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Abstract In this paper, the problem of identifying a hidden Markov model (HMM) with
general state space, e.g. a partially observed diffusion process, is considered. A particle
implementation of the recursive maximum likelihood estimator for a parameter in the
transition kernel of the Markov chain is presented. The key assumption is that the derivative
of the transition kernel w.r.t. the parameter has a probabilistic interpretation, suitable for
Monte Carlo simulation. Examples are given to show that this assumption is satisfied in quite
general situations. As a result, the linear tangent filter, i.e. the derivative of the filter w.r.t.
the parameter, is absolutely continuous w.r.t. the filter and the idea is to jointly approximate
the (prediction) filter and its derivative with the empirical probability distribution and with
a weighted empirical distribution associated with the same and unique particle system.
Application to the identification of a stochastic volatility model is presented.

Keywords: hidden Markov model, stochastic volatility model, nonlinear filter, linear tangent
filter, particle filter, recursive MLE.

1. HIDDEN MARKOV MODEL

The state sequence
�����	��

�����

is a Markov chain
taking values in the space � , with transition kernel����� ��� �����

, i.e.� � �!�#"%$'&(� � �%) ���+* �-, * ����� ��� � � �	.
The kernel

���/� ��� �����
could depend on a parameter,

that should be either estimated, or monitored (i.e.
changes w.r.t. a nominal value should be detected),
however the dependence w.r.t. the parameter is not
written explicitly, so as to avoid intricated notations.
The following assumption is made

It is easy to simulate a r.v.
�

with probability
distribution

���/� ��� �����
, even though the analytical

expression of the kernel
���/� ��� �����

is not known, or

0
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is so complicated that it is pratically impossible to
compute such integrals as�21%����� *4365 ����� ��� � � �71%��� � � �
or �98:� � � � � * 3 5 8:� � ���-�!�/� ��� � � �:.
This is the case for instance if the Markov chain�;�!�<��
=�>���

is obtained by sampling a diffusion pro-
cess

��� �? ��@A�����
at discrete time instants

�;@��<��
>����
, i.e. if

� � *
� �?�B , with�C� �? *ED � � �? � �C@GFIH � � �? � �KJ ? � (1)

where
�LJ ? ��@>�M�-�

is a Brownian motion. In this
case, to simulate a r.v. with probability distribution���/� ��� � � �

simply reduces to simulate (with an appro-
priate numerical discretisation scheme) the solution at
time

@N�#"%$
of the stochastic differential equation (1)

starting from the initial condition
� �?�B * �

at time@ �
.



The state sequence
��� � �7
 � ���

is not observed,
but instead an observation sequence

� � � �7
 � �-�
is

available, which has the following property : given
the hidden states

���!�<��
 � ���
, the observations� � �<��
 � �-�

are mutually independent, and the con-
ditional probability distribution of

� �
depends only on

the hidden state
�!�

at the same time instant, and by
definition� � � � & ��� ) �!�+* �7, *�� ��� ��� ���G� �	� � �
and 
 � �/��� *�� �/� � � � �:.
Notice that when

�
varies, all the conditional prob-

ability distributions
�<� � � & �	� ) �!� * �-,

are
assumed absolutely continuous w.r.t. a nonnegative
measure

�%� ��� �
which does not depend on

�
(with den-

sities
� �/� ��� �

which do depend on
�

). This memoryless
channel assumption is satisfied for instance in the case
where the hidden state is observed in an additive white
noise sequence, not necessarily Gaussian, i.e. in the
case where the observation

� �
is related to the hidden

state
�!�

by the relation� �+*�
 � �!� � F���� �
where

�����<��
>� ���
is a white noise sequence (i.e. a

sequence of mutually independent r.v.’s) with proba-
bility distribution � ����� � � , independent of

��� � ��
 ����
. In this case� � � � &(��� ) �!�+* �7, * � � ����
 �/����� ���!�

and 
 � ����� * � � � � ��
 �/� �N�<.
The memoryless channel assumption is also satisfied
in the case where the covariance of the observation
noise depends on the hiden state, i.e. in the case where� �+*�� � �!� � ���+�
where

����� ��
 � �-�
is a white noise sequence

with probability distribution � ����� � � , independent of�;� � ��
I� ���
. In this case, provided the matrix

� �����
is invertible for any

� &����
, it holds� � � � & ��� ) � � * �7, * � � � � ����� , � $ � �!#"%$ � �/� � �����

and 
 � ����� * � � � � �/��� , � $ � � �!&"'$ � �/� � .

2. PARTICLE APPROXIMATION OF THE FILTER

Given observations, the objective is to estimate the
hidden states, and to this effect the probability distri-
butions 8 � � � ��� * �<� �!� &(� � ) �)( �'*+*'* � � � , �
and 8G��, � � $ � � � � * �<� � � &(� � ) � ( �'*+*'* � � � � $ , �

are introduced. The evolution of the sequence
� 8 � �7
=����

taking values in the space of probability distribu-
tions on � , is very easily described by the following
steps

8 � � $ prediction�-�#�#�#���#����. 8G��, � � $ * �98 � � $
correction�-�#�#�#���#�#�/. 8 �+* 
 �0* 8G�1, � � $ �

where8G��, � � $ � � � � � * �98 � � $ � � � � � * 365 8 � � $ � � � �-���/� ��� � � � �
can happen to be difficult (if not just impossible) to
compute, and where

*
denotes the projective product,

i.e.8 � � � � � * 
 � * 8G��, � � $ � � ��� * 
 � �����68G��, � � $C� � ���2 8G��, � � $ � 
 �	3 .
In view of the key assumption that it is on the other
hand easy to simulate r.v.’s with probability distribu-
tion

����� ��� �����
, the idea is to approximate the predic-

tor
8G��, � � $ with the empirical probability distribution

associated with an 4 –sample, i.e.

8G��, � � $65 887 �1, � � $ *:94
7; <
= $8>'?

<��, � � $ .
This approximation is completely characterized by
the set

� ?
<�1, � � $ �#@ * 9 �+*'*'* � 4 � of particles, and

the algorithm is completely described by the mech-
anism which builds

� ?
<�#"%$', � �#@>* 9 �'*'*+* � 4 � from� ?

<��, � � $ ��@A* 9 �'*+*'* � 4 � . This mechanism is as fol-
lows :

(i) the correction step is applied exactly to
8 7 ��, � � $ ,

which results in

887 � * 
 � * 887 ��, � � $ * 7; <
= $


 � � ?
<��, � � $ � > ?

<��, � � $7;A = $

 � � ? A�1, � � $ �

* 7; <
= $8B

<� >'?
<��, � � $ �

i.e. particles
� ?

<�1, � � $ �#@(* 9 �'*+*'* � 4 � are now

weighted, with weights
� B

<� �#@ * 9 �+*'*'* � 4 �
which are more heavy for those particles which
are more consistent with the current observation� �

,
(ii) instead of trying to compute

�98 7 �
, the following

particle approximation

887 �#" $%, � *DC 7 � �9887 � � *E94
7; <
= $F>'?

<�#"%$', � �
is used, where the r.v.’s

� ?
<�#" $%, � �#@:* 9 �+*'*'* � 4 �

form an 4 –sample with probability distribution



�98 7 �
, which can be easily achieved in the fol-

lowing manner : independently for any
@ *

9 �+*'*+* � 4 ?
<��� 887 � � � ��� �

which easy, since the probability distribution
8 7 �

is discrete, and?
<� "%$%, � � ��� ?

<� ��� � � � �
which is easy, by assumption.

3. LINEAR TANGENT KERNEL / EXTENDED
KERNEL, ETC.

If the transition kernel
����� ��� � � �

depends on a param-
eter, then the filter

8 �
depends also on the parame-

ter, and one would like to compute the linear tangent
filter � � , i.e. the derivative of the filter

8 �
w.r.t. the

parameter. To this end, one needs first to study the
linear tangent kernel

� �/� ��� �����
, i.e. the derivative of

the transition kernel
���/� ��� �����

w.r.t. the parameter,
and the following assumption is made

Assumprion AC : The following probabilistic rep-
resentation holds for the linear tangent kernel� �/� ��� �����

� 1 ����� * 365 � �/� ��� � � �-1 �/� � �
*�� � 1 � �!� "%$ ��� �#" $ ) �!�+* �7, �

where
� � � � � � � � ��
=�>���

is a Markov chain taking
values in the product space �	��
 , such that� � � �#" $ & � � � � � � "%$ & �
� �G) � � * � � � � *�� ,

* � � � �#"%$ & � � � � � �#" $ & ��� �%) � � * �7,
*�� �/� ��� � � �����;� �	.

The following assumption, which extends the similar
assumption introduced in Section 1, is made

It is easy to simulate a r.v.
� � � �:�

with probability
distribution

� �/� ��� ��� ����� � �
, even though the analyt-

ical expression of the kernel
� �/� ��� ��� ����� ���

is not
known, or is so complicated that it is pratically
impossible to compute such integrals as

� 1 �/� � * 3 5
���

� � 1%��� � � � �/� ��� � � ����� � � �
or

� 8:� � � � � * 3�5
���
8:� � � � � � � �/� ��� � � ����� � �	.

Example 3.1. Let the Markov chain
��� � ��
 � ���

taking values in � *�� �
, be defined by�!�#" $ *�� � �!� � F�� � �!� � J9� �

where only the function
�

depends on the parameter,
and where

� J � ��
=�>�-�
is a sequence of independent

r.v.’s taking values in
���

with probability distribution� � � � � � . In the simple case where
� ����� *��

for any� & � �
, the transition kernel

����� ��� ���/�
is given by����� ��� � � � * � �/� � ��� ������� � � � �

and one can show directly that

� �/� ��� � � � * � � � �/� � ��� �/� �N��� � �/� � � � �
* � � �

�
�/� ����� �/� �N��� � �/� � ���/� ��� � � � �

where
� �

denotes the derivative of the function
�

w.r.t.
the parameter. It follows that

� 1 �/��� * 3 5 � ��� ��� � � �-1 ��� � �
* 3 5 1 �/� � � � � �

�
��� �)��� �����N��� � ����� ����� ��� � � � �

i.e. Assumption AC is satisfied, with

� � "%$ * � � �
�
� J9� � � � � �!� �

This result generalizes to the case where for any
� &� �

the matrix
� �/���

has full rank, and the vector
� � �����

belongs to the range of
� �����

.

Notice that in the above example, the r.v.
� � "%$

de-
pends only on

� ���K��J9� �
, in which case it does not

seem necessary to simulate
� �#" $

in addition to
J9�

.
Taking into account that the matrix

� � ��� �
has full

rank, it is even possible to express
J �

in terms of� �!�6�N�!�#" $ �
, and finally the r.v.

� � "%$ *�� � �����N�!�#"%$ �
depends only on

� � � �N� �#" $ �
. This apparently very

particular situation is actually very general, as the fol-
lowing result shows.

Lemma 3.2. Under Assumption AC
� ��� ��� � � � *�� �/� � � � � ����� ��� � � � �

with
� ��� � � � � *!� � � � "%$ ) � � * � ��� �#"%$ * � � , �

for any
� � ��� & � .

However, and as the following two examples show,
there exist situations where (i) the existence of the
function

�
does not imply that an easy–to–compute ex-

plicit expression exists, whereas in opposition (ii) the
joint simulation of

� ���#"%$ � � �#"%$ �
is easy.

Example 3.3. Let the Markov chain
�;� � ��
 � ���

taking values in � *����
, be defined by� �#"%$ *�� � � � � F#" � � � � � J � �

where
� J9� ��
�� ���

is a sequence of independent
r.v.’s taking values in

� �
with probability distribution� � � � � � . The transition kernel

���/� ��� �����
satisfies



�21 ����� *I3
���

1 � � �/� � F#" � ����� � � � � � � � �
*I3

���

1 � � �/� � F�� ������� � � � � " � � �" � �
for any test function

1
defined on � . Differentiating

w.r.t. the parameter
"

yields

� 1%����� * 3
���

1 � � ����� F�� �/� ��� �
� � � � � � " � �"�� � �" � � � � � " � � � �" � "%$ ,

*I3
���

1 � � ����� F " � �/� � � �
9" � � � �� � � � � � � , � � � � � � �

i.e. Assumption AC is satisfied, with

� �#"%$ * 9" � � � �� � J � � J � � � , �
and

� �#" $ * 9" � ) J � ) � � � � �
in the special case where

J �
is a zero mean Gaussian

r.v. with identity covariance matrix. This result holds
without any assumption on the matrix

� � � � �
which

in any case does not appear in the expression of� �#"%$
, and unless the matrix

� � � � �
has full rank, it

is not possible in general to express
J �

in terms of� �!�6���!�#"%$ �
.

Example 3.4. Let the Markov chain
�;�=�	��
 � ���

be
defined by sampling at discrete time instants

�;@��<�7
=����
a diffusion process

��� �? ��@ � �-�
, i.e.

�!�(* � �? B ,
with � � �? *ED � � �? � � @GF H � � �? � �6J ? �
where only the drift function

D
depends on the param-

eter, and where
� J ? ��@������

is a Brownian motion.
If for any

� & � �
, the matrix

H �/� �
has full rank, and

the vector
� D �/���

belongs to the range of
H �/���

, then
Assumption AC is satisfied, with

� �#"%$ * 3 ? B	��
? B � � D � � �? �6, �
H � � �? � � H � � � �? � H � � �? � , � $ �6J ? �

where
� D

denotes the derivative of the drift func-
tion

D
w.r.t. the parameter, see (Cérou et al., 2001)

or (Fournié et al., 1999) for the simpler case where for
any

� &�� �
the matrix

H �����
is invertible. It is easy

(with an appropriate numerical discretization scheme)
to jointly simulate

� ���#"%$ � � �#"%$ �
, but in opposition

there does not exist in general a simple analytical
expression for

� �/� � � � � *�� � � � " $ ) � � * � ��� �#"%$ * � � ,
*�� � 3 ?�B���
? B � � D � � �? �K, �

H � � �? � � H � � � �? � H � � �? � , � $ �6J ? )
� �? B * � ��� �? B���
 * � � , .

By definition

� 1 �/��� *E365
���
1 �/� � � � � � ��� ��� � � ���
� � � �

and �21 �/� � * 3 5
���
1 �/� � � � ��� ��� � � ���
� � � �

hence

� �/� ��� � � � *E3
�
� � � �/� ��� � � ����� � � �

and �!�/� ��� � � � * 3
�
� �/� ��� � � ����� � �	.

On the product space �!� � ��
 , define the projection

 ( � �/� � ��� � � � ��� � . �

on the (first) space � , the
projection 


� ��� � ��� � � � ��� � . ���
on the (second) space� and the projection 
 � � �/� � ��� � � � ��� �). � �

on the
auxiliary space 
 . For any probability distribution

8
on the space � , the probability distribution

8�� �
is

defined on the product space �	�(����
 by�/8�� � � � � � ��� � � ���
� � � * 8:� � � � � ��� ��� � � ���
� � �:.
It follows that

�98:� � � � � *I3 5
���
8:� � ��� � �/� ��� � � ����� � �

* �/8�� � ��� 
 � $ � � � � � �
and

� 8:� � � � � *I3 5
���
8:� � ��� ��� � ��� ��� � � ���
��� �

*I3�5
���


 � ��� � � � � � � � �/8�� � � � � � ��� � � ���
� � �
* � 
 � �/8�� � �N��� 
 � $ � � � � � �

and if the finite signed measure � is absolutely con-
tinuous w.r.t.

8
, then



� � � � � � � *I3 5
���

� � � � � � ��� ��� � � �����;� �
*I3 5

���
� �� 8 �/� �68:� � ��� � �/� ��� � � ���
��� �

*I3 5
���
� � �� 8 � 
 ( � �/� � � � � �;� �

�/8�� � � � � � ��� � � ����� � �
* ��� � �� 8 � 
 ( � �/8�� � �N��� 
 � $ � � � � � �

i.e. �98 * ��8�� � ��� 
 � $ �
and � 8 * � 
 � �/8�� � �N� � 
 � $ �
and� � � 8 *�� � � * �N� � �� 8 � 
 ( � ��8 � � �N� � 
 � $ � .
Lemma 3.5. Under Assumption AC,

� 8 � �98
for

any probability distribution
8

on � , with Radon–
Nikodym derivative (which depends on

8
)� � � 8G�� � �98G� �/� � � * ��� � ��� "%$ ) � � "%$ * � � , .

For completeness, the following elementary property
is recalled

Lemma 3.6. If the finite signed measure � is abso-
lutely continuous w.r.t. the probability distribution

8
,

then
� � � �98

, with Radon–Nikodym derivative� � � � �� � �98G� �/� � � * � � � � �� 8 � �!� � ) �!�#"%$ * � � , .
The explicit expression of the Radon–Nikodym deriva-
tives will not be used in the sequel : only the qualita-
tive properties � 8 � �98 �
and � � � 8 *�� � � � �98 � �
will be used.

By definition


 � �/8G� � * 
 � �2 8 � 
 �13 � 2 � � 
 � 32 8 � 
 ��3 
 � 82 8 � 
 �13 �
is the derivative at point

8
and in the direction � , of

the mapping
8 � � . 
 � * 8

. The following elementary
property holds

Lemma 3.7. If the finite signed measure � is abso-
lutely continuous w.r.t. the probability distribution

8
,

then 
 � �/8G� � � 
 � * 8
, with Radon–Nikodym deriva-

tive � � 
 � �/8G� � �� � 
 � * 8G� ����� * � �� 8 �/� � ��2 
 �0* 8 � � �� 8 3 .

4. PARTICLE APPROXIMATION OF SOME
FINITE SIGNED MEASURES

With the notations of the previous section, it easily
seen that the probability distribution

�98
and the finite

signed measures
� 8

and
� � can be put in the general

form
� � �/8 � � �N� � 
 � $

for some appropriate choice
of the weight function

�
, namely

��� 9 ,
��* 
 � and� * � �� 8 � 
 ( respectively. The weighted particle ap-

proximation of a finite signed measure of the general
form

� �/8 � � �
is defined by

� �/8�� � � 5 � C 7 ��8 � � �
* 94

7; <
= $ � � ?

<
( � ?

< � � < � > � ?
<
( � ?

< � � < � �
where the r.v.’s

� ?
<
( � ?

< � � < �#@�* 9 �+*'*+* � 4 � form an4 –sample with probability distribution
8 � �

, which
can be easily achieved in the following manner :
independently for any

@ * 9 �+*'*'* � 4?
<
( � 8:� � ��� �

and � ?
< � � < � � � � ?

<
( ��� � � ���
��� � �

and the corresponding particle approximation for the
marginal measure

� � � � �28G��� � 
 � $
is defined by� � ��8�� � �N��� 
 � $ 5
� � C 7 ��8�� � �N��� 
 � $

* 94
7; <
= $ � � ?

<
( � ?

< � � < � > ?
< .

In particular for the weight functions
��� 9 ,

� * 
 �
and

� * � �� 8 � 
 ( , it holds

�98 * ��8�� � � � 
 � $ 5 94
7; <
= $F> ?

< �
� 8 * � 
 � �/8�� � ����� 
 � $ 5 94

7; <
= $ �

<
>'?

< �
and� � * �N� � �� 8 � 
 ( � ��8 � � �N� � 
 � $ 5 94

7; <
= $
� �� 8 � ?

<
( � > ?

< �
respectively. For any test function

1
defined on � , it

holds

	�

�
����� = $ � ) 94

7; <
= $ 1 � ?

< � ��2 �98 � 1 3 )�� 9� 4 �

	�

�
����� = $ � ) 94

7; <
= $ �

< 1 � ?
< � ��2 � 8 � 1 3 )

� 9� 4 � 	�
��
���
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���
) � � ) � � �/� ��� � � ����� � � � $�� � �



and

	 

�
����� = $ � ) 94

7; <
= $
� �� 8 � ?

<
( � 1 � ?

< � ��2 � � � 1 3 )
� 9� 4 � 3�5 ) � �� 8 ����� ) � 8:� � � � � $ � � �

respectively.

5. JOINT PARTICLE APPROXIMATION OF THE
FILTER AND THE LINEAR TANGENT FILTER

Recall that the evolution of the sequence
� 8 � �7
��
���

taking values in the space of probability distributions
on � , is described by the following two steps8 � � $ prediction�-�#���#�#�#�)� . 8G�1, � � $ * �98 � � $

correction�-�#���#�#�#�)� . 8 �+* 
 �0* 8G��, � � $ .
If � � denotes at each time instant the linear tangent
filter, i.e. the derivative of the filter

8 �
w.r.t. the param-

eter, then the evolution of the sequence
� � � ��
 �4���

taking values in the linear tangent space to the space of
probability distributions on � , i.e. taking values in the
space of finite signed measures on � with zero total
mass, is described by the following two steps, which
are linear tangent versions of the prediction step and
correction step respectively

� � � $ linear tangent

prediction� �#���#�#�#�)�#�#� . � ��, � � $ * � � � � $ F � 8 � � $
linear tangent

correction� �#���#�#�#�)�#�#� . � � * 
 � �/8G�1, � � $;� � ��, � � $'.
Under Assumption AC, it is easily seen by induction,
and using Lemmas 3.5, 3.6 and 3.7, that at each time
instant � ��, � � $ � 8G��, � � $ and � � � 8 �

.

In view of this absolute continuity property, and of
the key assumption that it is easy to simulate r.v.’s
with probability distribution

� ��� ��� � � ���
� � �
, the idea

is to jointly approximate the predictor
8 ��, � � $ and its

derivative � ��, � � $ w.r.t. the parameter with the empir-
ical probability distribution and a weighted empirical
distribution associated with the same and unique 4 –
sample, i.e.8G��, � � $65 8 7 ��, � � $ *:94

7; <
= $ > ?

<��, � � $ �
and

� �1, � � $65 � 7��, � � $ * 94
7; <
= $ �

< �1, � � $ > ?
<��, � � $ .

With this definition � 7��, � � $ � 8 7 ��, � � $ , with Radon–
Nikodym derivative

� 7�1, � � $ �/� � * � � 7��, � � $� 8 7 �1, � � $ �/� �* 9) � 7��, � � $ ����� ) ;<
�����B�� B���

	 ��� �

< ��, � � $ �
where

� 7��, � � $ ����� * �+@+* 9 �'*+*'* � 4 � ?
<�1, � � $ * � �

,

for any
�

in the support 	�

��� 8 7 ��, � � $ of the discrete

probability distribution
8 7 ��, � � $ . Indeed8 7 ��, � � $ *:94 ;

����
������ � �B�� B���
 ) � 7��, � � $ �/� � ) > � �
and

� 7�1, � � $ *:94 ;
����
������ � �B�� B���
 � ;<

�����B�� B
��
 	 ��� �
< ��, � � $ , > � .

Notice that in most cases, the particle locations� ?
<��, � � $ ��@ * 9 �'*+*'* � 4 �

happen to be all distinct, and
the much simpler relation� 7��, � � $ � ?

<��, � � $ � * �

< �1, � � $ �
holds for any

@ * 9 �'*+*'* � 4 .

This approximation is completely characterized by the
set

� ?
<�1, � � $ � �

< ��, � � $ �&@ * 9 �'*+*'* � 4 � of particles and
weights, and the algorithm is completely described
by the mechanism which builds

� ?
<�#"%$', � � �

< �#"%$', � �&@ *
9 �'*+*'* � 4 � from

� ?
<��, � � $ � �

< �1, � � $ ��@ * 9 �'*+*'* � 4 � .
This mechanism is as follows :

(i) the correction step is applied exactly to
8 7 ��, � � $ ,

which results in

8 7 � * 
 � * 8 7 ��, � � $ * 7; <
= $


 � � ?
<��, � � $ � > ?

<��, � � $7;A = $

 � � ? A�1, � � $ �

* 7; <
= $8B

<� > ?
<��, � � $ �

as previously, and the linear tangent correction
step is applied exactly to � 7��, � � $ , which results
in

� 7� * 
 � ��887 ��, � � $ � � 7��, � � $
* � � 7��, � � $ ��2 887 � ��� 7��, � � $ 3 ,�887 � �

(ii) instead of trying to compute
�98 7 �

, the following
particle approximation

887 �#" $%, � *DC 7 � �9887 � � *E94
7; <
= $F> ?

<�#"%$', � �
is used as previously, instead of trying to com-
pute



� � 7� * ��� � 7��, � � $ 887 � � � 2 887 � ��� 7��, � � $ 3 �9887 �
* �N� � 7��, � � $ � 
 ( � ��887 � �>� �N� � 
 � $

� 2 8 7 � ��� 7��, � � $ 3 �98 7 � �
the following weighted particle approximation�-� � 7��, � � $ � 
 ( � C 7 �/8 7 � � � �7��� 
 � $

� 2 C 7 ��887 � � ��� 7��, � � $ 3 C 7 � �9887 � �
* 94

7; <
= $ � � 7��, � � $ � ?

<� �
� 94

7;A = $ � 7��, � � $ � ? A� �6, > ?
<� "%$%, � �

is used, and instead of trying to compute
� 8 7 � * � 
 � ��8 7 � � � �N��� 
 � $ �

the following weighted particle approximation

� 
 � C 7 ��8 7 � � � �N� � 
 � $ * 94
7; <
= $ �

< �#" $ > ?
<� "%$%, � �

is used, hence finally the weighted particle ap-
proximation

� 7�#"%$', � * 94
7; <
= $ � � 7��, � � $ � ?

<� � F � < �#" $
� 94

7;A = $ � 7��, � � $ � ? A� �6, > ?
<� "%$%, �

* 94
7; <
= $ �

< �#"%$', � >%?
<�#" $%, � �

where the r.v.’s
� ?

<� � ?
<�#"%$', � � � < �#" $ �#@ * 9 �+*'*+* � 4 �

form an 4 –sample with probability distribution8 7 � � �
, which can be easily achieved in the

following manner : independently for any
@ *

9 �+*'*+* � 4 ?
<��� 887 � � � ��� �

which is easy, since the probability distribution8 7 �
is discrete, and� ?

<� "%$%, � � � < �#" $ � � � � ?
<� ��� � � ���
� � � �

which is easy, by assumption.

6. PARTICLE FILTER IMPLEMENTATION OF
THE RECURSIVE MLE

In this section, the parameter is denoted by � and
dependence w.r.t. the parameter appears explicitly in
the notation for the transition kernel

��� ��� ��� ���/�
, and

for the linear tangent kernel
� � ��� ��� ��� ����� � �

. It is
well–known that in such a parametric model, the log–
likelihood function for the estimation of the parameter
� can be written as

� �� * 9
�

�;� = ( ���	� 2 8 ��1, � � $ � 
 �13	�
and the score fuction, i.e. the derivative of the log–
likelihood function w.r.t. the parameter, can be written
as

�
� �� * 9
�

�;� = (
2 � ���, � � $ � 
 ��32 8 ���, � � $ � 
 ��3 �

where the filter
� 8��� ��
4� �-�

and the linear tangent
filter

� � �� ��
=� ��� satisfy

8 �� � $ prediction�-�#�#�#���#����. 8 ���, � � $ * � � 8 �� � $
correction�-�#�#�#���#�#�/. 8 �� * 
 � * 8 ��1, � � $ �

and

� �� � $ linear tangent

prediction� ���#�#�����#�#�#� . � ���, � � $ * � � � �� � $ F � � 8 �� � $
linear tangent

correction� ���#�#�����#�#�#� . � �� * 
 � ��8 ���, � � $ � � ���, � � $ �
respectively.

Monitoring the parametric model, i.e. detecting a
small change from a nominal value, corresponding
to the normal behaviour of the system, has been ad-
dressed in (Cérou and Le Gland, 2000). Another ques-
tion is to identify the parametric model, and it is natu-
ral to consider the recursive MLE, which is defined by
the following relation

�
� � * �

� � � $<F�
-� 2��� ��, � � $ � 
 � 32��8G��, � � $ � 
 ��3 � (2)

where typically

-��� 
 � � ���

, and the averaged esti-
mator (which achieves the minimum variance of the
estimation error) is obtained by post–processing

� �+* � � � $:F 9
 � �� �0� � � � $ �:.
Here, the adaptive filter

���8 �<��
=�>�-�
and the adaptive

linear tangent filter
���� ��� ��
 � �-�

satisfy the same
equations as the filter and the linear tangent filter
respectively, in which the value of the parameter is
adapted at each time instant according to equation (2),
i.e.

�8 � � $ adaptive

prediction� ���#�#���#�#�/.��8G��, � � $ * � � � B���
 �8 � � $
correction� ���#�#���#�#�/.��8 �+* 
 �0*��8G�1, � � $ �



and

�� � � $
adaptive

linear tangent

prediction� �#�#�#�)�#�#�#��� . �� �1, � � $ * � � � B
��
 �� � � $
F � � � B
��
 �8 � � $

linear tangent

correction� �#�#�#�)�#�#�#��� . �� � * 
 � � �8G��, � � $ � �� �1, � � $ �
respectively. The particle implementation of the recur-
sive MLE is

�
� 7� * �

� 7� � $ F 
-� � 7; <
= $ �

< ��, � � $ B
<� , �

and

�
7 � * �

7 � � $ F 9
 � �� 7� � �
7 � � $ � �

and the corresponding algorithm is described in Ta-
ble 1.

The mathematical analysis of the asymptotic proper-
ties of the estimator

�
� 7� as


 . � and 4 . � is
far beyond the scope of this paper, and would rely on
joint stability properties of the filter and the linear tan-
gent filter, which is a very difficult question. Even the
asymptotic properties of the estimator

�
� � as


 . �
are difficult to prove, unless some mixing assumption
holds for the transition kernels

� � ��� ��� � � �
and the

linear tangent kernels
� � �/� ��� ���/�

, which practically
implies that the state–space � should be compact, see
e.g. (Douc and Matias, 2001) where only the non–
recursive MLE is studied.

7. APPLICATION TO A STOCHASTIC
VOLATILITY MODEL

The following stochastic volatility model, with mean–
reverting hidden diffusion

� � ? *�� � D ��� ? � �C@ F#"8� ? �6J �? � � (�� �
� � �? *�� � ? �	� �? �

where
�LJ �? �-@ �>�-� and

�
� �? �-@ � �-� are independent
Brownian motions, has been considered by (Genon-
Catalot et al., 2000), yes

and by (Sørensen, 2000). An alternate discrete–time
observation model is considered in the present paper,
in which

� � *�� ?�B and� �+* � �!��� � �
where

��� � �7
 �M���
is a Gaussian white noise se-

quence independent of
�LJ ? �-@ � �-� , hence
 � �/� � * 9� � "�
 � ��� � ��

� � �'� � � � .

It follows from Example 3.4 and from (Fournié et
al., 1999) that Assumption AC is satisfied, with

� �#"%$ * � ����#"%$ � ����#"%$ � ����#"%$ �
* � 3 ?�B���
? B D ��� ?

"8� ? �6J �? � 3 ?�B	��
? B �
"8� ? �6J �? �

9" � )�� J ��
� � � ) � � 9 � � � J �� � �

where � � *
@ � "%$ �9@ �
and � J �� *4J �?�B	��
 � J �?�B .

Instead of the sampled version
� � * � ? B of the

continuous–time hidden diffusion, an approximate
Markov chain

�;� � ��
 � ���
could be used, based on

a Euler (or an alternate splitting–up) scheme, i.e.�!� * � 9 ��� � � � �!� � $:F�� D � � F#" ��� � $ J9�+�
where � � * @ �#"%$ � @ �

and where
� J � ��

�����

is
a Gaussian white noise sequence with variance � � . In
this case, it follows from Examples 3.1 and 3.3 that
Assumption AC is satisfied again, with

� �#"%$ * � � ��#"%$ � � ��#"%$ � � ��#"%$ �
* � D � �!�

" � � J � � �
" � � J9� �69" � ) J9� ) � � 9 �-� .

Numerical results will be presented in the final version
of the paper.
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initialization : ����� , choose
� ���
� 0 , and independently for any	 ��

����������� , simulate

�
���� � 0���� ���! 
"$# and set % ���� � 0 ���&�
selection : for any

	 �'

���������(� , compute

) �*,+.- * � �
�* � * � 0 # � set � �* � 

�

�;
�0/ 0 ) �*21 � �* � * � 0 �

and for any point " in the support of the particle system, compute

3 �* � * � 0 �0"$# � 
4 5 �* � * � 0 �!"$# 4 ;
�7698 �B�� B���
;:=<�> % � * � * � 0 �

where
5 �* � * � 0 �0"$# ��? 	 �@

�����������BA � �* � * � 0 � "DC ,

update : with E *GF � �IHKJ�L , set

� � �* �
� � �* � 0NM E *PO �;

�0/ 0 % � * � * � 0 ) �*NQ �
and � �* �

� �* � 0 M 

�
� � � �*'R �

�* � 0 # �
mutation : independently for any

	 �'

����������� , simulate

� �* �S� �* �! 
"$# �
and

� � �*�T 0�� * ��U � *�T 0 # �WV � X �B � � �* �  
"ZY �  \[�Y!# �
and set

% � *�T 0�� * � 3 �* � * � 0 � �
�* # R^] * M U � *�T 0 �
with normalization

] * � 

�

�;
_ / 0 3 �* � * � 0 � � _ * # �

iteration : �a` R � M 
 , and return to the selection step.

Table 1. Particle implementation of the re-
cursive MLE.


