9 décembre 2024 Aucun document autorisé Durée : 1 heure

Contrôle Continu

Rappels

- Il sera tenu compte du soin apporté à la présentation et à la rédaction.
- Si vous n'arrivez pas à démontrer un résultat, vous pouvez l'admettre pour la suite de l'exercice.
- Si $T \sim \Gamma(a, b)$ avec a > 2 et b > 0, alors $\mathbb{E}[1/T] = \frac{b}{a-1}$ et $\mathbb{E}[1/T^2] = \frac{b^2}{(a-1)(a-2)}$.

EXERCICE 1 (6 points)

Soit $n \geq 3$. On considère le cadre bayésien

$$\boldsymbol{\theta} \sim \Pi = \mathcal{E}(1)$$

 $\mathbf{X}|\boldsymbol{\theta} \sim P_{\boldsymbol{\theta}}^{\otimes n} = \mathcal{E}(\boldsymbol{\theta})^{\otimes n}.$

- 1. Donner la loi a posteriori.
- 2. On considère la perte

$$\ell(\theta, t) = e^{\theta} (t - \theta)^2.$$

Donner un estimateur de Bayes $T^* = T^*(\mathbf{X})$ pour Π et cette fonction de perte.

- 3. Montrer que, sous $P_{\theta}^{\otimes n}$, la variable $n\overline{X}_n$ suit une loi Gamma dont on précisera les paramètres. Grâce au rappel, en déduire $\mathbb{E}_{\theta}\left[\frac{1}{n\overline{X}_n}\right]$ et $\mathbb{E}_{\theta}\left[\frac{1}{(n\overline{X}_n)^2}\right]$.
- 4. Montrer que le risque ponctuel $R(\theta, T^{\star}) = \mathbb{E}_{\theta}[\ell(\theta, T^{\star})]$ peut se mettre sous la forme

$$R(\theta, T^{\star}) = \frac{an+b}{(n-1)(n-2)} \theta^{2} e^{\theta},$$

où a et b sont deux constantes positives que l'on précisera.

- 5. Que vaut le risque de Bayes $R_B(\Pi)$? En déduire le risque minimax R_M .
- 6. Pouvez-vous proposer un autre estimateur de Bayes?
- 7. On souhaite tester

$$H_0: \boldsymbol{\theta} = 1$$
 contre $H_1: \boldsymbol{\theta} = 2$.

Pour cela, on considère maintenant la loi a priori $\Pi = \frac{1}{2}\delta_1 + \frac{1}{2}\delta_2$ et la fonction de perte équilibrée. Montrer que le test de Bayes peut se mettre sous la forme $\varphi^*(\mathbf{X}) = \mathbb{1}_{\{\overline{X}_n \leq c\}}$, pour une certaine constante $c \in \mathbb{R}$ que l'on déterminera.

EXERCICE 2 (4 points)

On considère, dans cet exercice, un modèle linéaire gaussien

$$Y = X\beta + \varepsilon = \begin{pmatrix} 1 & t_1 \\ \vdots & \vdots \\ 1 & t_n \end{pmatrix} \beta + \varepsilon,$$

où, comme d'habitude,

- Y est un vecteur aléatoire de n observations $Y_1, ..., Y_n$;
- X est une matrice de mesures connues et déterministes, de taille $n \times 2$ et de rang 2;
- β est un vecteur déterministe inconnu de taille 2;
- ε est un vecteur aléatoire d'erreurs inconnues avec $\varepsilon \sim \mathcal{N}(0, \sigma^2 I_n)$ où $\sigma^2 > 0$ est inconnu.
- 1. Par quoi faut-il remplacer ??? pour que le script suivant construise une réalisation y du vecteur aléatoire Y.

2. Étant donné les informations suivantes sur la matrice X et sur la réalisation $y = Y(\omega)$, calculer l'estimateur des moindres carrés de β , noté $\widehat{\beta}$, et donner sa réalisation $\widehat{\beta}(\omega)$.

$$\sum_{i=1}^{n} t_i = 0, \qquad \sum_{i=1}^{n} t_i^2 = 400, \qquad \sum_{i=1}^{n} t_i y_i = 100, \qquad \sum_{i=1}^{n} y_i = 100, \qquad \widehat{\sigma}^2 = 1.$$

3. Que produit le script suivant (justifier par des éléments théoriques)? Le résultat peut-il être lu dans le résumé des résultats donné ensuite via la commande res.summary()?

```
[10]: model = sm.0LS(y, X)
    res = model.fit()

[11]: level = .05
    stu = stats.t(df=n-2)
    ic_bound = np.sqrt(res.scale / np.diag(X.T @ X)) * stu.ppf(1 - level/2)
    for c, s in zip(res.params, ic_bound):
        print(f"[{c-s:0.3f}, {c+s:0.3f}]")

        [0.802, 1.198]
        [0.151, 0.349]
[12]: res.summary()
```

[12]:

Dep. Variable:	y	R-squared:	0.203
Model:	OLS	Adj. R-squared:	0.195
Method:	Least Squares	F-statistic:	25.00
Date:	Fri, 29 Nov 2024	Prob (F-statistic) :	2.51e-06
Time:	11:20:50	Log-Likelihood:	-140.88
No. Observations:	100	AIC:	285.8
Df Residuals:	98	BIC:	291.0
Df Model:	1		
Covariance Type:	nonrobust		

	\mathbf{coef}	std err	t	$\mathbf{P} > \mathbf{t} $	[0.025]	0.975]	
const	1.0000	0.100	10.000	0.000	0.802	1.198	
x1	0.2500	0.050	5.000	0.000	0.151	0.349	_
Omnib	ous:	4.728	Dur	bin-Wat	son:	2.206	
Prob(0	Omnibus): 0.094	Jaro	que-Bera	(JB):	5.178	
Skew:		-0.239	Pro	b(JB):		0.0751	
Kurtos	sis :	4.007	Con	d. No.		2.00	

4. On rappelle que l'ellipse centrée en $(x_0,y_0)\in\mathbb{R}^2$ et définie par :

$$\left\{ (x', y') \in \mathbb{R}^2, \frac{(x' - x_0)^2}{a^2} + \frac{(y' - y_0)^2}{b^2} \le 1 \right\},\,$$

(où a > 0 et b > 0) a pour aire πab .

Commenter le script suivant (utiliser des éléments théoriques) et son résultat.

```
[13]: fish = stats.f(dfn=2, dfd=n-2)
  box_bound = np.sqrt(res.scale / np.diag(X.T @ X)) * stu.ppf(1 - level/4)
  print(f"Aire 1 : {np.prod(2 * box_bound):.3f}")
  print(f"Aire 2 : {np.pi / np.prod( np.sqrt(np.diag(X.T @ X) / (2 * res.scale * fish.ppf(1 - level))) ):.3f}")
  Aire 1 : 0.104
  Aire 2 : 0.097
```