Cours: A. Ben-Hamou TD: A. Godichon, A. Guyader et M. Sangnier

TD 7 : Approche bayésienne

EXERCICE 1 (Lois conditionnelles et vecteur gaussien)

Soient X et Y deux variables aléatoires réelles de loi jointe de densité sur \mathbb{R}^2 :

$$(x,y) \mapsto \frac{1}{2\pi} \exp\left(-x^2 + xy - \frac{y^2}{2}\right).$$

- 1. Déterminer :
 - (a) les lois marginales de X et Y;
 - (b) la loi conditionnelle de Y sachant X = x et celle de X sachant Y = y.
- 2. Vérifier que la loi de (X,Y) est celle d'un vecteur gaussien sur \mathbb{R}^2 , dont on précisera la moyenne et la matrice de variance-covariance.

EXERCICE 2 (Lois conjuguées)

Montrer que les familles de lois a priori suivantes sont conjuguées, pour $n \ge 1$. De plus, on donnera dans chaque cas l'expression de la moyenne a posteriori, si celle-ci existe.

- 1. La famille des lois Gamma(a, b), a > 0, b > 0, pour $\mathcal{P} = \{\text{Gamma}(p, \lambda)^{\otimes n}, \lambda > 0\}$, avec p > 0 fixé.
- 2. La famille des lois Beta(a, b), a > 0, b > 0, pour $\mathcal{P} = \{Geom(\theta)^{\otimes n}, \ \theta \in]0, 1[\}$.
- 3. La famille des lois $\mathcal{N}(\mu, \sigma^2)$, $\mu \in \mathbb{R}$, $\sigma^2 > 0$, pour le modèle $\mathcal{P} = {\mathcal{N}(\theta, v)^{\otimes n}, \ \theta \in \mathbb{R}}$, avec v > 0 fixé.

EXERCICE 3 (A priori impropre) Un a priori Π est dit impropre si Π est une mesure positive sur Θ , de masse infinie, soit

$$\Pi(\Theta) = +\infty.$$

Un a priori impropre Π n'est donc pas une mesure de probabilité sur Θ . On suppose néanmoins que Π est une mesure σ -finie, absolument continue par rapport à ν , et l'on note π sa dérivée de Radon-Nikodym par rapport ν . Dans le cadre d'une expérience $(\mathbf{X}, \mathcal{P})$ avec $\mathcal{P} = (P_{\theta})_{\theta \in \Theta}$, et $dP_{\theta} = p_{\theta} d\mu$, si l'on met un a priori impropre Π sur Θ avec $d\Pi = \pi d\nu$, et si $\int_{\Theta} p_{\theta}(\mathbf{X}) d\Pi(\theta)$ est finie p.s., alors on peut former la loi a posteriori correspondante $\Pi[\cdot \mid \mathbf{X}]$. Celle-ci est de densité par rapport à ν égale à

$$\theta \mapsto \pi(\theta \mid \mathbf{X}) = \frac{p_{\theta}(\mathbf{X})\pi(\theta)}{\int_{\Theta} p_{\theta}(\mathbf{X})\pi(\theta) \, \mathrm{d}\nu(\theta)}.$$

- 1. Dans le modèle gaussien $(\mathcal{N}(\theta,1)^{\otimes n})_{\theta\in\mathbb{R}}$, on considère l'a priori Π donné par la mesure de Lebesgue sur \mathbb{R} . Montrer que la loi a posteriori est bien définie et la déterminer.
- 2. Un voyageur arrive dans une ville où les tramways sont numérotés de 1 jusqu'au nombre total de tramways. Il voit passer un tramway numéroté 100. On cherche à savoir dans quelle mesure cela peut l'aider à avoir une idée du nombre total de tramways dans cette ville.
 - (a) Modéliser ce problème dans un cadre bayésien.
 - (b) Si l'on choisit l'a priori impropre donné par la mesure de comptage sur N*, la loi a posteriori est-elle bien définie?
 - (c) Qu'en est-il si le voyageur voit passer $k \geq 2$ tramways indépendants?

EXERCICE 4 (Bayésien empirique) Pour déterminer une loi a priori pour un problème donné, une approche très utilisée en pratique est la méthode dite « bayésienne empirique ». On dispose d'observations $\mathbf{X} = (X_1, \dots, X_n)$ issues d'un modèle $(P_{\theta}^{\otimes n})_{\theta \in \Theta}$, avec $dP_{\theta} = p_{\theta} d\mu$. Pour choisir une loi a priori sur Θ , on commence par restreindre le choix à une famille paramétrée $(\Pi_{\alpha})_{\alpha \in \mathcal{A}}$, avec $d\Pi_{\alpha} = \pi_{\alpha} d\nu$, pour une certaine mesure ν sur Θ . On cherche alors à estimer α à partir de \mathbf{X} . Pour cela, on forme, pour tout $\alpha \in \mathcal{A}$, la vraisemblance marginale de \mathbf{X} sous l'a priori Π_{α} :

$$f_{\alpha}(\mathbf{X}) = \int_{\Theta} p_{\theta}(\mathbf{X}) \, \mathrm{d}\Pi_{\alpha}(\theta),$$

et l'on estime α par :

$$\widehat{\alpha}(\mathbf{X}) \in \arg\max_{\alpha \in \mathcal{A}} f_{\alpha}(\mathbf{X}).$$

C'est le principe de la méthode du maximum de vraisemblance marginale. Si la loi a posteriori pour la loi a priori Π_{α} est donnée par $\Pi_{\alpha}[\cdot \mid \mathbf{X}]$, alors la « loi a posteriori » donnée par la méthode bayésienne empirique est obtenue par plug-in: on remplace α par $\widehat{\alpha}(\mathbf{X})$ et l'on considère la loi $\Pi_{\widehat{\alpha}(\mathbf{X})}[\cdot \mid \mathbf{X}]$. Cette loi est généralement bien définie mais il y a abus de langage à l'appeler loi a posteriori : on a fait comme si cela ne changeait pas le modèle de prendre une loi a priori qui dépend des données. On l'appellera plutôt pseudo-loi a posteriori.

- 1. Modèle exponentiel : on se place dans le modèle $(\mathcal{E}(\theta)^{\otimes n})_{\theta>0}$ et l'on cherche à choisir une loi a priori parmi l'ensemble des lois $\Pi_{\lambda} = \mathcal{E}(\lambda), \ \lambda > 0$.
 - (a) Soit $\lambda > 0$. Montrer que, lorsque $\boldsymbol{\theta} \sim \Pi_{\lambda}$, la loi marginale de X_1 a pour densité $f_{\lambda}(x) = \frac{\lambda}{(\lambda + x)^2} \mathbf{1}_{x \geq 0}$.
 - (b) Soit $\lambda > 0$ et $\boldsymbol{\theta} \sim \Pi_{\lambda}$. Calculer la densité marginale de $\mathbf{X} = (X_1, \dots, X_n)$. Rappel : si $T \sim \mathcal{E}(\lambda)$, alors pour tout $k \geq 1$, $\mathbb{E}[T^k] = k!/\lambda^k$.
 - (c) En déduire que l'estimateur du maximum de vraisemblance marginal est $\widehat{\lambda}(\mathbf{X}) = \overline{X}_n$. Quelle est la pseudo-loi a posteriori suggérée par la méthode bayésienne empirique?
- 2. Modèle Poisson : on se place dans le modèle $(\mathcal{P}(\theta)^{\otimes n})_{\theta>0}$ et l'on cherche à choisir une loi a priori parmi l'ensemble des lois $\Pi_{\lambda} = \mathcal{E}(\lambda)$ pour $\lambda > 0$.
 - (a) Montrer que la loi marginale de X_1 est une loi géométrique à valeurs dans \mathbb{N} de paramètre $\lambda/(\lambda+1)$, autrement dit, que $\mathbb{P}(X_1=k)=\left(\frac{1}{\lambda+1}\right)^k\frac{\lambda}{\lambda+1}$ pour tout entier positif k.
 - (b) Soit $\lambda > 0$ et $\theta \sim \Pi_{\lambda}$. Calculer la densité marginale de $\mathbf{X} = (X_1, \dots, X_n)$.
 - (c) Quelle est la pseudo-loi a posteriori suggérée par la méthode bayésienne empirique?
- 3. Modèle gaussien : on se place dans le modèle $(\mathcal{N}(\theta,1)^{\otimes n})_{\theta\in\mathbb{R}}$ et l'on cherche à choisir une loi a priori parmi l'ensemble des lois $\Pi_{\mu} = \mathcal{N}(\mu,1), \ \mu \in \mathbb{R}$.
 - (a) Déterminer $\hat{\mu}$, l'estimateur du maximum de vraisemblance marginal.
 - (b) Quelle est la pseudo-loi a posteriori suggérée par la méthode bayésienne empirique?

EXERCICE 5 (Famille gaussienne conjuguée dans \mathbb{R}^d)

Soient μ un vecteur de \mathbb{R}^d , Λ et Σ deux matrices de covariance $d \times d$ inversibles fixées.

1. Montrer que si $\theta \sim \Pi = \mathcal{N}(\mu, \Lambda)$ et

$$\mathbf{X} = (X_1, \dots, X_n) \mid \boldsymbol{\theta} \sim \mathcal{N}(\boldsymbol{\theta}, \Sigma)^{\otimes n}$$

alors la loi a posteriori $\Pi[\cdot \mid \mathbf{X}]$ est $\mathcal{N}(m_{\mathbf{X}}, \Sigma_{\mathbf{X}})$, avec

$$m_{\mathbf{X}} = \Sigma_{\mathbf{X}} (\Lambda^{-1} \mu + n \Sigma^{-1} \overline{X}_n)$$

$$\Sigma_{\mathbf{X}} = (n \Sigma^{-1} + \Lambda^{-1})^{-1}.$$

2. Qu'en concluez-vous?

EXERCICE 6 (A priori de Jeffreys) Soit Θ est un intervalle ouvert de \mathbb{R} et $\mathcal{P} = \{P_{\theta}, \theta \in \Theta\}$ un modèle régulier, dominé par la mesure de Lebesgue sur Θ , d'information de Fisher $\theta \mapsto \mathbf{I}(\theta)$. On appelle *a priori de Jeffreys* la

mesure sur Θ de densité π par rapport à $\nu = \text{Leb}_{|\Theta}$ proportionnelle à $\sqrt{\mathbf{I}(\cdot)}$. Plus précisément, pour tout $\theta \in \Theta$, $\pi(\theta) = \frac{1}{\Lambda} \sqrt{\mathbf{I}(\theta)}$ avec

$$\Lambda = \begin{cases} \int_{\Theta} \sqrt{\mathbf{I}(\theta)} \, d\theta & \text{si } \int_{\Theta} \sqrt{\mathbf{I}(\theta)} \, d\theta < +\infty, \\ 1 & \text{si } \int_{\Theta} \sqrt{\mathbf{I}(\theta)} \, d\theta = +\infty. \end{cases}$$

Cet a priori possède la proprité d'être invariant par re-paramétrisation lisse du modèle, comme le montre la question suivante.

1. Soit Π l'a priori de Jeffreys dans le modèle $\mathcal{P} = \{P_{\theta}, \theta \in \Theta\}$, et soit φ un \mathcal{C}^1 -difféomorphisme de Θ dans $\varphi(\Theta)$. Montrer que $\Pi \circ \varphi^{-1}$, la mesure image de Π par φ , est l'a priori de Jeffreys dans le modèle

$$Q = \{ P_{\varphi^{-1}(\eta)}, \, \eta \in \varphi(\Theta) \} \,.$$

- 2. Déteminer l'a priori de Jeffreys dans les modèles suivants :
 - (a) $\mathcal{P} = \{\mathcal{B}(\theta), \ \theta \in (0,1)\}$ (modèle de Bernoulli);
 - (b) $\mathcal{P} = {\mathcal{N}(\theta, 1), \ \theta \in \mathbb{R}}$ (modèle gaussien);
 - (c) $\mathcal{P} = {\mathcal{P}(\theta), \ \theta > 0}$ (modèle Poisson).

EXERCICE 7 (*) (Famille de Dirichlet et modèle multinomial)

On rappelle que pour $a=(a_1,\ldots,a_K)\in\mathbb{R}_+^{*K}$, la loi de Dirichlet Dir(a) est la loi sur le simplexe $\mathcal{S}_K=\{x=(x_1,\ldots,x_K)\in[0,1]^K,\;\sum_{k=1}^Kx_k=1\}$ de densité (par rapport à la mesure de Lebesgue sur \mathcal{S}_K)

$$x \mapsto \frac{1}{B(a)} \prod_{k=1}^{K} x_k^{a_k - 1}, \qquad B(a) = \frac{\prod_{k=1}^{K} \Gamma(a_k)}{\Gamma(\sum_{k=1}^{K} a_k)}.$$

- 1. (a) Montrer que si $Z = (Z_1, ..., Z_K) \sim \text{Dir}(a)$, alors Z_1 suit une loi Beta que l'on déterminera (on pourra considérer le changement de variables $x_i = (1 x_1)y_i$, pour $2 \le i \le K 1$).
 - (b) Montrer que la famille des lois de Dirichlet $Dir(a_1, \ldots, a_K)$ est conjuguée pour le modèle

$$\mathcal{P} = \left\{ \left(\sum_{k=1}^{K} p_k \delta_k \right)^{\otimes n}, p = (p_1, \dots, p_K) \in \mathcal{S}_K \right\}.$$

2. Soient X_1, \ldots, X_n des variables i.i.d. à valeurs dans $\{1, 2, \ldots, K\}$, de loi $p = (p_1, \ldots, p_K)$ (i.e. $\mathbb{P}(X_1 = j) = p_j$). Notons, pour $j = 1, \ldots, K$,

$$N_j = \sum_{i=1}^n \mathbb{1}_{X_i = j}.$$

- (a) Quelle est la loi de N_j pour $j \in \{1, ..., K\}$?
- (b) Montrer que la loi jointe des N_j est donnée par

$$\mathbb{P}(N_j = n_j, \ 1 \le j \le K) = \binom{n}{n_1, \dots, n_K} \prod_{j=1}^K p_j^{n_j} \mathbb{1}_{\{\sum_{j=1}^K n_j = n\}},$$

où $\binom{n}{n_1,\ldots,n_K} = n!/(n_1!\ldots n_K!)$ désigne le nombre de façons de regrouper n éléments en K groupes de tailles respectives n_1,\ldots,n_K .

On dit que le vecteur (N_1, \ldots, N_K) suit la loi multinomiale de paramètres (n, p_1, \ldots, p_K) .

(c) Montrer que la famille des lois de Dirichlet $\mathrm{Dir}(a),\ a\in(\mathbb{R}_+^*)^K$, est conjuguée pour le modèle des lois multinomiales $\mathcal{P}=\{\mathrm{Mult}(n,p_1,\ldots,p_K),\ p=(p_1,\ldots,p_K)\in\mathcal{S}_K\}.$

Une urne contient N boules, dont r boules rouges et N-r boules noires, avec r inconnu. On tire n boules sans remise dans l'urne, $n \le N$, et l'on note X le nombre de boules rouges tirées. On considère le cadre bayésien suivant :

$$R \sim \text{Unif}(\{0, 1, \dots, N\})$$
$$X \mid R \sim P_R.$$

- 1. Sachant R, déterminer la loi P_R qui correspond au modèle décrit.
- 2. Déterminer la loi a posteriori de R sachant X. <u>Indication</u>: avec les conventions usuelles sur les coefficients binomiaux, on a la relation

$$\sum_{k=0}^{N} \binom{k}{m} \binom{N-k}{n-m} = \binom{N+1}{n+1}.$$

3. Quelle est la probabilité, sachant X, que le $(n+1)^{\text{ième}}$ tirage donne une boule rouge?

EXERCICE 9 (Identifiabilité)

On s'intéresse à une colonie d'insectes pondeurs d'œufs. On suppose que pour le site observé, le nombre X d'œufs suit une loi de Poisson de paramètre $\lambda > 0$ et que chaque œuf pondu donne, indépendamment des autres et de X, un insecte avec une probabilité $p \in]0,1[$. On note Y le nombre de naissances, de sorte qu'on peut écrire

$$Y = \sum_{i=1}^{X} \varepsilon_i$$

où les ε_i sont i.i.d. de loi de Bernoulli de paramètre p.

- 1. On suppose qu'on observe à la fois X et Y.
 - (a) Déterminer la loi conditionnelle de Y sachant X = x.
 - (b) Écrire le modèle statistique associé. Est-il identifiable?
 - (c) Supposons que l'on observe des couples indépendants $(X_1, Y_1), \ldots, (X_n, Y_n)$, de même loi que (X, Y). Proposer un estimateur de λ et de p.
- 2. On n'observe plus que Y.
 - (a) Quelle est la loi de Y?
 - (b) Le modèle associé est-il identifiable si le paramètre d'intérêt est toujours le couple (λ, p) ?

EXERCICE 10 (Lois conditionnelles)

Soient X et Y deux variables aléatoires indépendantes et S = X + Y. Dans chacun des trois cas suivants, déterminer la loi de S, la loi de X sachant S, ainsi que l'espérance conditionnelle $\mathbb{E}[X \mid S]$.

- 1. $X \sim \mathcal{P}(\lambda)$ et $Y \sim \mathcal{P}(\mu)$, avec $\lambda, \mu > 0$.
- 2. $X \sim \Gamma(r, \lambda)$ et $Y \sim \Gamma(t, \lambda)$, avec $r, t, \lambda > 0$.
- 3. $X \sim \mathcal{B}(n, p)$ et $Y \sim \mathcal{B}(m, p)$, avec $n, m \in \mathbb{N}^*$ et $p \in]0, 1[$.

<u>Indications</u>:

- Si X suit une loi de Poisson de paramètre λ (respectivement une loi Gamma de paramètres (r,λ)), alors sa fonction caractéristique vaut $\exp(\lambda(e^{it}-1))$ (respectivement $(1-it/\lambda)^{-r}$).
- Si $p \in [0,1]$ et $0 \le n \le N$ sont deux entiers naturels avec pN entier, on dit que X suit une loi hypergéométrique de paramètres (N,p,n) si $\mathbb{P}(X=k) = \binom{pN}{k} \binom{(1-p)N}{n-k} / \binom{N}{n}$ si $\max(0,n-(1-p)N) \le k \le \min(pN,n)$, auquel cas son espérance vaut np.