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Abstract

Subspace identification algorithms currently emerge as an ef-
ficient tool. In this paper, we investigate their use for the in-
put/output identification of the eigenstructure of a linear Multi-
ple Inputs Multiple Outputs (MIMO) system. This situation can
be encountered in structural analysis in vibration mechanics,
a case which motivated our study. We focus on the follow-
ing situation : several successive data sets are recorded, with
sensors in the structure, and with known input excitations. The
interest of this setup is to emulate a situation in which only the
outputs of the sensor are available. We first propose a com-
mon method for dealing with both situations and then show on
real experiments that, if available, input excitations must be
taken into account.

1 INTRODUCTION, PRACTICAL MOTIVATIONS

Subspace identification algorithms currently emerge as an ef-
ficient tool for many applications [1−3]. Our main motivation in
this paper is to compare input/output with output-only struc-
tural identification in vibration mechanics. This problem con-
sists in identifying the modes and mode shapes of a structure
subject to ambient, non measured, vibration excitation on one
side and to known input excitations on the other side.

When the vibration and the input excitations are both unknown
and not measured, which is most often the case in real world
applications 3, one can apply output-only identification meth-
ods [9]. As shown in section 2, subspace methods allow to
identify the eigenstructure of a linear MIMO system, which
turns out to be equivalent to modes and mode shapes.

We wish now to analyze how subspace methods behave when
the following classical setup is used : The structure is sub-
ject to ambient, non measured, vibrations on one side and to
known input excitations on the other side.

1This work has been carried out within the framework of Eureka
project FLITE, coordinated by Sopemea, Paris.

2All author e-mails : firstname.name@irisa.fr
3Examples are : offshore structures subject to swell, bridges subject

to wind and traffic, etc.

This setup is frequently referred to as input/output in vibration
mechanics [6], and we keep this denomination. Of course,
one can still directly apply output-only methods, considering
that input excitations are a part of the ambient, non measured,
vibrations. But the proper way to deal with this case is to take
into account the knowledge of the input excitations.

We show in this paper that using the input data can be done
with minor modification of the output-only method : since the
input excitations are known and statistically independent from
the vibrations, the idea is to remove there influence by project-
ing first the output measurements on the orthogonal space of
the input excitations. Then, One can apply output-only meth-
ods to these “new measurements”. Unsurprisingly, experi-
ments show that the input/output method performs better than
the output-only one. So, when available, input sensors data
should be used.

The relevance of the covariance driven subspace identification
method in both cases , and its implementation, are the subject
of this paper. In section 2 we briefly review the method for
output-only identification. The input/output method is stated
in section 3. Practical implementation issues are discussed
in section 4. In section 5 we compare both methods on real
data. Discussion and conclusions follow.

2 SUBSPACE METHODS : QUICK VISIT

General framework As vibration analysis is our motivation,
we use structural identification in vibration analysis as our con-
text for discussing modeling issues.

We assume a continuous time linear system of the form :
�
MZ̈(s) +CŻ(s) +KZ(s) = ν(s)
Y (s) = LZ(s)

Eν(s)νT (s′) = Qνδ(s′ − s) (1)

where (M,C,K) are the mass, damping, and stiffness matri-
ces, respectively, Z is the state vector (positions or accelera-
tions), Y is the measurement vector (matrix L indicates which
components of the state are actually measured), and ν is the



vibration excitation 4. As reflected by (1), we assume that the
ambient excitation is white noise, see [8] for a justification of
(or an excuse for) this. The case of non stationary input exci-
tation will be discussed subsequently. Structural identification
(e.g., eigenstructure identification) consists in identifying the
pairs (µ, ψµ), solutions of

(Mµ2 + Cµ +K)Ψµ = 0 , ψµ = LΨµ (2)

Now, sampling (1,2) at period δ yields in the usual way the
following equivalent discrete time state space form :

�
Xk+1 = FXk + Vk

Yk = HXk

eδµ = λ , ψµ = ϕλ
∆
= HΦλ (3)

where the pairs (λ,Φλ) are eigenvalues and eigenvectors of
state transition matrix F . Note that the collection of pairs
(λ, ϕλ) form a canonical parametrization of the pole part of
system (3). As said before, we assume noise (Vk) to be sta-

tionary, that its constant covariance matrix is Q ∆
= E(VkV

T
k ),

where T is the transposition operator.

Recall that from

Ri
∆
= E � Yk Y

T
k−i �

subspace identification of eigenstructure (λ, ϕλ) consists of 5:

H
∆
=

�����������

R0 R1 R2 . . . Rp

R1 R2 R3 . . .
...

R2 R3 R4 . . .
...

...
...

. . . . . .
...

Rp

...
. . . . . .

...

������������
factorize H = O C where O and C are the observability and
controllability matrices

O
∆
=

�������
H
HF
HF 2

...
HF p

� ������
C

∆
= 	 G FG F 2G . . . F pG 


G
∆
= E � XkY

T
k �

finally : O 7−→ (H,F ) 7−→ (λ, ϕλ) (4)

4To simplify the notations, we do not consider additive input in
the observation here. Minor modifications are needed for subspace
algorithms to take this or measurement noise into account (see Section
4), see also [2] or [7].

5We give here a form of subspace algorithm based on output co-
variance matrices, slightly different from the data driven subspace [2]

Actual implementation The actual implementation is
sketched now. We consider the vectors containing the future
and past received data, respectively :

Y
+
k

∆
=

�����
Yk

Yk+1

...
Yk+p

������ , Y
−
k

∆
=

�����
Yk

Yk−1

...
Yk−p

������ (5)

Thanks to the stationarity assumption, Hankel matrix writes :

(∀k) H = E � Y+
k Y

−T

k � (6)

We are now given a N -size data sample Y1, . . . , YN . From
(6), we deduce that the corresponding empirical block-Hankel
matrix also writes :�

H =
1

N

N�
k=1

Y
+
k Y

−T

k (7)

Then compute the Singular Value Decomposition SVD(
�
H)

and truncate the SVD to the desired model order, this yields
an estimate

�
O for the observability matrix O. From

�
O, get

(
�
H,

�
F ), and then (

�
λ,

�
ϕλ).

Remarks

1. So far the model has been introduced with stationary am-
bient excitation (Vk). In this case, the consistency of the
estimators is a well known result, i.e. the limits of (

�
λ,

�
ϕλ)

are the true parameters (λ, ϕλ) when the size N of the
data samples tends to infinity.

2. However, for application to vibration mechanics, it is of in-
terest to consider situations in which the ambient excita-
tion, while still being modeled as white noise, is assumed
to be non-stationary, meaning that the covariance matrix
Qk = E(VkV

T
k ) depends on time index k. Thus, state

and observation processes are no longer stationary, so
that the matrix Gk = E(XkY

T
k ) is time varying, and the

same applies for the controllability matrix Ck. Anyway, the
consistency of the subspace method described above in
such a case has been proved in [9], using an appropriate
form of uniform controllability assumption for matrix Ck.

3. If we suppose noisy measurements, the method remains
valid under minor modification. The model becomes�

Xk+1 = FXk + Vk

Yk = HXk +Wk
(8)

where (Wk) is an unmeasured Gaussian white noise with
zero mean. It is essential to note that, with this assump-
tion, the measurement noise does not affect the eigen-
structure of (8). In order to get rid of this noise, one just



has to shift the Hankel matrix calculus, which becomes :

H
∆
=

�����������

R1 R2 . . . Rp

R2 R3 . . .
...

R3 R4 . . .
...

...
... . . .

...

Rp

... . . .
...

������������
Of course, one can generalize this trick to the case where
(Wk) is anMA(ι) Moving Average Gaussian white noise
sequence with zero mean by shifting ι times the Hankel
matrix.

3 SUBSPACE IDENTIFICATION FOR INPUT/OUTPUT
TIME DATA

Presentation of the model We consider now a state space
model with controlled input excitations Uk (what we call input
data) of the state variables Xk :

�
Xk+1 = FXk +DUk + Vk

Yk = HXk
(9)

In this case, we have to introduce the vectors containing the
past input:

U
−
k

∆
=

�����
Uk

Uk−1

...
Uk−m

������
Y,U− for the following collections of data

U
− = (U−

1 ,U
−
2 , · · · ,U

−
N )

Y = (Y1, Y2, · · · , YN )
(10)

where N is the number of samples used.

Recall on projection methods To remove the influence of
the input in the output data formulation, we project the output
data on the orthogonal space of the past input data, as fol-
lows : for two random vectors X and Y with zero means and
finite variances, we define as usual the orthogonal projection
of X on sp(Y )

X/Y
∆
= E(XY T )E(Y Y T )†Y

X/Y ort ∆
= X −X/Y

(11)

where A† is the Moore-Penrose pseudo-inverse of A.

In our case, we want to know the projection of each output
Yk on the past inputs U1, ..., Uk. Thanks to the property of

contraction of F , one just has to project on the m last in-
puts Uk−m, ..., Uk, that means on U

−
k , for m large enough.

For this, we need the covariance matrices E(Y −
k U

−T

k ) and

E(U−
k U

−T

k ), which are empirically
�
C−

o
∆
= 1

N

� N
k=1 Yk U

−T

k�
R−− ∆

= 1
N

� N
k=1 U

−
k U

−T

k

(12)

The input/output identification method Now, the orthogo-
nalized outputs Yk/U

ort are given by

Yk/U
ort = Yk −

�
C−

o

�
R−−

†
U

−
k

and with these ‘new measures”, we can apply the classical
output-only identification method as described in section 2 :
from the future and past new data (Y/Uort)+k and (Y /

U
ort)−k ,

with for example

(Y/Uort)+k
∆
=

��� Yk/U
ort

...
Yk+p/U

ort

���� (13)

we can write the new empirical Hankel matrix :�
Hnew =

1

N

N�
k=1

(Y/Uort)+k (Y/Uort)−
T

k

So, compare to the output-only case, the modification is mi-
nor. Once this new Hankel matrix is computed, the rest of the
method is exactly the same as in the output-only case.

Remarks

1. With this method of projection, we need the inputs (Uk)

to be stationary, so that the covariance
�
R−− can be em-

pirically estimated. The inputs (Uk) are also required to
be statistically independent from the ambient excitation
(Vk) (which is always the case in practice).

2. Since we have reduced the input/output problem to the
output-only framework, the assumptions on the Vk are
the same as before : it is a stationary white noise se-
quence or a non stationary white noise sequence with
an appropriate assumption of controllability. The consis-
tency of the estimators (

�
H,

�
F ) is then assured.

4 IMPLEMENTATION ISSUES

Vectorized form of the algorithm Let’s keep the notations
for p, m, Y, Y+

k , Y−
k , U , U−

k as above and suppose m > p.



Moreover, we introduce the vectors containing the future input
data

U
+
k

∆
=

��� Uk

...
Uk+m

� �� ,

their collections U
+ = (U+

1 , ...,U
+
N ), and in the same way the

past and future collections of outputs Y
− and Y

+.

With m > p and considering the vectors Y
+
k , U+

k and U
−
k , an

almost equivalent way to remove the influence of the inputs
from the outputs is to project the vector Y

+
k orthogonally on

U
+
k and U

−
k , since for each k

(Y/Uort)+k ≈ (Y/(

�
U

+
k

U
−
k � ort

)+k

We have now to introduce the empirical cross-covariance ma-
trices

�
C++ ∆

=
1

N

N�
k=1

Y
+
k U

+T

k

�
C+− ∆

=
1

N

N�
k=1

Y
+
k U

−T

k

�
C−+ ∆

=
1

N

N�
k=1

Y
−
k U

+T

k

�
C−− ∆

=
1

N

N�
k=1

Y
−
k U

−T

k ,

and the empirical auto-covariance matrices

�
R++ ∆

=
1

N

N�
k=1

U
+
k U

+T

k

�
R+− ∆

=
1

N

N�
k=1

U
+
k U

−T

k

�
R−− ∆

=
1

N

N�
k=1

U
−
k U

−T

k

�
R−+ ∆

= (
�
R+−)T

and, compared to the former empirical Hankel matrix�
H =

1

N

N�
k=1

Y
+
k Y

−T

k =
1

N
Y

+
Y

−T

the new empirical Hankel matrix�
Hnew

∆
=

1

N
(Y+/

�
U+

U
− � ort

)Y−T

is simply�
Hnew =

�
H− (

�
C++

�
C+−) � �

R++
�
R+−

�
R−+

�
R−− � † � (

�
C−+)T

(
�
C−−)T �

That means : once the collections of data Y
+, Y−, U+ and

U− are constructed, all the algorithm reduces to the multipli-
cation and inversion of some matrices with size comparable
to the previous Hankel matrix. The overhead cost is thus very
reasonable.

Remark By classical properties of projection, one has also�
Hnew

∆
= 1

N
Y

+(Y−/

�
U

+

U− � ort

)T�
Hnew

∆
= 1

N
(Y+/

�
U

+

U
− � ort

)(Y−/

�
U

+

U
− � ort

)T

Weighting coefficients Let’s come back to the classical
output-only identification method of section 2. The princi-
ple is to compute the Singular Value Decomposition SVD(

�
H)

and truncate the SVD to the desired model order, so that�
H ≈ U∆V T . In the Balanced Realization (BR) algorithm, this
yields an estimate

�
O = U∆1/2 for the observability matrix O

and
�
C = ∆1/2V T for the controllability matrix C. However,

notice that if we compute the SVD of the matrix�
HW = W1

�
HW T

2

with W1 and W2 two known invertible matrices, so that
�
HW ≈

UW ∆WV T
W , the result is the same as previously with

�
O =

W−1
1 UW ∆

1/2
W and

�
C = ∆

1/2
W V(W

T
2 )−1. A classical approach is

to normalize the data such that all singular values lie between
0 and 1 and thus represents the angle between the subspaces
of the future and the past data. It also help to avoid numerical
problems by equilibrating the effects of the main modes and
the ones with the least energy. A usual way to proceed is to
take W1 and W2 as the inverses of empirical covariances of
the future and past output measures, precisely

W1 = ( 1
N

· Y+Y+T )−1/2 and W2 = ( 1
N

· Y−Y−T )−1/2

so that the norm of the weighted empirical Hankel matrix
�
HW

is equal to 1.

In the framework of stochastic realization and identification,
this approach is known as the canonical variate analysis
(CVA) and is particularly useful when the order of the pro-
cess (Xk) is unknown. Adapting this idea to the input-output
identification method, where�

Hnew
∆
=

1

N
(Y+/

�
U

+

U
− � ort

)Y−T ,

yields to the weighting matrices W1 and W2

W1 = (
1

N
(Y+/

�
U

+

U
− � ort

)(Y+/

�
U

+

U
− � ort

)T )−1/2

W2 = (
1

N
Y

−
Y

−T )−1/2



Measurement noise If we suppose noisy measurements,
for example

�
Xk+1 = FXk +DUk + Vk

Yk = HXk +Wk

one just has to apply the same method as before to the new
Hankel matrix

�
Hnew (i.e. shifting) in order to remove the influ-

ence of the noise.

5 EXPERIMENTATIONS

The data available in the EUREKA project FLITE are mea-
sured for different aircrafts in various in-flight situations and
also given by numerical simulation of new aircrafts.

We use here the data supplied by some partners of the FLITE
project, the companies Avions Marcel Dassault.

We do the analysis on data corresponding to in-flight mea-
surements; we have successive data sets and so we can ex-
amine the evolution of the modal characteristics with the mod-
ifications of the aircraft, for example the decreasing of the fuel
in the tanks. We only show one experiment for both IO (in-
put/output) and OO (output-only) methods (with BR weight-
ings). The experiment used 12 output sensors and 1 input
sensor. Modal analysis was performed using the Scilab Modal
toolbox. See [10, 11] for further explanation and experiments on
the use and capabilities of this toolbox.

One clearly sees that the stabilization diagrams (frequency /
model order) of the IO method (Fig. 1 and Fig. 3) are cleaner,
present more stable frequency lines, and even detect some
frequencies, which look like spurious modes in the OO method
diagram (Fig. 2 and Fig. 4).

Fig. 5 and Fig. 6 show that the damping estimates (damping/
model order) are much more stable too in some cases (and at
least as good in all cases) for the IO method. Same comments
apply for the mode shape estimates (Fig. 7 and Fig. 8) (we dis-
play the cross correlation (cosine) of the selected mode shape
w.r.t. the other mode shapes in the same frequency line).

6 DISCUSSION

We have presented the input/output method for eigenstructure
identification. This type of setup is popular for instance in vi-
bration mechanics. The modal analysis of aircraft structure
is a perfect illustration of the need of methods working dur-
ing the operational period. We have presented the practical
capabilities of the subspace identification method for non sta-
tionary structures and experiments show that the input/output
method performs better in real world applications. So, when
available, input sensors data should be used. Nonetheless,
the output-only method performs quite similarly in most cases,
and should not be avoided when input data are unknown.

Figure 1: Input/output method : first half of the
frequency band

Figure 2: Output-only method : first half of the frequency
band



Figure 3: Input/output method : second half of the
frequency band

Figure 4: Output-only method : second half of the
frequency band

Figure 5: Input/output method : Damping and MAC value
of the mode corresponding to frequency 5.99Hz

Figure 6: Output-only method : Damping and MAC value
of the mode corresponding to frequency 5.99Hz



Figure 7: Input/output method : Damping and MAC value
of the mode corresponding to frequency 11.75Hz

Figure 8: Output-only method : Damping and MAC value
of the mode corresponding to frequency 11.81Hz

Since this covariance driven subspace method has been ap-
plied to fault detection in the output-only case [7]. We show in
future work that the idea presented here can be directly ap-
plied to fault detection in the input/output case.
All the software needed for this study will be freely available
very soon as a Scilab toolbox on the Scilab website.
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