊n/2⌋(x,Dℓ
n) = mk,⌊n/2⌋(x,Dℓ

n)

The second half is used to choose k by picking k̂n ∈ K = {1, . . . , ⌊n/2⌋} to
minimize the empirical risk

1

n− ⌊n/2⌋
n
∑

i=⌊n/2⌋+1

(

Yi −mk,⌊n/2⌋(Xi,Dℓ
n)
)2

.

Define the estimate
mn(x) = mk̂n,⌊n/2⌋

(x,Dℓ
n),

and note that mn depends on the entire data Dn. If |Y | ≤ L < ∞ almost
surely, a straightforward adaptation of Theorem 7.1 in [13] shows that, for
any δ > 0,

E[mn(X)−m(X)]2 ≤ (1 + δ) inf
k∈K

E[mk,⌊n/2⌋(X,Dℓ
n)−m(X)]2 + Ξ

lnn

n
,

for some positive constant Ξ depending only on L, d and δ. Immediately
from Corollary 3.1, we can conclude:
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Theorem 3.2 Suppose that |Y | ≤ L almost surely, and let mn be the MNN
estimate with k ∈ K = {1, . . . , ⌊n/2⌋} chosen by data-splitting. Then the
condition (lnn)(d+2)/(2d)n−1/2 ≤ ρC together with d ≥ 2 implies

E[mn(X)−m(X)]2 ≤ (Λ + o(1))

(

(ρC)d

n

)
2

d+2

,

for some positive constant Λ which depends only on L and d.

Thus, the expected error of the estimate obtained via data-splitting is boun-
ded from above up to a constant by the corresponding minimax lower bound
for the class F of regression functions, with the optimal dependence in C
and ρ.

4 Proofs

4.1 Proof of Theorem 2.1

Let us fix ε > 0 and x in S(µ) such that m is continuous at x. Setting

m̃n(x) =

n
∑

i=1

Wi m(Xi),

we have

P (|mn(x)−m(x)| > 2ε) ≤ P

(

Mk(x) <
k

2d+1

)

+ P

(

|mn(x)− m̃n(x)| > ε,Mk(x) ≥
k

2d+1

)

+ P

(

|m̃n(x)−m(x)| > ε,Mk(x) ≥
k

2d+1

)

(4.1)

First, remark that rearranging the k (ordered) statistics X(1,n), . . . ,X(k,n) in
the original order of their outcome, one obtains the k (non-ordered) ran-
dom variables X⋆

1, . . . ,X
⋆
k. Let X̃1, . . . , X̃k be i.i.d. random variables, with

common law (conditional on d(k+1)) the restriction µ̃ of µ to the open ball
Sx,d(k+1)

, then it can be shown (see for example Lemma A.1 in [6]) that

L(X⋆
1, . . . ,X

⋆
k|d(k+1)) = L(X̃1, . . . , X̃k). (4.2)
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Next, given d(k+1), denote

pk = P

(

‖X̃− x‖ <
d(k+1)

2

∣

∣

∣

∣

X̃ ∼ µ̃

)

=

∫

S
x,d(k+1)/2

f(u)du
∫

S
x,d(k+1)

f(u)du
,

where the denominator is strictly positive since x belongs to the support of µ.
Concerning pk, recall that Lebesgue’s differentiation Theorem ensures that
for λ-almost all x ∈ R

d,

1

λ(Sx,δ)

∫

Sx,δ

f(u)du → f(x),

when δ tends to 0 (see for example Theorem A.10 in [8]). Notice that for µ
almost every x in the support of µ, we have f(x) > 0. Consequently, since
λ(Sx,h) = Vdh

d with Vd the volume of the unit ball of Rd, we have that for
µ-almost every x in R

d,

p(δ) :=

∫

S
x,δ/2

f(u)du
∫

S
x,δ

f(u)du
→ 1

2d
, (4.3)

when h tends to 0. Hence, let us choose δ0 > 0 such that

δ ∈ (0, δ0] ⇒
∣

∣

∣

∣

p(δ)− 1

2d

∣

∣

∣

∣

<
1

2d+2
. (4.4)

Then we may write

P

(

Mk(x) <
k

2d+1

)

≤ P

(

Mk(x) <
k

2d+1
, d(k+1) ≤ δ0

)

+ P(d(k+1) > δ0).

Denoting

q0 = P(‖X− x‖ ≤ δ0) =

∫

S
x,δ0

f(u)du,

we have q0 > 0. Following the proof of Lemma 4 in [7], denote Z a binomial
(n, q0) random variable. If k/n → 0, then for n large enough, Hoeffding’s
inequality yields

P(d(k+1) > δ0) ≤ P(Z < k + 1) ≤ P

(

Z − nq0 < −nq0
2

)

≤ e−nq20/2,

which is summable in n for all δ0 > 0. Next, observe that

P

(

Mk(x) <
k

2d+1
, d(k+1) ≤ δ0

)

=

∫ δ0

0

P

(

Mk(x) <
k

2d+1

∣

∣

∣

∣

d(k+1) = δ

)

dPd(k+1)
(δ).
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Given δ and defining B as the number of Xi’s among the k nearest neighbors
of x which belong to Sx,δ/2, then according to (4.2), the random variable B
has binomial distribution B(k, p(δ)) and (2.1) implies Mk(x) ≥ B, so that

P

(

Mk(x) <
k

2d+1

∣

∣

∣

∣

d(k+1) = δ

)

≤ P

(

B <
k

2d+1

∣

∣

∣

∣

p(δ)

)

.

In this respect, Hoeffding’s inequality and (4.3) lead to

P

(

B <
k

2d+1

∣

∣

∣

∣

p(δ)

)

≤ exp

(

−2

(

p(δ)− 1

2d+1

)2

k

)

≤ exp

(

− k

22d+3

)

,

which is summable in n provided that k/ logn → ∞.

Let us turn now to second term of (4.1). This time, we write

P

(

|mn(x)− m̃n(x)| > ε,Mk(x) ≥
k

2d+1

)

= E

[

1{Mk(x)≥
k

2d+1 }
P ( |mn(x)− m̃n(x)| > ε|X1, . . . ,Xn)

]

= E

[

1{Mk(x)≥
k

2d+1 }
P

(∣

∣

∣

∣

∣

n
∑

i=1

Wi(Yi −m(Xi))

∣

∣

∣

∣

∣

> ε

∣

∣

∣

∣

∣

X1, . . . ,Xn

)]

.

Given X1, . . . ,Xn, the random variables Y1−m(X1), . . . , Yn−m(Xn) are in-
dependent, centered, and bounded by 2L. Moreover, the weights W1, . . . ,Wn

are deterministic and, since Mk(x) ≥ k/2d+1, bounded by 2d+1/k. Conse-
quently, Lemma 6 in [7] leads to

P

(

|mn(x)− m̃n(x)| > ε,Mk(x) ≥
k

2d+1

)

≤ 2 exp

(

− kε2

2d+3(2L2 + Lε)

)

,

which is summable in n for all ε > 0, provided that k/ log n → ∞.

The last term of (4.1) is easier. First we notice that, since m is assumed
continuous at point x, there exists δ1 = δ1(ε) such that

‖x′ − x‖ ≤ δ1 ⇒ |m(x′)−m(x)| ≤ ε.
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The following inequalities are then straightforward

P

(

|m̃n(x)−m(x)| > ε,Mk(x) ≥
k

2d+1

)

= P

(∣

∣

∣

∣

∣

n
∑

i=1

Wi(m(Xi)−m(x))

∣

∣

∣

∣

∣

> ε,Mk(x) ≥
k

2d+1

)

≤ P

(

max
1≤i≤k

∣

∣m(X(i))−m(x)
∣

∣ > ε

)

≤ P
(∥

∥X(k) − x
∥

∥ > δ1
)

,

and the same reasoning as before yields

P

(

|m̃n(x)−m(x)| > ε,Mk(x) ≥
k

2d+1

)

≤ e−nq21/2,

where

q1 = q1(ε) = P(‖X− x‖ ≤ δ1) =

∫

S
x,δ1

f(u)du.

Putting all things together, we have proved that for any ε > 0, if k/n → 0,
then for n large enough we have

P (|mn(x)−m(x)| > 2ε)

≤ 2 exp

( −kε2

2d+3(2L2 + Lε)

)

+ exp

( −k

22d+3

)

+ exp

(−nq20
2

)

+ exp

(−nq21
2

)

which is summable in n for all ε > 0, provided that k/ logn → ∞. Since this
is true for µ almost every x, the strong consistency is established.

4.2 Proof of Theorem 3.1

As previously, setting

m̃n(x) =
n
∑

i=1

Wi m(Xi),

the proof of Theorem 3.1 will rely on the variance/bias decomposition

E [mn(x)−m(x)]2 = E [mn(x)− m̃n(x)]
2 + E [m̃n(x)−m(x)]2 . (4.5)
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The first term is easily bounded by noting that, for all x in R
d,

E [mn(x)− m̃n(x)]
2 = E

[

n
∑

i=1

Wi (Yi −m(Xi))

]2

= E

[

n
∑

i=1

W 2
i (Yi −m(Xi))

2

]

= E

[

n
∑

i=1

W 2
i E
[

(Yi −m(Xi))
2
∣

∣Xi

]

]

= E

[

n
∑

i=1

W 2
i σ

2 (Xi)

]

≤ σ2
E

[

n
∑

i=1

W 2
i

]

.

With the convention that 0/0=0, notice that by definition of the weights Wi,

E

[

n
∑

i=1

W 2
i

]

= E

[

1

Mk(X)
1Mk(X)6=0

]

.

As in the proof of Theorem 2.1, given d(k+1), denote

pk = P

(

‖X̃− x‖ <
d(k+1)

2

∣

∣

∣

∣

X̃ ∼ µ̃

)

=
µ
(

Sx,d(k+1)/2

)

µ
(

Sx,d(k+1)

) ,

and define B as the number of Xi’s among the k nearest neighbors of x which
belong to Sx,d(k+1)/2. Then, given pk, the random variable B has binomial
distribution B(k, pk), and (2.1) implies

Mk(x) ≥ B. (4.6)

In particular,
1

Mk(x)
1Mk(X)6=0 ≤

2

1 +Mk(x)
≤ 2

1 +B
,

so that

E

[

n
∑

i=1

W 2
i

]

≤ E

[

E

[

2

1 +B

∣

∣

∣

∣

pk

]]

= 2E

[

1− (1− pk)
k

(k + 1)pk

]

.
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Since pk ≥ p, we are led to

E [mn(x)− m̃n(x)]
2 ≤ 2σ2

kp
,

and integrating with respect to the distribution of X yields

E [mn(X)− m̃n(X)]2 ≤ 2σ2

kp
.

Concerning the bias term in (4.5), again fix x in R
d, denote by Lm an upper-

bound of the continuous function m on the compact S(µ), and write

E [m̃n(x)−m(x)]2 ≤ E
[

(m̃n(x)−m(x))21{Mk(x)>0}

]

+ L2
m P(Mk(x) = 0).

The second term is bounded thanks to (4.6),

P(Mk(x) = 0|pk) ≤ P(B = 0|pk) = (1− pk)
k,

so that
P(Mk(x) = 0) ≤ E

[

(1− pk)
k
]

,

and since pk ≥ p,

P(Mk(x) = 0) ≤ E
[

(1− pk)
k
]

≤ (1− p)k.

For the first term, with the convention 0/0 = 0, one has

E
[

(m̃n(x)−m(x))21{Mk(x)>0}

]

= E









1

Mk(x)

∑

i:Xi∈Mk(x)

(m(Xi)−m(x))





2

1{Mk(x)>0}





≤ C2
E









1

Mk(x)

∑

i:Xi∈Mk(x)

‖Xi − x‖





2

1{Mk(x)>0}



 .

Next we apply Jensen’s inequality to get

E
[

(m̃n(x)−m(x))21{Mk(x)>0}

]

≤ C2
E





1{Mk(x)>0}

Mk(x)

∑

i:Xi∈Mk(x)

‖Xi − x‖2


 .

Since any mutual nearest neighbor of x belongs to its k nearest neighbors,
we deduce

E
[

(m̃n(x)−m(x))21{Mk(x)>0}

]

≤ C2
E

[

∥

∥X(k,n) − x
∥

∥

2
]

.
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Therefore, by integrating with respect to the distribution of X, we obtain
the following upper-bound for the bias term

E [m̃n(X)−m(X)]2 ≤ C2
E
[

‖X(k,n) −X‖2
]

+ L2
m(1− p)k.

Next, let us denote

ρ = inf
{

r > 0 : ∃ x0 ∈ R
d such that S(µ) ⊂ Sx0,r

}

,

and notice that 2ρ is an upper-bound of the diameter of S(µ). Then we are
in a position to apply Proposition 2.3 in [3], that is for d = 1,

E
[

‖X(k,n) −X‖2
]

≤ 16ρ2k

n
,

and for d ≥ 3,

E
[

‖X(k,n) −X‖2
]

≤ 8ρ2⌊n/k⌋− 2
d

1− 2/d
.

It turns out that, for d = 2, the bound given in [3] is not optimal, since it
leads to

E
[

‖X(k,n) −X‖2
]

≤ 8ρ2k

n

(

1 + log
n

k

)

,

whereas Theorem 3.2 in Liitiäinen et al. [20] allows to get rid of the loga-
rithmic term. Namely, the application of their result in our context leads
to

E
[

‖X(k,n) −X‖2
]

≤ 32ρ2k

n
.

This terminates the proof of Theorem 3.1.

Acknowledgments. Arnaud Guyader wish to thank Hervé Jégou to have
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