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Chapter 1

Nearest Neighbor Regression

1.1 Nonparametric regression

Let (X, Y ) be a random couple with values in Rd×R. Roughly speaking, the objective of regression
analysis is to find a function g such that Y ≈ g(X). In this chapter, we will focus our attention
on the L2 risk: we assume that E[Y 2] < ∞ and we want to minimize E

[
(Y − g(X))2

]
when

g : Rd → R is Borel1 and such that E
[
g(X)2

]
<∞. This coincides with the notion of conditional

expectation.

Definition 1.1 (Regression function)
If E[Y 2] <∞, r(X) = E[Y |X] is the (almost surely) unique random variable such that

E
[
(Y − r(X))2

]
= inf

g, E[g(X)2]<∞
E
[
(Y − g(X))2

]
.

For any x ∈ Rd, the function x 7→ E[Y |X = x] is called (a version of) the regression function of
Y on X.

In general, since the distribution of (X, Y ) is unknown, the same holds for the regression function.
Instead, we suppose that we are given a sample Dn = {(X1, Y1), . . . , (Xn, Yn)} of i.i.d. random
couples with the same distribution as, and independent of, a generic pair (X, Y ). The model may
be reformulated as

∀1 ≤ i ≤ n, Yi = r(Xi) + εi,

where, by definition of the regression function, the error εi satisfies E[εi|Xi] = 0, and consequently
E[εi] = 0. We will adopt the notation

σ2(x) := E
[
(Y − r(X))2|X = x

]
for the conditional variance function. Since E[(Y − r(X))2] <∞, we also have E[σ2(X)] <∞.

For fixed x ∈ Rd, our goal is thus to estimate the regression function r(x) = E[Y |X = x] using the
data Dn. Such an estimate is denoted rn(x) = rn(x,Dn). Hence, for each x, rn(x) is a random
variable, function of Dn, while rn(X) is a function of X and Dn.

Definition 1.2 (Consistency)
We say that a regression function estimate rn(x) is consistent if

E
[
(rn(X)− r(X))2

]
−−−→
n→∞

0.

It is universally consistent if this holds true for all distributions of (X, Y ) such that E[Y 2] <∞.
1All functions in the present notes are assumed Borel measurable. This will no longer be specified.
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2 Chapter 1. Nearest Neighbor Regression

Remark. One should keep in mind that in the previous definition the expectation is with respect
to X and Dn.

For the sake of simplicity, we will always work under the following assumption. Nonetheless, all
of the subsequent results remain valid without any assumption on the law of X, which we denote
by µ. We refer to [2] for the general case as well as for many other results on the nearest neighbor
method.

Assumption 1.1 (No mass on hyperspheres)
Assume that Rd is equipped with the Euclidean norm. For µ-almost every x ∈ Rd and any r ≥ 0,
we suppose that P(∥X− x∥ = r) = µ(

{
x′ ∈ Rd, ∥x′ − x∥ = r

}
) = 0.

In particular, this condition is satisfied as soon as µ is absolutely continuous with respect to
Lebesgue’s measure on Rd. More importantly, for µ-almost every x ∈ Rd, this ensures that we
may almost surely reorder the sample as follows2

∥X(1)(x)− x∥ < · · · < ∥X(n)(x)− x∥,

and the notation Y(i)(x) stands for the response corresponding to X(i)(x).

Definition 1.3 (Nearest neighbor estimate)
Let 1 ≤ k ≤ n. The k-nearest neighbor estimate of the regression function is defined for any x ∈ Rd

by

rn(x) :=
1

k

k∑
i=1

Y(i)(x).

Alternatively, we may also write

rn(x) :=
n∑

i=1

Wi(x)Yi,

where Wi(x) = 1/k if Xi belongs to the k nearest neighbors of x, and 0 otherwise.

Achtung ! In the sequel, we will be interested in asymptotic properties of rn(X) when n goes to
infinity, and k = kn will depend on n. However, to lighten the writings, we will usually use the
notation k instead of kn.

1.2 Consistency

Before proceeding with the consistency of the nearest neighbor rule, we start with two technical
results. The first one is quite intuitive.

Lemma 1.1 (Convergence of the k-th nearest neighbor)
If k = kn = o(n), then X(k)(X) goes in probability to X, i.e. for any a > 0,

P
(
∥X(k)(X)−X∥ ≥ a

)
−−−→
n→∞

0.

Proof. Denote by µ the law of X on Rd and recall that the support of µ is defined as

S(µ) :=
{
x ∈ Rd such that ∀δ > 0, µ(B(x, δ)) > 0

}
,

2Indeed, if X⊥⊥X′, then by conditioning P(∥X− x∥ = ∥X′ − x∥) =
∫
P(∥X− x∥ = ∥x′ − x∥)µ(dx′) = 0.

Arnaud Guyader Nearest Neighbors



1.2. Consistency 3

where µ(B(x, δ)) stands for the open ball centered at x and with radius δ. Now, since X is
independent of X1, . . . ,Xn, we readily have3

P
(
∥X(k)(X)−X∥ ≥ a

)
=

∫
Rd

P
(
∥X(k)(x)− x∥ ≥ a

)
µ(dx) =

∫
S(µ)

P
(
∥X(k)(x)− x∥ ≥ a

)
µ(dx).

Thus, let x ∈ S(µ) and consider

Sn :=

n∑
i=1

1∥Xi−x∥<a

so that
P
(
∥X(k)(x)− x∥ ≥ a

)
= P (Sn < k) = E

[
1Sn

n
− k

n
<0

]
.

The strong law of large numbers and the fact that x belongs to the support of µ imply that

Sn
n

a.s.−−−→
n→∞

µ(B(x, a)) > 0.

Since k/n = kn/n goes to 0 when n goes to infinity, the continuity theorem induces

1Sn
n

− k
n
<0

a.s.−−−→
n→∞

0.

The Lebesgue dominated convergence theorem then gives

P
(
∥X(k)(x)− x∥ ≥ a

)
= E

[
1Sn

n
− k

n
<0

]
−−−→
n→∞

0.

Since this is true for any x ∈ S(µ), another application of the Lebesgue dominated convergence
theorem allows us to conclude that

P
(
∥X(k)(X)−X∥ ≥ a

)
=

∫
S(µ)

E
[
1Sn

n
− k

n
<0

]
µ(dx) −−−→

n→∞
0.

■

Remark. In fact, one can show that X(k)(X) goes almost surely to X, but convergence in
probability is enough for what follows.

The second technical result is due to Stone [7].

Lemma 1.2 (Stone’s lemma)
There exists a constant γd such that for, any function φ : Rd → R+,

E

[
n∑

i=1

Wi(X)φ(Xi)

]
≤ γdE [φ(X)] .

Proof. Let C = C(0, π/3) be a cone with vertex at the origin and angle π/3. Then, for the
standard inner product and the associated Euclidean norm, we have

∀(x,x′) ∈ C × C, ⟨x,x′⟩ ≥ 1

2
∥x∥ · ∥x′∥.

Hence, if ∥x∥ ≤ ∥x′∥, then necessarily ∥x − x′∥ ≤ ∥x′∥. Next, for any X ∈ Rd, it is possible to
cover Rd with a finite number γd of cones Cj = Cj(X, π/3). In each cone Cj , let us mark the k
nearest neighbors of X in that cone4, in which case we write Xi = X⋆

i . By the previous argument,
3Recall that if Y is independent of X ∼ µ, then E[φ(X,Y )] =

∫
E[φ(x, Y )]µ(dx).

4If there are less than k points Xi’s in a cone, just mark them all.
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4 Chapter 1. Nearest Neighbor Regression

it turns out that if a point Xi is not marked, then X does not belong to the k nearest neighbors of
Xi among {X1, . . . ,Xi−1,X,Xi−1, . . . ,Xn}. In this respect, let us specify a bit the notation for
the weights, namely

Wi(X) =Wi(X;X1, . . . ,Xn),

which is non zero and equal to 1/k if and only if Xi is one of the k nearest neighbors of X among
{X1, . . . ,Xn}. Thus

E

[
n∑

i=1

Wi(X)φ(Xi)

]
= E

[
n∑

i=1

Wi(X;X1, . . . ,Xn)φ(Xi)

]
=

n∑
i=1

E [Wi(X;X1, . . . ,Xn)φ(Xi)] .

Each expectation might be seen as

E [ψi(X;X1, . . . ,Xn)] = E [ψi(Xi;X1, . . . ,Xi−1,X,Xi−1, . . . ,Xn)] ,

because the (n+1) random variables are i.i.d. (the fact that they are exchangeable suffices to have
this equality). Therefore, we may also write

E

[
n∑

i=1

Wi(X)φ(Xi)

]
=

n∑
i=1

E [Wi(Xi;X1, . . . ,Xi−1,X,Xi−1, . . . ,Xn)φ(X)]

= E

[
φ(X)

n∑
i=1

Wi(Xi;X1, . . . ,Xi−1,X,Xi−1, . . . ,Xn)

]
.

The above reasoning simply means that

Wi(Xi;X1, . . . ,Xi−1,X,Xi−1, . . . ,Xn) ≤
1

k
1Xi=X⋆

i
,

and, consequently,

E

[
n∑

i=1

Wi(X)φ(Xi)

]
≤ 1

k
E

[
φ(X)

n∑
i=1

1Xi=X⋆
i

]
≤ γdE [φ(X)] ,

where the last inequality is due to the fact that there are γd cones and, in a given cone, the number
of marked points cannot be greater than k.

■

Remark. It can be proved that (see [4], Lemma 5.5)

γd ≤

(
1 +

2√
2−

√
3

)d

− 1.

We can now proceed with the consistency of the nearest neighbor rule.

Theorem 1.1 (Consistency of the nearest neighbors method)
If kn → ∞ and kn/n→ 0 when n goes to infinity, then the nearest neighbors method is universally
consistent, i.e. for all (X, Y ) such that E[Y 2] <∞, one has

E
[
(rn(X)− r(X))2

]
−−−→
n→∞

0.

Arnaud Guyader Nearest Neighbors



1.2. Consistency 5

Proof. In order to decompose the L2 risk into a bias and a variance term, it is natural to introduce

r̂n(x) :=

n∑
i=1

Wi(x)r(Xi) =
1

k

k∑
i=1

r(X(i)(x)).

Just notice that
r̂n(X) = E [rn(X)|X,X1, . . . ,Xn] ,

so that, by orthogonality,

E
[
(rn(X)− r(X))2

]
= E

[
(rn(X)− r̂n(X))2

]
+ E

[
(r̂n(X)− r(X))2

]
, (1.1)

and the goal is to prove that both terms go to 0. For the variance term, we have

E
[
(rn(X)− r̂n(X))2

]
= E

( n∑
i=1

Wi(X)(Yi − r(Xi))

)2
 = E

( n∑
i=1

Wi(X)εi

)2
 .

where εi = Yi − r(Xi). Recall that E[εi|Xi] = 0, so for i ̸= j,

E [Wi(X)Wj(X)εiεj ] = E [E [Wi(X)Wj(X)εiεj |X,X1, . . . ,Xn, Yi]]

= E [Wi(X)Wj(X)εiE [εj |X,X1, . . . ,Xn, Yi]]

= E [Wi(X)Wj(X)εiE [εj |Xj ]]

= 0.

This yields

E
[
(rn(X)− r̂n(X))2

]
= E

[
n∑

i=1

Wi(X)2 (Yi − r(Xi))
2

]
= E

[
n∑

i=1

Wi(X)2σ2(Xi)

]
, (1.2)

where the last equality is by conditioning upon (X,X1, . . . ,Xn). Then, since 0 ≤ Wi ≤ 1/k, we
get

E
[
(rn(X)− r̂n(X))2

]
≤ 1

k
E

[
n∑

i=1

Wi(X)σ2(Xi)

]
. (1.3)

By Lemma 1.2, the variance term satisfies

E
[
(rn(X)− r̂n(X))2

]
≤ γdE[σ

2(X)]

k
,

and goes to 0 provided k = kn goes to infinity. Let us now turn to the bias term, namely

E
[
(r̂n(X)− r(X))2

]
= E

( n∑
i=1

Wi(X)(r(Xi)− r(X))

)2


≤ E

[
n∑

i=1

Wi(X)(r(Xi)− r(X))2

]
, (1.4)

by Jensen’s inequality. Now, the set of continuous functions of bounded support is dense in L2(µ),
see e.g. [5] Theorem A.1. Since E[r(X))2] < ∞, this ensures that for any ε > 0, there exists a
continuous function rε, with compact support, such that

E
[
(rε(X)− r(X))2

]
≤ ε.

Nearest Neighbors Arnaud Guyader



6 Chapter 1. Nearest Neighbor Regression

Since (a+ b+ c)2 ≤ 3(a2 + b2 + c2) and in view of (1.4), we have

E
[
(r̂n(X)− r(X))2

]
≤ 3E

[
n∑

i=1

Wi(X)(r(Xi)− rε(Xi))
2

]
+ 3E

[
n∑

i=1

Wi(X)(rε(Xi)− rε(X))2

]

+3E

[
n∑

i=1

Wi(X)(rε(X)− r(X))2

]
. (1.5)

The last term is easy, since

E

[
n∑

i=1

Wi(X)(rε(X)− r(X))2

]
= E

[(
n∑

i=1

Wi(X)

)
(rε(X)− r(X))2

]
= E

[
(rε(X)− r(X))2

]
≤ ε

while for the first one, Stone’s Lemma 1.2 gives

E

[
n∑

i=1

Wi(X)(r(Xi)− rε(Xi))
2

]
≤ γdε.

For the second term, since rε is continuous with compact support, it is uniformly continuous.
Hence, there exists a > 0 such that (rε(x

′)− rε(x))
2 ≤ ε as soon as ∥x′ − x∥ ≤ a. Moreover rε is

bounded, say by C, so

(rε(Xi)−rε(X))2 = (rε(Xi)−rε(X))21∥Xi−X∥≤a+(rε(Xi)−rε(X))21∥Xi−X∥>a ≤ ε+4C21∥Xi−X∥>a

and

E

[
n∑

i=1

Wi(X)(rε(Xi)− rε(X))2

]
≤ ε+ 4C2E

[
n∑

i=1

Wi(X)1∥Xi−X∥>a

]
.

Next, observe that

E

[
n∑

i=1

Wi(X)1∥Xi−X∥>a

]
=

1

k

k∑
i=1

P
(
∥X(i)(X)−X∥ > a

)
≤ P

(
∥X(k)(X)−X∥ > a

)
,

and, provided k = kn = o(n), Lemma 1.1 yields

P
(
∥X(k)(X)−X∥ > a

)
−−−→
n→∞

0.

Returning to the bias term (1.5), we have established that

lim sup
n→∞

E
[
(r̂n(X)− r(X))2

]
≤ (2 + γd)ε.

Since ε > 0 is arbitrary, the proof is complete.
■

1.3 Rates of convergence

The objective of this section is to go one step further and exhibit rates of convergence for the L2

error. Under appropriate assumptions, it turns out that, when d ≥ 2,

E
[
(rn(X)− r(X))2

]
= O

(
n−

2
d+2

)
.

The upcoming result is the key ingredient to get rates of convergence for the nearest neighbor rule.
From now on, we suppose that Rd is equipped with the supremum norm and, in order to avoid
any problem with ties, hyperspheres in Assumption 1.1 are replaced with hypercubes. But, again,
the upcoming results remain correct without this assumption.

Arnaud Guyader Nearest Neighbors



1.3. Rates of convergence 7

Proposition 1.1 (Rate of convergence of the nearest neighbor)
Let X,X1, . . . ,XN i.i.d. with values in [0, 1]d and denote X(1,N)(X) the nearest neighbor of X
among X1, . . . ,XN , then

• For d = 1,

E
[
|X(1,N)(X)−X|2

]
≤ 2

N + 1
.

• For d ≥ 2,
E
[
∥X(1,N)(X)−X∥2

]
≤ 4(N + 1)−

2
d .

Proof. Consider XN+1 with the same distribution as, and independent of X,X1, . . . ,XN . Denote
X(1,N)(Xi) the nearest neighbor of Xi among X1, . . . ,Xi−1,Xi+1, . . . ,XN+1. By symmetry, we
have for all index i

E
[
∥X(1,N)(X)−X∥2

]
= E

[
∥X(1,N)(Xi)−Xi∥2

]
,

so

E
[
∥X(1,N)(X)−X∥2

]
=

1

N + 1

N+1∑
i=1

E
[
∥X(1,N)(Xi)−Xi∥2

]
. (1.6)

For all i ∈ J1, NK, denote Ri := ∥X(1,N)(Xi)−Xi∥ and Bi the open ball centered at Xi with radius
Ri/2. Clearly these balls are all disjoint. By assumption, Ri ≤ 1 so λ(Bi) ≤ 1. In addition, since
Ri/2 ≤ 1/2 for all i, we also have

N+1⋃
i=1

Bi ⊂
[
−1

2
;
3

2

]d
,

so

N+1∑
i=1

∥X(1,N)(Xi)−Xi∥d =

N+1∑
i=1

λ(Bi) = λ

(
N+1⋃
i=1

Bi

)
≤ λ

(
[−1/2; 3/2]d

)
= 2d. (1.7)

If d ≥ 2, Jensen’s inequality for the convex mapping y 7→ yd/2 yields(
1

N + 1

N+1∑
i=1

∥X(1,N)(Xi)−Xi∥2
)d/2

≤ 1

N + 1

N+1∑
i=1

∥X(1,N)(Xi)−Xi∥d ≤ 2d

N + 1
,

so
1

N + 1

N+1∑
i=1

∥X(1,N)(Xi)−Xi∥2 ≤
4

(N + 1)
2
d

,

which, coming back to (1.6), yields

E
[
∥X(1,N)(X)−X∥2

]
≤ 4

(N + 1)
2
d

.

If d = 1, the fact that 0 ≤ |X(1,N)(Xi)−Xi| ≤ 1 and (1.7) give

1

N + 1

N+1∑
i=1

|X(1,N)(Xi)−Xi|2 ≤
1

N + 1

N+1∑
i=1

|X(1,N)(Xi)−Xi| ≤
2

N + 1
.

■
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8 Chapter 1. Nearest Neighbor Regression

Remark. For d = 1, one might wonder if the rate

E
[
|X(1,N)(X)−X|2

]
= O(N−1)

is optimal. In fact it is, as can be seen from the following elementary example: consider m ≥ 1
and X with density f(x) = mxm−11[0,1](x). Then there exists a constant c = c(m) such that, for
any N ≥ 1,

E
[
|X(1,N)(X)−X|2

]
≥ cN−1+ 2

m .

In particular, this shows that the rate of convergence of the left quantity to zero cannot be faster
than O(N−1).

In order to establish rates of convergence, we consider the following framework.

Assumption 1.2
(a) The random variable X is bounded, namely X ∈ [0, 1]d.

(b) The regression function r is L-Lipschitz with respect to the supremum norm.

(c) For µ-almost every x ∈ S(µ), we have σ2(x) ≤ σ2 <∞.

The main result of this section is
Theorem 1.2 (Rates of convergence)
Under Assumption 1.2, one has:

• For d = 1,

E
[
(rn(X)− r(X))2

]
≤ σ2

k
+ 2L2

(
k

n

)
.

• For d ≥ 2,

E
[
(rn(X)− r(X))2

]
≤ σ2

k
+ 4L2

(
k

n

) 2
d

.

Proof. We start with the bias-variance decomposition (1.1), namely

E
[
(rn(X)− r(X))2

]
= E

[
(rn(X)− r̂n(X))2

]
+ E

[
(r̂n(X)− r(X))2

]
.

The variance term is straightforward, for by (1.2)

E
[
(rn(X)− r̂n(X))2

]
= E

[
n∑

i=1

Wi(X)2σ2(Xi)

]
.

Taking into account that σ2(x) ≤ σ2 µ-almost surely, we get

E
[
(rn(X)− r̂n(X))2

]
≤ σ2

k
.

The bias term requires more attention. From (1.4), recall that

E
[
(r̂n(X)− r(X))2

]
≤ E

[
n∑

i=1

Wi(X)(r(Xi)− r(X))2

]
=

1

k
E

[
k∑

i=1

(r(X(i)(X))− r(X))2

]
.

Then, the Lipschitz hypothesis yields

E
[
(r̂n(X)− r(X))2

]
≤ L2

k
E

[
k∑

i=1

∥∥X(i)(X)−X)
∥∥2] .

Arnaud Guyader Nearest Neighbors



1.4. Further results 9

In order to upper-bound the last quantity, denote N := ⌊n/k⌋ and consider the partitioning

{X1, . . . , Xn} =

 k⋃
j=1

{X(j−1)N+1, . . . , XjN}

 ∪ {XkN+1, . . . , Xn}.

For all 1 ≤ j ≤ k, we denote X
(j)
(1,N)(X) the nearest neighbor of X in the j-th subset. Then it is

readily seen that
k∑

i=1

∥X(i)(X)−X∥2 ≤
k∑

j=1

∥X(j)
(1,N)(X)−X∥2.

Since the couples (X
(j)
(1,N)(X),X)1≤j≤k have the same law, this leads to

1

k
E

[
k∑

i=1

∥∥X(i,n)(X)−X)
∥∥2] ≤ E

[
∥X(1)

(1,N)(X)−X∥2
]
= E

[
∥X(1,N)(X)−X∥2

]
.

The conclusion follows from Proposition 1.1, taking into account that N + 1 = ⌊n/k⌋+ 1 ≥ n/k.
■

Thus, balancing bias and variance in the previous result gives the following rates of convergence.

Corollary 1.1
Under Assumption 1.2, one has:

• For d = 1, there exists a sequence (kn) with kn ∼ σ
√
n√

2L
and a universal constant c1 such that

E
[
(rn(X)− r(X))2

]
≤ c1

σL√
n
.

• For d ≥ 2, there exists a sequence (kn) with kn ∼
(

σ2

4L2

) d
d+2

n
2

d+2 and a universal constant
cd such that

E
[
(rn(X)− r(X))2

]
≤ cd

(
σ2Ld

n

) 2
d+2

.

Remark. The rate n−
2

d+2 illustrates the curse of dimensionality. This phenomenon is made more
precise below.

1.4 Further results

1.4.1 Optimality

Let F be the class of distributions of (X, Y ) that satisfy Assumption 1.2, and r̃n any estimator
of the regression function. It turns out that the rate of convergence obtained through the nearest
neighbor method is optimal in the following sense (see Theorem 3.2 in [5] for a proof of this result
that was first established in [8]): for any d ≥ 1, there exists a constant Λd > 0 such that

lim inf
n→∞

inf
r̃n

sup
(X,Y )∈F

E
[
(r̃n(X)− r(X))2

]
(σ2Ld)

2
d+2n−

2
d+2

≥ Λd.

Hence, for d ≥ 2, the nearest neighbor regression estimator is minimax (i.e., roughly speaking, the
best in the worst case).

Nearest Neighbors Arnaud Guyader



10 Chapter 1. Nearest Neighbor Regression

1.4.2 Data-splitting

In Corollary 1.1, the parameter k = kn of the estimate with the optimal rate of convergence
depends on the unknown distribution of (X, Y ), especially on the smoothness of the regression
function measured by the Lipschitz constant L. In this subsection, we present a data-dependent
way of choosing k = kn and explain why, for bounded Y , the estimate with parameter chosen in
such an adaptive way achieves the optimal rate of convergence.

To this aim, we split the sample Dn = {(X1, Y1), . . . , (Xn, Yn)} in two parts of size ⌊n/2⌋ and
n − ⌊n/2⌋, respectively. The first half is denoted by Dℓ

n (learning set) and is used to construct
the k-NN estimate5 r⌊n/2⌋(x,Dℓ

n) = rk,⌊n/2⌋(x,Dℓ
n). The second half of the sample, denoted by Dt

n

(testing set), is used to choose k by picking k̂n ∈ K = {1, . . . , ⌊n/2⌋} to minimize the empirical
risk

1

n− ⌊n/2⌋

n∑
i=⌊n/2⌋+1

(
Yi − rk,⌊n/2⌋(Xi)

)2
.

Define the estimate
rn(x) = rk̂n,⌊n/2⌋(x,D

ℓ
n),

and note that rn depends on the entire data Dn. If |Y | ≤M <∞ almost surely, a straightforward
adaptation of Theorem 7.1 in [5] shows that, for any δ > 0,

E
[
(rn(X)− r(X))2

]
≤ (1 + δ) inf

k∈K
E
[(
rk,⌊n/2⌋(X)− r(X)

)2]
+ λ

lnn

n
,

for some positive constant λ depending only on M , d and δ. Immediately from Corollary 1.1 we
can conclude:
Theorem 1.3
Let d ≥ 2, suppose that X has bounded support, |Y | ≤M , and r is L-Lipschitz. Let rn be the k-NN
estimate with k ∈ K = {1, . . . , ⌊n/2⌋} chosen by data-splitting. If (lnn)(d+2)/(2d)n−1/2 ≤ L, then

E
[
(rn(X)− r(X))2

]
≤ Λ

(
Ld

n

) 2
d+2

,

for some positive constant Λ which depends only on M , d, and the diameter of the support of X.

Thus, the expected error of the estimate obtained via data-splitting is bounded from above up to
a constant by the corresponding minimax lower bound for the class F of regression functions, with
the optimal dependence in L.

1.4.3 Local averaging rules

The nearest neighbor method is an example of local averaging rule. A local averaging estimate of
the regression function is an estimate that can be written as

rn(x) := rn(x,Dn) =

n∑
i=1

Wn,i(x)Yi

where, for all i, Wn,i(x) is a function of x and X1, . . . ,Xn, but not of Y1, . . . , Yn. Usually, Wn,i(x)
is a weight taking values in [0, 1] and such that

∑n
i=1Wn,i(x) = 1. As explained before, for the

nearest neighbor estimate, the weights are equal to 1/k or 0, depending if Xi belongs or not to the
k nearest neighbors of x.

5For the sake of clarity, we make the dependence of the estimate upon k explicit.
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1.4. Further results 11

Another example is the so-called kernel estimate. Given a mapping K : Rd → R+, called the
kernel, and a bandwith h > 0, let

Wn,i(x) :=
K
(
x−Xi

h

)
∑n

j=1K
(
x−Xj

h

) ,
so that, for allx ∈ Rd, the kernel estimate takes the form

rn(x) =

∑n
i=1K

(
x−Xi

h

)
Yi∑n

j=1K
(
x−Xj

h

) .

In order to obtain a consistent regression estimate, it is intuitively clear that the weights of the
points that are close to x should be larger, as is the case for nearest neighbor estimation. Accord-
ingly, the bandwith h = hn will depend on n. Two popular kernels are:

• the naive kernel K(x) = 1∥x∥≤1;

• the Gaussian kernel K(x) = e−∥x∥2 .

Sufficient conditions for the consistency of a local averaging regression estimate are given by a
famous result due to Stone [7] (see also [5], Theorem 4.1).

Theorem 1.4 (Stone’s Theorem)
Assume that, for any distribution of X on Rd, the following conditions are satisfied:

(i) There exists a constant C such that for any function φ : Rd → R+ and any n,

E

[
n∑

i=1

|Wn,i(X)|φ(Xi)

]
≤ C E[φ(X)].

(ii) There exists D ≥ 1 such that, for all n,
∑n

i=1 |Wn,i(X)| ≤ D almost surely.

(iii) For all a > 0,
n∑

i=1

|Wn,i(X)|1∥Xi−X∥>a
P−−−→

n→∞
0.

(iv)
n∑

i=1

Wn,i(X)
P−−−→

n→∞
1.

(v)
max
1≤i≤n

Wn,i(X)
P−−−→

n→∞
0.

Then the corresponding regression estimate is universally consistent: for all distributions of
(X, Y ) such that E[Y 2] <∞, one has

E
[
(rn(X)− r(X))2

]
−−−→
n→∞

0.

Example. For nearest neighbor regression estimate with k = kn, conditions (i) and (iv) are clearly
always fulfilled. By Lemma 1.1, (iii) is true provided kn = o(n). Since max1≤i≤nWn,i(X) = 1/kn,
(v) is satisfied as soon as (kn) goes to infinity. Last but not least, point (i) is much more involved
and corresponds to Stone’s Lemma 1.2.
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Chapter 2

Nearest Neighbor Classification

2.1 Bayes classifier

In supervised classification (or discrimation, or pattern recognition), we still have X ∈ Rd but this
time the response variable Y , also called the label or the class, takes values in {0, 1}. A classifier
is a function η : Rd → {0, 1} and the associated error probability is defined as

L(η) := P(η(X) ̸= Y ).

Since Y ∈ {0, 1}, the regression function takes the form

r(x) = E [Y |X = x] = P(Y = 1|X = x).

It is intuitively clear and not difficult to show that the best classifier is the so-called Bayes classifier,
defined for all x ∈ Rd by

η⋆(x) := 1r(x)> 1
2
=

{
1 if P(Y = 1|X = x) > P(Y = 0|X = x)
0 otherwise.

We indeed have the following optimality result.
Lemma 2.1
For any classifier η, one has L(η) ≤ L(η). The quantity

L∗ = L(η⋆) = inf
η:Rd→{0,1}

L(η)

is called the Bayes error.

Proof. We have

P(η⋆(X) = Y |X) = E
[
1η⋆(X)=Y |X

]
= E

[
1η⋆(X)=01η⋆(X)=Y |X

]
+ E

[
1η⋆(X)=11η⋆(X)=Y |X

]
.

Thus,
P(η⋆(X) = Y |X) = 1η⋆(X)=0E [1Y=0|X] + 1η⋆(X)=1E [1Y=1|X] .

By definition of η, this reduces to

P(η⋆(X) = Y |X) = max(P(Y = 0|X),P(Y = 1|X)).

In particular, this implies that, for any classifier η,

P(η⋆(X) = Y |X)− P(η(X) = Y |X) ≥ 0,

and
P(η⋆(X) = Y )− P(η(X) = Y ) = E [P(η⋆(X) = Y |X)− P(η(X) = Y |X)] ≥ 0.

■
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14 Chapter 2. Nearest Neighbor Classification

2.2 Consistency

As in the nonparametric regression setting, our goal is to construct a classifier based on a sample
Dn = {(X1, Y1), . . . , (Xn, Yn)} of i.i.d. random couples with the same distribution as, and inde-
pendent of, a generic pair (X, Y ). Given Dn, a classifier ηn(x) = ηn(x,Dn) has values in {0, 1}
and assigns to each x a label 0 or 1. Notice that, in the proof of Lemma 2.1, if we condition by X
and Dn (which are independent), then we obtain that, almost surely,

L⋆ = L(η⋆) ≤ P(ηn(X) ̸= Y |Dn),

hence the following definition.

Definition 2.1
The error probability of a classifier ηn is the random variable

L(ηn) := P(ηn(X) ̸= Y |Dn).

This classifier is universally consistent if, for any distribution of (X, Y ),

E [L(ηn)] = P(ηn(X) ̸= Y ) −−−→
n→∞

L∗.

A standard approach to construct a classifier ηn is to estimate the regression function r(x) =
P(Y = 1|X = x) through some regression estimate rn and then apply a thresholding rule, that is

ηn(x) := 1rn(x)> 1
2
.

Example. In particular, this is the case for the nearest neighbor classifier, which consists in a
majority vote among the k nearest neighbors of a point x, that is

ηn(x) :=

{
1 if 1

k

∑k
i=1 Y(i)(x) >

1
2

0 otherwise.

From a general viewpoint, the upcoming result ensures that if rn is a good regression estimate,
then ηn is a good classifier. Recall that µ stands for the law of X in Rd.

Proposition 2.1
For any classifier ηn based on a regression estimate rn, one has

0 ≤ L(ηn)− L∗ ≤ 2E [|rn(X)− r(X)||Dn] = 2

∫
Rd

|rn(x)− r(x)|µ(dx).

As a consequence,
0 ≤ E [L(ηn)]− L∗ ≤ 2E [|rn(X)− r(X)|] .

Remark. Since ∥X∥1 ≤ ∥X∥p for any p ≥ 1, one also has

0 ≤ E [L(ηn)]− L∗ ≤ 2 (E [|rn(X)− r(X)|p])
1
p . (2.1)

Proof. Reasoning as in the proof of Lemma 2.1, we get

P(ηn(X) = Y |X,Dn) = 1ηn(X)=0P (Y = 0|X,Dn) + 1ηn(X)=1P (Y = 1|X,Dn) .

Since (X, Y ) is independent of Dn and taking into account that 1ηn(X)=0 = 1−1ηn(X)=1, the latter
reduces to

P(ηn(X) = Y |X,Dn) = 1ηn(X)=0(1− r(X)) + 1ηn(X)=1r(X) = (2r(X)− 1)1ηn(X)=1 + (1− r(X)).
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2.2. Consistency 15

In the same vein, we have

P(η⋆(X) = Y |X) = 1η⋆(X)=0(1− r(X)) + 1η⋆(X)=1r(X) = (2r(X)− 1)1η⋆(X)=1 + (1− r(X)),

which yields

P(ηn(X) ̸= Y |X,Dn)− P(η⋆(X) ̸= Y |X) = (2r(X)− 1)
(
1η⋆(X)=1 − 1ηn(X)=1

)
,

so

P(ηn(X) ̸= Y |X,Dn)− P(η⋆(X) ̸= Y |X) = |2r(X)− 1|1η⋆(X) ̸=ηn(X) ≤ 2 |rn(X)− r(X)| , (2.2)

because η⋆(X) ̸= ηn(X) implies |rn(X)− r(X)| ≥ |r(X)− 1/2|. It remains to integrate both sides
with respect to the law of X, that is

L(ηn)− L∗ = P (ηn(X) ̸= Y |Dn)− L∗ ≤ 2E [|rn(X)− r(X)||Dn] .

■

Thus, in order to show that a classifier is consistent, it suffices to show that the associated regression
estimate is consistent. This is the case for the nearest neighbor classifier.

Corollary 2.1
If kn → ∞ and kn/n→ 0 when n goes to infinity, then the nearest neighbors classifier is universally
consistent, i.e., for all (X, Y )

0 ≤ E [L(ηn)]− L∗ −−−→
n→∞

0.

Proposition 2.1 ensures that

0 ≤ E [L(ηn)]− L∗ ≤ 2E [|rn(X)− r(X)|] ≤ 2
(
E
[
(rn(X)− r(X))2

]) 1
2 .

Since Y is a bounded random variable, it satisfies E[Y 2] < ∞ and one can safely apply Theorem
1.1 to conclude. The forthcoming proof proposes an alternative way of showing this result. More
precisely, in the context of supervised classification, the bias term can be handled by an analytic
argument, namely Lebesgue’s differentiation theorem.

Another Proof. According to Proposition 2.1, we just have to establish that

E [|rn(X)− r(X)|] −−−→
n→∞

0.

As previously, we introduce

r̂n(x) :=
n∑

i=1

Wi(x)r(Xi) =
1

k

k∑
i=1

r(X(i)(x)),

and apply the triangular inequality to get

E [|rn(X)− r(X)|] ≤ E [|rn(X)− r̂n(X)|] + E [|r̂n(X)− r(X)|] .

For the variance term, Cauchy-Schwarz inequality implies

E [|rn(X)− r̂n(X)|] ≤
{
E
[
(rn(X)− r̂n(X))2

]} 1
2 ,

and, according to (1.2),

E
[
(rn(X)− r̂n(X))2

]
= E

[
n∑

i=1

Wi(X)2 (Yi − r(Xi))
2

]
= E

[
k∑

i=1

1

k2
(
Y(i)(X)− r(X(i)(X))

)2]
.
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16 Chapter 2. Nearest Neighbor Classification

Since |Y(i)(X)− r(X(i)(X))| ≤ 1, we conclude that

E [|rn(X)− r̂n(X)|] ≤ 1√
k
.

For the bias term, we have

E [|r̂n(X)− r(X)|] = E

[∣∣∣∣∣1k
k∑

i=1

(r(X(i)(X))− r(X))

∣∣∣∣∣
]
≤ E

[
1

k

k∑
i=1

∣∣r(X(i)(X))− r(X)
∣∣] .

Next, if we set
d(k+1)(X) := ∥X(k+1)(X)−X∥,

then

E

[
1

k

k∑
i=1

∣∣r(X(i)(X))− r(X)
∣∣] = E

[
E

[
1

k

k∑
i=1

∣∣r(X(i)(X))− r(X)
∣∣∣∣∣∣∣X, d(k+1)(X)

]]
.

Now suppose that, given X and d(k+1)(X), the random variables X′
1, . . . ,X

′
k are i.i.d. with common

distribution the restriction of µ on the open ball B(X, d(k+1)(X)), i.e. for any test function φ,

E
[
φ(X′)|X, d(k+1)(X)

]
=

1

µ(B(X, d(k+1)(X)))

∫
B(X,d(k+1)(X))

φ(x′)µ(dx′).

It is intuitively clear (but a bit tedious to justify, see Lemma A.1 in [3]) that for any test function
φ : Rk → R that is symmetric in its variables, one has

E
[
φ(X(1)(X), . . . ,X(k)(X))|X, d(k+1)(X)

]
= E

[
φ(X′

1, . . . ,X
′
k)|X, d(k+1)(X)

]
.

In our case, this gives

E

[
1

k

k∑
i=1

∣∣r(X(i)(X))− r(X)
∣∣∣∣∣∣∣X, d(k+1)(X)

]
= E

[
1

k

k∑
i=1

∣∣r(X′
i)− r(X)

∣∣∣∣∣∣∣X, d(k+1)(X)

]
.

Given X and d(k+1)(X), the random variables X′
1, . . . ,X

′
k are distributed as a generic variable X′

whose law depends on X and d(k+1)(X), so

E

[
1

k

k∑
i=1

∣∣r(X′
i)− r(X)

∣∣∣∣∣∣∣X, d(k+1)(X)

]
= E

[∣∣r(X′)− r(X)
∣∣∣∣X, d(k+1)(X)

]
,

which finally yields

E

[
1

k

k∑
i=1

∣∣r(X(i)(X))− r(X)
∣∣] = E

[∣∣r(X′)− r(X)
∣∣] ,

with

E
[∣∣r(X′)− r(X)

∣∣] = E[ 1

µ(B(X, d(k+1)(X)))

∫
B(X,d(k+1)(X))

∣∣r(x′)− r(X)
∣∣µ(dx′)

]
=: E [In] .

By Lebesgue’s differentiation theorem, if µ is a σ-finite measure on Rd that is bounded on compact
sets, and if φ is locally integrable with respect to µ, then for µ-almost all x1,

1

µ(B(x, δ))

∫
B(x,δ)

∣∣φ(x′)− φ(x)
∣∣µ(dx′) −−−→

δ→0
0,

1Such points x are sometimes called Lebesgue points.
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or, equivalently since X ∼ µ,

1

µ(B(X, δ))

∫
B(X,δ)

∣∣φ(x′)− φ(X)
∣∣µ(dx′)

a.s.−−−→
δ→0

0,

which implies that

sup
0≤δ≤δ0

1

µ(B(X, δ))

∫
B(X,δ)

∣∣φ(x′)− φ(X)
∣∣µ(dx′)

a.s.−−−→
δ0→0

0. (2.3)

In our case, for any δ0 > 0,

E
[∣∣r(X′)− r(X)

∣∣] = E [In1d(k+1)(X)>δ0

]
+ E

[
In1d(k+1)(X)≤δ0

]
,

and since 0 ≤ In ≤ 1 for all n, we are led to

E
[∣∣r(X′)− r(X)

∣∣] ≤ P (d(k+1)(X) > δ0
)
+ E

[
sup

0≤δ≤δ0

1

µ(B(X, δ))

∫
B(X,δ)

∣∣r(x′)− r(X)
∣∣µ(dx′)

]
.

Thanks to Lemma 1.1, we know that, provided k = kn = o(n),

P
(
d(k+1)(X) > δ0

)
−−−→
n→∞

0,

which implies that, for any δ0 > 0,

lim sup
n→∞

E
[∣∣r(X′)− r(X)

∣∣] ≤ E[ sup
0≤δ≤δ0

1

µ(B(X, δ))

∫
B(X,δ)

∣∣r(x′)− r(X)
∣∣µ(dx′)

]
.

Then, (2.3) and Lebesgue’s dominated convergence theorem ensure that

E

[
sup

0≤δ≤δ0

1

µ(B(X, δ))

∫
B(X,δ)

∣∣r(x′)− r(X)
∣∣µ(dx′)

]
−−−→
δ0→0

0,

which completes the proof.
■

2.3 Further results

Assume that the classifier is constructed by thresholding a regression estimator rn, meaning that

ηn(x) = 1rn(x)> 1
2
.

In order to establish rates of convergence for the classification error, we could thus simply start
from rates of convergence for the regression estimator and apply the upper-bound of equation
(2.1). Nonetheless, the upcoming result shows that this is not accurate.

Proposition 2.2
Suppose that rn is universally consistent, i.e.,

E
[
(rn(X)− r(X))2

]
−−−→
n→∞

0,

and that ηn(x) = 1rn(x)> 1
2
, then

E [L(ηn)]− L∗√
E [(rn(X)− r(X))2]

−−−→
n→∞

0.
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Proof. By integrating (2.2), we get

∆ := E [L(ηn)]− L∗ = 2E

[∣∣∣∣r(X)− 1

2

∣∣∣∣1η⋆(X)̸=ηn(X)

]
.

Let ε > 0. Since η⋆(X) ̸= ηn(X) implies
∣∣r(X)− 1

2

∣∣ ≤ |r(X)− rn(X)|1r(X)̸= 1
2
, we may write

E

[∣∣∣∣r(X)− 1

2

∣∣∣∣1η⋆(X) ̸=ηn(X)

]
≤ E

[
|r(X)− rn(X)|1η⋆(X)̸=ηn(X)1r(X)̸= 1

2

]
.

Now, the right-hand side is equal to

E
[
|r(X)− rn(X)|1η⋆(X)̸=ηn(X)1|r(X)− 1

2 |≤ε1r(X)̸= 1
2

]
+E

[
|r(X)− rn(X)|1η⋆(X)̸=ηn(X)1|r(X)− 1

2 |>ε

]
and Cauchy-Schwarz inequality gives

∆ ≤ ∥rn − r∥2

{
P

(∣∣∣∣r(X)− 1

2

∣∣∣∣ ≤ ε, r(X) ̸= 1

2

) 1
2

+ P

(
η⋆(X) ̸= ηn(X),

∣∣∣∣r(X)− 1

2

∣∣∣∣ > ε

) 1
2

}
.

For the first term, η⋆(X) ̸= ηn(X) and |r(X)− 1
2 | > ε imply |rn(X)− r(X)| > ε so

P

(
η⋆(X) ̸= ηn(X),

∣∣∣∣r(X)− 1

2

∣∣∣∣ > ε

)
≤ P (|rn(X)− r(X)| > ε) ≤

∥rn − r∥22
ε2

,

and the consistency of rn imposes

P

(
η⋆(X) ̸= ηn(X),

∣∣∣∣r(X)− 1

2

∣∣∣∣ > ε

)
−−−→
n→∞

0.

Hence, for any ε > 0, we are led to

lim sup
n→∞

E [L(ηn)]− L∗√
E [(rn(X)− r(X))2]

= lim sup
n→∞

∆

∥rn − r∥2
≤ P

(∣∣∣∣r(X)− 1

2

∣∣∣∣ ≤ ε, r(X) ̸= 1

2

) 1
2

.

It remains to apply Lebesgue dominated convergence theorem to conclude:

P

(∣∣∣∣r(X)− 1

2

∣∣∣∣ ≤ ε, r(X) ̸= 1

2

)
= E

[
1|r(X)− 1

2
|≤ε,r(X)̸= 1

2

]
−−−→
ε→0

0.

■

The previous result is not surprising and simply means that classification is easier than regression
(see also [4], Section 6.7). Indeed, in order to obtain a good classifier, it suffices for ηn(x) to
be on the same side of 1/2 as η⋆(x), whereas a good regression estimate rn has to be close to r
everywhere with respect to the law of X.

In this respect, if ηn = 1rn> 1
2

with rn an estimator of r, then the points that are difficult to classify
are those for which r(x) ≈ 1

2 . This point can be quantified through the so-called margin condition,
which assumes that there exist c > 0, α > 0, and 0 < t0 ≤ 1/2 such that, for all t ∈ [0, t0],

P

(∣∣∣∣r(X)− 1

2

∣∣∣∣ ≤ t

)
≤ c tα.

In particular, one may notice that this implies P(r(X) = 1
2) = 0. More on this topic can be found

for example in [9, 1, 6].
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