20 octobre 2025 Aucun document autorisé Durée : 1 heure

Contrôle Continu

Rappels

- Il sera tenu compte du soin apporté à la présentation et à la rédaction.
- Si vous n'arrivez pas à démontrer un résultat, vous pouvez l'admettre pour la suite de l'exercice.

EXERCICE 1 (6 points) Soit $\theta > 0$ et X une variable aléatoire de densité (par rapport à la mesure de Lebesgue)

$$f_{\theta}(x) = \theta e^{-\theta(x-1)} \mathbf{1}_{\{x>1\}}.$$

On considère un échantillon i.i.d. X_1, \ldots, X_n de même loi que X.

- 1. Calculer et représenter la fonction de répartition F_{θ} de X. Déterminer la médiane de X.
- 2. En déduire un estimateur $\hat{\theta}_n$ de θ . Montrer sa consistance et sa normalité asymptotique.
- 3. Quelle est la loi de la variable T := X 1? En déduire $\mathbb{E}_{\theta}[X]$ et $\operatorname{Var}_{\theta}(X)$.
- 4. Le modèle $(f_{\theta})_{\theta>0}$ est-il régulier? Si oui, calculer l'information de Fisher $I(\theta)=I_1(\theta)$ pour une observation.
- 5. Déterminer l'estimateur du maximum de vraisemblance $\widetilde{\theta}_n$.
- 6. L'estimateur $\widetilde{\theta}_n$ est-il asymptotiquement efficace?

EXERCICE 2 (4 points) Soit $0 < \theta < 1$ et $X \sim \mathcal{B}(\sqrt{\theta})$, loi de Bernoulli de paramètre $\sqrt{\theta}$.

- 1. Rappeler ce que valent $\mathbb{E}_{\theta}[X]$ et $\operatorname{Var}_{\theta}(X)$. En déduire un estimateur $\widehat{\theta}_n$ de θ et préciser sa normalité asymptotique.
- 2. Soit $0 < \alpha < 1$. Donner un intervalle de confiance de niveau asymptotique (1α) pour θ .
- 3. Donner un test de niveau asymptotique α pour décider entre $H_0: \theta = 1/2$ et $H_1: \theta \neq 1/2$.
- 4. Déterminer la p-valeur $\alpha_0(\mathbf{x})$ pour une réalisation $\mathbf{x} = (x_1, \dots, x_n)$.
- 5. (Bonus) Le modèle $(P_{\theta})_{0<\theta<1} = (\mathcal{B}(\sqrt{\theta}))_{0<\theta<1}$ est-il régulier? Si oui, calculer l'information de Fisher $I(\theta) = I_1(\theta)$ pour une observation. L'estimateur $\widehat{\theta}_n$ est-il asymptotiquement efficace?