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Abstract: For joint state-parameter estimation in discrete time stochastic multiple-
input multiple-output linear time varying systems, an efficient adaptive observer is
proposed in this paper. In the noise-free case, the global exponential convergence of the
adaptive observer is first established. It is then proved that, in the noise-corrupted
case, the state and parameter estimation errors remain bounded if the noises are
bounded, and moreover, the estimation errors converge in the mean to zero if the

noises have zero means.

Keywords: state and parameter estimation, discrete time system, linear time varying

system.

1. INTRODUCTION

The Luenberger observer and the Kalman filter
are well known solutions for state estimation in
linear dynamic systems, in continuous time as
well as in discrete time. For joint estimation of
state and unknown parameters, some results are
also known under the name of adaptive observer,
see, e.g., (Kreisselmeier, 1977; Bastin and Gevers,
1988; Marino and Tomei, 1995; Besangon, 2000;
Zhang, 2002). These adaptive observers have been
known in continuous time, and there are relatively
few results of similar nature for discrete time
systems. For single-input single-output (SISO)
time invariant discrete time systems, some results
can be found in (Landau, 1979; Ioannou and
Kokotovic, 1983).

An adaptive observer is proposed in this paper
for joint estimation of state and parameters in
discrete time stochastic multiple-input multiple-
output (MIMO) linear time varying systems. It is
a discrete time counterpart of the continuous time
algorithm presented in (Zhang, 2002). As seen in
the formulation of the discrete time persistent ex-
citation condition and in the convergence analysis,
this adaptation from continuous time to discrete
time is not trivial.

Let us consider discrete time stochastic MIMO
linear time varying systems of the form

Or+1 = Ok + ex (1a)
Tpy1 = Apxr + Brug + by +wy  (1b)
yr = Crxi + vg (lc)

where z, € R",ux € R, yx € R™ are respectively
the state, input, output of the system, Ay, By, C,
are known time varying matrices of appropriate
sizes, 0, € RP is an unknown parameter vector,
¥, € R® x RP is a matrix of known signals,
and ey, wy,vr are noises of appropriate dimen-
sions. The time varying matrices Ay, By, Ck, Ug
are all assumed bounded. The noises ey, wy, vk
are bounded and have zero mean. Note that no
whiteness of the noises is required in this paper.

The purpose of this paper is to design a recursive
algorithm for joint estimation of the state vector
zj and the parameter vector 8y from the input uy,
the output yi, the excitation ¥y and the system
matrices Ay, By, Ck.

The study of such systems is mainly motivated
by fault detection and isolation (FDI) for which
the term ¥,.0; models the faults to be detected
and isolated. See (Xu and Zhang, 2002) for some



related work in continuous time. Another motiva-
tion is adaptive control for which the term U0y
models some modeling uncertainties.

Remark 1. For the purpose of state and parame-
ter estimation, it will not make any extra difficulty
if, in (1b), the term Byuy, is replaced by any known
nonlinear functions of ug or of any other known
variables. Such nonlinearities have been consi-
dered (in the continuous time case) in (Bastin
and Gevers, 1988; Marino and Tomei, 1995). For
presentation clearness, let us assume the linear
inputs in this paper. (]

Remark 2. In the proposed method, no particu-
lar form of the matrices Ay and C} is required,
whereas classical methods typically assume some
(time invariant) canonical form of the two ma-
trices. This feature is particularly important for
time varying systems which would require some
non trivial transformation to achieve a canonical
form. d

A natural idea for joint state and parameter es-
timation is to apply the Kalman filter to the
extended system obtained by appending the un-
known parameters 6, into the state vector. Note
that, even in the case of constant matrices 4, B, C,
the extended system is typically time varying,
since the matrix ¥y should sufficiently excite the
system in order to estimate the unknown parame-
ters. In general, it is not easy to guarantee the
convergence of the Kalman filter for time varying
systems. Application of classical results requires
uniform complete observability (Jazwinski, 1970).
In practice, it is difficult to check the uniform
complete observability of the extended system.
Therefore, the analysis of the Kalman filter ap-
plied to the extended system is not a trivial prob-
lem. In this paper, instead of assuming the ob-
servability of the extended system, the proposed
method is essentially based on the observability of
the matrix pair (A, Ck) and on some persistent
excitation condition.

In section 2 we first establish the exponential
convergence of the proposed adaptive observer in
the noise-free case. The noise-corrupted case is
considered in section 3 where the boundedness
of state and parameter estimation errors and
their convergence in the mean to zero are proved.
Section 4 is devoted to a numerical example.
Finally, some concluding remarks are drawn in
section 5.

2. THE NOISE-FREE CASE

In this section, the proposed adaptive observer is
described and the exponential convergence to zero

of the estimation errors is established in the noise-
free case. It will be the basis for the proofs in the
noise-corrupted case presented in the next section.

Throughout the paper, the Euclidean norm is used
for vectors and the spectral norm?! is used for
matrices.

Definition 1. The linear time varying system

M1 = Fpmp

is said exponentially stable if there exist two
constants r > 0 and 0 < ¢ < 1 such that

k-1
1~
i=ko

for all & > kq. O

< rgkho

Clearly, this definition implies ||ng || < rg®=%||nk, |-

Assumption 1. The time varying matrices Ay and
C}. are such that there exists a bounded time
varying matrix Ky € R® x R™ so that the linear
time varying system

Mit1 = (Ar, — K Cr)m
is exponentially stable. d

Note that this assumption is equivalent to say
that, when the term W¥.6, and the noises are
absent in system (1), an exponential observer
can be designed for the estimation of the state
zy. It is known that, if the time varying ma-
trix pair (Ag, C) is completely uniformly observ-
able, the Kalman gain will fulfill the requirement
(Jazwinski, 1970).

As an adaptation of the continuous time adaptive
observer presented in (Zhang, 2002), the proposed
discrete time adaptive observer is as follows.

YTir1 = (Ap — KrC)Yr + Ty (2a)
Okr1 = O + i YECE (i — Chity) (2b)
Erp1 = Apdr + Brug + by + Ki(yr — Criy)

+Tk+1(ék+1 - ék) (2¢)

where T, € R™ xR? is a matrix sequence obtained
by linearly filtering ¥y, the vector sequences &y
and 6; are respectively the state and parameter
estimates, pur > 0 is a bounded scalar gain se-
quence satisfying the following assumption.

Assumption 2. The scalar gain sequence pp > 0
is small enough so that

lvVerCe Yk < 1 ®3)
for all k& > 0, where || - || denotes the matrix

spectral norm.

1 The spectral norm of a matrix is associated with the
Euclidean norm and equal to the largest singular value of
the matrix.



Like in system identification, an assumption on
persistent excitation is required for parameter
estimation.

Assumption 8. The matrix of signals ¥y is per-
sistently exciting so that the matrix sequence Yy
(obtained by linearly filtering ¥y, through (2a))
and the gain sequence py, satisfy, for some con-
stant o > 0, integer L > 0 and for all ¥ > 0, the
following inequality

1 k+L—1
T > mY{ClCiYi>al (4)
i=k

Remark 3. Typically each term in the sum of (4)
is rank deficient, since the number of outputs m
(the number of rows of C;) is typically smaller
than the number of parameters p (the number
of columns of T;). Nevertheless, if Y; for diffe-
rent ¢ vary in different “directions”, the average
stated in (4) can be positive definite. The positive
definiteness of the sum of some matrices is typi-
cally required as a persistent excitation condition
in system identification. See, e.g., (Astrém and
Wittenmark, 1989). O

The property of Algorithm (2) in the noise-free
case is stated in the following theorem.

Theorem 1. If the noises are absent in system (1),
that is, e, = 0,w; = 0,vry = 0 for all & > 0,
then, under Assumptions 1-3, Algorithm (2) is
a global exponential adaptive observer, i.e., the
estimation errors Z; — x and 0 — 8, tend to zero
exponentially fast when k& — oo. O

The proof of this theorem requires the two follow-
ing lemmas.

Lemma 1. If the linear time varying system ng+1 =
Fyny, with o, € R, Fj, € R* x R*, is exponen-
tially stable (see definition 1), then

(1) for any bounded sequence gr € R, the
sequence zj defined by zx11 = Fyzr + gi is
bounded;

(2) for any sequence gi tending to zero exponen-
tially fast, the sequence zj, defined as above
tends also to zero exponentially fast. O

For the proof of the first part of this lemma, one
can see (Freeman, 1965, page 168). The proof of
the second part is a straightforward extension.

Lemma 2. Let ¢, € R™ xRP be a matrix sequence
such that its spectral norm ||¢g|| < 1 for all £ > 0.
If there exist a real constant a > 0 and an integer
L > 0 such that for all k& > 0 the following
inequality holds

k+L—1
1 =+

I 2 #igi>al (5)
i=k

then the linear time varying system

zr1 = (I — B4 d) 2

is exponentially stable. O

A proof of this lemma can be found in Ap-
pendix A.

Now we are ready to prove Theorem 1.
Proof of Theorem 1. Define the error sequences
ék = ék — Gk

In the absence of the noises in (1), following (1b)
and (2c) it is easy to obtain the error dynamics

Fry1 = App + Uil + Ki(yx — Crd)
+ Tk-i—l(ék-i-l — ék)
According to (1a) and (1c), 01 = 6 and y; =
Crxy (it is assumed e, = 0,v; = 0), then
Frp1 = (A — KiCp)Z + U0y,
+ Yip1(Brsr — k) (6)

The key step of the proof is to define the linearly
combined error sequence

M = Fx — LBy (7)

It is straightforward to compute the dynamic
equation of n:

Mk+1 = (Ar — K Cr) i
+ [(Ak — chk)'rk + Uy — Tk+1]0k

Because Ty, is generated from (2a), the last equa-
tion simply becomes

M1 = (Ax — KpCr)mi

According to Assumption 1, the sequence 7y, tends
to zero exponentially fast.

T = g — T,

Now let us study the error ), = ék — 0y, Follow-
ing (2b) and (1a), (1c) with e, = 0 and v, = 0,

01 = O — i YECT Oy, (8)
Substitute & with (7), then the error equation
becomes

Ok1 = Ok — i YL CF Cr (i + Y1)
= (I - ,ukaC’,Z’Cka)Hk
— XL CF Com 9)
According to Assumptions 2, 3 and Lemma 2, the

homogeneous part of (9), that is, the linear time
varying system

Zerr = (I — YT CLCRY k) 2k (10)
is exponentially stable.

The sequences py,, C, have been assumed bounded,
and the boundedness of T, is a consequence of the



boundedness of ¥, and of Assumption 1, following
Lemma 1.

Then following Lemma 1, the sequence 6, driven
by the exponentially vanishing sequence

—uk X5 Ci Crm
through (9) tends to zero exponentially fast.

Finally, £ = m + Y0 tends also to zero
exponentially fast. d

Remark 4. 1t is clear in the proof of Theorem 1
that Assumptions 2 and 3 are for the purpose
of ensuring the exponential stability of the linear
time varying system (10). There are other ways to
ensure this stability. A direct condition is

k+L—1
H (I — u X5 Cf CxYy)
i=k
for some L > 0, 0 < v < 1 and for all & >
0. The disadvantage of this condition is that it
requires the computation of the matrix products.
The condition stated with Assumptions 2 and 3
is probably not necessary, but it is sufficient and
requires simple computations as stated in (3) and
(4). O

<7

3. THE NOISE-CORRUPTED CASE

Now let us study the properties of the same al-
gorithm (2) applied to the noise-corrupted sys-
tem (1).

Theorem 2. Under Assumptions 1-3, when algo-
rithm (2) is applied to system (1) with bounded
noises e, Wy, vk, the estimation errors £ —zj, and
0 — 0y, remain bounded.

Moreover, if the noises ey, wy, v have zero mean,
then the estimation errors tend to zero in the
mean, that is, when k£ — oo, the mathematical
expectations E(& — z) — 0, E(6; — 0r) — 0,
and the convergence is exponentially fast. O

Proof of Theorem 2. The proof of this theorem
essentially relies on the result already established
in the noise-free case. Like in the proof of Theo-
rem 1, the equations of the errors &, = % — 2%
and 0, = 0, — 0, are first derived, but now the
noises are involved:

Frp1 = (Ap — KpCr)Zg + U10;,

+Y k1 (Or+1 — Or)

—wg + Krog + Y€k (11&)
k1 = Op — pe XL CL Cuy, + X5 CF o (11D)

According to Theorem 1, the estimation errors
tend to zero exponentially fast in the noise-free
case. It means that the error system (11) is, in

the absence of the terms involving the noises,
exponentially stable (as a linear time varying
system).

The sequences Ky, (), are bounded by assump-
tion, and Y} is bounded following the bounded-
ness of ¥y. For bounded noises, the terms in-
volving the noises in (11) are thus all bounded.
Then according to Lemma 1, the errors &, and 6
governed by (11) are also bounded.

Now let us take the mathematical expectation
at both sides of (11). Notice that the sequences
i, Cr, Ky, ¥y, are deterministic, and so is Y.
Then, following the zero mean assumption on
the noises, equations (11) after the mathematical
expectation becomes

Eip 1 = (Ap — K C)Edy, + U, Ef;
+ Yry1 (BOqr — Ey)
Eék+1 = Eék — kafC,?CkE:ﬁk
These equations are the same as the error equa-
tions (6) and (8) in the noise-free case, except
that the errors ) and 6 are respectively replaced
by their mathematical expectation EZ; and E6f.
Then following the same procedure as in the proof

of Theorem 1, the mathematical expectations EZy,
and E@}, tend to zero exponentially fast. O

4. NUMERICAL EXAMPLE

Let us illustrate the behavior of the proposed
adaptive observer with the simulation of a con-
trolled satellite. The classic linearized satellite
model, in its continuous time version, can be
found in (Brockett, 1970). The satellite nominal
orbit is assumed to be circular with the radius
normalized to 1. The nominal angular velocity of
the satellite is 3.49 x 10~*rad/s. The equations
of motion of the satellite are linearized around
the nominal orbit. In order to obtain a discrete
time model, the linearized system is sampled with
the period Ts = 0.1s and with zero-order holders
applied at its inputs. The obtained discrete time
model is

1 0.1 0 3.49x10°]
| 3.66x107® 1 0 6.98x107°
Tet1 = | _495%10° 14 —3.49%10°6 1 0.1 Tk

~1.28x107 "% —6.98x107° 0 I

i 0.1 0.005 0 1.16x107]

1.83x107° 0.1 0 3.49x1076
T Z1.06%x1071% —1.16%10~7 0.1  0.005

—4.25x107 1 —3.49%x107% 0 0.1

[0 0

6! o

O

0 92

1000
Y= 1o 010"
where the components of the state vector 2, € R*
correspond to radial position, radial velocity, an-

gular position and angular velocity, the compo-
nents of the input vector uy € R? are the radial
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Figure 1. Input signals u; and u} used in the
controlled satellite simulation. The time unit
is second.

and tangential thrusts, the output vector y; € R?
correspond to distance and angle observations,
and the constant coefficients §' and 62 represent
the efficiencies of the radial and tangential thrusts.

Note that the 4 x 4 matrix in the term involving
ug is due to the discretization of the continuous
time model, since the coefficients §' and 6% were
originally defined in the continuous time model.
In order to put the model into the form of (1),
this term is reformulated as

0

0| [6"

0| [#]

0

1

_ Uy
U,0=H 0
0 ul

where H is the aforementioned 4 x 4 matrix.

In the simulation, the parameter values are set
to ' = 1 and 62 = 1.5. The square impulse
signals shown in figure 1 are used as inputs. The
two simulated outputs are both disturbed by a
Gaussian white noise whose standard deviation is
0.01.

The initial values used in the simulation are zg =
[1,0,0,3.49x 10747, & = [0.9,0,0,3.14x 10~ 4T,

6o = [0.5,0.5]. The adaptive observer parameters
are

4.93x10~¢

5.26x10°
0.1412
0.0932

0.1412
0.0932
—4.93%x107¢
—5.26x107°

e =4, K=

In figures 1-3 are, respectively, plotted the input
signals, the state estimation errors, and the para-
meter estimates. Notice that, due to the noises
added to the outputs yg, the estimation errors
randomly oscillate around zero instead of tending
to zero. According to Theorem 2, the means of the
estimation errors tend to zero when k£ — co.

5. CONCLUSION

A numerically efficient adaptive observer has been
proposed in this paper for joint state-parameter
estimation in discrete time stochastic multiple-
input multiple-output linear time varying sys-
tems. Essentially, if an exponential state observer

0 10 20 30 40 50 60 70 80 90 100

Figure 2. State estimation errors #},Z7,%;,%}.
The time unit is second.

05 -

Figure 3. Parameter estimates é,lc (lower) and
62 (upper). The true parameter values are
0! =1 and 6? = 1.5. The time unit is second.

can be designed for a linear system, then an adap-
tive observer can be designed for the system ob-
tained after adding additive terms with unknown
coefficients. A persistent excitation condition is
required in order to ensure the convergence of the
adaptive observer. The boundedness and conver-
gence in the mean of the estimation errors have
been proved under the assumption of bounded and
zero mean noises. The analysis of the covariances
of the estimation errors would require some as-
sumption on the decay of the noises correlations
and will be reported elsewhere. Potential applica-
tions of the proposed algorithm are fault detection
and isolation, and adaptive control.

APPENDIX A. PROOF OF LEMMA 2

It is first observed that condition (5) is equivalent
to
| FHL1

LY el > 5 (12

i=k
for some positive constant § and for all unitary
vector w € RP?. This equivalence is based on the
following simple inequalities (for any unitary w)
T ,T T
W ¢ prw < || $ewl| < Pmax|lPrwll
with

Bmax = szplld)kll



and on the Cauchy-Schwarz inequality

k+L—1 1 [kt 2
Y wigidew > £ ( ) ||¢iw||>

i=k i=k
Consider the Lyapunov function candidate
Vi = z,?zk
then
Vie = Vierr = 2i (5 $) 2 + 2 [0k o — (95 1)1z
> 2j, (9 Dk) 2k

where the inequality is due to the assumption that
the matrix spectral norm ||¢x|| < 1. Then

k+L-1

> A (@ bi)z

i=k

1 k+L—-1
. ( > ||¢z-zz-||)

i=k

Vie = Vierr >

2

where the last inequality follows Cauchy-Schwarz.

Now a lower bound of Ef:kL “1|izill is needed.
Let us proceed as follows.

k+L—-1 k+L—1 k+L—-1
Dooldszll = D Mgzl = D lldi(ze — 24)l]
i=k i=k i=k

The first term at the right hand side is bounded
from below according to (12):

k+L—1

> lidizkll > AL 2|

i=k

For the second term,

k+L-1
7 llgi(er — 2)ll < bmaxl  sup Iz — 2
Pyt k<i<kt+L-—1
It turns out that
k+L—1
sup ||z — | < Z llz: — zit1l|
k<i<k+L—1 —
k+L—1
= > o ¢uzill
i=k
k+L—1
< Gmax Y izl
i=k
Therefore,
k+L—1 k+L-1
S 6zl > ALzl - G Y ll6izi]
i=k 1=k
or equivalently,
k+L-1
BL
> — =
Z ||¢1z’t|| - 1 +¢12naxL||zk||
i=k
It then follows
B*L

Vi = Virr 2 > llzell?

(1+ Phaxl)

The inequality (12) implies 8 < ¢max, then

B’L
0 = ———=<1
REARTEIN

It follows that
Virr < (1 =7V

The exponential convergence to zero of Vi =
||z ||? is thus established.
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