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We present a complete framework for determining the asymptotic (or logarithmic) efficiency
of estimators of large deviation probabilities and rate functions based on importance sampling.
The framework relies on the idea that importance sampling in that context is fully characterized
by the joint large deviations of two random variables: the observable defining the large
deviation probability of interest and the likelihood factor (or Radon–Nikodym derivative)
connecting the original process and the modified process used in importance sampling. We
recover with this framework known results about the asymptotic efficiency of the exponential
tilting and obtain new necessary and sufficient conditions for a general change of process to
be asymptotically efficient. This allows us to construct new examples of efficient estimators
for sample means of random variables that do not have the exponential tilting form. Other
examples involving Markov chains and diffusions are presented to illustrate our results.
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I. INTRODUCTION

Estimating the probability of rare events or fluctuations in random systems is an important
problem arising in many applied fields, including engineering [1], where a rare event might represent
a design failure, or chemistry, where changes between chemical species or polymer states arise
from rare transitions in a free energy landscape [2–4]. In physical systems, the probability of rare
fluctuations often has a large deviation form [5–8], owing to the interaction of many particles or the
effect of thermal noise. In this case, the estimation of probabilities reduces to the estimation of rate
functions, which determine the rate of decay of probabilities as a function of some parameter (e.g.,
volume, particle number, integration time or temperature) [8].

Rate functions are also important on their own, as they determine for equilibrium and nonequi-
librium systems the onset of static and dynamical phase transitions [8–14], fluctuation symmetries
[15–18], and in some cases the response to external perturbations [19]. As a result, they have
been actively studied recently, especially for nonequilibrium systems describing particle transport
processes [20–23] and diffusing particles [24–27], among other physical systems.

Traditionally, two statistical methods have been used to numerically estimate or sample large
deviation probabilities: 1) splitting [28–33], also known as cloning in physics [34–37], which works
by replicating events that “go in the direction” of the rare event of interest, and 2) umbrella or
importance sampling (IS) [38–41], which works by modifying the process simulated so as to increase
the likelihood of the event of interest and, ideally, to render it typical. The probability of that
event is then computed via the likelihood factor or Radon–Nikodym derivative, which is the bridge
connecting probabilities in the original and the modified processes.

In this paper, we consider the latter method with the aim of providing a complete framework
for understanding the efficiency of IS when used to estimate large deviation probabilities and rate
functions. For this purpose, we first review in Sec. II the basis of IS as applied to large deviation
estimation, and then present the main results known about the efficiency of IS, which we illustrate
with simple examples involving sums of random variables.
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Most of these results were obtained by Bucklew and Sadowsky [41–44] (see also [45–47]) and
are based on two basic but important observations. The first, found in any presentation of IS, is
that, although it is necessary for an efficient change of process or “measure” in IS to render rare
events typical, this is not sufficient, as we must also ensure that the IS probability estimator arising
from the change of process has good variance properties [40]. The second observation, which is
specific to large deviations, is that the notion of a “good” or an “efficient” change of process must
be adapted to the exponentially decaying form of probabilities that we are trying to estimate. Thus,
instead of seeking changes of process that achieve zero variance or a bounded relative error, which
are too prohibitive, we must look for changes of process whose second moment decays exponentially
with the largest rate possible [41]. This leads to the notion of logarithmic efficiency or asymptotic
efficiency, defined in a precise way in the next section.

Following this review part of the paper, we present in Sec. III a new framework for determining
and understanding whether a change of process is asymptotically efficient or not. The framework
is itself based on large deviation theory and draws on the idea, recently put forward by one of us
[48], that changes of processes and measures in general are completely characterized in the context
of large deviation probabilities by the joint rate function of two random variables: 1) the random
variable defining the rare event of interest, and 2) the Radon–Nikodym derivative, seen as a real
random variable with respect to either the original or the modified process.

The resulting framework recovers results previously known about the efficiency of IS for large
deviation estimation [41–45], but also extends them in two important ways. First, most of the
results that have been derived in the past and that are now used in practice apply to a specific
change of process known as the exponential tilting, the exponential family or the Esscher transform.
By contrast, our formalism can be applied in principle to any change of process to determine whether
that change is efficient and, if not, to understand in a clear way why this is so. Second, most works
provide sufficient but not necessary conditions for asymptotic efficiency. For the exponential tilting,
these conditions are based on the existence of so-called dominating points, related essentially to
the convexity of rate functions and the convexity of the rare event set. They can be checked in
many applications of interest, leading to efficient IS simulations, but they leave completely open the
possibility that changes of process other than the exponential tilting can be asymptotically efficient.
Indeed, the full characterization of such changes is still an open problem in IS as applied to large
deviation estimation.

Here, we solve this problem by providing in Sec. III necessary and sufficient conditions for a
change of process to be asymptotically efficient. We use these conditions in Sec. IV to revisit
the efficiency of the exponential tilting, and then illustrate them with explicit examples of large
deviations involving independent random variables and discrete-time Markov chains. From these,
we also construct two intriguing examples of IS estimators that do not have the exponential tilting
form and yet are asymptotically efficient, opening the way for more to be discovered. Applications
to stochastic differential equations are finally presented to illustrate how our results can be applied
beyond discrete-time models to estimate the large deviations of continuous-time Markov processes,
commonly used as models of nonequilibrium systems.

II. IMPORTANCE SAMPLING OF LARGE DEVIATIONS

We define in this section the rare event or large deviation probabilities that we are interested in
estimating using importance sampling and define the notion of asymptotic efficiency, used classically
in the context of large deviations. Most of the results reviewed can be found in Bucklew’s book
[41], which follows the prior works [42–44].
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A. Large deviation probabilities

The rare events that we consider are defined in a general way by considering two ingredients:

• A sequence Xn = (X1, X2, . . . , Xn) of random variables taking values on some space Λn with
probability measure Pn;

• A function Mn : Λn →M, referred to as an observable.

Concretely, Xn represents the state of some system or process, Pn is the probabilistic model
(the prior measure) that we have of that system, while Mn is some function of that system that can
be observed or measured in some way. For example, Xn can be the microstate of an equilibrium
system of n classical particles, in which case Pn is the ensemble (microcanonical, canonical, etc.)
chosen to “weight” the microstates and Mn can represent the particles’ energy. The system can
also be a stochastic process, e.g., a Markov chain in discrete time, with Xn representing its path or
trajectory over n time steps, Pn the probability measure over the trajectories, which defines the
process, and Mn a function of the trajectories.

For simplicity, we consider the case where Xi ∈ Rd, d ≥ 1, so that Λn = (Rd)n, and Mn(Xn) ∈ RD,
D ≥ 1, so that M⊂ RD. More general spaces can be used for both the process and the observable
at the expense of introducing more complicated notations. For example, it is common in large
deviation theory to consider M to be a Polish space to handle cases where Mn takes values in a
function space, e.g., if Mn is an empirical distribution, as in Sanov’s theorem [6].

Here, we limit ourselves to a setting where both Xn and Mn are finite-dimensional random
variables, so as to simplify the notations. In fact, most of our results will be illustrated by considering
simple examples where Mn is a sample mean of real random variables

Mn =
1

n

n∑
i=1

Xi, (1)

so that both Xi ∈ R and Mn ∈ R. From these, it is easy to generalize to other processes and
observables, including observables defined for Markov chains or even continuous-time Markov
processes, as shown in Sec. IV.

Given Xn, Pn and Mn, we are interested in estimating the probability

pn ≡ Pn(Mn ∈ B), (2)

where B is some measurable subset of M and Pn denotes, with a slight abuse of notation, the
probability measure extended to Mn. As a particular case, we can set B = [m,m+ dm] to obtain,
as is common in physics, the probability distribution of Mn with “discretization” dm. Our basic
assumption is that this probability has a large deviation form with n, meaning that it decays
exponentially with n and so describes a rare event that becomes rarer as n gets larger.

This decay of probabilities is encountered in many applications and can be expressed mathemati-
cally in different ways, depending on the level of generality adopted. Here, we say that Pn(Mn ∈ B)
has a large deviation form or satisfies, more precisely, the large deviation principle (LDP) if there
exists a function IP :M→ [0,∞] such that

lim
n→∞

− 1

n
logPn(Mn ∈ B) = IP (B), (3)

where

IP (B) = inf
m∈B

IP (m). (4)
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The function IP is called the rate function of Mn and is required to be lower semi-continuous,
meaning that it has closed level sets. We assume, as is common in large deviation theory, that IP is
in fact a good rate function, meaning that it has compact level sets. This simplifies the analysis
of large deviations, as it implies that the infimum in (4) is attained on at least one point in the
closure B̄ of B [6, Sec. 1.2]. It also means for Mn ∈ RD that IP is coercive, that is, IP (m)→∞ as
‖m‖ → ∞. The first assumption of our work is thus:

Assumption 1. The observable Mn satisfies the LDP, in the sense of (3), with good rate function
IP such that IP (B) <∞.

The limit in (3) is actually a simplification of the standard definition of the LDP found in
the large deviation literature involving upper and lower bounds (see, e.g., [6, Sec. 1.2]). In using
the definition above, we assume that B is a “good” set, called technically an I-continuity set [6,
Sec. 1.2], such that

inf
m∈B

IP (m) = inf
m∈B◦

IP (m) = inf
m∈B̄

IP (m), (5)

where B◦ represents the interior of B. In this case, the upper and lower bounds appearing in the
standard definition of the LDP are the same, yielding the simple limit (3). This is a technical point,
which is not important for physical or numerical applications.

Concretely, the LDP means again that the leading behavior of the distribution of Mn is a
decaying exponential in n, with corrections in the exponential that are smaller than linear in n.
This property is commonly summarized in large deviation theory by the asymptotic notation [5–8]

Pn(Mn ∈ [m,m+ dm]) � e−nIP (m), (6)

and applies whenever IP (m) > 0. When IP (m) = 0, the distribution of Mn either decays around m
slower than exponentially in n or increases with n around that point. In many applications, IP (m)
has only one zero, denoted in the following by m∗, so the latter case applies, yielding the law of
large numbers

lim
n→∞

Pn(Mn ∈ [m∗,m∗ + dm]) = 1 (7)

or, more generally,

lim
n→∞

Pn(Mn ∈ B) = 1 (8)

if m∗ ∈ B◦. See [8] and references therein for cases where more than one zeros occur.
Probabilities having the LDP form are encountered in many applications of interest, including

queues [1], hypothesis testing [7], and noisy detection systems [6]. In physics, the LDP is the basis
of thermodynamics and describes, more generally, the fluctuations of equilibrium systems in the
thermodynamic limit of large systems, which is a large deviation limit (see [8] for a review). The
same exponential form of probabilities also arises in the context of nonequilibrium systems when
considering systems perturbed by a small noise [49–52] as well as time-integrated functions or
observables of Markov processes [53] modelling, for example, the fluctuating dynamics of mesoscopic
diffusive systems [24–26] or many-particle transport processes [20–22]. In the latter case, the
long-time limit is often combined with a low-noise limit describing the residual noise associated
with a macroscopic (or hydrodynamic) limit where infinitely many interacting particles evolve in
time over a substrate (e.g., a lattice) with boundary reservoirs [54].
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B. Importance sampling

The simplest way to numerically estimate pn in (2) is to sample Mn directly by generating

multiple copies X
(i)
n , i = 1, 2, . . . , N , of the state from the probability measure Pn and by then

counting the fraction of corresponding observable values M
(i)
n = Mn(X

(i)
n ) that fall in B:

p̃Nn ≡
1

N

N∑
i=1

1
M

(i)
n ∈B

. (9)

Since the random variables 1
M

(i)
n ∈B

are independent and identically distributed (i.i.d.) Bernoulli

with parameter pn, it is easy to see that the estimator above, referred to as the direct or crude
Monte Carlo (CMC) estimator, is unbiased in the sense that

EP [p̃Nn ] = pn, (10)

where EP [·] denotes the expectation with respect to Pn. Moreover, its variance is

VarP (p̃Nn ) = EP [(p̃Nn − pn)2] =
pn(1− pn)

N
(11)

and so decreases with N . However, since pn becomes exponentially small as n → ∞, the actual
number of samples needed to accurately estimate this probability should be determined from the
estimator’s error relative to pn, which can be approximated by√

VarP (p̃Nn )

pn
≈ 1√

Npn
. (12)

As a result, we see that N must grow exponentially as N ∼ p−1
n � enIP (B) in order for the relative

error to be bounded in n, which is unachievable in practical simulations.
To overcome this problem, we resort to IS which works by sampling Mn not according to Pn but

to a different probability measure Qn, chosen to increase the likelihood that Mn ∈ B [39–41]. To be
consistent, Qn must have support on all states that “hit” the event {Mn ∈ B} with respect to Pn,
which translates mathematically to requiring that Pn1Mn∈B, the restriction of Pn on {Mn ∈ B}, be
absolutely continuous with respect to Qn1Mn∈B [40]. Here, we assume for simplicity that Qn has
the same support as Pn, so the two are equivalent in the sense of absolute continuity.

To estimate pn, we now generate copies X
(i)
n , i = 1, 2, . . . , N , of the states according to Qn,1

compute the associated observable values M
(i)
n , i = 1, 2, . . . , N , and construct the IS estimator as

p̂Nn ≡
1

N

N∑
i=1

L(i)
n 1

M
(i)
n ∈B

, (13)

where L
(i)
n = Ln(X

(i)
n ) and

Ln ≡
dPn
dQn

(14)

is the Radon–Nikodym derivative of Pn with respect to Qn. This derivative, also known as the
likelihood factor, is included to ensure that the IS estimator remains unbiased, that is,

EQ[p̂Nn ] =

∫
Λn

dQn(Xn)
dPn
dQn

(Xn) 1Mn(Xn)∈B = EP [1Mn∈B] = pn. (15)

1 We could identify the new copies with a different symbol, say X̃
(i)
n , since they are generated from a different

distribution and so represent a different random variable. Here, we keep X
(i)
n but always specify the distribution,

Pn or Qn, used. The same applies to the observable.
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The variance, however, is modified to

VarQ(p̂Nn ) = EQ[(p̂Nn − pn)2] =
EQ[L2

n1Mn∈B]− p2
n

N
, (16)

which obviously depends on Qn, leading to the relative variance

VarQ(p̂Nn )

p2
n

=
EQ[L2

n1Mn∈B]

Np2
n

− 1

N
. (17)

The problem of IS is to determine which Qn is optimal, that is, which choice achieves the smallest
variance or relative variance, ideally smaller than the CMC variance obtained with Qn = Pn, given
some design or application-specific constraints on the class of Qn that can be simulated.

If no constraints are imposed, then it is known that there is a zero-variance change of measure
given by the restriction of Pn on the event of interest, that is, Qn ∝ Pn1Mn∈B. This measure, known
in physics as the microcanonical ensemble [55], cannot be simulated in practice, however, because it
involves a hard-to-implement constraint and, more importantly, because its normalization involves
the probability that we are trying to estimate. As a result, other choices must be considered that
are either approximations of the zero-variance solution (following, e.g., cross-entropy methods [56])
or that are optimal or efficient according to some bounding criterion on the variance or relative
variance. For the purpose of estimating large deviations, a common criterion used is the asymptotic
(or logarithmic) efficiency [39–41], discussed next.

C. Asymptotic efficiency

The notion of asymptotic efficiency is based on the relative variance of the IS estimator, as given
by (17). Since pn scales exponentially with n, so does generally the second moment EQ[L2

n1Mn∈B]
with a scaling exponent given by

RQ(B) ≡ lim
n→∞

− 1

n
logEQ[L2

n1Mn∈B]. (18)

We will provide in Section III A specific assumptions that ensure the existence of this limit (see
Lemma 2). For now, we note that the LDP for pn, combined with the positivity of the variance in
(16), implies

RQ(B) ≤ 2IP (B). (19)

When equality is achieved, we say that the IS measure Qn or, more precisely, the sequence (Qn)n>0

of IS measures, is asymptotically efficient. This criterion is also referred to in the literature as
logarithmic efficiency or asymptotic optimality.

It can be checked that CMC achieves RQ(B) = IP (B) and so it is not asymptotically efficient, as
expected, while the zero-variance choice Qn ∝ Pn1Mn∈B is asymptotically efficient, since it has zero
variance for all n. By comparison, an asymptotically efficient Qn does not necessarily have zero
variance – this is again too restrictive for our purpose – but is such that the term EQ[L2

n1Mn∈B] in
the variance decays with the fastest exponential rate equal to 2IP (B). When this happens, the
ratio EQ[L2

n1Mn∈B]/p2
n in (17) does not grow exponentially with n, which means that the number

Nn of samples needed to have a fixed relative variance grows sub-exponentially in n. Hence, if Qn
is asymptotically efficient, we have

lim
n→∞

1

n
logNn = 0. (20)
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This is often taken as a definition of asymptotic efficiency.
The asymptotic efficiency of Qn is studied in most works [41–46] for the exponential tilting or

exponential family, defined by

Qn(dXn) =
en〈k,Mn〉Pn(dXn)

EP [en〈k,Mn〉]
, (21)

where k ∈ RD is a vector having the same dimension as Mn and 〈·, ·〉 is the standard scalar product
in RD. We will not review all the results known about this change of measure, which also corresponds
in physics to the canonical ensemble [55]. For our purposes, two results are worth noting. The first,
proved in [43], states that the exponential tilting is asymptotically efficient if B has a dominating
point (see [41, Sec. 5.2] for a definition of this concept), which holds essentially when IP (m) is a
convex function and B is a convex set. In that case, the value k ∈ RD that must be chosen in (21)
to achieve efficiency satisfies

∇λP (k) = µ, (22)

where µ ∈ RD is the dominating point of B and λP (k) is the scaled cumulant generating function
(SCGF), defined by

λP (k) = lim
n→∞

1

n
logEP [en〈k,Mn〉], k ∈ RD. (23)

We refer to [43, Thm. 2] for the complete statement of this result, including the conditions
underlying it, and [44, Thm. 3] for its application to Markov chains. We give some examples
next to illustrate the relation (22), which comes from the application of the Gärtner–Ellis theorem
and the fact, more precisely, that the rate function is given, according to this theorem, by the
Legendre–Fenchel transform of the SCGF when the latter is differentiable; see [8, Sec. 4.4] for more
details. In fact, the conditions underlying the efficiency of the exponential tilting are overall nothing
but the conditions of the Gärtner–Ellis theorem.

The second result worth noting, also found in [43], is that the sample size Nn required for the IS
estimator p̂Nn to have a bounded relative variance grows according to

Nn � en[2IP (B)−RQ(B)] (24)

in the limit n → ∞. This essentially follows from the result (17) for the relative variance of the
IS estimator, in which the term 1/N can be neglected. In particular, Nn � enIP (B) for CMC,
as seen before, while Nn � en0 if Qn is asymptotically efficient, consistently with the limit (20)
above and the fact again that constant relative variance is achieved in this case by increasing Nn

sub-exponentially with n. In some cases, it turns out in fact that bounded relative variance is
achieved with Nn = O(

√
n) when Qn is asymptotically efficient [44, Sec. 5.4], leading to a drastic

increase in simulation efficiency.

D. Examples

We close this section by illustrating the theory developed so far with simple examples involving
the sample mean

Mn =
1

n

n∑
i=1

Xi (25)
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of a sequence Xn = (X1, X2, . . . , Xn) of i.i.d. random variables. The examples are presented briefly,
since they appear in other works (see, e.g., [41]), and will be used again in the next sections to
illustrate our new framework. More involved applications of IS related to large deviations have
been considered in the context of random graphs [57–59], finance [60], escape pathways [61], and
nonequilibrium systems [62–65], among other topics.

Example 1: We first consider a sample mean of standard Gaussian random variables, so that Pn
is the product measure N (0, 1)⊗n, and look for the probability that pn = Pn(Mn ≥ 1) by choosing
B = [1,∞). This probability can be found directly from the fact that Mn ∼ N (0, 1/n), leading
to pn � e−n/2. Alternatively, we can use Cramér’s theorem [6, Sec. 2.2] to find that the SCGF is
λP (k) = k2/2, yielding IP (m) = m2/2 by Legendre–Fenchel transform and, therefore,

IP (B) = inf
m≥1

IP (m) =
1

2
. (26)

This shows that the probability Pn(Mn ≥ 1) is dominated exponentially by the probability that
Mn is close to 1, so only the boundary of B plays a role, as is common with large deviations.

With this result, it is natural to choose the IS measure to be a sequence of i.i.d. Gaussian random
variables centered at 1, so that Qn = N (1, 1)⊗n. It is clear that this change of measure makes
Mn = 1 typical. Moreover, it can be checked by calculating RQ(B) directly from its definition (18)
that this measure is asymptotically efficient with

RQ(B) = 1 = 2IP (B). (27)

Alternatively, one can notice, following [41, Ex. 5.2.1], that the dominating point of B = [1,∞) is
µ = 1, which leads, with the equation λ′P (k) = µ, to k = 1. From (21), the exponentially-tilted
measure that is asymptotically efficient is then

Qn(dXn) =
enMnPn(dXn)

EP [enMn ]
=

{
n∏
i=1

e−(Xi−1)2/2

√
2π

dXi

}
, (28)

which is indeed the product measure N (1, 1)⊗n. Note that the Radon–Nikodym derivative of Pn
with respect to Qn is

Ln = Ln(Xn) =
dPn
dQn

(Xn) = e−n(Mn−1/2). (29)

Therefore, in the end, the IS estimator that is asymptotically efficient is

p̂Nn =
1

N

N∑
i=1

e−n(M
(i)
n −1/2)1

M
(i)
n ≥1

, (30)

where {M (i)
n }Ni=1 is an i.i.d. sample generated with Qn. �

This example can be generalized, obviously, to any B = [b,∞), b > 0, by choosing k in the
exponential tilting such that λ′P (k) = b or, equivalently, k = I ′(b) by Legendre duality (see Sec. 3.5
of [8]). This gives Qn = N (b, 1)⊗n as the modified measure that changes the event {Mn ≥ b} from
being rare to being typical. This is asymptotically efficient, as b is the dominating point of B.
Choosing Qn to concentrate inside B rather than at its boundary, that is, Qn = N (b′, 1)⊗n with
b′ > b, is not asymptotically efficient, although it does make {Mn ≥ b} typical.

As a variation of this example, we change the distribution of the Xi’s to an exponential
distribution. Other distributions, such as Bernoulli, uniform or Laplace, are treated in [41].
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Example 2: Let the sequence X1, X2, . . . , Xn of i.i.d. random variables be distributed according
to the exponential distribution E(1) with parameter 1, so that Pn = E(1)⊗n. We consider again the
sample mean Mn as an observable and B = [b,∞) with b > 1, so that pn = Pn(Mn ∈ B) is a rare
event such that [8]

IP (B) = b− 1− log b. (31)

As shown in [41, Ex. 5.2.6], the asymptotically efficient exponential tilting associated with this
problem is the product measure Qn = E(1/b)⊗n of exponential distributions with mean EQ[Xi] =
EQ[Mn] = b. This follows by noting that λP (k) = − log(1 − k) for k < 1, from which we find
k = 1− 1/b by solving λ′P (k) = b. Equivalently, k = I ′(b) = 1− 1/b. �

The last example is a classic one in IS showing that the exponential tilting is not always
asymptotically efficient, in particular, when dealing with nonconvex sets B.

Example 3: Consider, as in the first example, a sequence of i.i.d. normal random variables with the
same Pn and Qn, but now take B to be the union of two disjoint sets, namely, B = (−∞,−b]∪ [1,∞)
with b > 1, so that the probability to estimate is

pn = Pn(Mn ≤ −b or Mn ≥ 1). (32)

From Example 1, we still have IP (B) = 1/2, since Mn ≤ −b is rarer than Mn ≥ 1 for b > 1. The
calculation of RQ(B) for this case can be found in [41, Ex. 5.2.13]. The result is RQ(B) = 1 if b ≥ 3
and RQ(B) < 1 otherwise, implying that Qn = N (1, 1)⊗n is not asymptotically efficient if b ∈ (1, 3).
Note that this cannot be inferred from the dominating point result, since B is nonconvex and, as
such, has no dominating point for any b. �

The non-efficiency of Qn in the last example is due to the fact that, although the probability
that Mn ≤ −b is exponentially small, this rare event leads to exponentially large values of the
likelihood factor in (30) that dramatically increase the variance of the IS estimator. In fact, it can
be checked (see again [41, Ex. 5.2.13]) that for values of b close to −1, RQ(B) becomes negative, so
that the second moment of the IS estimator can diverge with n as a result of the accumulation of
many different likelihood factors that are exponentially large with n.

Other examples involving nonconvex sets B have been studied, in particular, by Glasserman
and Wang [66], who show that IS based on the exponential tilting can perform worse than CMC
and can even lead to RQ(B) = −∞, so one should be cautious about the generally-accepted idea
that a good choice of IS measure is one that makes a rare event typical.

To avoid the case where RQ(B) = −∞, which is clearly not efficient, we assume here that
RQ(B) > −∞. In fact, for the results to come, we need a slightly stronger assumption:

Assumption 2. For some δ > 0,

lim sup
n→∞

1

n
logEQ[L2+δ

n 1Mn∈B̄] <∞. (33)

This condition implies with Hölder’s inequality that, if RQ(B) exists, then RQ(B) > −∞ and,
therefore, with Assumption 1 and (19), that RQ(B) is finite. It also ensures overall that we are
not in a situation where the second moment of Ln has the correct exponential scaling in n, but its
moment of order 2 + δ behaves super-exponentially.

This type of “Lyapunov” condition often appears in large deviation theory in the context of
Varadhan’s integral lemma (see [6, Thm. 4.3.1]). Other weaker conditions can be defined (see [6,
Thm. 4.3.1] and [46] in the context of IS), although they might be more difficult to check. In our
case, we will see in the next section that the limit above can be re-expressed more naturally in
terms of the steepness or coercivity of a rate function involving Mn and Ln (see Assumption 2′).
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III. JOINT LDP APPROACH TO ASYMPTOTIC EFFICIENCY

The theory presented in the previous section can be applied to sample large deviations in an
efficient way not just for i.i.d. sample means, as illustrated, but also for functionals of Markov
chains, jump processes, and diffusions. One problem of the theory, however, is that it focuses almost
exclusively on the exponential tilting, leaving aside the possibility that other changes of measure
might also be asymptotically efficient. Moreover, the efficiency conditions that we have for the
exponential tilting, based on the existence of a dominating point, are only sufficient conditions
that cannot be applied to nonconvex problems, as illustrated in Example 3. In principle, one can
determine the efficiency of an arbitrary Qn by calculating the exponent RQ(B) [41], but this is very
difficult to carry out in practice beyond the case of i.i.d. sample means and convex B.

We address these issues in this section by providing new conditions for a general change of
measure Qn to be asymptotically efficient. These conditions follow from two basic observations
about the second moment EQ[L2

n1Mn∈B] that determines the efficiency of Qn via (19). The first is
that this moment involves both Ln and Mn, which means that it can be computed knowing the
joint distribution of these two (generally correlated) random variables. The second is that, in many
cases of interest, the Radon–Nikodym derivative Ln scales exponentially in n and has a distribution
that satisfies the LDP [67]. Therefore, it is natural to study the efficiency of Qn based on the joint
large deviations of Mn and Ln, which is what we do in this section.

By reformulating the asymptotic efficiency criterion in terms of a joint LDP involving Mn and
Ln, we derive necessary and sufficient conditions for a general Qn to be asymptotically efficient.
These conditions provide new insights into what makes a change of measure efficient. They show,
in particular, that Ln does not have to be deterministic conditionally on Mn, which is the essential
property of the exponential tilting that makes it asymptotically efficient. The fluctuations of Ln
only need to be “bounded” or “controlled” in a precise way, suggesting new changes of measure,
different from the exponential tilting, that are asymptotically efficient.

A. Joint large deviations

The idea of formulating a joint LDP for Mn and Ln follows the recent work of one of us [48]. As
in that work, we consider Ln via the scaled log-likelihood or action, defined as

Wn ≡ −
1

n
logLn, (34)

to account for the fact that Ln is expected to scale exponentially with n. The action is obviously a
real random variable whose distribution can be determined in principle with respect to either Pn or
Qn. The couple (Mn,Wn) is thus a random variable taking values in the product space M× R,
where M, the space of Mn, is again a subset of RD.

From now on, we assume the following:

Assumption 3.

(a) (Mn,Wn) satisfies the LDP relative to Pn on M× R with good rate function JP ;

(b) (Mn,Wn) satisfies the LDP relative to Qn on M× R with good rate function JQ;

(c) JP and JQ have the same non-empty domain on M× R, that is, the same set of values on
which these functions are finite.
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(d) B × R is a good set for (m,w) 7→ 2w + JQ(m,w), meaning that

inf
(m,w)∈B×R

{2w + JQ(m,w)} = inf
(m,w)∈B◦×R

{2w + JQ(m,w)} = inf
(m,w)∈B̄×R

{2w + JQ(m,w)} .
(35)

In the last assumption, there is an abuse of language, since the function 2w + JQ(m,w) is not
necessarily a rate function.

The LDPs in Conditions (a)-(b) follow the rigorous definition given in Sec. II and mean in terms
of the asymptotic notation that

Pn(Mn ∈ B,Wn ∈ C) � exp

{
−n inf

m∈B,w∈C
JP (m,w)

}
(36)

and

Qn(Mn ∈ B,Wn ∈ C) � exp

{
−n inf

m∈B,w∈C
JQ(m,w)

}
(37)

for “good” sets B × C. More concretely, we can also write

Pn(Mn ∈ [m,m+ dm],Wn ∈ [w,w + dw]) � e−nJP (m,w) (38)

and

Qn(Mn ∈ [m,m+ dm],Wn ∈ [w,w + dw]) � e−nJQ(m,w). (39)

As for Condition (c), it follows from our previous assumption that Pn and Qn have the same support
on Λn, so they also have the same support when pushed forward to M× R with the random
variables (Mn(Xn),Wn(Xn)). This property is again not essential, but simplifies the derivation and
analysis of our results.

We will show in Sec. IV how the two joint LDPs can be derived in practice using techniques
from large deviation theory. The existence of these LDPs can be viewed as a strong assumption
of our theory, but they are necessary, as will become clear, to fully understand the asymptotic
efficiency of Qn.

For now, we assume that two rate functions JP and JQ for (Mn,Wn) are given and proceed to
relate them to IP (B) and RQ(B). To this end, it is important to note that, although JP and JQ
are defined with respect to Pn and Qn, respectively, both rate functions actually depend on Qn,
since they both involve the action Wn defined from Ln. The joint rate functions are also linked,
since expectations with respect to Qn are related to expectations with respect to Pn, and vice versa,
via the identity

EQ[Ln(Xn) f(Xn)] = EP [f(Xn)], (40)

where f is any test function. This result was already used in (15) to show that the IS estimator p̂Nn
is unbiased, and implies the following large deviation result, referred to in physics as a fluctuation
relation [18]:

Proposition 1 ([48, Prop. 2]). Under Assumption 3, the two rate functions JP and JQ are such
that

JP (m,w) = JQ(m,w) + w (41)

for all (m,w) in their domain.
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This result simply follows by applying (40) with indicator functions to transform joint probability
distributions as follows:

Pn(Mn ∈ dm,Wn ∈ dw) = EP [1Mn∈dm1Wn∈dw]

= EQ[e−nWn1Mn∈dm1Wn∈dw]

= e−nwQn(Mn ∈ dm,Wn ∈ dw). (42)

Here, we have used Ln = e−nWn and the shorthand Mn ∈ dm to mean Mn ∈ [m,m+ dm] (similarly
for Wn ∈ dw). Taking the large deviation limit then yields (41). We refer to [48] for a rigorous
presentation of this argument, based on the definition of the LDP and Assumption 3.

The existence of a joint LDP for (Mn,Wn) also implies that Mn and Wn satisfy the LDP
individually. This “marginalization” of joint LDPs is covered in [48, Prop. 1] and follows in large
deviation theory from the contraction principle [5–8], stated for convenience in Appendix B. The
application of this principle to marginalize (viz., trace out) Wn, for example, gives the following
representation of the rate function of Mn with respect to Pn:

IP (m) = inf
w∈R

JP (m,w). (43)

Therefore,

IP (B) = inf
m∈B,w∈R

JP (m,w) = inf
m∈B,w∈R

{w + JQ(m,w)}, (44)

where we have used Proposition 1 to obtain the second equality. Similar formulas apply with respect
to Qn, including

IQ(m) = inf
w∈R

JQ(m,w), (45)

which is the rate function of Mn associated with its LDP with respect to Qn.
At this point, we formulate one more assumption needed to derive our main result:

Assumption 4. There exists a unique, finite pair (m∗, w∗) such that JQ(m∗, w∗) = 0.

This assumption means concretely that the pair (Mn,Wn) satisfies the weak law of large numbers
with respect to Qn (see [68, Thm. 2.5]), that is,

lim
n→∞

Qn (Mn ∈ [m∗,m∗ + dm],Wn ∈ [w∗, w∗ + dw]) = 1. (46)

In this case, we say that (m∗, w∗) is the typical value or concentration point of (Mn,Wn) under Qn.
Since rate functions are positive, Assumption 4 and (45) imply IQ(m∗) = 0, so that m∗ is also the
typical value of Mn with respect to Qn. A good change of measure, as we have seen, should be such
that m∗ ∈ B̄ to transform the event {Mn ∈ B} from being rare under Pn to being typical under
Qn. In large deviation terms, this means

IQ(B) ≡ inf
m∈B

IQ(m) = IQ(m∗) = 0. (47)

This is the first step for constructing a good change of measure for IS – to make B typical. The
next step is to ensure that Qn is asymptotically efficient.
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B. Efficiency results

We study the efficiency of Qn from the result in (19) by expressing RQ(B) as a variational
formula involving JQ(m,w), similarly to the formula (44) that we have for IP (B), and by then
comparing these two formulas to infer conditions on JQ(m,w) that guarantee that RQ(B) = 2IP (B).
The first part is the subject of the next result.

Lemma 2. Under Assumptions 1, 2 and 3, the second moment rate RQ(B) defined in (18) exists,
is finite, and is given in terms of JP and JQ by

RQ(B) = inf
m∈B,w∈R

{w + JP (m,w)} = inf
m∈B,w∈R

{2w + JQ(m,w)}. (48)

Proof. These variational representations of RQ(B) are a direct consequence of the Laplace principle
for approximating exponential integrals, which is formulated in a rigorous way in large deviation
theory via Varadhan’s integral lemma [69]. For our purpose, we apply a version of that theorem
found in [5, Thm. II.7.2] to RQ(B) as defined by (18). Given Assumption 3(d), to show that

lim
n→∞

− 1

n
logEQ[L2

n1Mn∈B] = inf
m∈B,w∈R

{2w + JQ(m,w)}, (49)

it suffices to prove that

lim inf
n→∞

− 1

n
logEQ[L2

n1Mn∈B̄] ≥ inf
m∈B̄,w∈R

{2w + JQ(m,w)}, (50)

and

lim sup
n→∞

− 1

n
logEQ[L2

n1Mn∈B◦ ] ≤ inf
m∈B◦,w∈R

{2w + JQ(m,w)}. (51)

Under Assumptions 2 and 3(b), to establish (50) (respectively (51)), one may adapt the proof of
[5, Thm. II.7.2] detailed in Appendix B.2, item (a) (respectively (b)), replacing K (respectively
G) with B̄ × R (respectively B◦ × R). Hence, RQ(B) defined as the limit in (18) exists. Moreover,
Assumption 1 and (18) ensure that RQ(B) < ∞, and Assumption 2 that RQ(B) > −∞, so that
RQ(B) is finite. Finally, (41) shows the equivalence between both relations for RQ(B) in (48).

The result of Lemma 2 complements the methods developed by Bucklew [41] for calculating
RQ(B), which are based on generating functions rather than the joint large deviations of Mn and
Wn. The advantage of our result is that it can be used with (44) to express the efficiency bound
RQ(B) ≤ 2IP (B) as a variational inequality involving the rate function JQ(m,w):

inf
m∈B,w∈R

{2w + JQ(m,w)} ≤ 2 inf
m∈B,w∈R

{w + JQ(m,w)}. (52)

Therefore, Qn is asymptotically efficient if and only if JQ is such that the inequality above is an
equality. The same inequality can be expressed in terms of JP using (41), but this is not useful,
since we want to characterize the efficiency of Qn. Note, however, that the right-hand side of (52),
although written with JQ, does not actually depend on Qn, since it is equal to 2IP (B).

Our aim now is to find conditions on Qn, and therefore on JQ(m,w), to have equality in (52).
This is a non-trivial task, despite the simple form of this inequality, because the minimizers on
either side need not be the same. Moreover, although JQ is positive, w is not, so bounds based
on the minimizer (m∗, w∗) of JQ do not yield any useful conditions. Rather, such conditions are
found by observing that w is the relevant variable in (52), since the minimizer over m is common
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to both sides of this inequality, and that the unconstrained minimization over w ∈ R has the form
of a Legendre–Fenchel transform.

Based on these observations, we define

IBQ (w) ≡ inf
m∈B̄

JQ(m,w). (53)

This function of w ∈ R is positive, since JQ(m,w) ≥ 0, although it is not, as such, a rate function,
since it does not necessarily have a zero. To understand this point, let us assume for simplicity that
B is closed. In that case, note that the joint LDP for Mn and Wn with respect to Qn implies the
following LDP for the distribution of Wn conditioned on Mn ∈ B:

Qn(Wn ∈ [w,w + dw]|Mn ∈ B) � e−nIQ(w|B), (54)

where

IQ(w|B) = inf
m∈B

JQ(m,w)− inf
m∈B,w∈R

JQ(m,w) = IBQ (w)− IQ(B) (55)

The conditional distribution of Wn is normalized, so its rate function IQ(w|B) is a true rate function,
in the sense that

inf
w∈R

IQ(w|B) = 0. (56)

However, we see from (55) that, unless IQ(B) = 0, we have IBQ (w) > 0, so the latter function is
indeed not a true rate function in general.

The case that interests us is precisely the case where IQ(B) = 0. That is, if m∗ ∈ B̄, then B is
typical under Qn, so that IQ(B) = 0 and thus IQ(w|B) = IBQ (w). In that case, IBQ (w) is interpreted
as a conditional rate function having a zero (at w∗ from Assumption 4). The converse is also true,
leading us to the following result:

Lemma 3. IBQ (w∗) ≥ 0 with equality if and only if m∗ ∈ B̄.

Proof. We have IBQ (w∗) ≥ 0 by definition of rate functions. For the direct part, suppose that

0 = IBQ (w∗) = inf
m∈B̄

JQ(m,w∗). (57)

As mentioned in the discussion before Assumption 1, since JQ is a good rate function, the infimum
is achieved on B̄. By Assumption 4, this ensures that m∗ ∈ B̄.

For the converse part, simply note that m∗ ∈ B̄ implies

IBQ (w∗) = inf
m∈B̄

JQ(m,w∗) = JQ(m∗, w∗) = 0 (58)

by Assumption 4.

We are now ready to state our main result for the asymptotic efficiency of Qn based on IBQ . The

statement of the result uses the subdifferential ∂IBQ (w∗) of IBQ at the point w∗, which is the set of
values k ∈ R such that

IBQ (w) ≥ IBQ (w∗) + k(w − w∗) (59)
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for all w ∈ R. More information about subdifferentials can be found in Appendix A. For the proof
and the interpretation of the result, we also need the Legendre–Fenchel transform of IBQ , defined by2

λBQ(k) ≡ sup
w∈R
{kw − IBQ (w)}, k ∈ R. (60)

This is a convex function of k, as also explained in Appendix A, such that

λBQ(0) = − inf
w∈R

IBQ (w) ≤ 0. (61)

Theorem 4. Under Assumptions 1-4, Qn is asymptotically efficient if and only if IBQ (w∗) = 0

(typicality condition) and −2 ∈ ∂IBQ (w∗) (steepness condition).

Proof. Suppose that Qn is asymptotically efficient. Then the efficiency criterion RQ(B) = 2IP (B)
leads to equality in (52), which can be re-expressed as

λBQ(−2) = 2λBQ(−1) (62)

with the definition of IBQ and its Legendre–Fenchel transform.

This relation constrains the graph of λBQ(k), as illustrated in Fig. 1: P1 and P2 show the points

of λBQ at k = −1 and k = −2, respectively, which are related in an affine way according to (62).

Moreover, we know that λBQ(0) ≤ 0 from (61). From these two results, and the fact that λBQ(k) is

convex, we conclude that λBQ(k) must be linear over k ∈ [−2, 0], as no other convex function can
pass through both P1 and P2 while intersecting the ordinate axis below 0. Hence,

λBQ(k) = −λBQ(−1)k, k ∈ [−2, 0]. (63)

In particular, λBQ(0) = 0, shown in Fig. 1b as the point P0 at the origin. By (61), this implies that

0 = inf
w∈R

IBQ (w) = inf
(m,w)∈B̄×R

JQ(m,w). (64)

Since B̄ × R is closed, the infimum is reached on the latter and, by Assumption 4, this is possible
only at point (m∗, w∗), so that m∗ ∈ B̄ and IBQ (w∗) = 0 by Lemma 3.

The typicality condition is obtained from this result by noting, following the proof of Lemma 3,
that the existence of P0 implies with (61) that IBQ (w∗) = 0. The minimum w∗ is unique by
Assumption 4. The steepness condition, on the other hand, is obtained by using standard results of
convex analysis, stated with references in Appendix A, to show that the linear part of λBQ leads to

IBQ having a cusp at its global minimum, characterized by more than one supporting lines, including

one with slope 0 and one with slope −2. To simplify the proof, we will first assume that IBQ (w) is a

convex function of w and will then explain why the result also holds when IBQ is not convex.

Note first that w∗ being a global minimum of IBQ means that 0 ∈ ∂IBQ (w∗). Using the duality

result expressed in (A4), we then obtain w∗ ∈ ∂λBQ(0). However, since λBQ(k) is linear for k ∈ [−2, 0],

we also have w∗ ∈ ∂λBQ(k) for k ∈ [−2, 0], which implies by applying (A4) again that

[−2, 0] ⊂ ∂IBQ (w∗). (65)

Therefore, −2 ∈ IBQ (w∗), which is the steepness condition.

2 We use the same letter λ for the Legendre–Fenchel transform and for the SCGF in (23), since, as already mentioned,
the Gärtner–Ellis theorem ensures that, under appropriate conditions, both functions coincide.
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FIG. 1. (a) General λBQ(k). (b) Imposing λBQ(−2) = 2λBQ(−1) implies, by convexity of λBQ(k), that this
function passes through the origin P0 and is linear for k ∈ [−2, 0].

If IBQ is nonconvex, then the same argument applies by replacing IBQ in the duality result by

its convex envelope (IBQ )∗∗, given by the Legendre–Fenchel transform of λBQ or, equivalently, by

the double Legendre–Fenchel transform of IBQ itself. We also have to note that a function and its
convex envelope necessarily have the same global minima, if there are any, which means here that
IBQ (w∗)∗∗ = IBQ (w∗) = 0 and 0 ∈ ∂IBQ (w∗)∗∗. Finally, where a function coincides with its convex

envelope, the subdifferentials are the same, so that ∂IBQ (w∗)∗∗ = ∂IBQ (w∗). All these results are
presented with references in Appendix A and imply, in the end, that the relation (65) holds at w∗

even if IBQ is not convex.

To complete the proof, we consider the converse statement. We have again that, since IBQ has

a global minimum at w∗, 0 ∈ ∂IBQ (w∗). By further assuming that −2 ∈ ∂IBQ (w∗), we then have

[−2, 0] ⊂ ∂IBQ (w∗), since subdifferentials are closed convex sets. Hence, −1 also belongs to the

subdifferential of IBQ (w∗), which means with (59) that

IBQ (w) ≥ IBQ (w∗)− (w − w∗) (66)

and, therefore,

inf
w∈R
{w + IBQ (w)} = w∗ + IBQ (w∗) = w∗. (67)

The same argument for −2 gives

inf
w∈R
{2w + IBQ (w)} = 2w∗ + IBQ (w∗) = 2w∗. (68)

Consequently,

inf
w∈R
{2w + IBQ (w)} = 2 inf

w∈R
{w + IBQ (w)} = 2w∗, (69)

which implies from (52) that Qn is asymptotically efficient.

C. Interpretation and special cases

We will see in the next section that our main result in Theorem 4 covers the efficiency of the
exponential tilting as a special case. The important contribution of this theorem, compared to
previous results, is the subdifferential condition, which guarantees that the second moment

Fn(B) ≡ EQ[L2
n1Mn∈B] =

∫
M×R

e−2nw1m∈B Qn(dm, dw). (70)
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FIG. 2. (a) Efficiency condition for convex and left-differentiable IBQ (w). (b) Asymptotically efficient IBQ (w)

diverging at the left of w∗. (c) Nonconvex IBQ (w) that is also asymptotically efficient.

entering in the definition of RQ(B) is dominated by w∗ and not by another rare value of the action
smaller than w∗ that would lead to an exponentially larger value of the likelihood factor Ln. If this
condition is satisfied, in addition to the obvious condition that B be typical under Qn, then Qn is
asymptotically efficient, which means that it can be used to sample Pn(Mn ∈ B) with a sample size
Nn according to (24) that is not exponentially large with n.

Comparing (67) and (68), we can also say that Qn is asymptotically efficient if and only if w∗ is
the minimizer on both sides of the efficiency criterion

inf
w∈R
{2w + IBQ (w)} = 2 inf

w∈R
{w + IBQ (w)}, (71)

which follows from (52). In other words, Qn is asymptotically efficient if and only if the IS estimator
p̂Nn and its second moment are dominated by the same typical value w∗ of the action, yielding
IP (B) = w∗ and RQ(B) = 2w∗.

This interpretation of the efficiency in terms of the typical value w∗ does not mean altogether
that the likelihood Ln or its action Wn does not fluctuate. This is a very important point. The
subdifferential condition is only a condition about the “shape” of IBQ (w) below the typical value w∗,
which means that the fluctuations of Wn above w∗ are not constrained in any way.

In many cases, we find that IBQ (w) is a convex function and is left-differentiable at w∗. Then the
subdifferential condition reduces to

IBQ (w∗−)′ ≤ −2, (72)

where IBQ (w∗−)′ is the left-derivative of IBQ at w∗. This result is illustrated in Fig. 2a and explains

why we refer to the subdifferential condition as a “steepness” condition. Obviously, if IBQ (w) is
convex and is differentiable at its minimum, then

IBQ (w∗−)′ = IBQ (w∗)′ = 0 (73)

and so Qn is not asymptotically efficient. This offers a simple test that can be used in practice to
identify non-efficient IS measures.

In general, IBQ might not be left-differentiable at its minimum or be convex, contrary to λBQ
which is convex by definition. This is why we need to state the steepness condition using the
concept of subdifferentials. For instance, if IBQ diverges for w < w∗, as illustrated in Fig. 2b, then

we have efficiency, since (−∞, 0] ⊂ ∂IBQ (w∗), so that −2 ∈ ∂IBQ (w∗). This case arises when Wn

has no possible values below w∗ and so Wn ≥ w∗. On the other hand, if IBQ is not convex, then
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we have efficiency if IBQ has a supporting line at w∗ with slope smaller than or equal to −2, as
shown in Fig. 2c. This follows from the interpretation of subdifferentials, explained in Appendix A.
Equivalently, we have efficiency if the left-derivative of the convex envelope of IBQ at w∗ is smaller
than or equal to −2. This case will be illustrated in the next section by revisiting the Gaussian
sample mean and nonconvex set B studied before.

With this geometric interpretation of efficiency, it is now clear that the likelihood factor Ln
does not have to be a deterministic function of Mn or become so in the limit n→∞ to efficiently
estimate Pn(Mn ∈ B), as often stated in studies of IS. The likelihood can fluctuate jointly with Mn

so long as the fluctuations of the action Wn conditioned on Mn ∈ B are sufficiently suppressed below
the typical value Wn = w∗, that is, so long as IBQ (w) is steep enough below w∗. The right steepness

of IBQ is not constrained in any way because values Wn > w∗ are exponentially suppressed in the
integral (70), which determines the efficiency of Qn. Only values Wn < w∗ can affect the efficiency,
as Ln is then exponentially larger than the typical value L∗n = e−nw

∗
. In other words, accumulating

likelihood factors that are exponentially smaller than L∗n does not influence the efficiency of IS, but
accumulating factors that are exponentially larger than L∗n too frequently does.

To close this section, we note that if there is a finite w such that −2 − δ ∈ ∂IBQ (w) for some
δ > 0, then under Assumption 3(b) the limit (33) in our Assumption 2 must be finite. As a result,
we can rephrase that assumption in a more geometric and practical way as follows:

Assumption 2′. IBQ (w) must be coercive enough so that it has a point whose subdifferential contains
a value strictly smaller than −2.

If IBQ (w) is a convex and differentiable function, then this amounts to saying that there is a
point whose slope is strictly smaller than −2.

IV. EXAMPLES

We illustrate in this section our results with simple examples to show how IBQ (w) is calculated in
practice and how its steepness determines the efficiency of IS estimators. We begin by considering
the exponential tilting as a general change of measure, and then revisit the Gaussian and exponential
i.i.d. sample means, introduced in Sec. II, as particular cases of that change of measure for which
IBQ (w) can be computed exactly. We also construct a variation of the exponential sample mean that
shows that an IS estimator can be asymptotically efficient without having the exponential tilting
form. This is an important result of this section.

We close the section with two examples related to Markov chains and stochastic differential
equations to illustrate the generality of our formalism, to explain how the likelihood factor is defined
for Markov processes, and to point out minor changes of notation when dealing with continuous-time
processes. These examples should serve as a template to study the large deviations of more physical
systems modelled by Markov processes in the context, for example, of nonequilibrium systems
driven in steady-states and stochastic thermodynamics.

A. Exponential tilting

We consider for simplicity the case where Mn ∈ R, since our goal is not to prove the efficiency of
the exponential tilting in the most general setting but to illustrate our formalism based on IBQ (w).
The change of measure that we consider, as already defined in (21), is thus

Qn(dXn) =
enkMnPn(dXn)

EP [enkMn ]
, (74)
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where Pn(dXn) is, as before, our prior measure or model of Xn and k is now a real parameter.
The use of this exponential change of measure to study the large deviations of Mn requires, as

mentioned in Sec. II, that the SCGF λP (k) of Mn, as defined in (23), exists and is differentiable in
k. In this case, it follows from the Gärtner-Ellis theorem [6, Thm. 2.3.6] that IP (m) is a strictly
convex function, given by the Legendre–Fenchel transform of λP (k), which means that it has a
unique minimum and zero, denoted by m̄, corresponding to the typical value of Mn under Pn. Thus,
IP (m̄) = 0, which translates by Legendre duality into λ′P (0) = m̄.

In most applications, IP (m) is found to be a smooth (differentiable) function of m, so we will
assume this property in this section to simplify the analysis. The particular form of the exponential
change of measure then implies (see [68, Thm. 2.4]) that

IQ(m) = IP (m)− km+ λP (k), (75)

so IQ(m) is smooth by assumption. It is also a good rate function, since IP (m) itself, as obtained
from the Gärtner–Ellis theorem, is a good rate function.

With these results, we now apply our formalism by noting that the action Wn of the exponential
tilting is

Wn = kMn − cn(k), (76)

where

cn(k) =
1

n
logEP [enkMn ]. (77)

This is a deterministic function of Mn that we write as Wn = fn(Mn), which implies that JQ(m,w)
is defined only on the line w = fn(m) and is equal to IQ(m) on that line. The appearance of n
in this contraction appears a priori to be a problem; however, we show in Appendix B that, since
cn(k)→ λP (k) and JQ is a good rate function, fn can actually be replaced by the limit function
f(m) = km− c(k), where c(k) = λP (k), consistently with (75) and (41). As a result,

IBQ (w) =

{
inf
m∈B̄

IQ(m) w = f(m)

∞ otherwise.
(78)

Having found IBQ , we now consider the rare event Mn ∈ B ≡ [b,∞) = B̄ with b > m̄. To make
this event typical under Qn, we fix k so that the typical value m∗ of Mn “hits” the boundary b.
This is achieved by setting k > 0 such that λ′P (k) = b, leading to IQ(b) = 0 [55] and

inf
w
JQ(b, w) = JQ(b, f(b)) = IQ(b) = 0. (79)

This shows that we have a unique, typical pair (m∗, w∗) = (b, f(b)) under Qn. Since m∗ = b ∈ B̄,
we then have IBQ (w∗) = 0 by Lemma 3, so the first condition for efficiency in Theorem 4 is met.

To check the second condition, note that, since we have k > 0 to achieve m∗ = b > m̄, JQ(m,w)
is not finite on B when w < w∗, as shown in Fig. 3a, so that IBQ (w) = ∞ for all w < w∗. Thus,

IBQ is infinitely steep below w∗, which is sufficient, as mentioned before, to conclude that Qn is

asymptotically efficient. Above w∗, we see instead that JQ(m,w) is finite on B, so IBQ (w) is also

finite for w > w∗. In fact, since JQ(m,w) has a unique zero at (m∗, w∗), we have 0 < IBQ (w) <∞
for w > w∗, showing overall that IBQ (w) has the shape shown in Fig. 2b, associated once again with
a Qn that is asymptotically efficient.

The same argument can be used to show that Qn is not asymptotically efficient if m∗ is chosen
inside B, that is, such that m∗ > b. In this case, IBQ (w) still has a zero at w∗ = f(m∗), but it does
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FIG. 3. Line w = f(m) in the (m,w) plane on which JQ(m,w) is defined for the exponential change of
measure. (a) Asymptotically efficient Qn for which the typical value m∗ of Mn is chosen on the boundary of
B. (b) Non-efficient Qn associated with m∗ in the interior of B.

not diverge on the left of w∗ because the line w = f(m) on which JQ(m,w) is finite does not “go
out” of B when w goes below w∗; see Fig. 3b. Since IQ(m) is assumed to be smooth, IBQ (w) must
therefore have a smooth minimum in the vicinity of w∗ with zero derivative as in (73), implying
that Qn is not asymptotically efficient.

Of course, the steepness condition could be satisfied in this case if IQ(m) had a steep-enough
corner at m∗, but this would violate our assumption that IQ(m) is smooth, which is what is
observed again in many applications.3 With this assumption, the exponential tilting is therefore
asymptotically efficient, as proved, if it “hits” B on its boundary b rather than in the interior of B.
This can be generalized to Mn ∈ RD by requiring that Qn “hit” the dominating point of B, which
is usually on the boundary of B; see [43] for details.

All these results apply obviously if we change the rare event to B = (−∞, b] with b < m̄, in which
case k < 0. The efficiency of Qn is also direct if we consider the infinitesimal set B = [b, b+ dm].
Then k must be chosen such that λ′P (k) = b to achieve m∗ = b, as mentioned before, which
fixes w∗ = f(b) as the only action for which IBQ (w) is finite. Thus, IBQ (w) = 0 for w = w∗ and
∞ otherwise, which is obviously asymptotically efficient. This is a common case considered in
physics, where the focus is usually on computing the rate function IP (m) rather than the probability
Pn(Mn ∈ B). In this case, one performs many simulations with different values of k to estimate the
probability of small, contiguous “windows” [b, b+ dm], which are converted with the large deviation
limit (3) into points of IP (m) [70].

Such a use of the exponential tilting in simulations is asymptotically efficient, as just shown, if
IP (m) is a convex differentiable function and B is a convex set. We have already seen in Sec. II that
the exponential tilting can be non-efficient if B is nonconvex. By revisiting this example below, we
will see that the problem in this case comes from the steepness condition controlling the asymptotic
variance. On the other hand, the exponential tilting can also be non-efficient if IP (m) is nonconvex.
The problem in this case is not the steepness of IBQ , and so the variance, but the fact that not all
values of Mn can be made typical by varying the tilting parameter k. This is related in physics to
the nonequivalence of statistical ensembles; see [48] for more details.

3 A corner in IP (m) or IQ(m) signals physically a dynamical phase transition in the fluctuations of Mn. Here, we
assume, for simplicity, that no such phase transition occurs. Note that a corner in the function IBQ (w) is not related
to a dynamical phase transition, since this function is obtained by conditioning. It can have a corner, as the
example of the exponential tilting shows, regardless of whether IP (m) or IQ(m) is smooth.
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B. Gaussian sample mean

We now revisit the Gaussian sample mean studied in Sec. II to show how the efficiency of Qn can
be ascertained by calculating IBQ explicitly using standard techniques from large deviation theory.
This example also provides a further illustration of the exponential change of measure.

The setting is the same as in Example 1: Pn is the product measure N (0, 1)⊗n of n i.i.d.
standard normal random variables, Mn is their sample mean, and we look for the probability that
pn = Pn(Mn ≥ 1), so that B = [1,∞), leading to the rate exponent shown in (26).

We consider as the change of measure the product measure Qn = N (µ, σ2)⊗n associated with n
i.i.d. Gaussian random variables with mean µ ∈ R and variance σ2 > 0. The action for this change
of measure, which is more general than the one considered in Example 1, can be expressed as

Wn =
µ

σ2
Mn +

(
σ2 − 1

2σ2

)
Cn −

µ2

2σ2
− log σ, (80)

where Mn is the sample mean and

Cn =
1

n

n∑
i=1

X2
i (81)

is the sample second moment. Since both Mn and Cn involve i.i.d. random variables, we can use
Cramér’s theorem to find their joint rate function KQ(m, c) as the Legendre–Fenchel transform of
the joint SCGF with respect to Qn:

λQ(k, γ) = logEQ[ekX+γX2
]. (82)

For X ∼ Q = N (µ, σ2), we find

λQ(k, γ) =
k2σ2/2 + µ(γµ+ k)

1− 2γσ2
− 1

2
log
(
1− 2γσ2

)
(83)

for 1− 2γσ2 > 0. Accordingly,

KQ(m, c) = sup
k,γ
{km+ γc− λQ(k, γ)} =

σ2 log
(

σ2

c−m2

)
+ c+ µ2 − 2µm− σ2

2σ2
, (84)

which is defined for m2 < c by the Cauchy-Schwarz inequality. Changing variables from (Mn, Cn)
to (Mn,Wn), we then deduce

JQ(m,w) = KQ(m, c(m,w)), (85)

where

c(m,w) =
2wσ2 − 2mµ+ µ2 + σ2 log σ2

σ2 − 1
. (86)

This holds if σ 6= 1. If σ = 1, then Wn is only a function of Mn,

Wn = f(Mn) = µMn −
µ2

2
, (87)

similarly to the exponential change of measure and, therefore,

JQ(m,w) =

{
(m− µ)2/2 w = f(m)
∞ otherwise,

(88)
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FIG. 4. IBQ (w) for the Gaussian sample mean for (a) µ = −1 and σ = 1 and (b) µ = 2 and σ = 1. Note that

only the finite part of IBQ (w) is shown.

given that IQ(m) = (m− µ)2/2.
The efficiency of Qn is determined by computing IBQ (w) from these explicit rate functions for

various values of µ and σ. We begin with σ = 1 and consider three cases for µ, noting that m∗ = µ
and w∗ = f(m∗) = µ2/2:

• µ < 1: Qn is not asymptotically efficient in this case simply because m∗ /∈ B̄. This is
confirmed by calculating IBQ (w) from the contraction (53). The result is shown for µ = −1 in
Fig. 4a: it does not have a zero, so Qn is indeed not asymptotically efficient.

• µ ≥ 1: The calculation of IBQ (w) gives in this case

IBQ (w) =

{
(w/µ− µ/2)2/2 w ≥ µ− µ2/2
∞ otherwise.

(89)

For µ = 1, we have efficiency, since IBQ (w) has its zero at w∗ = 1/2, implying m∗ ∈ B̄, and
diverges left of w∗, so it is infinitely steep, as in Fig. 2b. This is also confirmed by the fact
that Qn is the exponential change of measure with m∗ = 1 at the boundary of B. For µ > 1,
IBQ (w) also has its zero at w∗ but IBQ (w∗−)′ = 0, so it is not steep left of w∗, as shown in
Fig. 4b.

These results show overall that Qn is asymptotically efficient for σ2 = 1 if and only if µ = 1.
For σ2 6= 1, the contraction of JQ(m,w) leading to IBQ (w) is more complicated to solve, since the

minimization on m ∈ B is further constrained by m2 < c in the transformation (85). This results
in a tedious constrained minimization problem, which can easily be solved numerically, however, to
plot IBQ (w) for any µ and σ2 6= 1. Two representative solutions are shown in Fig. 5 and confirm our
expectations from Theorem 4. On the one hand, if µ < 1, then Qn is not asymptotically efficient
since m∗ /∈ B̄, as reflected by the fact that IBQ (w) has no zero (Fig. 5a). On the other hand, if

µ ≥ 1, then m∗ ∈ B̄, so IBQ (w) has a zero, but the rate function is not steep left of that zero, so Qn
is still not asymptotically efficient (Fig. 5b). This applies whether µ = 1 or µ > 1, which means in
the end that Qn is not asymptotically efficient when σ2 6= 1.

C. Nonconvex B

We can use the results of the previous section to understand the efficiency of Qn in Example 3,
presented earlier to show that the exponential tilting can be non-efficient when B is nonconvex. The
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FIG. 5. IBQ (w) for the Gaussian sample mean for (a) µ = 0 and σ = 2 and (b) µ = 1 and σ = 2. Note that

only the finite part of IBQ (w) is shown.

setting is the same as in the previous section, except that B is now chosen to be B = (−∞,−b]∪[1,∞)
with b > 1. We also consider µ = 1 and σ2 = 1, which leads to

IBQ (w) =

{
(w − 1/2)2/2 w ≥ 1/2 or w ≤ −b− 1/2
∞ otherwise.

(90)

This function is plotted in Fig. 6. It has one zero at w∗ = 1/2, confirming that m∗ = 1 ∈ B̄ and a
supporting line joining the two extremal points of IBQ (w) at w = −b− 1/2 and w = w∗ = 1/2, as
shown in the figure, whose slope is −(b+ 1)/2. This is the supporting line with smallest slope, so
−2 ∈ ∂IBQ (w∗) if and only if b ≥ 3, confirming the result of [41] announced in Example 3.

We can generalize this result by calculating IBQ (w) for µ 6= 1 to conclude that there is no other
efficient parameters and, thus, that Qn is actually efficient if and only if µ = 1 and b ≥ 3. This
follows by considering three cases:

• µ ≤ −b. Then

IBQ (w) =

{
(w/µ− µ/2)2/2 w ≤ µ− µ2/2 or w ≥ −µb− µ2/2
∞ otherwise

(91)

From this result, it can be checked that IBQ (w∗−)′ = 0 if µ < −b, so Qn is not asymptotically

efficient. Then, if µ = −b, one has −2 ∈ ∂IBQ (w∗) if and only if 0 < b ≤ 1/3, which contradicts
our assumption that b > 1.

• −b < µ < 1: Then IBQ (w) does not have a zero, as expected from the fact that m∗ /∈ B̄, so
Qn is not asymptotically efficient.

• µ > 1: Then

IBQ (w) =

{
(w/µ− µ/2)2/2 w ≥ µ− µ2/2 or w ≤ −µb− µ2/2
∞ otherwise

(92)

In this case IBQ (w∗) = 0 at w∗ = µ2/2, but IBQ (w∗−)′ = 0.
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FIG. 6. Rate function IBQ (w) for the Gaussian sample mean and nonconvex set B.

D. Partial exponential tilting

It is clear from the form of the exponential measure (21) that an i.i.d. measure remains i.i.d.
when tilted by an additive functional Mn, which explains why such a change of measure is almost
always considered when dealing with i.i.d. sample means. In principle, other changes of measure
that are not independent, not identically distributed or both could be considered and proved efficient
within the formalism developed here.

As a simple example, it can be checked for the Gaussian sample mean that changing all but one
of the random variables is still asymptotically efficient, even though the resulting Qn is only a partial
exponential tilting (only n− 1 random variables are tilted). This arises because the action of the
partial exponential tilting differs from the action of the full exponential tilting by a sub-extensive
term in n that does not influence the large deviations of the action at the scale (or speed) n.

Surprisingly, this argument cannot be generalized to all i.i.d. sample means and, in particular,
not to the sample mean of exponential random variables considered in Example 2. In this case, we
have seen that the product measure Qn = E(θ)⊗n of exponentials with parameter θ, which changes
the mean of all the random variables from 1 to 1/θ, is asymptotically efficient if θ = 1/b. This can
be checked by calculating IBQ (w) explicitly, following the calculations of the previous sections or
from the fact that Qn is the exponential tilting.

The surprising result comes if we change the first n− 1 random variables from E(1) to E(θ), but
keep the last one as Xn ∼ E(1). The action then is

Wn = (1− θ)n− 1

n
Mn−1 +

n− 1

n
log θ = (1− θ)cnMn−1 + cn log θ, (93)

where Mn−1 is the sample mean of the first (n− 1) random variables and cn = (n− 1)/n. Similarly,
we can write

Mn =
n− 1

n
Mn−1 +

Xn

n
= cnMn−1 + Tn, (94)

defining the new random variable Tn = Xn/n, which is independent of Mn−1.
From these expressions, we find the joint rate function JQ(m,w) of Mn and Wn by noting that

Mn−1 ∼ Γ(n− 1, (n− 1)θ), so this random variable satisfies the LDP with rate function

IΓ(y) = θy − 1− log(θy), (95)

for y ≥ 0, whereas Tn ∼ E(n), so it satisfies the LDP with rate function

IE(t) = t (96)
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also for t ≥ 0. Both are good rate functions. From (93), (94) and the fact that cn → 1, we can then
use the contraction principle presented in Appendix B to express JQ(m,w) as

JQ(m,w) = inf
w=(1−θ)y+log θ

m=y+t
y,t≥0

IΓ(y) + IE(t). (97)

In the latter, we have m↔Mn ≥ 0, w ↔ Wn, y ↔Mn−1 ≥ 0, and t↔ Tn ≥ 0. The solutions to
the constraints are

y =
w − log θ

1− θ ≥ 0 and t = m− w − log θ

1− θ ≥ 0, (98)

leading to JQ(m,w) =∞ if one of these constraints is not satisfied and

JQ(m,w) = m− w − log
w − log θ

1− θ − 1 (99)

otherwise. This rate function is good and has a single zero at m∗ = 1/θ and

w∗ =
1− θ
θ

+ log θ. (100)

At this point, we determine the asymptotic efficiency of Qn, as before, by computing IBQ (w) for
different cases for θ:

• θ > 1/b: In this case, we do not even need to calculate IBQ (w): m∗ = 1/θ ≤ 1 < b, so that

m∗ /∈ B̄, implying that Qn is not asymptotically efficient.

• 0 < θ < 1/b: A direct calculation based on the fact that the map m 7→ JQ(m,w) is increasing
gives in this case

IBQ (w) =
w − log θ

1− θ − w − log
w − log θ

1− θ − 1 (101)

for all w ∈ [(1− θ)b+ log θ, w∗]. From this result, we find IBQ (w∗−)′ = 0, so that Qn is once
again not asymptotically efficient.

• θ = 1/b: A similar calculation as before now yields

IBQ (w) = b− w − log
w − log θ

1− θ − 1 = b− w − log
w + log b

1− 1/b
− 1, (102)

for all w ∈ (log θ, w∗]. As a result,

IBQ (w∗−)′ = −1− 1

b− 1
, (103)

which is smaller than −2 if and only if b ≤ 2.

The conclusion is that Qn is asymptotically efficiency if and only if θ = 1/b and b ≤ 2, so the
partial exponential tilting does not have the same efficiency as the full exponential tilting.

This result is special to the exponential distribution because Xn/n in this case has large deviations
at the same scale as Mn and Wn, and so affects both random variables in the contraction (97). By
contrast, if we choose Xn ∼ N (µ, σ2), then it can be checked that Xn/n satisfies the LDP at the
scale n2 so adding or removing a Gaussian random variable from a sample mean has no effect on
its large deviations. The same applies to sample means of bounded random variables and, more
generally, random variables whose distribution decays faster than exponentially.
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E. Markov chains

We move away from i.i.d. models to consider discrete-time Markov chains evolving on a set
Ω. We assume, for simplicity, that Ω is finite and that the transition kernel p(x, y) = P (Xi+1 =
y|Xi = x) is homogeneous and defines an ergodic Markov chain. Starting with an initial distribution
ρ(x) = P (X1 = x), the probability model is then expressed as

Pn(X1, . . . , Xn) = ρ(X1)p(X1, X2) · · · p(Xn−1, Xn) (104)

for all Xn = (X1, . . . , Xn) ∈ Ωn.
The observable Mn is still a function of the configuration Xn, now interpreted as a trajectory in

discrete time, from which we define the rare event probability pn = Pn(Mn ∈ B). We assume as
before that Mn satisfies the LDP with respect to Pn with good rate function IP and consider a
change of model Qn to sample pn with the IS estimator (13). The choice of Qn depends, as always,
on the observable considered. For additive functionals having the general form

Mn =
1

n

n−1∑
i=1

g(Xi, Xi+1), (105)

Qn is usually chosen to be another ergodic Markov chain with transition kernel q(x, y), absolutely
continuous with respect to p(x, y), so that

Qn(X1, . . . , Xn) = ρ(X1)q(X1, X2) · · · q(Xn−1, Xn), (106)

using the same initial distribution. In this case, the action simply is

Wn =
1

n

n−1∑
i=1

log
q(Xi, Xi+1)

p(Xi, Xi+1)
, (107)

so both Mn and Wn are additive functionals of the Markov chain.
With this property, the joint large deviations of Mn and Wn can be obtained by standard

techniques from large deviation theory (see, e.g., [6, Sec. 3.1]). Define the joint SCGF of Mn and
Wn with respect to Qn as

λQ(k, γ) = lim
n→∞

1

n
logEQ[enkMn+nγWn ]. (108)

It is known that this function is given by the logarithm of the principal eigenvalue ζQ(k, γ) of the
so-called tilted transition matrix, defined by

qk,γ(x, y) = q(x, y)ekg(x,y)+γh(x,y), (109)

where h(x, y) = log(q(x, y)/p(x, y)). Thus,

λQ(k, γ) = log ζQ(k, γ). (110)

From this result, the rate JQ(m,w) is then found from the Gärtner–Ellis theorem by taking the
Legendre–Fenchel transform of λQ(k, γ), similarly to the Gaussian sample mean example. From
there, we find IBQ (w), as before, by minimising JQ(m,w) on m ∈ B and use, finally, this function
to determine the efficiency of Qn. These steps can be implemented analytically for small Markov
chains with a few states, while larger chains can be dealt with numerically using standard eigenvalue
packages.
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In most applications, Qn is chosen to be the exponential tilting, which for a Markov chain and
additive Mn is known to be another Markov chain with transition kernel

q(x, y) =
ekg(x,y)rk(y)

rk(x)ζP (k)
p(x, y), (111)

where ζP (k) is the dominant eigenvalue of the tilted matrix

pk(x, y) = p(x, y)ekg(x,y), (112)

and rk is the associated (right) eigenvector. In this case, it easy to verify that Wn is given by (76)
modulo boundary terms involving rk(X1) and rk(Xn), which can be neglected as they do not play
a role in the large deviations of Wn when Ω is finite.

The Markov kernel (111) has been discussed in many contexts, including queuing theory [40],
simulations [41], and statistical physics [71], and can be seen as a generalization of Doob’s h-
transform arising in “bridge-like” conditionings of Brownian motion and other Markov processes;
see [71, Sec. 4.2] for details.

As a simple application, let us consider the symmetric binary Markov chain with Xi ∈ {0, 1}
and transition matrix

p =

(
1− α α
α 1− α

)
, (113)

where α ∈ (0, 1). Considering the observable to be the sample mean

Mn =
1

n

n∑
i=1

Xi, (114)

which gives the fraction of 1’s in Xn, we can formulate two different changes of process that are
asymptotically efficient. The first is the exponential tilting in (111), for which ζP (k) and rk can be
computed analytically as the principal eigenvalue and eigenvector of

pk =

(
1− α α
αek (1− α)ek

)
, (115)

obtained from (112) using g(x, y) = x. The asymptotic efficiency of the resulting Markov chain is
determined by the previous results on the exponential change of measure (see Section IV A), and
follows again from the fact that Wn is a function of Mn. Details can be found in [44, Thm. 3].

Surprisingly, the exponential tilting is not the only modified Markov chain for which Wn is a
function of Mn. We can also take the transpose of the 2× 2 matrix pk above, which has the same
principal eigenvalue as pk, and normalize the rows to obtain the transition matrix

q =

(
1−α
F0

αek

F0

α
F1

(1−α)ek

F1

)
, (116)

where F0 = 1− α+ αek and F1 = α+ (1− α)ek. It can be checked that the action induced by this
transition matrix, which is obviously different from (111), is

Wn = kMn − (1−Mn) logF0 −Mn logF1, (117)

modulo unimportant boundary terms, so that Wn is an affine function of Mn. Consequently, we
have found another example of process that is potentially asymptotically efficient and yet is not the
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exponential tilting. The difference is that the value of k in (116) fixing the typical value Mn = b
under Qn is not specified by the relation λ′P (k) = b, which is special to the exponential tilting. This
is not important for simulations, as we only need in practice a parameter that can be varied to fix
any typical value of Mn, whatever the relation between the two.

In principle, other efficient changes of process could be constructed using, for example, higher-
order Markov chains or even non-Markovian processes whose measure Qn(X1, . . . , Xn) does not
factorize as a product of transition probabilities. Very little, unfortunately, is known about non-
Markovian processes and their large deviations [72]. The main reason for considering the exponential
tilting is that it is known to be a Markov chain when the underlying measure Pn is Markovian and
the observable Mn is additive in time [71, 73]. If one considers, for instance, the square of a sample
mean as the observable Mn, then the exponential tilting is not Markovian.

F. Diffusion processes

The application of our results to Markov processes evolving in continuous time follows the
examples above with minor changes of notations and techniques developed in large deviation theory
to deal with this class of processes. For this reason, we do not cover this class in details, but only
indicate the main changes involved, focusing as a specific example on diffusion processes (Xt)t≥0 in
R, described by the following stochastic differential equation (SDE):

dXt = F (Xt)dt+ σ(Xt)dBt. (118)

Here, Bt is a Brownian motion in R, while F and σ are two real functions of Xt, known as the drift
and the noise amplitude, respectively. Many different observables can be defined in the context of
SDEs, depending on the application and large deviation limit (low-noise or long-time) considered.
We can consider, for example,

MT =
1

T

∫ T

0
f(Xt)dt (119)

as a generalisation of the sample means studied before, which leads us to the problem of estimating
the probability PT (MT ∈ B) in the limit T → ∞, where PT is the probability measure of the
process Xt over the time interval [0, T ] induced by the SDE (118).

Contrary to discrete-time Markov chains, we cannot write down any explicit expression for PT ;
however, there is an explicit expression for the Radon–Nikodym derivative associated with a change
of process if we consider that process to result from a change of drift. That is to say, change the
drift F in (118) to obtain a new SDE

dXt = G(Xt)dt+ σ(Xt)dBt, (120)

which defines a new law for (Xt)
T
t=0 that we denote by QT . Then the action of this process, as

compared to the original one, is obtained from Girsanov’s theorem [74, Sec. 6.4], which states that

LT =
dPT
dQT

= exp

(∫ T

0
c(Xt)dBt −

1

2
c(Xt)

2dt

)
(121)

where

c(x) =
F (x)−G(x)

σ(x)
. (122)
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Consequently,

WT = − 1

T
log

dPT
dQT

=
1

2T

∫ T

0
c(Xt)

2dt− 1

T

∫ T

0
c(Xt)dBt. (123)

Both MT and WT are functions of the trajectory (Xt)
T
t=0 with law QT over [0, T ].

From this result, the joint large deviations of MT and WT with respect to QT can be obtained,
similarly to Markov chains, by solving a spectral problem in which the transition matrix is replaced
by the infinitesimal generator of Xt [53]. As for Markov chains, the notion of exponential change of
measure can also be defined for continuous-time processes and involves spectral elements related to
the large deviations of MT with respect to PT . This is fully explained in [71].

As a simple illustration of the exponential change of measure, consider the Ornstein–Uhlenbeck
process in R, defined by

dXt = −γXtdt+ σdBt, (124)

where γ > 0 and σ > 0. Moreover, let us take

MT =
1

T

∫ T

0
Xtdt (125)

as the observable, which represents the area of Xt per unit time. In this case, it can be shown (see
[71, Sec. 6] for the full calculation) that the exponential change of measure associated with Xt,
corresponding to the process version of (21), is another SDE with drift G(x) = −γ(x −m) and
noise amplitude σ. For this new process, the typical value of MT is clearly m, so the process is
asymptotically efficient for estimating the large deviation probability of MT ∈ B with B = [m,∞),
B = (−∞,m] or B = [m,m+ dm]. In all cases, we find from (123) that the typical value of WT

under QT is

w∗ =
γ2m2

2σ2
, (126)

which is the known rate function IP (m) of MT with respect to PT .
This result is a diffusion analog of the Gaussian sample mean studied before, for which we

found that the exponential tilting is another Gaussian with translated mean. Here, we see that a
Gaussian process tilted with the sample mean is a Gaussian process having the same variance but
a different mean. It can be checked that, as for the i.i.d. Gaussian sample mean, this is the only
efficient change of measure in the class of Gaussian processes with linear drift. If we change the
friction coefficient γ to another value, in addition to adding a constant to change the mean, then
the process is no longer asymptotically efficient for the same reason that changing the variance in
the Gaussian sample mean is not efficient. The calculations for the SDE are more complicated, but
the results are similar.

Applications of IS for diffusions have been studied in statistical physics [62] as well as more
applied areas such as finance and queueing theory, focusing invariably on the exponential change of
measure [40]. In future works, it would be interesting to apply our formalism to study other IS
measures for Markov processes, such as the one proposed in [63–65], to determine their efficiency
and to see, in the end, if there is any gain from not using the exponential tilting, which is difficult
to construct in practice, since it involves the solution of a spectral problem whose knowledge is
equivalent to solving the large deviation problem [75]. Another important problem is to determine
whether our formalism can be applied to study the efficiency of IS in the low-noise limit of SDEs,
which is extensively used in physics, chemistry and engineering to study rare transition pathways
[49–52]. The IS method itself can be applied in this limit (see, e.g., [61]), but it is not clear to what
extent our assumptions hold.
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FIG. 7. (a) Function f(x) with a unique supporting line at the point a, no supporting line at the point b, and
many supporting lines at the point c, leading to ∂f(a) = {f ′(a)}, ∂f(b) = ∅, and ∂f(c) = [f ′(c−), f ′(c+)].
(b) Function f(x) and its convex envelope f∗∗(x).

Appendix A: Convex analysis

We collect in this section basic results of convex analysis used in the paper in relation to the
rate function IBQ (w), defined in (53), and its Legendre–Fenchel transform λBQ(k), defined in (60).
Both are functions of a single real variable, so we state the necessary results only for this simple
case. We assume further that all convex functions are proper closed convex functions. For more
general results and proofs, we refer to [76–78].

1. Subdifferentials

Let f : R→ R̄ be a real function taking values in the set of extended reals R̄. The subdifferential
∂f(x) of f at the point x is the set of all values k ∈ R such that

f(y) ≥ f(x) + k(y − x) (A1)

for all y ∈ R [76, Sec. 23]. Put differently, and as illustrated in Fig. 7a, ∂f(x) is the set of slopes of
all possible supporting lines of f at x. If f has not supporting line at x, then ∂f(x) = ∅. We will
see next that this may happen when f is nonconvex.

For convex functions, subdifferentials exist everywhere in the domain of f(x), except possibly at
boundary points [76, Thm. 23.4]. For this class of functions, we have in fact ∂f(x) = [f ′(x−), f ′(x+)],
where f ′(x−) is the left-derivative and f ′(x+) the right-derivative [76, Thm. 24.3]. If these are
equal, f is differentiable at x so that ∂f(x) = {f ′(x)} [76, Thm. 25.1]. In all cases, ∂f(x) is a closed
convex interval [76, p. 215].

2. Legendre–Fenchel transforms

The Legendre–Fenchel transform of f is the real function defined by

f∗(k) = sup
x∈R
{kx− f(x)}, k ∈ R. (A2)

This function is also called the dual or conjugate of f and has the property of being convex [76,
Thm. 12.2]. The double dual or biconjugate of f is the Legendre–Fenchel of f∗:

f∗∗(x) = sup
k∈R
{kx− f∗(k)}. (A3)
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This is also a convex function, corresponding to the convex envelope or convex hull of f [77,
Thm. 11.1], as illustrated in Fig. 7b.

With this geometric interpretation of f∗∗, it is natural to say that x is a convex point of f if
f(x) = f∗∗(x) and a nonconvex point of f if f(x) 6= f∗∗(x). An important result proved in [68,
Lem. 4.1] is that the set of convex points coincides with the set of points admitting supporting lines,
except possibly at boundary points. With this proviso, we then have f(x) = f∗∗(x) if and only if
∂f(x) 6= ∅. This is illustrated in Fig. 7a. The same result also implies that, if f(x) = f∗∗(x), then
∂f(x) = ∂f∗∗(x).

In this paper, we deal with rate functions, which always have at least one global minimum.
Denoting one such minimizer by x∗, we then have 0 ∈ ∂f(x∗). Hence, x∗ is a convex point such
that f(x∗) = f∗∗(x∗) and ∂f(x∗) = ∂f∗∗(x∗).

3. Duality

The proof of our main result, Theorem 4, is based on another important result about convex
functions stating (see [76, Cor. 23.5.1] or [77, Prop. 11.3]) that

k ∈ ∂f(x) ⇐⇒ x ∈ ∂f∗(k). (A4)

This property expresses a form of duality or conjugacy between the slopes of f and the slopes of f∗,
illustrated in Fig. 8a. From this result, it is easy to see that convex, affine parts of f correspond to
cusps of f∗, and vice versa, as shown in Fig. 8b.

The duality in (A4) also holds for f∗∗, since this function is convex and is the Legendre–Fenchel
transform of f∗. Therefore,

k ∈ ∂f∗∗(x) ⇐⇒ x ∈ ∂f∗(k). (A5)

This result implies that f∗ has a cusp also when f is nonconvex, as shown in Fig. 8, since f∗∗ is
affine where f is nonconvex. Thus, f∗ has a cusp either if f is affine or f is nonconvex.

Since subdifferentials of f and f∗∗ match at convex points, it is also clear from (A5) that the
first duality (A4) holds locally at these points even if f is not globally convex. We use this result in
this paper when dealing with the subdifferential of IBQ at its global minimum w∗, which is a convex
point, as mentioned. In this case, the first duality result can be applied at that point even though
IBQ might be nonconvex at other points, as in Fig. 2c or Fig. 6.

Appendix B: Contraction principle

The contraction principle is an important result in large deviation theory relating the rate
functions of random variables that can be mapped to one another. Let (An)n>0 be a sequence
of random variables satisfying the LDP with good rate function IA and let (Bn)n>0 be another
sequence such that Bn = f(An) with f continuous. Then (Bn)n>0 also satisfies the LDP with good
rate function

IB(b) = inf
a:f(a)=b

IA(a). (B1)

See [6, Thm. 4.2.1] for details.
Instead of considering a single continuous function f as the contraction, one can also consider

a sequence (fn)n>0 of continuous functions. In this case, the contraction principle also applies
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f (x)

x

slope = k
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f ∗(k)

k

slope = x

∗

FIG. 8. (a) Illustration of the duality between the slopes of f(x) and the slopes of its Legendre–Fenchel
transform f∗(k). (b) Functions with affine or nonconvex parts give rise to a Legendre–Fenchel transform
having a cusp.

provided that fn is “close enough” to f with respect to Pn. To be more precise, let A denote the
space of An and define

Γn,δ = {a ∈ A : ‖fn(a)− f(a)‖ > δ} (B2)

as the set of points for which fn differs from f by at least δ > 0 with respect to any metric ‖ · ‖ on
B, the space of Bn. Then, according to [6, Cor. 4.2.21], Bn = fn(An) satisfies the LDP with good
rate function IB given by (B1) with f as the contraction if, for all δ > 0,

lim
n→∞

1

n
logPn(Γn,δ) = −∞. (B3)

This condition only means that the probability that fn differs from f decreases faster than
exponentially with n in the large deviation limit. This is met in most cases when fn is smooth and
IA is a good rate function.

Two particular applications of this result are considered in the paper.

Example 4: Consider two real random variables An and Bn related by the simple rescaling
Bn = cnAn with cn → 1 as n→∞. Here, the limit function is the identity f(a) = a, so one expects
An and Bn to have the same rate function. This is verified by noting that, for every M > 0, there
exists n0 = n0(M, δ) such that for all n ≥ n0, one has Γn,δ ⊆ (−∞,−M ]∪ [M,∞). Therefore, from
the definition of the LDP, we obtain

lim sup
n→∞

1

n
logPn(Γn,δ) ≤ − inf

|a|≥M
IA(a). (B4)

But, since the rate function IA of An is good, it is coercive, so that

lim
|a|→∞

IA(a) =∞. (B5)

Therefore, the limit on the left-hand side of (B4) must give −∞, implying IB(b) = IA(b) from the
condition (B3).

Example 5: Let Bn = f(An) + cn with cn → c. Then the rate function of Bn is obtained from
(B1) with the contraction Bn = f(An) + c. This follows trivially because the distance between
f(a) + cn and f(a) + c is constant in a. Since cn → c, there must be an n beyond which |cn− c| < δ,
leading to Pn(Γn,δ) = 0, so the condition (B3) is also satisfied.
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These results also hold if Γn,δ is defined on a subset of A, since any restriction or constraint
on An can be included in the definition of fn. This arises, for example, when considering the
contraction of JQ(m,w) to IBQ (w), which involves the restriction m ∈ B.
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