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Résumé

Ce manuscrit propose un aperçu de certains modèles de polymères aléatoires, dont les motivations
proviennent aussi bien de la physique que de la biologie ou de la chimie, et qui ont attiré l’attention
des mathématiciens depuis plusieurs décennies. Pour les modèles considérés, je présente un état de
l’art et je passe en revue les résultats récents, afin de mettre en perspective mes contributions, obte-
nues avec mes collaborateurs. Des idées concernant les outils mathématiques et les méthodes utilisés,
ainsi que des commentaires à propos de possibles perspectives de recherche sont aussi présentés. Une
question centrale (pour les systèmes désordonnés de manière générale) est celle de l’influence du
désordre sur les caractéristiques du système : dans notre contexte, on souhaite comprendre si les
propriétés géométriques du polymère sont affectées par la présence d’impuretés dans le milieu. En
particulier, dans les modèles présentés ici, un phénomène de localisation peut se produire : le po-
lymère adopte une forme spécifique selon la nature de l’interaction, et “s’accroche” aux impuretés
environnantes. Notre but est de décrire l’effet du désordre sur ce phénomène de localisation, pour
différents modèles de polymères.

• La première partie du manuscrit est dédiée aux modèles de copolymère, d’accrochage, et de
Poland-Scheraga généralisé : ces modèles possèdent une transition de phase dite de localisation.
De nombreux travaux se sont attachés à la question de la pertinence du désordre, c’est-à-dire
de savoir si le désordre modifie les propriétés critiques du système. Le Chapitre 1 présente le
modèle de copolymère, et décrit mes contributions [6, 19, 20]. Le Chapitre 2 présente le modèle
d’accrochage, et détaille mes travaux [14, 17] (et [19, 20]). Le Chapitre 3 présente le modèle
d’ADN de Poland Scheraga (généralisé), et les résultats obtenus dans [3, 10].
• La deuxième partie traite des modèles de polymère dirigé et de percolation de dernier pas-

sage, qui peuvent être utilisés pour représenter un polymère dans un solvant possédant des
impuretés. Le désordre peut poséder un effet localisant, le polymère “s’étirant” pour atteindre
certaines impuretés : on cherche alors à donner une description quantitative de ce phénomène.
Le Chapitre 4 présente le modèle de polymère dirigé, et décrit ma contribution [15]. Le Cha-
pitre 5 traite du modèle de polymère dirigé en environment à queue lourde, et se base sur
l’article [4]. Le Chapitre 6 présente le modèle de percolation de dernier passage (controllée par
l’entropie), et expose certains des résultats obtenus dans [2, 9].
• La troisième partie se concentre sur les objets probabilistes au centre des différents modèles :

les marches aléatoires et les processus de renouvellement. Le Chapitre 7 présente certains de
mes résultats sur les processus de renouvellements et leurs intersections [16, 17], ainsi que sur
les marches aléatoires dans le domaine d’attraction d’une loi stable [5, 7].

Mots-clés : Modèles de polymères, pertinence du désordre, localisation, transition de phase, phéno-
mènes critiques, modèle de copolymère, modèle d’accrochage, modèle de Poland-Scheraga, polymère
dirigé, percolation de dernier passage, marches aléatoires, processus de renouvellement.

Remarque : Ce manuscrit contient deux bibliographies : la première, page 1, fait la liste de mes
publications, rangées de la plus récente à la plus ancienne (en commençant par les prépublications),
et sont référencées par des nombres, par exemple [1–26] ; la deuxième, page 81, fait la liste des
références extérieures, et utilise un code alphanumérique basé sur le nom du ou des auteurs et
l’année de publication, par exemple [dH07, Gia10, Com16].
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Abstract

This manuscript offers an overview of some random polymer models, whose motivations range from
physics to biology and chemistry, and which have attracted much attention from mathematicians
over the past decades. For the models considered, I present a state of the art, I review recent
results, and I put into perspective my contribution, obtained together with my collaborators. Some
ideas of the mathematical tools and of the methods that are used, together with some comments
on possible directions of research are also presented. A central question (in disordered systems in
general) is that of the influence of disorder on the characteristics of the system: in our context, one
wishes to understand whether the geometric properties of the polymer are affected by the presence
of impurities in the medium. In particular, in the models presented here, a localization phenomenon
may occur: the polymer adopts a specific shape according to the nature of the interaction, and is
somehow “pinned” to surrounding impurities. Our goal is to describe the effect of disorder on this
localization phenomenon, for different polymer models.

• The first part of this manuscript is dedicated to the copolymer, pinning and generalized Poland-
Scheraga models: these models undergo a localization phase transition, and many works have
focused on the question of disorder relevance, i.e. of knowing whether disorder modifies the
critical properties of the system. Chapter 1 introduces the copolymer model, and presents my
contributions [6, 19, 20]. Chapter 2 considers the pinning model, and describes my works [14,
17] (and [19, 20]). Chapter 3 introduces the generalized Poland Scheraga model for DNA, and
presents the results obtained in [3, 10].
• The second part of the manuscript deals with the directed polymer model and last-passage

percolation, that can be used to represent a polymer placed in a solvant with some impurities.
Here, disorder has a localizing effect, and the polymer “stretches” to reach distant impurities:
one then tries to give a quantitative description of this localization phenomenon. Chapter 4
introduces the directed polymer model, and presents my contribution [15]. Chapter 5 treats the
directed polymer model in heavy-tail environment, and is based on my article [4]. Chapter 6
introduces the (entropy-controlled) last-passage percolation, and presents some of the results
obtained in [2, 9].
• The third part focuses on the probabilistic objects at the center of the different models: random

walks and renewal processes. Chapter 7 presents some of my works on renewal processes
and their intersections [16, 17], as well as on (multivariate) random walks in the domain of
attraction of stable laws [5, 7].

Keywords: Polymer models, disorder relevance, localization, phase transition, critical phenomena,
copolymer model, pinning model, Poland-Scheraga model, directed polymer, last-passage percola-
tion, random walks, renewal processes.

Remark: The manuscript contains two bibliographies: the first one, on page 1, lists my publications
from the most recent to the oldest (preprints first), and uses numerical labels, like [1–26]; the second
one, on page 81, lists external references, and uses an alphanumerical code from the name of the
author(s) and year of publication, like [dH07, Gia10, Com16].
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Introduction

Over the past 10 years, I have mostly focused my research on random polymers and related models.
In this manuscript, I present an overview of the various models that I have studied since my Ph.D.,
that I put into context and perspective. One of the main question, that has been a guideline for me,
is to understand the influence of disorder on physical systems. It can be stated as follows. First, one
wants to know whether the presence of random impurities or inhomogeneities have an effect on the
properties of a physical system: if it is the case then disorder is called relevant. Second, in the case
where disorder is relevant, one wants to describe quantitatively the impact of the random impurities
on the characteristics of the system, in particular on its phase transition.

Motivations from physics, chemistry and biology

Polymers are macromolecules, made from a large number of elementary units called monomers:
the monomers may be all of the same type (forming a homogeneous polymer) or they may be
of different types (forming a heterogeneous polymer, or copolymer). In biology and chemistry,
examples of natural or synthetic polymers are extremely numerous: rubber, polyethylene (these are
homopolymers) or DNA strands, proteins (these are copolymers). Polymers may have very complex
structures and properties, and they have been studied in various domains, ranging from chemistry
and biology to physics and mathematics.

Examples of polymer models. As mentioned above, my main line of research has been to
investigate the role of inhomogeneities, or disorder, in some polymer models. The randomness may
come from different factors: the composition of the polymer may be heterogenous (like for DNA or
proteins), or the polymer may be placed in an environment with some impurities. Here are some
examples of physical situations that are of interest for us, see Figures 1 to 5:

(a) a random copolymer lying at the interface between two solvants (the so-called copolymer
model, cf. Chapter 1);

Figure 1 – A schematic view of a copolymer at the interface between two solvants.
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(b) a protein in the vicinity of a cell, and sticking to its surface, which may be heterogeneous (one
instance of the pinning model, cf. Chapter 2);

Figure 2 – A schematic view of a protein at the vicinicity of a cell.

(c) a DNA double strand going through a denaturation transition (the (generalized) Poland-
Scheraga model, cf. Chapters 2 and 3);

Figure 3 – A schematic view of a DNA double strand going through denaturation.

(d) a polymer placed in a solvant with some impurities (the directed polymer model, cf. Chapters 4
and 5);

Figure 4 – A schematic view of a polymer in some heterogeneous solvant.

(e) a polymer whose monomers bear charges that repell or attract each other (the charged polymer,
that I studied in [13]);

Figure 5 – A schematic view of a charged polymer, with charges ’+’ or ’−’.

All these situations are relevant from a physics, chemistry or biology perspective, and are also
very rich from a mathematical point of view.

Localization phenomena and influence of disorder

All the models described above can be defined properly and have been shown to undergo a phase
transition. For a certain regime of temperature, the polymer is somehow “pinned”: (a) the copolymer
remains close to the interface, placing as many monomers as possible in their preferred solvant; (b)
the protein sticks to the surface of the cell; (c) the two DNA strands are attached to each other; (d)
the polymer reaches and sticks to the impurities present in the solvant; (e) the charged polymer folds
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onto itself, bonding as many attracting charges together as possible. More accurately, one speaks of
a localization phenomenon (localization near an interface, or in the vicinity of some impurities, or
in a small region of the space). On the other hand, when temperature reaches some critical value
(for instance becomes strong enough to break many chemical bonds, or becomes low enough so that
charges repel each other strongly), then the configuration of the polymer changes drastically, and
becomes delocalized : the polymer (a)-(b) wanders away from the interface; (c)-(d) moves freely, as
if it did not feel the interactions; (e) unfolds, avoiding interactions between its monomers. We do
not develop on these informal descriptions: more precise statements will be given in the different
chapters dedicated to the models.

But once one knows that a phase transition occurs, many questions remain: can one determine
the critical temperature or at least give some estimates on its value? what is the behavior of the
system when approaching this critical value? An important (and difficult!) question is to understand
the role of disorder on the localization phenomenon.

Influence of disorder and Harris criterion

Understanding if and how disorder affects phase transitions has been a central question in the
physical literature, and more recently in the mathematical literature (see [Bov06, Gia10] for an
overview). The first question is that of disorder relevance: one wants to determine whether an
arbitrarily small quantity of disorder affects the critical behavior of a physical system. Put otherwise,
one wishes to know whether a disorder ω has any influence on the phase transition at all. One
therefore needs to compare the disordered model with its homogeneous counterpart (i.e. taking the
randomness ω ≡ 0), and establish whether the characteristics of the phase transition differ.

In 1974, in a celebrated paper [Har74], the physicist A. B. Harris devised a criterion based on
renormalization group arguments, to decide whether a system was sensitive to the introduction of
disorder, providing predictions for the question of disorder relevance. This prediction is based on
the critical behavior of the homogeneous model. More precisely, let ξ(T ) be the correlation length
of the homogeneous model, i.e. the exponential rate of decay of the two-point correlation function
associated to the model, and assume that there is some ν > 0 such that ξ(T ) ∝ |T − Tc|−ν as
T → Tc (i.e. log ξ(T )/ log |T − Tc| → −ν), where Tc is the critical temperature at which the phase
transition occurs. The exponent ν is called the critical exponent of the correlation length. Then,
Harris predicts that, if the system is d-dimensional, an i.i.d. disorder should be irrelevant if ν > 2/d
and relevant if ν < 2/d. The case ν = 2/d, dubbed marginal, is left aside in Harris criterion, and
should depend on the details of the model.

Putting this criterion to mathematical ground is an important challenge, and the copolymer and
pinning models have been found perfect playgrounds for testing Harris prediction: there are a family
of one-dimensional systems for which the homogeneous models are exactly solvable, with a critical
exponent ν spanning values between 1 and ∞ (at least for the pinning model). The Harris criterion
has been proven for the pinning model by a series of papers (over the past fifteen years), and the
marginal case ν = 2, after a long controversy among physicist, has also been treated completely. We
refer to Chapter 2 for a more detailed discussion and relevant references.

But the question of the influence of disorder on phase transitions does not stop here: once
disorder relevance is proven, an important issue remains to be able to describe (quantitatively) the
critical behavior in presence of disorder. There are a number of important results in the physical
literature (see e.g. [AW90], in the context of the Ising model), but this question is far from being
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fully understood, to put it mildly. Some predictions have been made in the physics literature for
some of the models that we present in this manuscript (see Sections 1.4 and 2.3.2 for more details),
but very few results have been proven.

Organization and overview of the manuscript

We now present an overview of the organization of the rest of the manuscript, and of the main
questions addressed in the different chapters.

Part I. The first part deals with the copolymer, pinning, and DNA models, with the question
of relevance/irrelevance of disorder as a guideline. These models could be put into the category
of “pinning” models (in a wider sense): they exhibit the same type of localization/delocalization
phenomenon, that could be dubbed as a depinning transition. Their common features is that they
are based on renewal processes to represent the sequence of contact points with an interface. Because
of their relative simplicity (in particular, their homogeneous counterparts are solvable), they have
been used as test models for Harris’ prediction.

Chapter 1 is dedicated to the copolymer model and presents the works [6, 19, 20]. Here, the
question of disorder relevance has been settled, but some important open problems remain.
One of them is to determine the behavior of the critical point in the weak-coupling limit: it has
been shown to be universal (in some sense made clear in Section 1.3.2), but the explicit behavior
is still mostly conjectural. One of my result, in collaboration with Julien Poisat, Francesco
Caravenna, Rongfeng Sun and Nikos Zygouras [20], has been to answer this conjecture in the
regime where the underlying renewal has a finite mean (see also [19]). Another important
issue is to give sharp estimates on the critical behavior of the disordered model, for instance
on its free energy. This appears to be very difficult, in particular since the critical point is not
explicit. With Giambattista Giacomin and Hubert Lacoin [6], we considered a specific case
where the critical point is known, which helped us obtain the sharp critical behavior of the
free energy: we find that it has an infinite order phase transition, and we managed to obtain
an explicit (stretch-)exponential behavior.

Chapter 2 focuses on the pinning model and presents the works [12, 14] (and [19, 20]). This model
has been at the center of a very intense activity, the central question being that of disorder
relevance. A series of recent papers has settle this question in terms of critical point shift,
and my main contribution resides in a work with Hubert Lacoin [14], which gives a necessary
and sufficient condition for disorder relevance, proving a conjecture by Derrida, Hakim and
Vannimenus [DHV92] (it also gives sharp estimates for the critical point shift). Section 2.4 is
dedicated to a different type of pinning model, in which the disorder sequence is given by a
renewal process: it is based on an article with Kenneth S. Alexander [12].

Chapter 3 turns to the generalized Poland-Scheraga model, and presents the works [3, 10]. The
Poland Scheraga model, introduced in [PS70], is a simplified model for DNA denaturation:
when heated the two strands form loops, that are assumed to be symmetric, allowing no
mismatches. When properly formulated, this is exactly the pinning model of Chapter 2. More
recently, a generalized version of this model has been proposed by Garel and Orland [GO04], in
which loops may be asymmetric, allowing for possible mismatches. Here, the phenomenology
is much richer, already at the level of the homogeneous model: a localization transition is still
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present, but a condensation transition might occur. In an article with Giambattista Giacomin
and Maha Khatib [10], we described precisely this condensation transition. For the disordered
version of the model, several choices for the randomness are reasonable. In Section 3.3, we
present results obtained in collaboration with Giambattista Giacomin and Maha Khatib [3], in
the case where the disorder is i.i.d.: we confirm Harris’ predictions in this case. In Section 3.4,
we discuss ongoing work with my Ph.D. student Alexandre Legrand, considering a more natural
choice of disorder from the point of view of DNA modeling.

Part II. The second part focuses on the directed polymer model, and another closely related model
called last-passage percolation. It considers a directed random walk in dimension 1+d (one temporal
dimension, d spatial or transverse dimensions), interacting with a disorder field. The main question
addressed in this part is that of the localization of polymer trajectories inside “favorite corridors”
where the disorder field is unusually attractive. Last-passage percolation is the zero temperature
analogue of this model, and we introduce a generalization of it which appears as a natural tool when
trying to deal with scaling limits of the directed polymer model.

Chapter 4 considers the directed polymer in random environment in dimension d ≥ 1, and presents
the work [15]. This model has been widely studied over the past decades, and a seminal work
of Bolthausen [Bol89] proves that in dimension d ≥ 3, there is a phase transition: polymer
trajectories are diffusive at high temperature, whereas a localization phenomenon occurs at low
temperature. In dimension d = 1, 2, it has been proven that localization holds at any positive
temperature. In an article with Hubert Lacoin [15], we give the sharp high-temperature
asymptotics of the free energy in dimension d = 2, which helps to quantify this localization
phenomenon.

Chapter 5 deals with the directed polymer in a heavy-tail environment in dimension d = 1, and
presents the work [4]. Here, we assume that disorder is i.i.d. with a power law decaying distri-
bution function, with exponent α ∈ (0, 2) (hence disorder does not admit a second moment).
In that case, Auffinger and Louidor [AL11] prove that the polymer has a transversal fluctuation
exponent ξ = 1. To observe interesting behavior, an idea is to tune the inverse temperature
β with the size of the system, i.e. take β = βn → 0 as n → +∞. Our main result is that,
if α ∈ (1/2, 2), then by tuning properly βn as a function of n, one can reach any transversal
fluctuation exponent ξ ∈ [1/2, 1]: this generalizes the works of Auffinger and Louidor [AL11]
(case ξ = 1) and of Dey and Zygouras [DZ16] (case ξ = 1/2), and answers an important con-
jecture. In the case α ∈ (0, 1/2), one can only reach transversal fluctuation exponents ξ = 1/2
and ξ = 1, and the transition between the two regimes is very abrupt.

Chapter 6 introduces the entropy-controlled last-passage percolation, based on the works [2, 9].
Hammersley’s last-passage percolation considers n i.i.d. points in [0, 1]2, and asks what is the
maximal number of points that can be collected by an up-right path (or a 1-Lipschitz path
after a 45◦ rotation). We introduce a generalization of this model, in which the up-right (or
1-Lipschitz) constraint is replaced by a global (entropy) constraint—it appears naturally if
the paths are thought as scaling limits of random walks. Our main result is that the number
of points that can be collected is of the same order as for standard last-passage percolation,
i.e.
√
n. We explain how to apply these estimates to derive deeper results, in particular to

show that the limiting variational problem found in Chapter 5 is well defined. We also present
a more general version of last-passage percolation, and discuss its possible applications.
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Part III. The last part of the manuscript (Chapter 7) is devoted to random walks and renewal
processes, which are probabilistic objects of much interest on their own, and are at the center of the
models above. We review some of the literature, and we present in Section 7.1 the results obtained
with Kenneth S. Alexander on renewal processes with tail decay exponent α = 0 (cf. [16]), and on
the tail distribution of the intersection of two independent renewals (cf. [17]). Section 7.2 considers
random walks in the domain of attraction of an α-stable law, α ∈ (0, 2), and in particular presents
new results for (local) large deviation of a random walk in the Cauchy domain of attraction (i.e. when
α = 1) that I obtained in [5]. Finally, Section 7.3 gives some (new) results on the Green function of
multivariate random walks, obtained in [7]—this was originally motivated by the generalized Poland
Scheraga model of Chapter 3, which is based on bivariate renewal processes.

Other related works—not included in the manuscript

Let me mention here a few other works of mine that are related to the subject of this manuscript,
but that I will not develop further.

• Together with Julien Poisat and Frank den Hollander [13], we studied the charged polymer
model. This model is used to describe a self-interacting polymer, see Figure 5: charges are attached
to the monomers, and each self-intersection contributes an energy that is equal to the product of
the charges of the two monomers that meet. Very few results have been proven for the model with
quenched disorder. For the annealed model (i.e. when disorder has been averaged), one can show
that it undergoes a folding (or collapse) phase transition: our work [13] describes the phase diagram
of this model in dimension d ≥ 2—the dimension d = 1 has been considered in [CdHPP16].

•With Kenneth S. Alexander [11], we studied the first-passage percolation model (on Z2), which
was designed as a model for the propagation of a fluid in a random porous medium. A first result,
under very mild conditions, is the existence of a (convex) limit shape B: if Bt is the “wet” region
after time t, then a.s. 1

tBt converges to B as n→ +∞. More recent results [DH14, AH16] prove the
existence of coalescing semi-infinite geodesics for the model, but only in the directions where the limit
shape has a differentiable boundary ∂B (loosely speaking). Our work with Kenneth S. Alexander
considers an example where the limit shape has corners, and studies the question of the existence
(and coalescence) of geodesics in the directions of these corners. Our finding is that there are some
corners with no geodesics, and some corners with two non-coalescing geodesics—this shows that the
question of geodesics in the direction of corners cannot have a universal answer.

• In two works with Michele Salvi [1, 8], we analyzed random walks among biased random
conductances in dimension d = 1. Because of the bias, the random walk is transient, and it is
ballistic under some conditions of integrability of the conductances. With Michele Salvi, we focused
on the sub-ballistic case, which occurs when the conductances have a heavy-tail (at 0 or at +∞).
Sub-ballisticity arises because of a trapping mechanism: the random walk is slowed down by very
large or very small conductances (or the combination of a large conductance followed by a small
one, depending on the tail of the conductances), and a spends most of its time trapped near these
abnormal conductances. This is another type of a localization effect. Our main results have been to
quantify this slowdown, find the correct scaling of the random walk, and prove the convergence of
the rescaled process to the inverse of an α-stable subordinator (this indicates an aging phenomenon).
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Recurrent notation

Here are some notation we use throughout the manuscript:
- we use a ∨ b := max(a, b), a ∧ b := min(a, b), and (x)+ = max(0, x), (x)− = max(0,−x);
- we write an = O(bn) if lim supn→+∞ bn/an < +∞;
- an � bn if an = O(bn) and bn = O(an);
- an ∼ bn if an/bn → 1 as n→ +∞;
- an = o(bn) or an � bn if an/bn → 0 as n→ +∞ ;
- for a finite set A, |A| denotes its cardinality;
- ‖ · ‖2 denotes the euclidean distance in Rd, and ‖ · ‖1 the L1 distance.
- N = {1, 2, . . .} is the set of integers, and we denote N0 = N ∪ {0}.
- For i, j ∈ Z we denote Ji, jK = {i, i+ 1, . . . , j − 1, j}; if a, b ∈ R, we write Ja, bK = [a, b] ∩ Z;
- bxc is the integer part of x ∈ R; if x = (x1, . . . , xd) ∈ Rd, then bxc = (bx1c, . . . , bxdc);
- i.i.d. means “independent and identically distributed”, r.v. means “random variable”, and a.s.

means “almost surely”;

-
(d)−−→ stands for the convergence in distribution;

(d)
= stands for equality in distribution.

Also, we use generic constants C,C ′, c, c′,... when their value are irrelevant (and may change
from line to line), and we keep a subscript Cδ, cε,... when we want to stress the dependence of the
constants on various parameters. We also often omit integer parts when it is not ambiguous, to
lighten notations: for instance, for t > 0, x ∈ R, we write Stn = xnξ in place of Sbtnc = bxnξc if
(Sn)n≥0 is an integer valued random walk (and ξ > 0 is a given exponent).
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Chapter 1

The copolymer model

In this chapter, we present the copolymer model: in particular, we describe our contributions [19, 20]
(in Section 1.3.2) and [6] (in Section 1.4).

1.1 Presentation of the model

A first model for a copolymer near a selective interface has been introduced by Garel, Huse, Leibler
and Orland [GHLO89], to study the effect of disorder on the localization of a hydrophilic-hydrophobic
copolymers placed near a water/oil interface. The interest of the mathematical community in this
model grew with the seminal paper by Bolthausen and den Hollander [BdH97]. One considers a
random walk path (S0, . . . , Sn), each step (Si, Si+1) being seen as a monomer. The path wanders near
the interface between two solvants, and a random variable ωi attached to the ith monomer determines
its prefered solvant. A natural definition for the Hamiltonian is then

∑n
i=1(ωi + η) sign(Si−1+Si

2 ),
where η is an external field (or a bias in the disorder)—note that this definition relies solely on the
lengths of the different excursions away from the interface and on their sign.

A more general definition of the model is based on a (one-dimensional) renewal process τ (τ0 := 0
and (τk − τk−1)k≥1 are i.i.d. N-valued r.v.s, representing the length of the excursions), and on a
sequence of i.i.d. symmetric r.v.s ι = (ιk)k≥1 with value in {−1,+1}, independent of τ (for k ≥ 1,
ιk represents the sign of the kth excursion). We denote by P the joint law of (τ, ι), and we also set
εi :=

∑
k≥1 ιk1i∈(τk−1,τk], which is the sign of the ith step of the walk (or of the ith monomer). We

refer to Figure 1.1 for an illustration.
We let ω = (ωi)i≥1 be a sequence of i.i.d. r.v.s whose law is denoted P, and that the ωi are

centered and have unit variance (E[ωi] = 0, E[ω2
i ] = 1). We denote λ(β) := logE[eβωi ], and we

suppose that β0 := sup{β : λ(β) < +∞} ∈ (0,+∞]. As far as the renewal process is concerned, we
assume that there is some α ≥ 0 and some slowly varying function ϕ(·) such that for all n ≥ 1

P(τ1 = n) = ϕ(n)n−(1+α). (1.1)

(We recall that ϕ(·) is said to be slowly varying if for any a > 0, ϕ(x)/ϕ(ax)→ 1 as x→ +∞, see
[BGT89].) Assumption 1.1 is verified for instance if τ is the set of return times to 0 of S2n, where
Sn is the simple symmetric random walk on Z (one then has α = 1/2).

Then, for a fixed realization of ω = (ωi)i≥1 (quenched disorder), and for β ∈ [0, β0) (the inverse
temperature, or disorder strength) and h ∈ R (an external field), we define for n ∈ N, the probability
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τ0 = 0 τ1 τ2 τ3 τ4 τ5 τ6

ι1 = +1
ι2 = +1

ι3 = −1

ι4 = +1

ι5 = −1

ι6 = +1

Figure 1.1 – On top, a representation of the (directed) random walk, with r.v.s associated to each step.
The strength of the interaction depends on whether a monomer lies above or below the interface. On the
bottom is the simplification of the model, with a renewal process representing the different excursions and
an i.i.d. sequence of r.v.s representing their signs.

measures Pω,cop
n,β,h by the Radon-Nikodym derivative with respect to the reference law P:

dPω,cop
n,β,h

dP
(τ) =

1

Zω,cop
n,β,h

exp
( n∑
i=1

(βωi − λ(β) + h)1{εi=+1}
)
1{n∈τ} . (1.2)

The quantity Zω,cop
n,β,h is the (quenched) partition function of the model, used to renormalized Pω,cop

n,β,h

to a probability measure, and is equal to

Zω,cop
n,β,h := E

[
exp

( n∑
i=1

(βωi − λ(β) + h)1{εi=+1}
)
1{n∈τ}

]
. (1.3)

Notice that we placed the constraint n ∈ τ in (1.2)-(1.3), forcing the end-point of the polymer to
return to the interface: this is essentially to simplify later exposition, but it is not a real issue, see
Remark 1.2. Note that we substracted λ(β) in the exponential, this is essentially for renormalization
purposes, see (1.7). Also, one would have expected to find εi in the Gibbs weight: the choice
1{εi=+1} = 1

2(εi + 1) simplifies some of the later analysis, without changing the measure Pω,cop
n,β,h (up

to a small change of parameters).

Remark 1.1. The choice of parameters in (1.2) is made in order to stress the parallel with the
pinning model, see (2.1), and is the one used for instance in [10]. A reader familiar with the model
may be aware of a different set of notation (see for instance [BdH97] or [CGT12]), where the Gibbs
weight is exp

(
− 2β̄

∑n
i=1(ω̄i + h̄)1{εi=+1}

)
, but this is simply a change of parameters ωi = −ω̄i,

β = 2β̄, h = λ(2β̄)− 2β̄h̄.

1.2 Free energy and localization transition

A central physical quantity associated to the model is the quenched free energy (or energy per unit
length) of the model, which is defined by

F(β, h) := lim
n→+∞

1

n
logZω,cop

n,β,h = lim
n→+∞

1

n
E logZω,cop

n,β,h P-a.s. and in L1(P) . (1.4)
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The existence of the limit follows from standard super-additivity arguments (using the constraint
n ∈ τ). We refer to [dH07, Chap. 9] or [Gia07, Chap. 4] for details. Let us stress that the limit
F(β, h) is almost surely constant, but that it does depend on the law P, as well as on the law P.

Remark 1.2. One could also work with the free model, that is with the indicator 1{n∈τ} removed
from (1.2)-(1.3). The free partition function is

Zω,cop,free
n,β,h := E

[
exp

( n∑
i=1

(βωi − λ(β) + h)1{εi=+1}
)]
,

and one can show that for all n, β, h we have Zω,cop
n,β,h ≤ Zω,cop,free

n,β,h ≤ CnZω,cop
n,β,h , where C is a constant

(that depends on ω), see [Gia07, (4.25)]. All together, we see that, at least at the level of the free
energy, we can replace Zω,cop

n,β,h by Zω,cop,free
n,β,h in (1.4) without changing the limit.

Localization transition and phase diagram. Another observation is that F(β, h) ≥ 0 for all
β, h. Indeed, one can obtain a lower bound on the partition function by adding the indicator function
that τ1 = n and ι1 = −1 (so that 1{εi=+1} = 0 for 1 ≤ i ≤ n): we get Zω,cop

n,β,h ≥ P(τ1 = n, ι1 = −1).
Then, taking the logarithm, dividing by n and letting n→ +∞, we get that F(β, h) ≥ 0 for all β, h,
thanks to the assumption (1.1).

We therefore have that h 7→ F(β, h) is a non-negative, non-decreasing (and convex) function: it
is then natural to define the (quenched) critical point

hc(β) := sup
{
h : F(β, h) = 0

}
= inf

{
h : F(β, h) > 0

}
. (1.5)

This critical point marks a transition in the properties of the polymer. Indeed, one notices that, if
h 7→ F(β, h) is differentiable (which is true for all except countably many h, since the function is
convex), one can differentiate (1.4) and obtain by convexity arguments that

∂

∂h
F(β, h) = lim

n→+∞
Eω,cop
n,β,h

[ 1

n

n∑
i=1

1{εi=+1}
]

P-a.s. (1.6)

This shows that the derivative of the free energy is related to the asymptotic proportion, under the
measure Pω,cop

n,β,h , of monomers lying above the interface. Therefore, if h < hc(β), then ∂hF(β, h) = 0,
and almost all monomers (i.e. a proportion asymptotic to 1) are placed below the interface. On the
other hand, if h > hc(β), then ∂hF(β, h) > 0 (if the derivative exists), and a positive proportion of
monomers lie above the interface—and a positive proportion of monomers lie below the interface if
∂hF(β, h) < 1. Hence, hc(β) marks a phase transition between a delocalized phase (h < hc(β)) and
a localized phase (h > hc(β)). Some bounds on the critical point are easily obtained: we can show
that (h− λ(β))+ ≤ F(β, h) ≤ (h)+ for all β, h, which yields 0 ≤ hc(β) ≤ λ(β). As discussed below,
improving those bounds, and in particular obtaining the behavior of hc(β) as β ↓ 0, has been the
object of an intense activity. See Figure 1.2 for an overview of the phase diagram.

Annealed and homogeneous model. Let us introduce here the annealed model, where one
averages over the disorder: the annealed partition function is, for β ∈ [0, β0),

Za,cop
n,β,h := EZω,cop

n,β,h = E
[

exp
(
h

n∑
i=1

1{εi=+1}
)
1{n∈τ}

]
. (1.7)
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β

h hc(β)λ(β)

L
D

Figure 1.2 – Phase diagram for the copolymer model: the critical curve β 7→ hc(β) is represented as
a full line, and is bounded below by 0 and above by β 7→ λ(β). A typical realization under Pω,cop

n,β,h is
represented in both phases (it stays near the interface in the localized phase L := {(β, h), F(β, h) > 0} and
stays below the interface in the delocalized phase D := {(β, h), F(β, h) = 0}).

Notice that the second identity comes from exchanging the expectations with respect to P and P,
using that the ωi’s are i.i.d., with E[eβωi ] = eλ(β). Here, the reason we substracted λ(β) in (1.2)-(1.3)
becomes clear: it gets simplified in (1.7) so that the annealed model corresponds to the homogeneous
model, i.e. the model with β = 0. From now on, we will write Zcop

n,h for Zω,cop
n,0,h , the partition function

of the homogeneous (and annealed) model. Noticing that en(h)+ ≥ Zcop
n,h ≥ P(τ1 = n, ι1 = +1)en(h)+ ,

by taking the logarithm, dividing by n and letting n→ +∞, we get thanks to (1.1) that

F(0, h) = lim
n→+∞

1

n
logZcop

n,h = (h)+ for any h ∈ R. (1.8)

Therefore, the homogeneous copolymer model has a phase transition of order 1: ∂hF(0, h) is not
continuous at hhom

c = 0 (the annealed critical point is ha
c(β) = 0), and the asymptotic density of

monomers above the interface jumps from 0 to 1 when h goes from h < 0 to h > 0.
One can compare the free enegy F(β, h) to its annealed counterpart, using Jensen’s inequality:

F(β, h) = lim
n→∞

1

n
E logZω,cop

n,β,h ≤ lim
n→∞

1

n
logEZω,cop

n,β,h = lim
n→∞

1

n
logZcop

n,h = F(0, h) . (1.9)

This shows in particular that hc(β) ≥ 0 = ha
c(β).

1.3 Disorder relevance and the critical slope

As mentioned in the introduction, the problem of understanding whether a physical system is sen-
sitive to the introduction of a small amount of disorder is central in the physical literature. Here,
the question can be asked as follows: does the critical behavior of the model (for instance of its free
energy) differ from that of its homogeneous counterpart, as soon as β > 0? Or can we take β suffi-
ciently small so that the disordered and homogeneous models have the small critical properties. One
wants in particular to determine whether the critical exponents of F(β, h) and F(0, h) are different,
or whether the quenched and annealed critical point differ, i.e. hc(β) > 0, which is another mark of
disorder relevance.
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1.3.1 Disorder relevance and smoothing of the phase transition

For the copolymer model, disorder has been found to be relevant for all α ≥ 0. First, in terms
of critical exponents: in a celebrated work of Giacomin and Toninelli [GT06], it is shown that the
quenched phase transition is of order at least 2, proving that it is smoothened by the presence of
disorder—some improvement regarding the constants, have been obtained in [CdH13a]. Second, in
terms of critical point shift: for α > 0, hc(β) has been proven to be strictly positive first for large β
in [Ton08a], and then for all β > 0 in [BGLT08]. We collect these results in the following theorem.

Theorem 1.1. For all 0 < β < β0 and u0 > 0 there exists a constant Cβ,u0 > 0 such that for all
u ∈ (0, u0)

F(β, hc(β) + u) ≤ Cβ,u0
1 + α

2β2
u2 ,

and the constant Cβ,u0 goes to 1 as β ↓ 0 and β−1u0 ↓ 0. Moreover, if α > 0, then hc(β) > 0 for all
β > 0. (If α = 0 then hc(β) = 0 for all β < β0.)

The ultimate goal here would be to obtain more precise bounds on the free energy close to
the critical point. This appears so far untractable in general, but with Giambattista Giacomin
and Hubert Lacoin [6], we managed to treat with unexpected precision the case α = 0, in which
hc(β) = 0, see Section 1.4 below. On the other hand, much attention has been put on the value of
hc(β) for α > 0, and in particular on its behavior as β ↓ 0, see Section 1.3.2.

1.3.2 About the critical slope

The first bound on hc(β) that we have mentioned above is 0 ≤ hc(β) ≤ λ(β). Notice that, since
we assumed that E[ωi] = 0, E[ω2

i ] = 1, we have that λ(β) ∼ 1
2β

2 as β ↓ 0. We therefore get that
hc(β) = O(β2), and a natural question is to know whether β−2hc(β) converges to a limit.

Universality of the weak-coupling limit. Bolthausen and den Hollander [BdH97] (in the case
of the simple random walk) and Caravenna and Giacomin [CG10] (in the general case with α ∈ (0, 1))
answer this question affirmatively, and they go one step further: not only the limit exists, but it
is universal, in the sense that it does not depend on the specific disorder law P nor on the fine
properties of P, but only on α.

Theorem 1.2. For every α ∈ (0, 1), the limit mα := limβ↓0 β−2hc(β) exists and depends only on α.

Remark 1.3. This is known in the literature as the “critical slope problem”: as explained in Re-
mark 1.1, the model was originally formulated with different parameters (β̄ = β/2, h̄ = (λ(β)−h)/β),
and the critical point was h̄c(β̄) = (2β̄)−1(λ(2β̄)−hc(2β̄)). Hence, Theorem 1.2 gives that the criti-
cal slope, i.e. the slope at the origin of the critical curve β̄ 7→ h̄c(β̄), the limit m̄α := limβ̄ β̄

−1h̄c(β̄),
exists and is universal. We also have the relation m̄α = 1 − 2mα, and for consistency with the
literature we refer to m̄α as the critical slope.

The key ingredient in the proof of Theorem 1.2 is to look at the weak-coupling scaling limit of
the system: one takes β ↓ 0 and h ↓ 0 simultaneously, and one tries to show that, in some sense,
the discrete model converges to a continuous one (replacing the renewal process and the disorder ω
by their scaling limits)—this will resonate with Section 3.4 below. The main result of [CG10] makes
this precise: for any β > 0, h ∈ R, we have that lima↓0 1

a2
F(aβ, a2h) = Fα(β, h), where Fα(β, h) is

the free energy of a continuous model, called the α-copolymer model.
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Looking for the value mα. The question of the value of the critical slope has attracted much
attention in the physical and mathematical literature, even before it was known that this value
was universal, see for instance [GHLO89, Mon00, BG04, dH07, Gia07, BGLT08]. We mention
in particular the result due to Bodineau and Giacomin [BG04], who showed that 0 ≤ λ(β) −
hc(β) ≤ λ

( β
1+α

)
for every β > 0. As a consequence, we get that the critical slope verify 1

1+α ≤
m̄α ≤ 1 (or 0 ≤ mα ≤ α

2(1+α)). Several improvement of this bound have been obtained. In
particular [BGLT08] showed that m̄α < 1 (implying the second part of Theorem 1.1). More recently,
Bolthausen, den Hollander and Opoku [BdHO15] showed that m̄α > 1

1+α , ruling out Monthus’
conjecture [Mon00] that m̄α = 1

1+α : they provide explicit upper and lower bounds, and proposed
the following conjecture.

Conjecture 1.3. For all α > 0, the critical slope is m̄α = 2+α
2(1+α) ; equivalently mα = α

4(1+α) .

The case α > 1 (or simply E[τ1] < +∞) is somehow a bit different: Theorem 1.2 does not hold
in that case, simply because the scaling limit of the underlying renewal is trivial, and there is a
priori no reason why universality should hold. We have studied this case in a work with Francesco
Caravenna, Julien Poisat, Rongfeng Sun and Nikos Zygouras [20] published in Communications in
Mathematical Physics: our main result is to show that Conjecture 1.3 holds in the case α > 1,
showing the universality of the slope as a biproduct.

Theorem 1.4 ([20], Theorem 1.4). If α > 1, then the critical slope is m̄α = 2+α
2(1+α) . Equivalently,

limβ↓0
hc(β)
β2 = α

4(1+α) .

Our techniques are specific to the case of a finite mean, so we have no hope of adapting these
methods to the case α ∈ (0, 1).

Ideas of the proofs. Let us present briefly some ideas of the proofs, in order to explain how the
constant α

4(1+α) appears.

For the upper bound. Our idea came from Giacomin’s book [Gia07, Chap. 6]: in its Theo-
rem 6.3, it shows that if E[τ1] < +∞ then limβ↓0 1

β2F(β, λ(β)) = 1
8 (recall that we have a different

parametrization here). This idea can be used to prove a lower bound on the weak coupling limit
of the free energy for a wider range of h. Lemma 5.1 in [20] gives that, if E[τ1] < +∞, we have
lim infβ↓0 1

β2F(β, aβ2) ≥ 1
2(a− 1

4)+ for any a ∈ R.
This gives a first upper bound on hc(β): we necessarily have that lim supβ↓0

1
β2hc(β) ≤ 1/4,

since F(β, aβ2) is asymptotically positive for any a > 1/4. However, the smoothing inequality
of Theorem 1.1 enables us to improve this inequality. Doing as if hc(β) ∼ mαβ

2, we get from
Theorem 1.1 (using that the constant Cβ,cβ2 goes to 1) that lim supβ↓0

1
β2F(β, (mα + b)β2) ≤ 1+α

2 b2

for all b ≥ 0. Combining this with the lower bound above, we get that 1+α
2 b2 ≥ 1

2(mα + b − 1
4), or

equivalently mα ≤ 1
4 + (1 +α)b2− b. Since this must be valid for all b ≥ 0, we get that mα ≤ α

4(1+α) .
We refer to Figure 1.3 for a graphical illustration of that fact.

In view of Figure 1.3, one could ask the question of the value of the limit limβ↓0 1
β2F(β, xβ2):

does it match with its lower or with its upper bound? Well, since Theorem 1.4 gives the value for
mα, we already have that the limit is equal to 1

8(1+α) at x = α+2
4(1+α) , where the lower and upper

bounds meet. Moreover, [Gia07, Thm. 6.3] gives that the limit is equal to 1
8 at x = 1

2 . It is an
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x
1/21/4 2+α

4(1+α)

mα = α
4(1+α)

x 7→ 1
2

(x− 1
4

)x 7→ 1+α
2

(x−mα)2

Figure 1.3 – Representation of the weak-coupling limit bounds on the free energy, in the case α > 1. We
plotted the functions x 7→ 1

2
(x− 1

4
) and x 7→ 1+α

2
(x−mα)2 which are respective lower and upper bounds

on limβ↓0
1
β2 F(β, xβ2). The linear (black) lower bound directly gives that mα ≤ 1/4, but together with

the quadratic (red) upper bound it tells that mα cannot be greater than α
4(1+α)

.

exercise to show that x 7→ F(β, xβ2) is convex, so the limit is convex: we therefore get that, if α > 1,

lim
β↓0

1

β2
F(β, xβ2) =

1

2

(
x− 1

4

)
for any x ∈

[
2+α

4(1+α) ,
1
2

]
. (1.10)

The question for x ≥ 1
2 or x ≤ α+2

4(1+α) remains, and does not follow from any easy argument I can
think of. The idea in [Gia07, Chap. 6] gives as an upper bound (x − 1

2)+ + 1
8 , and it shouldn’t be

excluded that this is the correct value for x > 1/2.

For the lower bound. The idea is to use a fractional moment estimate, together with a coarse-
graining procedure: this method has been developed in the context of the pinning model in [DGLT09],
and refined in subsequent articles [GLT10b, GLT11] (and also in [14, 20]). The idea is to find some
ζ < 1 such that lim supn→+∞

1
n logE[(Zn,β,cβ2)ζ ] = 0 for any c < mα = α

4(1+α) and β small enough:
by Jensen’s inequality

F(β, cβ2) = lim
n→+∞

1

n
E logZn,β,cβ2 ≤ lim

n→+∞
1

nζ
logE[(Zn,β,cβ2)ζ ] = 0 ,

proving that hc(β) ≥ cβ2. We estimate E[(Zn,β,cβ2)ζ ] via a change of measure argument. Using
Hölder’s inequality, we get that

E[(Zt/β2,β,cβ2)ζ ] ≤ Ẽ[Zt/β2,β,cβ2 ]ζẼ
[(dP

dP̃

) 1
1−ζ
]1−ζ

, (1.11)

where we chose P̃ to be the law of ω tilted by −1−ζ
2 β (this tuning of parameter has been optimized).

After some calculations, this enables us to show that for any t > 0 and c > 0,

lim sup
β↓0

E[(Zt/β2,β,cβ2)ζ ] ≤ 1

E[τ1]ζ
exp

( tζ
2

(
c− 1

4
(1− ζ)

))
. (1.12)

For this to be very small, one needs to have c < 1
4(1 − ζ). Then, we employ a coarse-graining

procedure to get an upper bound on E[(Zn,β,cβ2)ζ ] for n � 1/β2: we split the system into blocks
of size t/β2, and somehow “glue” the estimates on different blocks together—this can work only for
ζ > 1

1+α . All together, we can show that F(β, cβ2) = 0 for β small enough, for any c < 1
4(1 − ζ)

with ζ > 1
1+α , in other words F(β, cβ2) = 0 for any c < α

4(1+α) .
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1.3.3 A word on the case of a correlated disorder.

Together with Julien Poisat, we also explored the case of a correlated Gaussian disorder in the
article [19], published in Electronic Journal of Probability. We consider $ = ($i)i∈Z a centered and
unitary Gaussian sequence, with covariance function ρi := E[$0$i] for i ∈ Z, with ρ−i = ρi. We
assume that the correlations are summable, i.e.

∑
i∈Z |ρi| < +∞, and we set Υ∞ =

∑
i∈Z ρi. The

partition function of the model is

Z$,cop
n,β,h = E

[
exp

( n∑
i=1

(β$i + h)1{εi=+1}
)
1{n∈τ}

]
, (1.13)

and note that we did not substract λ(β) in the Hamiltonian as done in (1.3): there is no reason to
do so since it will not be canceled out in the annealed model as it is in (1.7).

The free energy F(ρ)(β, h) := limn→+∞ 1
n logZ$,cop

n,β,h still exists a.s. and in L1, and a localization

transition still occurs at some critical point h(ρ)
c (β). Moreover, the annealed free energy exists, and

it is explicit if all covariances are non-negative, see [19, Prop. 1.5]. As for the correlated pinning
model, cf. [21], we are able to obtain a smoothing inequality: for all β > 0 and any u ≥ 0, we have

F(ρ)(β, hc(β)) ≤ 1 + α

2β2Υ∞
u2 . (1.14)

(The constant is explicit because we are working with Gaussian variables, which makes calculations
explicit.) This shows disorder relevance in terms of critical exponents.

As far as the slope of the critical curve is concerned, there is no universality result in the case
α ∈ (0, 1), even if we believe that an analogous of Theorem 1.2 should hold. In the case α > 1, we
were able in [19] to obtain the sharp asymptotic behavior of h(ρ)

c (β) as β ↓ 0, i.e. the critical slope.
Interestingly, it is expressed as the minimum between two quantities (it appears as an optimization
between two localization strategies), and each of them may be the correct one, depending on the
properties of the covariance sequence (ρi)i∈Z (in particular if it has some negative terms) and of the
underlying renewal. In particular, the critical slope is not universal in that case.

Theorem 1.5 ([19], Theorem 1.9). If E[τ1] < +∞, then we have

lim
β↓0

1

β2
h(ρ)
c (β) = min

{
− Υ∞

2(1 + α)
;− Υ∞

4(1 + α)
− 1

4
Ccop

}
, (1.15)

with Ccop = 1
E[τ1]

∑
i∈Z
∑

k≥|i|P(τ1 > k).

One recovers the result of Theorem 1.4 in the case where ρi = 0 for all i 6= 0. Indeed, one then has
Ccop = Υ∞ = 1 so the minimum is attained by the second term and is equal to − 2+α

4(1+α) = α
4(1+α)−

1
2

(recall that in (1.2)-(1.3) we substracted λ(β) ∼ 1
2β

2). Let us also mention that in (1.15), the first
term in the minimum corresponds to Monthus’ conjecture (mentioned in Section 1.3.2), whereas the
second term corresponds to Theorem 1.4. The critical slope is the “best” (i.e. the smallest) of these
two terms.
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1.4 Critical behavior in the α = 0 case

Theorem 1.1 establishes that for the copolymer model, disorder is relevant whatever the value of
α ≥ 0 is. The main question is now to describe the critical behavior of the model, and in particular
to get sharp estimates on the free energy as h ↓ hc(β). This is a difficult issue, and the only
mathematical results we are aware of are in the context of the pinning of a (1 + d)-dimensional free
field on a disordered surface, see [GL18] for d ≥ 3 and [Lac19] for d = 2. We also mention the case
of the Derrida-Retaux model [DR14], which can be seen as a toy-model for the disordered pinning
model, where some sharp predictions can be made, and mathematical results are at reach [HMP18]
(see Section 2.3.2 for more details). In all the models cited above, disorder is relevant, but one of
the key ingredient to be able to describe the critical behavior is the fact that the quenched critical
point is known exactly.

As far as the copolymer model is concerned, some predictions have been made thanks to a strong
disorder renormalization group approach, in [Mon00, IM05]. In an article in collaboration with
Giambattista Giacomin and Hubert Lacoin [6], to appear in Probability Theory and Related Fields,
we consider the copolymer model in the case α = 0: our idea was that in that case too, the critical
point was known exactly (hc(β) = 0), so there was hope to derive sharp asymptotics for the free
energy. In fact, we are able to give matching upper and lower bounds, to a level of precision that we
were not expecting. We find, as suggested in [Mon00, IM05], that the phase transition is of infinite
order, but our result is much finer and we show in particular that the free energy vanishes faster
than exponentially.

Assume that α = 0 in (1.1), i.e. that P(τ1 = n) = ϕ(n)n−1. Then, let ϕ̃(n) :=
∑

k>n ϕ(n)n−1,
which goes to 0 as a slowly varying function, and which verifies ϕ̃(n)/ϕ(n)→ +∞ as n→ +∞, see
[BGT89, Prop. 1.5.9a]. Note that in [6], we additionally assume that P(τ1 < +∞) = 1, but this
assumption is in fact not necessary.

Theorem 1.6 ([6], Theorem 1.2). If α = 0 in (1.1), then hc(β) = 0 for all β < β0 := sup{β;λ(β) <
+∞}. Moreover, for all β ∈ (0, β0), we have as h ↓ 0

F(β, h) ≤ exp
(
− (1 + o(1)) q1(β)

1

h
log
( ϕ̃(1/h)

ϕ(1/h)

))
,

where q1(β) = βλ′(β)− λ(β).

Since ϕ̃(1/h)/ϕ(1/h)→ +∞, we get that F(β, h) decays much faster that exponentially in 1/h.
Additionally, we get sharper results for some specific choices of the slowly varying function ϕ(·). We
consider the cases

(i) ϕ(x) = (1+o(1))
cϕ

log x(log log x)υ
as x→ +∞, (sub-logarithmic)

(ii) ϕ(x) = (1+o(1))
cϕ

(log x)υ
as x→ +∞, (logarithmic)

(iii) ϕ(x) = exp
(
− (1+o(1)) (log x)1/υ

)
as x→ +∞, (super-logarithmic)

for some υ > 1. We obtain (almost) matching upper and lower bounds for the free energy in all
three cases (i)–(iii), only the constant being non-optimal in cases (i)-(ii).
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Theorem 1.7 ([6], Theorem 1.4). Fix β∈(0, β0), and set q1(β)=βλ′(β)−λ(β), q2(β)=λ(2β)−2λ(β).
Then as h ↓ 0

(i) in the sub-logarithmic case,

(1+o(1)) υ q1(β) 1
h log log

(
1
h

)
≤ − log F(β, h) ≤ (1+o(1)) (υ + 1)q2(β) 1

h log log
(

1
h

)
;

(ii) in the logarithmic case,

(1+o(1)) (υ − 1) q1(β) 1
h log

(
1
h

)
≤ − log F(β, h) ≤ (1+o(1)) (υ + 5

2)q1(β) 1
h log

(
1
h

)
;

(iii) in the super-logarithmic case,

− log F(β, h) = (1+o(1))
(

h
q1(β)

)−υ/(υ−1)
.

We now present briefly how the proofs work.
Ideas for the upper bound: change of measure argument. We apply Jensen’s inequality as in (1.9),
with a twist: instead of applying it directly, we use a function f(ω) (chosen in a moment), and write

E[logZω,cop
n,β,h ] = E[log(f(ω)Zω,cop

n,β,h)]− E[log f(ω)] ≤ logE[f(ω)Zω,cop
n,β,h ]− E[log f(ω)] . (1.16)

This procedure amounts to a change of measure as done in (1.11), but directly at the level of the log-
partition function: f(ω) can be seen as a probability density, and E[f(ω)Zω,cop

n,β,h ] as the expectation
of the partition function under a new measure.

Now, all the difficulty resides in the choice of the function f(ω). We set k = k(h) properly, and
we choose some f(ω) which penalizes environments which have long stretches (i.e. longer than k)
where ω assumes unusually large values (i.e. with empirical mean larger than cλ′(β)). Then, one is
able to estimate −E[log f(ω)]: this gives the main contribution in the upper bound of Theorem 1.6.
It then remains to show that 1

n logE[f(ω)Zω,cop
n,h,β ]→ 0, which is a bit more technical—we do not go

into much detail here. The key ingredient is that, thanks to our choice of f(ω), one can actually
bound E[f(ω)Zω,cop

n,h,β ] by an explicit partition function, where an excursion of length ` receive: a
reward if ` ≤ k; a penalty if ` > k. This is summarized in Equation (4.15) in [6].

In the logarithmic and super-logarithmic cases, we are able to improve this bound. The idea
is that the change of measure argument (1.16) gives a good bound for systems of length n ≈ e1/h,
but beyond that scale the bound becomes non-optimal. We therefore apply the change of measure
only to sub-blocks of length e1/h (we avoid penalizing regions that will not be visited), and we use
a coarse-graining argument to “glue” these estimates together.
Ideas for the lower bound: rare-stretch strategy. We use here a method which is by now standard:
a lower bound on the partition function is obtained by restricting it to trajectories visiting only
“favorable” regions in the environment. This idea is already present in [BG04], and is a key tool in
the proof of the smoothing inequality of Theorem 1.1, see [GT06]. We do not give further details.
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Chapter 2

The polymer pinning model

This chapter is dedicated to the pinning model: in particular, we describe some of our contributions,
[14] and [19, 20] (in Section 2.3), and [12] (in Section 2.4).

2.1 Presentation of the model and physical motivations

The pinning model has been used in many different contexts: one may trace it back to Poland and
Scheraga [PS70] as a model for DNA denaturation, and to [Fis84] as a wetting model.

Pinning a polymer on a line of defects. Take (Si)i≥0 a Markov chain on Zd (for some d ≥ 1),
started from S0 = 0, and denote its lawP. For n ∈ N, we consider the directed trajectory (i, Si)1≤i≤n:
it represents a directed (or stretched) polymer. This polymer interacts with the line N × {0} (the
defect line) when it touches it, i.e. when Si = 0. Since interactions occur only when Si returns to 0,
we consider directly the set of return times τ = {i, Si = 0}, which is a renewal process: τ0 = 0, and
(τk − τk−1)k≥1 are i.i.d. N-valued r.v.s.

τ1 τ2 τ3 τ4 τ5 τ6 τ7

(i, Si)

0 N

Zd

Figure 2.1 – The polymer trajectory is represented by a directed Markov chain (i, Si). The interactions
occur along the defect line, at the sites where Si returns to 0, i.e. at times τ1, τ2,... The defect line is
inhomogeneous, represented by random variables (ωi)i≥0 being attached to the different sites.

We consider a sequence ω = (ωi)i≥0 of i.i.d. r.v.s, whose law is denoted P: the ωi’s represent
the inhomogeneities along the defect line. As above, we assume that E[ωi] = 0, E[ω2

i ] = 1 and that
λ(β) := logE[eβωi ] < +∞ for all 0 ≤ β < β0 ∈ (0,+∞]. For a fixed realization of ω (quenched
disorder), and for β ∈ [0, β0), h ∈ R, we define the polymer measures Pω,pin

n,β,h for n ∈ N by the
following Radon-Nikodym derivative with respect to the reference law P:

dPω,pin
n,β,h

dP
(τ) :=

1

Zω,pin
n,β,h

exp
( n∑
i=1

(βωi − λ(β) + h)1{i∈τ}
)
1{n∈τ} . (2.1)
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The quantity Zω,pin
n,β,h is the partition function of the model, and is equal to

Zω,pin
n,β,h := E

[
exp

( n∑
i=1

(βωi − λ(β) + h)1{i∈τ}
)
1{n∈τ}

]
. (2.2)

The measure Pω,pin
n,β,h corresponds to giving a “reward” βωi − λ(β) + h (or a “penalty”, depending

on its sign) if the polymer touches the defect line at site i—note the analogy with the copolymer
model (1.2)-(1.3), 1{εi=+1} being replaced by 1{i∈τ}. We again added in (2.1)-(2.2) the indicator
function that n ∈ τ , forcing the end-point to be pinned down: Remark 1.2 still holds here.

Similarly to (1.1), we assume that there is some α ≥ 0 and some slowly varying function ϕ(·)
such that for all n ≥ 1

P(τ1 = n) = ϕ(n)n−(1+α). (2.3)

This is verified for instance if τ = {n, S2n = 0} with Sn the simple random walk on Zd: one has
α = 1/2 and ϕ(n)→ 1/2

√
π if d = 1 (see e.g. [Fel66, Ch. III]); α = 0 and ϕ(n) ∼ π/(log n)2 if d = 2

(cf. [JP72, Thm. 4]); α = d/2−1 and ϕ(n)→ cd if d ≥ 3 (cf. [DK11, Thm. 4]). We also assume that
P(τ1 < +∞) = 1, i.e. that τ is persistent : if P(τ1 < +∞) < 1, one may reduce to the persistent
case by in a change of variable h→ h− logP(τ1 < +∞), see [Gia07, Chap. 1].

The Poland Scheraga model for DNA denaturation. Poland and Scheraga, in [PS70], in-
troduced a simplified model to describe the DNA denaturation (or melting) transition. This phe-
nomenon is extremely complex, and in order to simplify the model, one forgets about the helix
configuration of DNA, and considers that when heated symmetric “loops” are formed in the DNA
double strand, see Figure 2.2. More formally, the sequence of contact points is given by a renewal
process τ = (τk)k≥0, whose law is denoted by P. The size of the kth loop is given by τk − τk−1, and
the ith monomer is a contact point if i ∈ τ (the contact points are the only places where interactions
occur). Considering ω = (ωi)i≥0 a sequence of r.v.s that are attached to the monomers and repre-
sent the inhomogeneities along DNA, one uses the definition (2.1) to describe this situation. The
exponent α in (2.3) is sometimes referred to as the loop exponent: it quantifies the entropic cost of
having a loop of size n in the Poland Scheraga model.

AT

CG

Figure 2.2 – Schematic view of DNA denaturation: symmetric loops are formed in a DNA double strand.

An effective model for wetting of interfaces in 2D models. Another context in which the
pinning model has been used is the wetting of a +/− interface in the Ising model, see [Fis84] (or
[IV18] for an overview of the recent results). Consider the Ising model on Z2, on a large square of size
n, with ’+’ boundary conditions on three sides, and ’−’ boundary condition on the last side. Then,
at low temperature there are two main phases (a ’+’ and a ’−’ phase), and there is an interface
between them, going from one corner to the other. A good approximation at low temperature is
to forget the “overhangs”, and use a random walk conditioned to stay non-negative and to come
back to 0 as an effective interface model. We refer to Figure 2.3 for an illustration. The situation
becomes even more interesting if the spins at the base have an additional random magnetic field δi:
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the interface will be “penalized” if it touches the base at a site where δi > 0 and “rewarded” if it
touches the base at a site with δi < 0 (this is our line of defect). One recovers the model described
in (2.1), with τ the set of return times of a random walk conditioned to stay non-negative.

+/− interface

’+’ boundary condition

δ1 δ2 δ3 δ4 ...

− −
δ1 δ2 δ3 δ4 ...

Figure 2.3 – Schematic view of the +/− interface in the Ising model with ’+’ boundary condition on
three sides and ’−’ on the last side of the square. On the right is the effective interface, which is modeled
by a random walk conditioned to stay non-negative and to return to 0.

2.2 About the localization transition

The question is then to know whether, under the measure Pω
n,β,h the polymer trajectories are pinned

to the defect line (localized phase, or dry phase in the wetting model), or wander away from it
(delocalized phase, or wet phase in the wetting model). When tuning the parameters, the system
undergoes a depinning (or denaturation, or wetting) phase transition: this can be seen through the
quenched free energy, defined by

F(β, h) := lim
n→+∞

1

n
logZω,pin

n,β,h = lim
n→+∞

1

n
E logZω,pin

n,β,h , P-a.s. and in L1(P) . (2.4)

The existence of the limit again follows from super-additivity arguments, and we refer to [Gia07,
Chap. 4] for details. Also here, we have that h 7→ F(β, h) is non-negative, non-decreasing and convex.
We define the (quenched) critical point

hc(β) := sup
{
h : F(β, h) = 0

}
= inf

{
h : F(β, h) > 0

}
. (2.5)

Analogously to (1.6), the derivative of the free energy ∂hF(β, h), when it exists (for all but at most
countably many h), is equal to limn→+∞Eω,pin

n,β,h

[
1
n

∑n
i=1 1i∈τ

]
a.s., the limiting density of contacts

under Pω,pin
n,β,h. Hence, the critical point hc(β) marks the transition between a delocalized phase

(h < hc(β), null density of contacts) and a localized phase (h > hc(β), positive density of contacts).

2.2.1 The annealed and homogeneous models.

As for the copolymer model, we define the annealed partition function, for β ∈ [0, β0), Za,pin
n,β,h :=

EZω,pin
n,β,h, which is the partition function of the homogeneous model (i.e. with β = 0) with parameter h;

we write it Zpin
n,h for short. The homogeneous free energy is F(0, h) := limn→+∞ 1

n logZpin
n,h, and

Jensen’s inequality gives that E logZω,pin
n,β,h ≤ logZa,pin

n,β,h = logZpin
n,h, so we obtain that F(β, h) ≤ F(0, h)

and hc(β) ≥ hc(0).
The homogeneous model is exactly solvable, but on the contrary to the copolymer model, it has

a rich behavior and some work is needed to solve it. We collect the results on the homogeneous
phase transition, which are detailed in [Gia07, Chap. 2].
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Theorem 2.1. Assume that (2.3) holds, and that P(τ1 < +∞) = 1. The homogeneous free energy
F = F(0, h) is characterized by the relation

∑
n∈N e

−FnP(τ1 = n) = e−h. From this, we derive that
hc(0) = 0, and that there exists a slowly varying function ϕ̂(·) such that, as h ↓ 0,

F(0, h) ∼ ϕ̂(1/h)hν with ν = max(1, 1
α) .

2.2.2 A comment on the assumption λ(β) < +∞.

In the definitions (2.1)-(2.2), we substracted λ(β) in the Hamiltonian: this choice is made for
renormalization purposes, so that the annealed model is exactly the homogeneous one. However,
this restricts us to β ≤ β0 := sup{β;λ(β) < +∞}. One could perfectly define the model for all
β ≥ 0, with partition function given by Z̃ω,pin

n,β,h := E
[

exp
(∑n

i=1(βωi + h)1{i∈τ}
)
1{n∈τ}

]
. Then,

the free energy F̃(β, h) := limn→+∞ 1
n log Z̃ω,pin

n,β,h exists and is finite (and is a.s. constant) as soon
as E[|ωi|] < +∞. The critical point h̃c(β) = inf{h : F̃(β, h) > 0} is again well-defined. The only
problem when λ(β) = +∞ is that the annealed model is degenerated (E[Z̃ω,pin

n,β,h] = +∞): a natural
question is then to know whether a localization phase transition remains, i.e. if one has h̃c(β) > −∞.

Inspired by discussions with Hubert Lacoin, I gave this problem to a Master 1 student from ENS
Lyon, Vincent Lerouvillois (in 2015). It turns out that it is not so difficult to show that hc(β) > −∞
if β < (1 + α)β0, and that hc(β) = −∞ if β > (1 + α)β0. The answer at β = βα := (1 + α)β0 is
more delicate, and depends on the finer properties of the distribution of ω and of τ1. The results
in the case β0 > 0 can be summarized as follows: if λ(β0) < +∞ then hc(βα) > −∞, whereas if
λ(β0) = +∞, there is a distribution for τ1 for which we have hc(βα) = −∞. Obtaining a necessary
and sufficient condition for having hc(βα) > −∞ is a difficult but interesting question, that resonates
with some results on the Derrida-Retaux model, see Section 2.3.2. For instance, in analogy with
[CEGM84], we can conjecture that in the case where limn→+∞ ϕ(n) = c, we have hc(βα) > −∞ if
and only if E[ωie

β0ωi ] < +∞ (see Section 2.3.2 for more details).

2.3 The question of disorder relevance

As mentioned in the introduction, one of our main goal is to understand if the characteristics of the
phase transition are sensitive to the introduction of a small amount of disorder. The question can
be asked in terms of critical exponent (is the critical exponent of the disordered model equal to that
of the homogeneous one?) as well as in terms of critical point (is the quenched critical point equal
to its annealed counterpart, i.e. do we have hc(β) = 0 for β small enough?).

Because the pinning model is relatively simple but still exhibits a very rich behavior, it has been
a perfect framework to test Harris criterion. The homogeneous correlation length critical exponent
is ν = max(1, 1

α) (Giacomin [Gia08] shows that the correlation length is asymptotic to 1/F(0, u)),
which covers the whole range [1,+∞], as α varies. Harris’ predictions tell that disorder should
be irrelevant if ν > 2 (i.e. if α < 1/2), and relevant if ν < 2 (i.e. if α > 1/2). Over the past
decades, the question of disorder relevance for the pinning model has attracted much attention both
from the physics community [FLNO86, DHV92, BM93, CH97, DR14, TC01, Mon06] and from the
mathematical community [GT06, Ale08, Ton08b, Ton08a, AZ09, DGLT09, GT09, AZ10, GLT10b,
Lac10b, GLT11, CdH13a, CdH13b, CTT17] and [14, 19, 20] (to cite a few). As we will see below,
the answer is by now complete: Harris criterion has been confirmed rigorously, and the marginal
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case α = 1/2 (corresponding to the simple random walk on Z) has also been settled, after a long
controversy in the physics literature. One of my main contribution, in an article in collaboration with
Hubert Lacoin [14] published in Journal de l’Institut Mathématique de Jussieu, has been to prove
a necessary and sufficient condition for disorder relevance, giving the final answer to the question
(and proving a conjecture of [DHV92]).

Remark 2.1. We have that β 7→ hc(β) is non-decreasing (see [GLT11, Prop. 6.1]): in a sense,
disorder relevance is non-decreasing in β, and there is some βc ∈ [0,+∞] such that hc(β) = 0 if
β ≤ βc and hc(β) > 0 if β > βc. The question of disorder relevance is therefore that of determining
whether βc = 0 (relevant case) or βc > 0 (irrelevant case).

2.3.1 Summary of the results.

First of all, let us present the necessary and sufficent condition for disorder relevance (in terms of
critical point shift), obtained in [14]. Two contradicting predictions were made in [FLNO86] and in
[DHV92] in the case where α = 1/2 and ϕ(n) converges to a constant: the article [GLT10b] settles
in favor of [DHV92], and in [14] we give the complete picture in the whole α = 1/2 case.

Theorem 2.2 ([14], Theorem 2.2). Let τ and τ ′ be two independent copies of a renewal process with
inter-arrival law P(τ1 = n) = ϕ(n)n−(1+α). Then, disorder is relevant, in the sense that hc(β) > 0
for all β > 0, if and only if τ ∩ τ ′ is persistent (i.e. |τ ∩ τ ′| = +∞ a.s.).

Let us stress that the intersection of two renewal processes is a renewal process—some properties
of intersections of renewal processes are studied in a work with Kenneth S. Alexander [16], see
Chapter 7. In particular, |τ∩τ ′| is a geometric r.v., with parameter E[|τ∩τ ′|]−1, and it is terminating
if and only if E[|τ ∩ τ ′|] < +∞. Then, one can compute E[|τ ∩ τ ′|] =

∑
n≥1 P(n ∈ τ ∩ τ ′) =∑

n≥1 P(n ∈ τ)2. If α ∈ (0, 1), a result of Doney [Don97] gives that P(n ∈ τ) ∼ cαϕ(n)−1n−(1−α),
for some constant cα (see (7.5)). We get that E[|τ ∩ τ ′|] is finite if α < 1/2 and infinite if α > 1/2.
In the case α = 1/2, τ ∩ τ ′ is persistent if and only if

∑
n≥1

1
nϕ(n)2

= +∞.

Free energy critical exponents. A fondamental result, obtained by Giacomin and Toninelli
[GT06], shows disorder relevance for α > 1/2 in terms of critical exponents.

Theorem 2.3. There exists a constant C > 0 such that for all 0 < β < β0 and all u ∈ (0, 1)

F(β, hc(β) + u) ≤ C
β2 u

2 .

This is known as the smoothing phenomenon (see also Theorem 1.1): it proves that, in presence
of disorder, the phase transition is of order at least two (∂hF(β, h) is continuous). When α > 1/2,
the homogeneous critical exponent is ν = max(1/α, 1) < 2, and this proves disorder relevance.

In the case where τ ∩ τ ′ is terminating (α < 1/2 or α = 1/2 and
∑

n≥1
1

nϕ(n)2
< +∞), results

on disorder irrrelevance have been obtained in [Ale08], see also [Ton08b, Lac10b] for shorter proofs.
These results prove at the same time that hc(β) = 0 for β small enough, and that the critical
exponent of the disordered model is also ν = 1/α.

Theorem 2.4. Assume that |τ ∩ τ ′| < +∞, where τ, τ ′ are two independent copies of a renewal
process satisfying (2.3). There is some β1 > 0 such that for all β ≤ β1 we have that hc(β) = 0, and

lim
h↓0

log F(β, h)

log h
=

1

α
.
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Critical point shift. In the case α > 1/2, the shift of the critical point (i.e. the fact that
hc(β) > ha

c(β) = 0), has been proven in [AZ09, DGLT09], together with the correct order for
hc(β). In the case α = 1/2, [GLT10b, GLT11] prove a critical point shift in the case where ϕ(n)
is asymptotically equivalent to (log n)κ with κ < 1/2 (falling relatively close to the condition in
Theorem 2.2), and sub-optimal bounds on the critical point shift are provided.
More recently, some works have managed to obtain sharp asymptotics for the critical point shift:

(i) in the case α > 1, this is in an article by myself, in collaboration with Francesaco Caravenna,
Julien Poisat, Rongfeng Sun and Nikos Zygouras [20] (and is analogous to Theorem 1.4);

(ii) in the case α ∈ (1/2, 1), this is in a work by Caravenna, Torri and Toninelli [CTT17];
(iii) in the case α = 1/2, this is in the work with Hubert Lacoin [14]—we present only the case

where ϕ(n) converges to a constant, but more general results hold (see [14, Prop. 6.1 and 7.1]).

Theorem 2.5. (i) If α > 1, we have limβ↓0
hc(β)
β2 = 1

E[τ1]
α

2(1+α) .

(ii) If α ∈ (1
2 , 1), we have limβ↓0

hc(β)

ψ(1/β)β
2α

2α−1
= cα , for some slowly varying ψ(·) (depending

explicitly on ϕ(·) and α) and cα a universal constant depending only on α (but not on P or P).

(iii) If α = 1/2 and limn→+∞ ϕ(n) = cϕ, we have limβ↓0 β2 log hc(β) = −2 (πcϕ)2 .

In particular, in the case of a simple random walk (taking also into account parity issues), we have
that limβ↓0 β2 log hc(β) = −π

2 .
In a work with Julien Poisat [19], we obtain a result in the case of a correlated disorder, the

analogous to Theorem 1.5 for the pinning model. Our main result is that, if E[τ1] < +∞, the critical
point shift verifies limβ↓0

hc(β)
β2 = 1

E[τ1]
αΥ∞

2(1+α) (with the same notations as in Section 1.3.3).

Some heuristics for the proof. We focus on the case of a Gaussian disorder ωi ∼ N (0, 1) for
simplicity of the exposition (in particular λ(β) = 1

2β
2). Let us compute the second moment of the

partition function at the annealed critical point ha
c(β) = 0: using a replica trick, we have

E
[
(Zω,pin

n,β,0)2
]

= E⊗2
[

exp
(
β2

n∑
i=1

1{i∈τ∩τ ′}
)
1{n∈τ∩τ ′}

]
. (2.6)

Here, we realize that this is the partition of a homogeneous pinning model, with underlying renewal
τ ∩ τ ′. A key quantity to consider is the mean overlap fraction of τ and τ ′: Dn :=

∑n
i=1 P(i ∈ τ)2.

If supn∈NDn < +∞, the intersection renewal τ ∩ τ ′ is terminating, and one can take β small enough
so that supn∈N E[(Zω,pin

n,β,0)2] < +∞: this should be a sign of disorder irrelevance, since Zω,pin
n,β,h should

remain concentrated around its mean, so the quenched and annealed free energy should remain close
to each other. On the other hand, if Dn → +∞ then E[(Zω,pin

n,β,0)2] → +∞, and it should be a sign
that the quenched and annealed critical point differ.
Upper bound on the critical point shift. One may obtain an upper bound on the critical point shift
by quantifying the length scale up to which the quenched and annealed partition functions are close.
This idea is present in [Lac10b] and is exploited in [14]: one can prove that as long as E[(Zω,pin

n,β,0)2]
is of order 1, the measure Pω

n,β,0 is “close” to P. Fix some constant C > 1, and set

nβ := sup
{
n : E

[
(Zω,pin

n,β,0)2
]
≤ C

}
. (2.7)
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Then, one can relate nβ to an upper bound on the critical point shift—after some calculation, we
get hc(β) ≤ n−α∧1+o(1)

β . Let us consider the case α = 1/2 with ϕ(n)→ 1 as n→∞ to avoid keeping
track of the slowly varying functions: P(τ1 = n) ∼ n−3/2 and P(n ∈ τ) ∼ (2π)−1n−1/2, see (7.5).
We then have that Dn ∼ 1

(2π)2
log n and we are able to show that log nβ = (1+o(1)) (2π)2/β2 (in

[CSZ18], the authors make the o(1) explicit). This leads to the upper bound in Theorem 2.5.
Lower bound on the critical point shift. The idea is similar to that presented in Section 1.3.2:
we use a fractional moment estimate combined with a coarse-graining argument. Let us explain
briefly the change of measure we introduce in the case α = 1/2, in order to estimate the fractional
moment E[(Zω,pin

`,β,h )ζ ]. It is based on a functional of the environment ω which quantifies its “positive
correlations”: we define the q-body interaction as

X`(ω) :=
∑

1≤i0<···<iq`≤`
U(i0, . . . , iq`)ωi0 · · ·ωiq` (2.8)

with U(i0, i1, . . . , iq`) =
∏q`
k=1 P(ik − ik−1 ∈ τ). The change of measure then penalizes environment

where X(ω) is large, which are the one contributing most to Zω,pin
`,β,h .

This choice is motivated by the (Wick) expansion of E
[

exp
(∑b

i=a βωi1{i∈τ}
)
1{b∈τ}|a ∈ τ

]
, with

a < b thought as the entrance and exit points in a block of the coarse-graining decomposition—we
dropped the renormalization λ(β). The q + 1-th term in the expansion is∑

a=i0<i1<···<iq=b
ωi0P(i1 − i0 ∈ τ)ωi1 · · ·P(iq − iq−1 ∈ τ)ωiq .

Summing over the entrance and exit points a, b ∈ J1, `K (so the functional is somehow homogeneous
with respect to entrance and exit points of a coarse-grained block), we arrive at the choice (2.8).

The idea for this change of measure was already present in [GLT11], and it was noted that the
lower bound on the critical point shift gets sharper as q gets larger: it is due to the fact that the main
contribution to EZω,pin

n,β,h comes from the high terms in the expansion. The novelty of our method is
that we are able to deal with a q-body interaction with q growing as the size ` of a coarse-grained
block increases—for instance, if limn→+∞ ϕ(n) = c, we take q = log log `.

2.3.2 A conjecture about the critical behavior: Derrida-Retaux’s toy model

All the above results leave aside one of the most important question: can we obtain the critical
behavior of the quenched model explicitly, in the case of a relevant disorder? In [DR14], Derrida
and Retaux propose a toy-model for the pinning model, which is also related to other models in
physics, see [CEGM84]. The model is defined via a max-type recursion:

Xn+1
(d)
=
(
X(1)
n +X(2)

n − 1
)

+
, (2.9)

where X(1)
n , X

(2)
n are independent copies of Xn. This arises as a toy-version of the pinning model on a

hierarchical (diamond) lattice introduced in [DHV92], which has served as a simpler pinning model
to test Harris criterion—we refer to [GLT10a, Lac10a]. In this hierarchical model, the partition
function satisfies the recursion Zn+1 = Z

(1)
n Z

(2)
n +B−1
B ≈ 1

B max(Z
(1)
n Z

(2)
n , B − 1) (B is a parameter

tuning the geometry of the diamond lattice): the second approximation is the one made in [DR14]
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to simplify the model—one recovers the above max-type recursion by taking the logarithm, up to a
parameter change.

The max-type recursion (2.9) model has a free energy F := limn→+∞ 2−nE[Xn], which is non-
negative and depends on the distribution of X0. A simple choice is to take PX0 = (1− p)δ0 + pPY ,
where p ∈ [0, 1] is a parameter and Y is a positive r.v. (for the analogy with the pinning model, p
corresponds to the homogeneous parameter h and Y to the r.v. ω). With that choice, the free energy
depends on the parameter p, and we denote it FY (p): there is a critical value pc such that FY (p) = 0
for p < pc and FY (p) > 0 for p > pc. In [CEGM84], the authors compute explicitly the critical point
in the case where Y is N-valued: they obtain pc = (1 + E[(Y − 1)2Y ])−1. As a consequence, for a
general distribution for Y , pc > 0 if and only if E[Y 2Y ] < +∞ (for the analogy with the pinning
model, one can ask about conditions for having hc(β) > −∞, see Section 2.2.2).

The main result of [DR14] is about the critical behavior of the free energy: their conjecture is
that, if pc > 0, we have FY (p) = exp

(
(1+o(1)) K√

p−pc
)
as p ↓ pc, i.e. the phase transition is of infinite

order (of the Berezinskii-Kosterlitz-Thouless type). The analogy with the pinning model suggests
that in the disorder relevant regime, i.e. if hc(β) > 0, then F(β, hc(β)+u) = exp

(
(1+o(1))K ′/

√
u
)
as

u ↓ 0. There are now some mathematical results on the Derrida-Retaux model: we mention [HS18]
in the case pc = 0, [HMP18] where the conjecture is proven for an exactly solvable (continuous)
version of the model, or [CDD+19] where a weak version of the conjecture is proven.

2.4 Pinning a renewal on a quenched renewal

This section is devoted to one of my work in collaboration with Kenneth S. Alexander [12], published
in Electronic Journal of Probability : it deals with a pinning model where interactions occur only when
the renewal τ intersects a quenched renewal sequence σ (of distribution denoted by P̃, independent
of τ). The inter-arrival distribution of σ is assumed to satisfy

P̃(σ1 = n) = ϕ̃(n)n−(1+α̃) , (2.10)

for some α̃ > 0 and some slowly varying function ϕ̃(·). We also suppose that P̃(σ1 < +∞) = 1. The
renewal τ is still assumed to satisfy (2.3), but we do not assume that τ and σ have the same law.
For the simplicity of the exposition and to avoid many subcases, we assume that α, α̃ ∈ (0, 1).

For a fixed realization of σ (quenched disorder), m ∈ N, and parameter β ≥ 0, we define the
partition function of the model by

Zσ,pin
m,β := E

[
exp

(
β

m∑
i=1

1{σi∈τ}
)
1{σm∈τ}

]
= E

[
exp

(
β
∣∣τ ∩ σ ∩ [0, σm]

∣∣)1{σm∈τ}] . (2.11)

(A pinning measure Pσ,pin
n,β analogous to (2.1) is defined implicitly by (2.11).) Our original motivation

for this problem came from a paper by Cheliotis and den Hollander [CdH13b], where the authors
show that the critical point of the pinning model can be expressed as the free energy of a model of
the type (2.11) (in which τ and σ have the same law), with an additional source of disorder: we
refer to the introduction of [12] (see Equation (1.2)) for more details. Let us make a few remarks on
this model.

1. The size of the system is σm, and not m. Since α̃ ∈ (0, 1), disorder is sparse: it is non-zero
only at renewal points of σ, and these points have a limiting density equal to 0, 1

n |σ ∩ [0, n]| → 0
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a.s. as n → +∞. The question here is to know whether such sparse disorder is able to pin down
the renewal τ for arbitrarily small β: in order to create a positive energy, τ needs to be able to visit
order-m renewal points of σ, so we need to consider a system of length σm.

2. This model is analogous to the random walk pinning model, where a random walk X is
pinned onto the quenched trajectory of another random walk Y , and where each intersection be-
tween the two random walks is rewarded by a constant parameter β: the partition function is
EX [exp(β

∑n
i=1 1{Xi=Yi})1{Xn=Yn}], with X,Y two independent random walks on Zd with the same

distribution, the trajectory of Y being quenched (see [BGdH11, BS10, BS11] and [26] for more
on this model). Our model is therefore similar to the random walk pinning model, with 1{Xi=Yi}
replaced by 1{σi∈τ}. In our case however, we allow the two renewals to have different distributions.

3. We do not give any homogeneous reward h to each renewal point in τ : this would completely
overcome the pinning effect of σ in the case where τ has many more renewal points than σ. However,
the model with an additional external field h is interesting (as a pinning model with a correlated
disorder given by a renewal sequence, ωi := 1{i∈σ}), and is studied in [CCP19].

0 σm

σ

τ contacts

Figure 2.4 – Pinning of the renewal τ by the quenched renewal σ: we consider a system of length σm
(here m = 13), and to a trajectory τ , we give a reward β for each intersection point between τ and σ.

Free energy and localization. We may define the free energy of the model, which exists and is
P̃-a.s. constant (by super-additivity arguments),

F(β) := lim
m→+∞

1

m
logZσ,pin

m,β = lim
m→+∞

1

m
Ẽ logZσ,pin

m,β P̃-a.s. and in L1. (2.12)

Also here, the positivity of the free energy indicates a “pinning” of τ , i.e. the fact that τ visits a
positive fraction of the renewal points of σ: we have ∂βF(β) = limm→+∞Eσ,pin

m,β

[
1
m

∑m
i=1 1{σi∈τ}

]
,

when the limit exists. Hence, the quenched critical point βc := inf{β : F(β) > 0}marks the transition
between a delocalized phase (β < βc) and a localized phase (β > βc). One of the question we are
answering in [12] is to determine under which conditions (on the distribution of τ and σ) we have
βc = 0, that is to know if an arbitrarily small pinning energy is enough localize τ .

Theorem 2.6 ([12], Theorem 2.1). We have βc = 0 if and only if τ∩σ is persistent, i.e. |τ∩σ| = +∞.

Note that |τ ∩ τ ′| = +∞ if and only if
∑

n≥0 P(n ∈ τ)P̃(n ∈ σ) = +∞. In the case where
α, α̃ ∈ (0, 1), we have thanks to Doney’s renewal theorem (7.5) that

|τ ∩ σ| = +∞ a.s. ⇐⇒
∑
n≥1

1

ϕ(n)ϕ̃(n)
n−(2−α−α̃) = +∞ .

In particular, if α + α̃ > 1 then τ ∩ τ ′ is persistent, if α + α̃ < 1 it is terminating, and in the case
α+ α̃ = 1 it can be either persistent or terminating depending on the finiteness of

∑
n≥1

1
nϕ(n)ϕ̃(n) .

31



Quentin Berger HdR: Random Polymers and Related Models

Quenched vs annealed critical points. Define the annealed partition function ẼZσ,pin
m,β , the

annealed free energy Fa(β) = limm→+∞ 1
m log ẼZσ,pin

m,β and its critical point βa
c = sup{β : Fa(β) > 0}.

The annealed partition function looks like a homogeneous pinning model with underlying renewal
τ ∩σ, but it is not exactly the same: the size of the system is σm, which is random. However, we are
able to solve the annealed model: the annealed critical point is βa

c := ẼE[|τ ∩ σ|]−1, and it is equal
to 0 if and only if τ ∩ σ is persistent. For α, α̃ ∈ (0, 1), the annealed critical exponent is found to be
ν = max(1, 1/|α∗|) with α∗ = (1−α− α̃)/α̃ ∈ (−1,+∞). Note that this is not the critical exponent
for the homogeneous pinning model with underlying renewal τ ∩ σ (which is max(1, 1/|1−α− α̃|)).

Jensen’s bound gives that F(β) ≤ Fa(β), so that βc ≥ βa
c . Theorem 2.6 above tells that if

|τ ∩ σ| = +∞ then we have βc = βa
c = 0. A natural question (related to that of disorder relevance),

is whether one has the equality βc = βa
c beyond the condition |τ ∩ σ| = +∞.

Theorem 2.7 ([12], Theorems 2.1 and 2.2). Note that α+ α̃ < 1 if and only if α∗ > 0.
(i) if α+ α̃ ≥ 1, then βc = βa

c , and moreover log F(β)
log(β−βa

c ) →
1
α∗ as β ↓ βa

c ;
(ii) if α+ α̃ < 1 and α∗ > 1/2, then βc > βa

c ;
(iii) for any α, α̃ such that α + α̃ < 1 and any ϕ(·), ϕ̃(·), there exist distributions verifying

P(τ1 = n) ∼ ϕ(n)n−(1+α) and P̃(σ1 = n) ∼ ϕ̃(n)n−(1+α̃) and for which we have βc > βa
c .

Let us comment the three points in the theorem.
(i) The first item in Theorem 2.7 shows disorder irrelevance if α + α̃ ≥ 1, both in terms of

critical points and of critical exponents. Note that (i) includes the result of Theorem 2.6, since
having |τ ∩ σ| = +∞ implies that α + α̃ ≥ 1. But Theorem 2.7 goes slightly beyond Theorem 2.6:
one may have α+ α̃ = 1 and |τ ∩ σ| < +∞: in that case we have βa

c > 0 but still βc = βa
c .

(ii) The condition α∗ > 1/2 seems reminiscent of Harris criterion for disorder relevance: it
corresponds to the case where the annealed model has a critical exponent max(1, 1/|α|∗) < 2.
Harris criterion suggests that disorder should be irrelevant if α∗ < 1/2, i.e. that disorder, provided
its strength is small enough, does change the critical properties of the system. The issue here is
that one cannot tune the strength of the disorder: a quenched renewal σ is given, and there is no
extra parameter to play with to get an arbitrarily small disorder strength. Having α∗ > 1/2 makes
it easier for us to prove βc > βa

c since a quenched σ (hence with a positive strength) is necessarily
relevant according to Harris’ prediction.

We may conjecture that βc > βa
c as soon as α∗ > 0. This is based on a analogy with the random

walk pinning model: the exponent 1 + α∗ appears when considering the probability P̃P(σm ∈ τ) =
m−(1+α∗)+o(1), and is the analogous of the exponent ρ such that PYPX(Xn = Yn) = n−ρ+o(1) in the
context of the random walk pinning model. In [BGdH11], the authors conjecture that the quenched
and annealed critical points differ as soon as ρ > 1 (which corresponds to α∗ > 0 in our case). We
mention that in [BGdH11], the inequality βc > βa

c is proven for ρ > 2: we prove the critical point
shift for α∗ > 1/2, which is an improvement (it would correspond to the case ρ > 3/2).

(iii) The last item in Theorem 2.7 goes in the direction of proving the aforementioned conjecture
that βc > βa

c as soon as α∗ > 0: for any α∗ > 0, it provides examples of distributions for τ, σ
for which βc > βa

c . Hence, if the condition for a critical point shift depends only on asymptotic
properties of P̃,P, then this condition must be α∗ > 0. An important feature of our model that
allows us to derive (iii) is that the distributions of τ and σ are allowed to be different: this gives
us some flexibility—it enables us to tune explicitly P̃,P in order to make some properties of the
intersection τ ∩ σ hold.
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Chapter 3

The generalized Poland-Scheraga (gPS)
model for DNA denaturation

In this chapter, we introduce the generalized Poland Scheraga (gPS) model, and we present our
contributions [10] (in Section 3.2) and [3] (in Section 3.3), together with some work in progress with
my Ph.D. student Alexandre Legrand (in Section 3.4).

3.1 Presentation of the model

The Poland Scheraga model, thanks to its relative simplicity, plays a central role in the study of DNA
denaturation, even though some aspects of it are oversimplified. In particular, loops are assumed to
be symmetric, tolerating no mismatch (see Figure 2.2). In an attempt to overcome this limitation,
Garel and Orland [GO04] (see also [NG06]) introduced a few years ago a generalization of the model,
allowing loops to be asymmetric, and the two strands to be of different lengths. See Figure 3.1 for
an illustration, in comparison with Figure 2.2.

Figure 3.1 – Schematic view of DNA denaturation: loops are formed in the DNA double strand, but
they may be asymmetric: mismatches are allowed, and the two strands may be of different lengths.

The mathematical formulation has been devised by Giacomin and Khatib [GK17]. Let τ =
(τ k)k≥0 be a bivariate renewal process (its law is denoted by P): τ 0 = (0, 0), and (τ k − τ k−1)k≥1

is a sequence of i.i.d. N2-valued r.v.s. A configuration for τ translates into a polymer configuration:
having τ k− τ k−1 = (a, b) correspond to the kth loop being formed by a piece of length a in the first
strand and a piece of length b in the second strand, see Figure 3.2. One can also interpret the event
(i, j) ∈ τ = {τ 0, τ 1, τ 2, . . .} as the fact that the ith monomer from the first strand is paired with
the jth monomer of the second strand.
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Polymer representation Renewal representation

0

1

1 2 10 13

13

21

Figure 3.2 – A polymer configuration and its corresponding bivariate renewal representation: there are
two strands, one with length 14, one with length 22, and the contact points are (1, 1), (2, 2), (3, 3), (4, 9),
(5, 10), (6, 11), (10, 13). There are two free ends, of respective length 3 and 8.

In the physics literature, a loop of total length ` is associated to an entropic factor `−c, for a
constant c > 2. This corresponds to assuming that there is some α ≥ 0 and some slowly varying
function ϕ(·) such that for all n,m ∈ N

P
(
τ 1 = (n,m)

)
= K(n+m) with K(`) := ϕ(`)`−(2+α) . (3.1)

We also assume that
∑

n,m∈N K(n + m) = 1 so that τ is persistent. Note that the role of the
coordinates τ (1), τ (2) of τ is symmetric, and that they are one-dimensional renewal processes, with
inter-arrival distribution that satisfy P(τ (r)

1 = n) ∼ 1
1+αϕ(n)n−(1+α) as n→ +∞, for r = 1, 2.

Then, we take ω := (ωi,j)(i,j)∈N2 a (ergodic) field of r.v.s, whose law is denoted P: ωi,j represents
the interaction between the ith monomer from the first strand and the jth monomer of the second
strand. We assume that Eωi,j = 0, E[ω2

i,j ] = 1 and that λ(β) := E[eβωi,j ] < +∞ for all 0 ≤ β <
β0 ∈ (0,+∞]. For a fixed realization of ω, for β ∈ [0, β0) and h ∈ R, we define for n,m ∈ N (the
respective lengths of the strands) the partition function of the model as

Zω,gPS

n,m,β,h = E
[

exp
( n∑
i=1

m∑
j=1

(βωi,j − λ(β) + h)1{(i,j)∈τ}
)
1{(n,m)∈τ}

]
. (3.2)

There is a probability measure Pω,gPS

n,m,β,h associated to (3.2). We put 1{(n,m)∈τ} in (3.2), constraining
the two endpoints of the polymer to meet (in opposition to the illustration of Figure 3.2)—we call
Zω,gPS

n,m,β,h the constrained partition function.
In the physical literature, the entropy of free ends is considered to be different from the entropy of

loops: a free end of length ` has an entropy Kf (`) = ϕ(`)`−α, for some slowly varying ϕ(·) and some
α ∈ R. Note that Kf (·) is not necessarily a probability distribution, and in fact we fix Kf (0) = 1
(for normalization purposes). Then, we define the free partition function as

Zω,gPS,free
n,m,β,h :=

n∑
i=0

m∑
j=0

Zω,gPS

n−i,m−j,β,hKf (i)Kf (j) , (3.3)

and we denote Pω,gPS,free
n,m,β,h the probability measure associated to it.
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Free energy and denaturation transition. In the gPS model, there is an extra parameter
γ > 0 which accounts for the asymptotic strand length ratio. By symmetry we may take γ ≥ 1. We
define

Fγ(β, h) := lim
n,m→+∞
m/n→γ

1

n
logZω,gPS

n,m,β,h = lim
n,m→+∞
m/n→γ

1

n
E logZω,gPS

n,m,β,h P-a.s. and in L1(P) . (3.4)

The existence of the limit is shown in [3] in the case of an i.i.d. disorder (ωi,j)i,j∈N, but the proof
works in full generality—we may also replace Zω,gPS

n,m,β,h by Zω,gPS,free
n,m,β,h . We have once again h 7→ F(β, h)

is non-negative, non-decreasing and convex. We define the critical point hc(β) := inf{Fγ(β, h) > 0}
(its dependence on γ is implicit): it marks the transition between a delocalized phase (h < hc(β),
null density of contacts) and a localized phase (h > hc(β), positive density of contact)—indeed,
∂hFγ(β, h) (when it exists) is also here equal to the limiting density of contacts between the two
strands, under Pω,gPS

n,m,β,h. This phase transition, from the DNA point of view, corresponds to the
denaturation (or melting) transition.

However, in the homogeneous model, there might be another point of non-analyticity of the free
energy, corresponding to another phase transition, see Section 3.2 below. In the disordered model,
the question of determining whether this second transition survives is more difficult (there is no easy
characterization of what the critical point should be), and has been left aside for now.

3.2 The homogeneous model: denaturation and condensation tran-
sitions

Let ZgPS

n,m,h (resp. Z
gPS,free
n,m,h ) be the partition function (resp. free partition function) of the homogeneous

i.e. β = 0 model, and PgPS

n,m,h (resp. PgPS,free
n,m,h ) the corresponding polymer measures.

We start by stating the first result of [GK17], which describes the localization transition (in
analogy with Theorem 2.1), but points out the fact that a second phase transition might exist. We
denote hc = hc(0).

Theorem 3.1. For any γ ≥ 1, we have that hc = 0. Moreover, there exist a slowly varying function
ϕ̂(·) and a constant cα,γ such that Fγ(0, h) ∼ cα.γϕ̂(1/h)hν as h ↓ 0, with ν = max

(
1, 1

α

)
.

Additionally, there exists some hc,γ ∈ (0,+∞] such that h 7→ F(0, h) is analytic on (−∞, 0) ∪
(0, hc,γ). If hc,γ < +∞, then hc,γ is another non-analicity point of F(0, h).

We stress that hc,1 = +∞, and that if hc,γ < +∞, then hc,γ may not be the only non-analyticity
point in the localized phase, see [GK17, Sec. 3.4] for more details. The point hc,γ marks another
phase transition, a condensation phase transition, inside the localized phase. In an article with
Giambattista Giacomin and Maha Khatib [10] published in ALEA: Lat. Am. J. Probab. Math.
Stat., we manage to give the path properties of the system in this “condensed” phase.

Take h > 0, and for non-negative λ1, λ2, rewrite the constrained partition function (m ≥ n) as

ZgPS

n,m,h = eλ1n+λ2m
n∑
`=1

∑
i1,...,i`∈N
i1+···+i`=n

∑
j1,...,j`∈N

j1+···+j`=m

∏̀
k=1

eh−λ1ik−λ2jkK(ik + jk) . (3.5)
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For h > 0, we consider the family of parameters Ch =
{

(λ1, λ2) :
∑

n,m∈N e
h−λ1n−λ2nK(n+m) = 1

}
:

each (λ1, λ2) ∈ Ch defines an inter-arrival probability distribution P̂λ1,λ2 . Then, for all (λ1, λ2) ∈ Ch,
we have ZgPS

n,m,h = eλ1n+λ2mP̂λ1,λ2((n,m) ∈ τ̂ ). Then, if one is able to choose λ1, λ2 so that the last
probability if e−o(n), the free energy will be Fγ(0, h) = λ1 + γλ2. Two situations may occur: (1) the
optimal (λ1, λ2) is in (0,∞)2, and P̂λ1,λ2 has exponential tails in both directions—this is dubbed
as the Cramér regime; (2) λ2 = 0, λ1 > 0, and P̂λ1,λ2 has exponential tail only in the horizontal
direction—this is dubbed as the non-Cramér regime.

Let N(h) be the unique solution of
∑

n,m∈N e
h−nN(h)K(n+m) = 1 (i.e. λ2 = 0), and let P̂h(·) be

the corresponding probability distribution. In [GK17], it is shown that F(0, h) = N(h) if and only
if γ > γc(h), where γc(h) = Êh[τ̂ (2)]/Êh[τ̂ (1)] (we mention that h 7→ γc(h) may not be monotonous,
and depends heavily on the distribution P). In [10], we derive the path properties in the case
γ > γc(h). In order to state our results, define κn := |{k, τ (1)

k ≤ n}|. Let Ln := maxj≤κn{τ
(2)
j −τ

(2)
j−1}

be the size of the largest jump (in the second coordinate), attained for some jn, and let `n =
maxj≤κn,j 6=jn{τ

(2)
j − τ

(2)
j−1} be the size of the second largest jump. In the free case, we also need

Vn := m− τ (2)
κn the length of the unbound part of the second strand. The main result of [10] can be

summarized (and simplified) as follows.

Theorem 3.2 ([10], Theorems 1.1 and 1.2). Let h be such that γc := γc(h) < γ. For any ε > 0, we
have as n,m→ +∞, mn → γ:

(i) in the constrained case,

PgPS

n,m,h

(Ln
n
− (γ − γc) ∈ [1− ε, 1 + ε] ; `n ≤ n

1+ε
(1+α)∧2

)
→ 1;

(ii) in the free case,

if α < 1 + α, PgPS,free
n,m,h

(Vn
n
− (γ − γc) ∈ [1− ε, 1 + ε] ; Ln ≤ n

1+ε
(1+α)∧2

)
→ 1 ;

if α > 1 + α, PgPS,free
n,m,h

(Ln
n
− (γ − γc) ∈ [1− ε, 1 + ε] ; `n ≤ n

1+ε
(1+α)∧2 ; Vn ≤ log n

)
→ 1 .

Figure 3.3 – Schematic view of path trajectories in the (free) gPS model. On the left, in the Cramér
regime γc(h) > γ: all loops are O(logn), as proven in [GK17]. In the middle and on the right, in the
non-Cramér regime γc(h) < γ. The middle configuration corresponds to the case α < 1 + α where there
is an unbound free end of length ≈ (γ − γc)n. The configuration on the right corresponds to the case
α > 1 + α where a loop of length ≈ (γ − γc)n is formed. In the constrained case, the unbound free end is
of course absent, so the middle configuration does not exist.
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In loose terms, γc(h) is the maximal length ratio that can be “absorbed” in an homogeneous
way along the double strand. When γ > γc, then the excess length (γ − γc)n is placed either in a
macrocsopic loop (when α > 1 + α) or an unbound free end (when α < 1 + α), see Figure 3.3.

In order to prove Theorem 3.2, one needs to obtain sharp asymptotics on the partition function
ZgPS

n,m,h = enN(h)P̂h((n,m) ∈ τ ), and in particular on the renewal mass function P̂h((n,m) ∈ τ ).
The difficulty here is that P̂h has an exponential tail in the first direction, and a polynomial tail
(with decay exponent 2 +α) in the second direction. In the non-Cramér regime, (n,m) is not along
the “natural” direction γc = Êh[τ̂ (2)]/Êh[τ̂ (1)]: the best strategy for τ̂ to reach (n,m) is to absorb
the deviation in one big-jump, of length ≈ (γ − γc)n (of course, one needs to make this precise).
Theorem 3.1 can therefore be seen as a renewal theorem for the specific bivariate renewal with inter-
arrival law P̂h. This was what inspired my work [7], which aimed at understanding multivariate
renewal processes with different tails in the different coordinates: a goal was in particular to obtain
renewal theorems away and along the favorite direction. We refer to Section 7.3 for an overview—
even though results are presented there only in the case where the tails are the same in all directions.

3.3 Disorder relevance in the i.i.d. case

In a joint work with Giambattista Giacomin and Maha Khatib [3], accepted for publication in
Annales Henri Lebesgue, we considered the disordered version of the model (3.2), in the case where
(ωi,j)i,j∈N is a field of i.i.d. r.v.s, and we focus on the localization transition. This is a natural
choice if one thinks of the model as a pinning of a bivariate renewal on a disordered surface, or
as a directed (stretched) polymer in random i.i.d. environment. The first remark is that, in the
i.i.d. case, we have E[Zω,gPS

n,m,β,h] = ZgPS

n,m,h, so that the annealed model is the homogeneous one. In
particular, the annealed critical point is ha

c(β) = 0 for any γ ≥ 1, and Jensen’s inequality gives that
Fγ(β, h) ≤ Fγ(0, h) so that hc(β) ≥ ha

c(β) = 0.
In view of Theorem 3.1, the critical exponent of the homogeneous model is ν = max(1, 1/α).

Here, the dimension of the disorder is d = 2, so if we apply apply Harris criterion, disorder should
be irrelevant if ν < 1, i.e. if α < 1. The case α > 1 corresponds to a homogeneous critical exponent
ν = 1 which is marginal, but this is actually not the case—the marginal case is α = 1. The main
results of [3] confirm these predictions.

Theorem 3.3 ([3], Theorems 1.3 and 1.4).
• If |τ ∩τ ′| < +∞ with τ , τ ′ two independent bivariate renewals (a sufficient condition is α < 1,

see Section 7.3.3), then disorder is irrelevant: there exists some β1 > 0 such that for all β ∈ [0, β1)

we have hc(β) = 0 and limh↓0
log F(β,h)

log h = 1
α .

• If α > 1, then disorder is relevant: for every β > 0 we have hc(β) > 0. More precisely, for
every ε > 0, there is some βε such that βqα+ε ≤ hc(β) ≤ βqα−ε for β ∈ (0, βε), with qα = 2α

α−1 ∧ 4.

In [3], we leave aside the case α = 1 with |τ ∩ τ ′| = +∞ to avoid too many technicalities—this
case is already delicate at the level of the bivariate renewal, see Section 7.3. We believe that, as in
Theorem 2.2, the necessary and sufficient condition for disorder relevance should be the persistence
of τ ∩ τ ′. In terms of critical exponent, we would have liked to show that the critical exponent
is modified when α > 1. However, we should not expect a general result stating that the phase
transition is of order at least 2, as in Theorems 1.1 and 2.3: indeed, when |τ ∩τ ′| < +∞, the critical
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exponent of the free energy is 1/α, and can be equal to 1! Our best hope is therefore to obtain a
smoothing inequality where the exponent depends on α, see [3, Conj. 1.5].

Second moment and intersection of bivariate renewals. Let us consider the case of a Gaus-
sian disorder and take m = n, for the simplicity of the exposition. As in (2.6), we obtain that the
second moment of the partition function at h = ha

c(β) = 0 is

E
[
(Zω,gPS

n,n,β,0)2
]

= E⊗2
[

exp
(
β2

n∑
i,j=1

1{(i,j)∈τ∩τ ′}
)
1{(n,n)∈τ∩τ ′}

]
, (3.6)

where τ , τ ′ are two independent renewal processes. Note that τ ∩ τ ′ is a renewal process, and that
(3.6) is the partition function of a homogeneous (bivariate) pinning model. In particular, we get
that: if |τ ∩ τ ′| < +∞ then supn∈NE[(Zω,gPS

n,n,β,0)2] < +∞ for β sufficiently small; if |τ ∩ τ ′| = +∞
then E[(Zω,gPS

n,n,β,0)2]→ +∞ for all β > 0. As for the pinning model, this is an indication that disorder
is relevant if and only if τ ∩ τ ′ is persistent.

One therefore needs to study Dn :=
∑n

i,j=1 P((i, j) ∈ τ )2, the mean overlap of two independent
copies τ , τ ′, up to length n. Good estimates on the renewal mass function are necessary, and this
is one of scope for the article [7], see Section 7.3—in particular, the case α ∈ [1, 2) was missing in
the literature, and the case α = 1 is quite delicate. The consequences for Dn can be summarized as
follows, see Section 7.3.3: if α < 1 then supn∈NDn < +∞; if α > 1 then Dn = n

α−1
α
∧ 1

2
+o(1).

3.4 A more realistic disordered model

Going back to the DNA interpretation of the model, the choice of an i.i.d. field (ωi,j)i,j≥1 does not
appear so natural. One would rather consider two sequences, ω̂ = (ω̂i)i≥1 and ω̄ = (ω̄j)j≥1, attached
to the two strands, the interaction between the ith monomer of the first strand and the jth of the
second strand being given by ωi,j = ω̂iω̄j . Together with my Ph.D. student Alexandre Legrand, we
are currently working this case: this section presents some of the ideas we are developing.

Assume that ω̂, ω̄ are two independent sequences of independent r.v.s, with the same zero mean
and unit variance distribution, and set ωi,j = ω̂iω̄j for i, j ∈ N. Not that E[ωi,j ] = 0, E[(ωi,j)

2] = 1.
We assume that E[eβω̂

2
i ] < +∞ for β ∈ [0, β0) with β0 > 0, which ensures that λ(β) = logE[eβωi,j ] <

+∞ for β ≤ β0/2 (since ωi,j ≤ 1
2(ω̂2

i + ω̄2
j )). As typical examples, we have in mind the cases

ω̂i ∼ N (0, 1) and ω̂i ∈ {−1,+1}. The r.v.s (ωi,j)i,j∈N are not independent, but they are independent
if they are not on the same line or column: ωi,j is independent of ωk,l if i 6= k and j 6= l. As a
consequence, we still have that E[Zω,gPS

n,m,β,h] = ZgPS

n,m,h: indeed, for any fixed τ , the r.v.s (ωi,j ; (i, j) ∈
τ ) are independent. Once again, Jensen’s inequality gives that Fγ(β, h) ≤ Fγ(0, h), so that hc(β) ≥
ha
c(β) = 0. Our goal is then to understand the role of disorder on the localization phase transition.

Here, the second moment of the partition function is much more complicated than (3.6), because of
the correlations in (ωi,j)i,j∈N. However, Alexandre Legrand managed to find that:

(i) if m4 := E[ω̂4
i ] > 1, then E

[
(Zω,gPS

n,n,β,0)2
]
→ +∞ for all β > 0 if and only if |τ (1) ∩ τ ′(1)| = +∞;

(ii) if m4 := E[ω̂4
i ] = 1 (that is ω̂2

i = 1 a.s., or ω̂i ∈ {−1,+1}), then E
[
(Zω,gPS

n,n,β,0)2
]
→ +∞ for all

β > 0 if and only if |τ ∩ τ ′| = +∞.
The condition for disorder relevance hence seems to depend more on the distribution of the disorder—
well, the case E[ω̂4

i ] = 1 is degenerate. The case m4 > 1 involves the intersection of the two
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unidimensional renewals τ (1), τ ′(1): the intersection is terminating if α < 1/2 and persistent if α > 1/2
(recall the discussion below Theorem 2.2). One should therefore find back the Harris criterion of
Chapter 2 (this makes sense, since disorder is fundamentally unidimensional here).

The weak-coupling scaling limit approach. Another recent approach to disorder relevance,
initiated by Caravenna, Sun and Zygouras [CSZ17a, CSZ17b, CSZ16], has been to consider the weak-
coupling limit of the model, that is to take βn, hn ↓ 0 as n→ +∞. One wishes to understand whether
it is possible to tune βn, hn in such a way that the discrete model (in fact its partition function)
converges to a non-trivial, i.e. disordered, continuous version of the model. If it is the case, disorder is
relevant, in the sense that it “survives” in the scaling limit. This idea of considering the intermediate
disorder regime had been used in [AKQ14b], and has been fruitful to obtain universality results.

We present the approach of [CSZ17a] in our setting (with h = 0, m = n for simplicity). We
develop Zω,free

n,βn
:= Zω,gPS,free

n,n,βn,0
, by writing e(βnωi,j−λ(βn))1{(i,j)∈τ} = 1 + ξ

(n)
i,j 1{(i,j)∈τ} with ξ

(n)
i,j :=

(e(βnωi,j−λ(βn))−1), and by expanding the product over (i, j) ∈ J1, nK2: we have, with the convention
i0 = 0, j0 = 0

Zω,free
n,n,βn

= 1 +
+∞∑
k=1

∑
0<i1<···<ik≤n
0<j1<···<jk≤n

k∏
l=1

ξ
(n)
il,jl

P
(
(il − il−1, jl − jl−1) ∈ τ

)
. (3.7)

Then, one needs to show that each term converges as n → +∞ (and that the sum converges),
provided that βn has been tuned properly.

Let us focus on the term k = 1,
∑

(i,j)∈J1,nK2 ξ
(n)
i,j P((i, j) ∈ τ ). The idea in [CSZ17a] is to use a

Lindeberg principle, in order to replace one by one all ξ(n)
i,j by i.i.d. Gaussian N (0, β2

n) r.v.s, keeping
the difference in L2 norm under control. Here, correlations prevent us from using this method, and
in fact the main contribution does not come from the second order in the small-βn expansion of
ξ

(n)
i,j = eβnωi,j−λ(βn) − 1, but from the 4th order. We use a more direct approach: as a first step, we

show the convergence of the field (ξ
(n)
i,j )(i,j)∈J1,nK2 , in the following sense (we omit the integer parts

to lighten notations).

Proposition 3.4. Let βn → 0 be such that n1/4βn → +∞, and let ξ(n)
i,j := eβnωi,j−λ(βn) − 1. Then,

we have the following convergence in distribution (in the space of continuous functions from [0, 1]2

to R, with the ‖ · ‖∞ norm):

( 1

n3/2β2
n

xn∑
i=1

yn∑
j=1

ξ
(n)
i,j

)
(x,y)∈[0,1]2

(d)−−→
(

1
2

√
m4 − 1M(x, y)

)
(x,y)∈[0,1]2

,

whereM is a centered Gaussian field (represented in Figure 3.4) with covariance given by

K
(
(x, y), (x′, y′)

)
:= (x ∧ x′)(y ∧ y′)(x ∨ x′ + y ∨ y′) . (3.8)

Now, when α ∈ (0, 1), for any x, y ∈ R∗+ we have P((xn, yn) ∈ τ ) ∼ ψ(x, y)ϕ(n)−1n−(2−α) as
n → +∞, for some symmetric and radial function ψ(·, ·), see [Wil68] or Theorem 7.11 below. We
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Figure 3.4 – A realization of the (non-isotropic) Gaussian FieldM, with covariance given by (3.8).

can therefore expect that, choosing βn := β̂n−
2α−1

4 ϕ(n)1/2 so that ϕ(n)−1n−(2−α) = β̂2n−3/2β−2
n ,∑

(i,j)∈J1,nK2
ξ

(n)
i,j P((i, j) ∈ τ ) = (1+o(1))ϕ(n)−1n−(2−α)

∑
(i,j)∈J1,nK2

ξ
(n)
i,j ψ

(
i
n ,

j
n

)
n→+∞−−−−−→ β̂2

2

√
m4 − 1

∫
[0,1]2

ψ(x, y) dM(x, y) ,

where the last convergence holds for α ∈ (1/2, 1) thanks to Proposition 3.4. Note that the condition
α > 1/2 is crucial here, since it ensures that βn → 0. Let us also stress that the 4th moment of ω̂i
appears in the limit: if m4 = 1 then the limit is equal to 0, which confirms the observation made
above that the case m4 = 1 is somehow degenerate. There are many technicalities involved (for
example the well-posedness of the integral), but together with Alexandre Legrand, our goal is to
show that for α ∈ (1/2, 1), setting βn := β̂n−

2α−1
4 ϕ(n)1/2, the partition function Zω,free

n,βn
converges in

distribution to a non-trivial random variable ZM
β̂

, expressed as a sum of (stochastic) iterated integrals
with respect to the Gaussian fieldM. This would prove disorder relevance for α ∈ (1/2, 1) (in the
sense of Caravenna-Sun-Zygouras [CSZ16]), and it would also open the way to the construction of
scaling limits of other models with correlated disorder.
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Part II

Directed polymers and Last-Passage
Percolation
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Chapter 4

Directed polymers and the localization
phenomenon

This chapter reviews some results on the directed polymer model, and describes our contribution [15]
(in Section 4.2).

4.1 Presentation of the model

The directed polymer model has been introduced by Huse and Henley (in dimension 1+1) in [HH85],
as an effective model for an interface in the Ising model with impurities. It has then been generalized
to arbitrary dimension 1 + d with d ≥ 1 (one temporal dimension, d spatial dimensions), as a model
for a stretched polymer interacting with an heterogeneous solvant.

Let S = (Sn)n≥0 be a simple symmetric random walk on Zd, started from the origin, and whose
law is denoted P: S0 = 0, and (Si − Si−1)i≥1 are i.i.d. r.v.s, uniform in the set {±ei}1≤i≤d (ei is
the ith vector of the canonical basis of Zd). A trajectory of a directed polymer of length n ∈ N is
represented by the n-step trajectory of the directed random walk ((i, Si))0≤i≤n, the ith monomer
sitting on the site (i, Si) ∈ N×Zd (see Figure 4.1). The random environment is represented by a field
ω = (ωi,x)i∈N,x∈Zd of i.i.d. r.v.s, whose law is denoted by P. We assume (for now, see Chapter 5) that
E[ω1,1] = 0, E[(ω1,1)2] = 1, and that there is some β0 ∈ (0,+∞] such that λ(β) := logE[eβω1,1 ] < +∞
for all β ∈ (−β0, β0).

For a fixed realization of ω (quenched disorder), and any β ≥ 0 (the inverse temperature), we
define for n ∈ N the polymer measure Pω

n,β by

dPω
n,β

dP
(S) :=

1

Zωn,β
exp

(
β

n∑
i=1

ωi,Si

)
, (4.1)

with Zωn,β := E
[

exp
(
β
∑n

i=1 ωi,Si
)]

the partition function of the model. Note that we have not
substracted λ(β) in the Hamiltonian in (4.1) as we did in Chapters 1-2-3: this is for consistency
with most of the literature (and in particular with [15]), and it makes the definition (4.1) valid even
when λ(β) = +∞ (as in Chapter 5). The measure Pω

n.β corresponds to giving a reward (or penalty)∑n
i=1 ωi,Si to a trajectory S, the coupling being tuned by the parameter β: random walk trajectories
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(i, Si)
= Polymer trajectory

(ωi,x)i∈N,x∈Zd
Zd

N

Figure 4.1 – Schematic view of the directed polymer model: the polymer is represented by the directed
random walk ((i, Si))1≤i≤n; the inhomogeneous solvant is represented via the field (ωi,x)i∈N,x∈Zd of i.i.d.
r.v.s; the intensity of the interactions is tuned by the inverse temperature β.

that collect a large sum of ωi,x are favored with respect to those collecting small or negative sums
of ωi,x. We refer to Figure 4.1 for an illustration of the model.

The main goal is then to determine (for typical ω) whether trajectories, under the measure Pω
n,β ,

still have a diffusive behavior as when β = 0, or if they are super-diffusive and somehow localized
in some corridors of favorable environment. In particular, one wishes to derive the transversal (or
wandering) exponent ξ, which describes the fluctuations of the end-point of the polymer, that is
Eωn,β[(Sn)2] ≈ n2ξ as n → +∞. Another quantity of interest is the fluctuation exponent χ, which
describes the fluctuations of logZωn,β , i.e. Var(logZωn,β) ≈ n2χ as n→ +∞. The exponents ξ and χ
are expected to verify the relation χ = 2ξ − 1.

Let us cite here the monograph of Comets [Com16] for a recent overview of the model and of the
results. Let us also mention that the directed polymer model is related to many interesting problems:
particles in a random potential, last-passage percolation, random growth models, and it is related
to the Kardar-Parisi-Zhang (KPZ) equation. Note that last-passage percolation (a version of which
is at the center of Chapter 6) is seen as the zero-temperature version of the directed polymer model:
taking β = +∞ in (4.1), the partition function Zωn,β becomes

Lωn = max
{ n∑
i=1

ωi,si ; s0 = 0, ‖si − si−1‖1 = 1 ∀i ∈ J1, nK
}
, (4.2)

and the measure Pω
n,β=+∞ concentrates on trajectories for which the maximum is attained.

Remark 4.1. We mention here that the simple random walk (Sn)n≥0 may be replaced by a more
general walk. For instance the steps (Si − Si−1) may have a stretch-exponential distribution, i.e.
P(S1 = x) = e−‖x‖

a
1 for some a > 0, see [CFNY15]; or (Sn)n≥0 may be in the domain of attraction

of an α-stable law, see [Com07, Wei16, Wei18]. All the results we state below are presented in the
case of the simple random walk (in particular for the constants in Theorem 4.2), but they hold with
more generality, see [Bat18] for an overview of the results with a general reference random walk.

4.2 Localization phenomenon, weak vs. (very) strong disorder

The answer to the question of the localization of trajectories depends on the dimension d. Let us
define the (quenched) free energy as

F(β) := lim
n→+∞

1

n
logZωn,β = lim

n→+∞
1

n
E logZωn,β P-a.s. and in L1(P) .
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The fact that it exists, that it is constant P-a.s. and that the convergence holds in L1(P) (in fact in
Lp(P) for all p ∈ [1,+∞)) is proven for example in [Com16, Thm. 2.1]. An easy upper bound on F(β)
is given by Jensen’s inequality: since E[logZωn,β] ≤ logE[Zωn,β] = nλ(β), we get that F(β) ≤ λ(β).

Having F(β) < λ(β) is a sign that trajectories under Pω
n,β are localized around favorite corridors

(with favorable regions of ω): the latter is referred to as the very strong disorder regime. The
difference ∆F(β) := λ(β)− F(β) has indeed been shown to be linked to the limiting overlap fraction
of two replicas under Pω

n,β , see [CSY03, CH06]: more precisely, [CH06] shows (in our context) that

∆F(β) = λ(β)× lim
n→+∞

1

n

n∑
k=1

(Pω
k−1,β)⊗2

(
Sk = S′k

)
P-a.s., (4.3)

with (Sk)k≥1, (S′k)k≥1 two independent copies of the random walk. Hence, if ∆F(β) > 0, under Pω
n,β ,

two replicas overlap a positive fraction of the time: this is a localization phenomenon, and having
estimates on ∆F(β) quantifies it. Other statements regarding the localization phenomenon hold (for
instance, making the localization along a favorite corridor more precise), and we refer to [Com16,
Chap. 5] for an overview. It is also expected that trajectories are super-diffusive for β’s such that
∆F(β) > 0, i.e. that the wandering exponent is ξ > 1/2. In dimension d = 1 is is widely expected
that ξ = 2/3, χ = 1/3 (the so-called KPZ scaling), and this has been proven only for an integrable
version of the model [Sep12] (or [Joh00, SV10, BQS11] in related settings). However, much is still
open, and in dimension d ≥ 2 the exponents ξ, χ remain mysterious.

Otherwise, the diffusive behavior of trajectories has been put to rigorous ground in some regimes:
for instance, Bolthausen [Bol89] showed that in dimension d ≥ 3, trajectories are diffusive if β is small
enough. Define Wω

n,β := e−λ(β)nZωn,β the renormalized partition function, which is easily proven to
be a positive martingale. Then having limn→+∞Wω

n,β > 0 P-a.s. is dubbed as weak disorder (note
that it implies F(β) = λ(β)), and it is shown in [CY06] that in this regime trajectories are diffusive,
see Theorem 4.1 below.

On the other hand, having limn→+∞Wω
n,β = 0 is referred to as strong disorder, but it is weaker

than having F(β) < λ(β) (i.e. very strong disorder): a long-standing conjecture is that strong
disorder and very strong disorder regimes coincide, in the sense that

βstr
c := sup

{
β; lim

n→+∞
Wω

n,β > 0 a.s.
} (conj.)

= βv-str
c := sup

{
β; F(β) = λ(β)

}
. (4.4)

The existence of such critical points follows from monotonicity properties of (i) β 7→ E[(Wω
n,β)δ]

for any δ ∈ (0, 1), showing the existence of βstr
c (see [Com16, Prop. 3.1] and its proof); (ii) of

β 7→ ∆F(β), showing the existence of βv-str
c (see [Com16, Thm. 2.3]). Note that we have the

inequality βstr
c ≤ βv-str

c .

4.2.1 The case of dimension d ≥ 3

In dimension d ≥ 3, Bolthausen [Bol89] shows that limn→+∞Wω
n,β > 0 a.s. for sufficiently small β.

Put otherwise, βv-str
c ≥ βstr

c > 0: in words of Part I, disorder is irrelevant, cf. Remark 2.1. Comets
and Yoshida [CY06] prove that under Pω

n,β , trajectories are diffusive in the weak disorder regime.

Theorem 4.1. Assume that d ≥ 3 and that β < βstr
c . Then for all continuous and bounded function

F on the path space, Eωn,β
[
F
(
S(n)

)]
converges in P-probability to E[F (B)], where S(n) is the rescaled

path (Snt/
√
n)t≥0, and B is a Brownian motion with diffusion matrix d−1Id.

45



Quentin Berger HdR: Random Polymers and Related Models

This result can be improved in the L2 region, i.e. when the martingale Wω
n,β is bounded in L2,

we refer to [Com16, Chap. 3]. Let us mention that the case of an underlying one-dimensional random
walk (Sn)n≥0 in the domain of attraction of an α-stable law with α ∈ (0, 2] has been considered in
[Com07, Wei16]: it is proven that if α ∈ (0, 1) then βv-str

c ≥ βstr
c > 0, and a result analogous to

Theorem 4.1 is proven in [Wei16]. (The case α = 1 is marginal and considered in [Wei18].)

4.2.2 The case of dimension d = 1, 2

In dimensions d = 1, 2, it has been shown that ∆F(β) > 0 for all β > 0, i.e. βstr
c = βv-str

c = 0: in
words of Part I, disorder is relevant, cf. Remark 2.1. This has been proven in [CV06] in dimension
d = 1, and in [Lac10c] in dimension d = 2. Moreover, [Lac10c] provides (almost) sharp estimates
on ∆F(β) in the high temperature limit β ↓ 0 (hence quantifying the mean overlap fraction of two
replicas). These estimates have been refined more recently, and the asymptotic behavior of ∆F(β) as
β ↓ 0 is now known: in dimension d = 1 this has been proven by Nakashima [Nak16]; in dimension
d = 2 (which is the marginal dimension), this is one of my results, in collaboration with Hubert
Lacoin [15], published in Annales de l’Institut Henri Poincaré, Probabilités et Statistiques.

Theorem 4.2. In dimension d = 1,

∆F(β) ∼ 1
6β

4 as β ↓ 0. (4.5)

In dimension d = 2,
∆F(β) = exp

(
− (1+o(1))πβ−2

)
as β ↓ 0. (4.6)

We mention that, in the case where the reference random walk (Sn)n≥0 is one-dimensional and
in the domain of attraction of an α-stable law with α ∈ (0, 2], Wei [Wei16, Wei18] shows that if
α ∈ (1, 2] then βv-str

c = 0, and ∆F(β) � ψ(1/β)β
2α

2α−1 for some specific slowly varying function
ψ (in analogy with Theorem 2.5). In the marginal case α = 1, the estimate is similar to (4.6).
Note that determining whether βv-str

c > 0 or βv-str
c = 0 is reminiscent of the question of disorder

relevance/irrelevance of Chapter 2: in these terms, the α-stable directed polymer is disorder relevant
if α ∈ (1, 2] and irrelevant if α ∈ (0, 1). In the marginal case α = 1, it is shown in [Wei18] (under
some additional technical assumption), that, in analogy with Theorem 2.2, disorder is relevant if
and only if

∑+∞
i=1 1{Si=S′i} = +∞ a.s., with S, S′ two independent copies of the reference random

walk.

Relation with the intermediate disorder regime. Let us stress that the critical behaviors
found in Theorem 4.2 are very much related to the intermediate disorder scaling limit of the directed
polymer model, where one takes βn ↓ 0 as n→ +∞ in such a way to obtain a non-trivial (disordered)
scaling limit. This has been investigated by Alberts, Khanin and Quastel [AKQ14b] in dimension
d = 1, and by Caravenna, Sun and Zygouras [CSZ17b] in dimension d = 2. In dimension d = 1,
the authors in [AKQ14b] pick βn = βn−1/4 (with β ∈ (0,+∞)), and prove that Wω

n,βn
converges

in distribution to a random variable Z√2β , which is a solution to the stochastic heat equation.
The scaling n−1/4 is related to the β4 behavior in (4.5), and the constant 1/6 is the free energy of
the continuum directed polymer of [AKQ14a], i.e. limβ→+∞ 1

β logZ√2β . In dimension d = 2, the
authors in [CSZ17b] pick βn = β( 1

π log n)−1/2, and show that Wω
n,βn

converges in distribution to:
a log-normal distribution if β < 1; zero if β ≥ 1. Note the relation between the threshold scaling
βn = ( 1

π log n)−1/2 and the exp(πβ−2) behavior in (4.6).
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Chapter 5

Directed polymers in heavy-tail random
environment

In this chapter, we study the directed polymer model of the previous chapter, cf. (4.1), but in the
case where the environment ω has a heavy-tail: in particular, we present the results obtained in [4].

5.1 Presentation of the setting

Most of the results presented in the previous chapter are valid under the assumption that the
disorder ω has some exponential moment, i.e. λ(β) := logE[eβω1,1 ] < +∞ for β ∈ (−β0, β0), β0 > 0.
In this chapter, we consider the case where the i.i.d. random variables (or weights) ωi,x have a heavy
tail: we suppose that there exists an exponent α > 0 such that

P
(
ω > t

)
∼ t−α as t→ +∞ (5.1)

(with a slight abuse of notation, we denote by ω a generic r.v. with the common law of the ωi,x).
In particular λ(β) = +∞ for all β > 0. For simplicity, we assume that ω ≥ 0 a.s.—this does
not hide anything deep. Let us stress that in the literature (and in [4]), one usually assumes that
P
(
ω > t

)
∼ L(t)t−α for some slowly varying function L(·): in (5.1) we got rid of the slowly varying

function, in order to simplify notations and to clarify the exposition.
We focus on the directed polymer in dimension 1 + 1, see Section 5.4 for comments on higher di-

mensions. Our main goal is to describe trajectories under Pω
n,β , and in particular to find the transver-

sal or wandering exponent ξ (Eωn,β[(Sn)2] ≈ n2ξ) and the fluctuation exponent χ (Var(logZωn,β) ≈
n2χ). We recall that in dimension 1, when λ(β) < +∞ it is expected that ξ = 2/3, χ = 1/3—this
has been shown for some special, integrable version of the model [Sep12]. In the case of a heavy-tail
environment with exponent α > 0 (5.1), the ξ = 2/3, χ = 1/3 picture is expected to be modified,
depending on the value of α. According to the heuristics (and terminology) of [BBP07, GLDBR15],
three regimes should occur (they are still mostly conjectural), with different paths behaviors:
(a) if α > 5, there should be a collective optimization and we should have ξ = 2/3, χ = 1/3, as in

the finite exponential moment case (which can be thought as a case α = +∞);
(b) if α ∈ (2, 5), the optimization strategy should be elitist : most of the total weigth collected

should be via a small fraction of the points visited by the path, and we should have ξ = 1+α
2α−1 ,

χ = 2ξ − 1 = 3
2α−1 ;
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(c) if α ∈ (0, 2), the strategy is individual : the polymer targets few exceptional points, and we
have ξ = 1, χ = 2

α > 1 = 2ξ − 1. (This has been proven in [HM07, AL11].)
The idea behind the exponent ξ = α+1

2α−1 in case (b) is based on a Flory argument. For trajectories
to reach transversal fluctuactions of order nξ, one may consider the strategy of targeting the largest
weight ωi,x in the box Jn2 , nK× Jnξ, 2nξK: this largest weight is of order (n1+ξ)1/α (it is the maximum
of 1

2n
1+ξ i.i.d. variables with tail given by (5.1)); the entropic cost of targeting this maximal weight

is of order n2ξ−1 (from the deviation probability of the random walk, − logP(Sn ≥ nξ) � n2ξ−1 for
ξ ∈ [1/2, 1]). Finding the correct balance between energy and entropy leads to choosing ξ such that
1+ξ
α = 2ξ − 1, i.e. ξ = 1+α

2α−1 . This does not work if α < 2 since it would then give ξ > 1, which is
not possible for the nearest-neighbor random walk: this is the reason why ξ = 1 and χ = 2/α in
case (c) (the fluctuations are driven by the largest weight, of order (n2)1/α). On the other hand, if
α > 5 then 1+α

2α−1 <
2
3 , and using a collective optimization as in the λ(β) < +∞ case would lead to

a transversal exponent ξ = 2/3, outperforming the above strategy of only targeting large weights.

5.1.1 The intermediate disorder picture

A recent and fruitful approach to proving universality results for the directed polymer model has been
to consider its weak-coupling limit, i.e. to take β go to 0 as n→ +∞. As mentioned in Section 4.2.2,
in the case where ω has an exponential moment, Alberts, Khanin and Quastel [AKQ14b] show that
taking βn = βn−γ with γ = 1/4, β ∈ (0,+∞), logZωn,βn − nλ(βn) converges in distribution to
logZ√2β . This has been extended to the case of a heavy-tail distribution (5.1) by Dey and Zygouras
[DZ16]: one needs to take βn = βn−γ with γ = 1

4 if α > 6 and γ = 3
2α if α ∈ (1

2 , 6), so that
logZωn,βn − nλ̄(βn) converges in distribution to a non-trivial limit (the centering λ̄(·) is a truncated
version of the log-moment generating function λ(·); the limit is logZ√2β if α > 6, Gaussian if
α ∈ (2, 6) and α-stable if α ∈ (1

2 , 2).
Note that the intermediate disorder regime can be thought as the exact βn-window for which

disorder “kicks in”: the choice of βn is precisely the correct scaling for which trajectories still have a
diffusive scaling under Pω

n,βn
(i.e. ξ = 1/2), but have a non-Brownian limit. In other words, disorder

is strong enough to have some effect (taking βn ↓ 0 faster would yield a Brownian scaling limit),
but weak enough for the trajectories to be diffusive (taking βn ↓ 0 slower would yield super-diffusive
trajectories). As suggested in [DZ16], this is part of a larger picture: setting βn := βn−γ with γ ≥ 0,
the transversal fluctuation exponent ξ should depend on α, γ as follows

ξ =

{
2
3(1− γ) for α ≥ 5−2γ

1−γ , 0 ≤ γ ≤ 1
4 ,

1+α(1−γ)
2α−1 for α ≤ 5−2γ

1−γ ,
2
α − 1 ≤ γ ≤ 3

2α .
(5.2)

Outside of these regions, one should have ξ = 1/2 (γ large) or ξ = 1 (α ∈ (0, 2), γ < 2
α − 1). Hence,

by tuning properly βn, one should be able to make the transversal exponent ξ interpolate between
1/2 (for γ larger than for the intermediate disorder scaling) and 1, 1+α

2α−1 or 2
3 (for γ = 0) depending

on whether α ∈ (0, 2), (2, 5) or (6,+∞]. This is summarized in Figure 5.1 below.
This picture is far from being settled, and only the border cases where ξ = 1/2 (region B in

Figure 5.1) or ξ = 1 (region A in Figure 5.1) had been proven. Dey and Zygouras [DZ16] proved
that ξ = 1/2 in the cases α > 6, γ ≥ 1

4 and α ∈ (1
2 , 6), γ ≥ 3

2α ; Auffinger and Louidor [AL11] proved
that ξ = 1 for α ∈ (0, 2) and γ ≤ 2

α − 1. We also mention that in a special integrable version of the
model (in which α = +∞), [MFSV14] proves that ξ = 2

3(1− γ) for γ ∈ [0, 1
4 ].
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region A: ξ = 1

region B: ξ = 1/2

region C: ξ = 1+α(1−γ)
2α−1

region D: ξ = 2
3
(1− γ)

A

B

C D

0 α

γ

1/2 2 5 6

γ = 1
4

γ = 3
2α

γ = 2
α
− 1

γ = α−5
α−2

ξ = 1 ξ = 1+α
2α−1

ξ = 2
3

Figure 5.1 – Overview of the conjectured value for the transversal exponent ξ, depending on the disorder
tail exponent α > 0 (P(ω > t) ∼ t−α) and on the weak-coupling decay exponent γ ≥ 0 (βn ∼ n−γ)—the
case γ = 0 corresponds to a fixed temperature β > 0, and ξ should be as described in points (a),(b),(c)
above. Four regions are identified. In region A, we have ξ = 1 (this is proven in [AL11]). In region B, we
have ξ = 1/2 (this is proven in [DZ16] for α > 1

2
). In region C, we should have ξ = 1+α(1−γ)

2α−1
(we prove it

in the sub-region α < 2 in [4]). In region D, we should have ξ = 2
3
(1− γ). In regions C and D, the KPZ

relation χ = 2ξ − 1 should hold.

Our main contribution, with Niccolò Torri, is the article [4], accepted in The Annals of Proba-
bility : we complete the picture in the case α ∈ (0, 2). More precisely,

(i) if α ∈ (0, 1
2), we prove that there is a sharp transition on the line γ = 2

α − 1, from order-
√
n

fluctuations for βn = βn−( 2
α
−1) with β < β̂c, to order-n fluctuations for βn = βn−( 2

α
−1) with

β > β̂c, see Section 5.2 for more precise statements.
(ii) if α ∈ (1

2 , 2), we find the correct transversal fluctuations ξ = 1+α(1−γ)
2α−1 when 2

α − 1 < γ < 3
2α

(a sub-region of region C in Figure 5.1), see Section 5.3 for more precise statements;

5.1.2 A few preliminary definitions: rescaled paths and rescaled weigths

Since we will consider the scaling limit of the model, it is natural to define the set of rescaled
paths, and their continuous “entropy” and “energy”. Recall that we wish to rescale paths by n in
the temporal direction and by nξ in the transversal direction: the rescaled paths will be in the set
D := {s : [0, 1]→ R ; s(0) = 0, s is continuous and a.e. differentiable}. We define the (continuum)
entropy of a path s ∈ D by

Ent(s) =
1

2

∫ 1

0

(
s′(t)

)2
dt , (5.3)

which derives from the rate function of the moderate deviation of the simple random walk, i.e.
P(Stn = xnξ) = exp

(
− (1+o(1)) x

2

2t n
2ξ−1

)
if ξ ∈ (1/2, 1).

As far as the (rescaled) disorder field is concerned, we define Pα := {(ti, xi, wi)}i≥1 a Poisson
Point Process (PPP) on [0, 1] × R × R+ of intensity µ(dtdxdw) = α

2w
−α−11{w>0}dtdxdw. The

PPP Pα can be shown to be the limit in law of (n−
1+ξ
α ωbtnc,bxnξc)(t,x)∈[0,1]×R (for example via order

statistics), and we refer to Figure 5.2 for a realization of Pα for different values of α. For a quenched
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realization of Pα, the energy of a continuous path s ∈ D is then defined by

π(s) = π(Pα)(s) :=
∑

(t,x,w)∈Pα
w 1{s(t)=x}, (5.4)

which is the total weight in Pα collected by s.

Figure 5.2 – An illustration of the Poisson Point Process Pα described above (on [0, 1] × [0, 1]), with
different values of α: from left to right, we have α = 1, α = 2, α = 3. The height of the pikes (and
their color) represents the value of the weight at that location. Notice that as α becomes larger, the small
weights have a higher density (the weight density is w−(1+α), so the tail at 0 gets lighter).

5.2 Main results I: the case α ∈ (0, 1/2)

In the case α ∈ (0, 1
2), we find that there is no intermediate transversal fluctuations possible. Let us

first state the main result of Auffinger and Louidor [AL11].

Theorem 5.1. Assume that α ∈ (0, 2) in (5.1), and that limn→+∞ βnn
2
α
−1 = β ∈ [0,+∞]. Then

1

βnn2/α
logZωn,βn

(d)−−−−−→
n→+∞

T̂β := sup
s∈Lip1

{
π(s)− 1

β Ênt(s)
}
, (5.5)

with Lip1 the set of 1-Lipschitz functions from [0, 1] to R, and Ênt(s) :=
∫ 1

0 e(s′(t))dt where e(x) =
1
2 (1 + x) log(1 + x) + 1

2 (1− x) log(1− x) derives from a large deviation principle for the simple random
walk (and T̂β = 0 for β = 0 by convention).

Moreover, T̂β ≤ T̂∞ = sups∈Lip1
π(s) < +∞ a.s., and there exists some β̂c = β̂c(Pα) such that

T̂β = 0 for β ≤ β̂c and T̂β > 0 for β > β̂c. We have β̂c > 0 a.s. if α < 1
2 and β̂c = 0 a.s. if α ≥ 1

2 .

The fact that T̂∞ < +∞ a.s. is proven in [HM07], and the fact that β̂c > 0 a.s. for all α < 1
2 is

shown in [Tor16]. In the case α ∈ (0, 1
2), we therefore get that there is a non-trivial phase transition,

at some random critical value β̂c. By an extended version of the Skorokhod representation theorem,
we can upgrade the convergence in Theorem 5.1 to an almost sure one (and define ω and Pα on the
same space): it makes sense to consider the events T̂β > 0 or T̂β = 0 even at the discrete level.

A by-product of Theorem 5.1 (more precisely of [AL11, Thm. 2.1] and [Tor16, Thm. 1.8]) is that,
on the event {T̂β > 0}, transversal fluctuations are of order n. One of our main results in [4] is to
show that on the event {T̂β = 0}, transversal fluctuations are of order

√
n (and we also determine

the scaling limit).
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Theorem 5.2 ([4], Theorem 2.10). Assume that α ∈ (0, 1
2) in (5.1), and that limn→+∞ βnn

2
α
−1 =

β ∈ [0,+∞]. Then, for every ε, δ > 0, there exists some ν > 0 such that, for n large enough

P
(
Pω
n,β

(
max

1≤i≤n
|Si| < δn

)
≤ e−νn

∣∣∣ T̂β > 0
)
≥ 1− ε ;

there is some constant c > 0 such that for any A > 0 and ε > 0, for n large enough

P
(
Pω
n,β

(
max

1≤i≤n
|Si| > A

√
n
)
≤ e−cA2

∣∣∣ T̂β = 0
)
≥ 1− ε .

Moreover, conditionally on {Tβ = 0} (in particular for β ≤ β̂c), we have as n→ +∞
√
n

βnn3/2α
logZωn,βn

(d)−−−−−→
n→+∞

2W(α)
0 := 2

∫
[0,1]×R×R+

wρ(t, x)Pα(dt,dx,dw) , (5.6)

with Pα a realization of the PPP defined above in Section 5.1.2, and ρ(t, x) = (2πt)−1/2e−
x2

2t the
Gaussian Heat kernel. (It is shown in [DZ16] that W(α)

0 has an α-stable distribution.)

5.3 Main results II: the case α ∈ (1/2, 2)

For the sake of clarity, we first state our results in the case when βn = βn−γ , β ∈ (0,+∞). In
Section 5.3.2 below, we treat the general case of a sequence βn ↓ 0, uncovering new regimes, in
particular when βn is of the type (log n)ζn−

3
2α (i.e. when “close” to the line γ = 3

2α in Figure 5.1).

5.3.1 Statement of the results

Let us start by stating the main result of Dey and Zygouras [DZ16] in the case α ∈ (1
2 , 2), which

focuses on region B in Figure 5.1, i.e. γ ≥ 3
2α (and for which ξ = 1/2).

Theorem 5.3. Assume that α ∈ (1
2 , 2), and that limn→+∞ βnn

3
2α = β ∈ [0,+∞). Then

√
n

βnn3/2α

(
logZωn,βn − nβnE

[
ω1{ω≤n3/2α}

]
1α≥1

)
(d)−−−−−→

n→+∞
2W(α)

β . (5.7)

Here, W(α)
β is some specific α-stable r.v. (defined in [DZ16, p. 4011]). Moreover, trajectories have a

diffusive scaling under Pω
n,βn

, i.e. ξ = 1/2.

This also includes the case γ > 3
2α , which corresponds to having β = 0 in Theorem 5.3. On the

other hand, Theorem 5.1 above treats the case γ ≤ 2
α − 1: for α ∈ (1

2 , 2) we have that T̂β > 0 a.s.
for all β ∈ (0,+∞], which implies that ξ = 1.

With Niccolò Torri, our main result in [4] solves the remaining case γ ∈ ( 2
α − 1, 3

2α), finishes to
establish the picture presented in Figure 5.1 in the region α ∈ (0, 2).

Theorem 5.4 ([4], Theorem 2.4). Assume that α ∈ (1
2 , 2), that γ ∈ ( 2

α − 1, 3
2α), and suppose that

limn→+∞ βnnγ = β with β ∈ (0,+∞). Then, defining ξ = 1+α(1−γ)
2α−1 as in (5.2), we have

1

n2ξ−1

(
logZωn,βn − nβnE[ω]1{α≥3/2}

)
(d)−−−−−→

n→+∞
β

2α
2α−1 T , T := sup

s∈D

{
π(s)− Ent(s)

}
, (5.8)

with T ∈ (0,+∞) a.s. Moreover, under Pω
n,βn

, trajectories have transversal fluctuation exponent ξ.
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Let us stress that the main difficulty in proving the above theorem is not to control the contri-
bution of the few largest weights in the region J0, nK × J−Anξ, AnξK–this is undoubtedly technical,
but the scheme is clear once we have proven that other weigths do not contribute to the partition
function. The real crux of the proof is in controlling the contribution of other weights: one needs
to show that collecting many intermediate weights (i.e. much smaller than the maximal one) is not
a good strategy, in the sense that it has an entropic cost that largely overcomes the energetic gain
from these weights. Note that the centering nβnE[ω]1{α≥3/2} is here to account for the contribution
of the order-1 weights (and would be slightly different if ω were not non-negative).

This took us quite some time with Niccolò to solve this issue, but we finally came up with a new
tool, that enabled us to control the maximal (total) weight a path with a fixed entropy can collect—
or the minimal entropy required for a path to collect a given weight. This is a generalized version
of last-passage percolation that we call Entropy-Controlled Last Passage Percolation (E-LPP), and
which is the object of Chapter 6 (and of [9]). Let us stress that the difficulty is already encapsulated
at the level of the continuum variational problem, in the fact that T < +∞ a.s. (see Theorem 6.3
below, stated as a conjecture in [DZ16]). This is developed in Section 6.2.

5.3.2 Other regimes for more general weak-coupling sequences βn ↓ 0

So far, we considered only the case where βn = βn−γ . In [4] however, we treat general sequences
βn ↓ 0: transversal fluctuations are simply not given by nξ, but by a sequence hn (depending on βn).
The energy/entropy balance argument sketched above remains valid: in the box J1

2n, nK× Jhn, 2hnK,
the largest weight brings an energy gain roughly βn(nhn)1/α, and the entropic cost of targeting it is
roughly h2

n/n. The energy/entropy balance βn(nhn)1/α = h2
n/n therefore leads us to define

hn := (βn)
α

2α−1n
1+α
2α−1 . (5.9)

In the case βn = βn−γ , one finds back that hn = β
α

2α−1nξ with ξ = 1+α(1−γ)
2α−1 as in (5.2). In [4], we

realized that, with a general choice of weak-coupling sequence, other regimes for the weak-coupling
scaling limit exist: in particular, there is some transition close to the line γ = 3

2α in Figure 5.1.
More precisely, we identify three regimes, depending on whether βn is much larger, of the order, or
much smaller than the threshold scaling (log n)

2α−1
2α n−

3
2α , for which one has hn =

√
n log n in (5.9).

For the simplicity of the statements, we define the renormalized partition function Zωn,βn :=

e−CnZωn,βn , where the centering comes from the contribution of order-1 weights, and is defined by
Cn := nβnE[ω] if α ∈ (1, 2), Cn := nβnE[ω1{ω≤β−1

n }] if α = 1, and Cn = 0 if α ∈ (0, 1).

(1) If (log n)
2α−1
2α n−

3
2α � βn � n−( 2

α
−1). In that case, we have

√
n log n � hn � n in (5.9), and

essentially, Theorem 5.4 remains valid.

Theorem 5.5 ([4], Theorem 2.4). Let α ∈ (1
2 , 2), and assume limn→+∞ βn(log n)−

2α−1
2α n

3
2α = +∞

and limn→+∞ βnn
2
α
−1 = 0. Recall the definition (5.9) of hn. Then we have that

n

h2
n

logZωn,βn
(d)−−−−−→

n→+∞
T := sup

s∈D

{
π(s)− Ent(s)

}
,

with T ∈ (0,+∞) a.s. Moreover, under Pω
n,βn

, trajectories have transversal flucutations of order hn.
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Note that the factor β
2α

2α−1 we found in (5.8) does not appear here, simply because it is included
in the renormalization n/h2

n, recall (5.9)—the choice for hn is the exact balance between the scaling
of the energy reward and of the entropic cost. Note also that h2

n/n� log n in that regime.

(2) If βn = β(log n)
2α−1
2α n−

3
2α . In that case, we have hn = β

α
2α−1
√
n log n in (5.9), and h2

n/n =

β
2α

2α−1 log n. We find that the limiting variational problem in Theorem 5.4 is modified. This is due
to the fact that targeting a specific point at scale hn has an extra entropic cost 1

2 log n (per targeted
point), because of the local limit theorem in the moderate deviation regime (see e.g. [Sto67, Thm. 3])

P
(
Stn = xhn

)
=

1√
tn
e−(1+o(1))

h2n
n

x2

2t = exp
(

log n
(
− β

2α
2α−1 x

2

2t −
1
2 + o(1)

))
. (5.10)

We show the following, which tells that there is a transition when βn is of the order (log n)
2α−1
2α n−

3
2α .

Theorem 5.6 ([4], Theorems 2.5 and 2.6). Let α ∈ (1
2 , 2), and consider a sequence βn ↓ 0 such that

limn→+∞ βn(log n)−
2α−1
2α n

3
2α = β ∈ (0,+∞). Then, we have

1

log n
log
(
Zωn,βn − 1

) (d)−−−−−→
n→+∞

T̃ [≥1]
β := sup

s∈D ;N(s)≥1

{
β

2α
2α−1

[
π(s)− Ent(s)

]
− 1

2N(s)
}
,

where N(s) =
∑

(t,x,w)∈Pα 1{s(t)=x} is the number of points in Pα visited by the path s. Moreover,
under Pω

n,βn
, trajectories have transversal fluctuation of order

√
n log n.

We have that β 7→ T̃ [≥1]
β is continuous and increasing, with T̃ [≥1]

β ∈ (−1
2 ,+∞) a.s.: there exists

some β̃c = β̃c(Pα) ∈ (0,+∞) such that T̃ [≥1]
β ∈ (0,+∞) for β > β̃c and T̃ [≥1]

β ∈ (−1
2 , 0) for β̃ < βc.

Put differently, for βn = β(log n)
2α−1
2α n−

3
2α , we get that Zωn,βn = 1 + nT̃

[≥1]
β +o(1), with T̃ [≥1]

β a
random exponent, that spans from −1/2 to +∞ as β goes from 0 to +∞ (the superscript [≥ 1] refers
to the fact that the variational problem is restricted to trajectories that visit at least one point of Pα).
Hence there is some transition in the behavior of Zωn,βn : for β < β̃c we have that limn→+∞ Zωn,βn = 1

(the convergence is at polynomial speed, with an exponent T̃ [≥1]
β ∈ (−1

2 , 0)); whereas for β > β̃c we
have limn→+∞ Zωn,βn = +∞ (at polynomial speed, with an exponent T̃ [≥1]

β ∈ (0,+∞)). This is in
fact presented as two theorems in [4] (Theorems 2.7 and 2.8), to highlight this change of behavior
at the scale βn � (log n)

2α−1
2α n−

3
2α , and can be thought as a tipping point between a regime where

Zωn,βn goes to 1 (and disorder has an effect only at the second order), and a regime where Zn,βn goes
to +∞ (and disorder governs the rate of growth).

(3) If n−
3
2α � βn � (log n)

2α−1
2α n−

3
2α . In that case we have that

√
n � hn �

√
n log n in (5.9),

and 1� h2
n/n� log n. We prove the following theorem.

Theorem 5.7 ([4], Theorem 2.7). Let α ∈ (1
2 , 2), and assume limn→+∞ βn(log n)−

2α−1
2α n

3
2α = 0 and

limn→+∞ βnn
3
2α = +∞. Recall the definition (5.9) of hn. Then we have that

n

h2
n

log
(√

n
(
Zωn,βn − 1

)) (d)−−−−−→
n→+∞

W := sup
(t,x,w)∈Pα

{
w − x2

2t

}
,

with W ∈ (0,+∞) a.s. Moreover, under Pω
n,βn

, trajectories have transversal fluctuations hn.
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Loosely speaking, this means that Zωn,βn = 1 + 1√
n
eW

h2n
n

(1+o(1)), and we stress that eW
h2n
n goes

to infinity slower than any power of n. This can be interpreted as an intermediary regime between
Theorem 5.3 (where

√
n(Zωn,βn−1) converges in distribution) and Theorem 5.6 (where

√
n(Zωn,βn−1)

goes to +∞ as a power of n).

5.4 Comments and open questions

Higher dimensions. Similarly to [AL11] and [HM07], our methods work in any dimension 1 + d.
The energy-entropy balance argument would then give that the transversal fluctuations hn are given
by the relation βn(nhdn)1/α = h2

n/n in place of (5.9). Hence, choosing βn = n−γ with γ ≥ 0, we
should therefore find, for α ∈ (0, 1 + d), a similar picture to Figure 5.1:

Case α ∈ (0, d2)

γ < 1+d
α − 1 γ > 1+d

α − 1

ξ = 1 ξ = 1/2

Case α ∈ (d2 , 1 + d)

γ ≤ 1+d
α − 1 1+d

α − 1 < γ < 2+d
2α γ ≥ 2+d

2α

ξ = 1 ξ = 1+(1−γ)α
2α−d ∈ (1/2, 1) ξ = 1/2

We mention that results for the Entropy-controlled LPP are easily generalized to higher dimensions,
see Chapter 6: one should be able to repeat the same scheme of proof, without any major difficulty.

Unbounded jumps. We should also be able to deal with random walks with unbounded jumps,
in particular when the increments have a stretch-exponential tail, as in [CFNY15], cf. Remark 4.1.
If (Sn)n≥0 is a random walk on Z with centered and unit variance increments verifying P(S1 = k) ∼
e−|k|

a as k → ±∞ for some a > 0, then the large deviations for the random walk become

− logP(Stn ≥ xnξ) ∼


x2

2t n
2ξ−1 if a > 1, ξ < 1 or a ∈ (0, 1), ξ < 1

2−a ,

ca
xa

ta−1 n
a(ξ−1)+1 if a > 1, ξ > 1 ,

xa naξ if a ∈ (0, 1), ξ > 1
2−a ,

(5.11)

as n→ +∞, for t > 0 and x ∈ R fixed. (We focus on the case of dimension d = 1 for simplicity.) The
first line is the so-called Cramér regime, the second line corresponds to making tn jumps of size x

t n
ξ−1,

and the third line comes from the so-called big-jump principle—we refer to [BB08] and references
therein. Hence, one may use the energy-entropy balance to guess what the transversal fluctuations
should be: taking βn = n−γ , there is an energy-entropy balance for transversal fluctuations nξ with ξ
verifying 1+ξ

α − γ = 2ξ− 1, a(ξ− 1) + 1, or aξ, depending on the different cases in (5.11). Figure 5.3
gives an overview of the different regimes, in analogy with Figure 5.1.

Then, when considering the scaling limit of the partition function, one expects to obtain a
variational problem of the type T := sups{π(s)−Ent(s)}, where the entropy of a path s : [0, 1]→ R
comes from the large deviation principle of (5.11). In fact, new definitions for the entropy of paths
need to be introduced:
• if a > 1, ξ < 1 or if a ∈ (0, 1), ξ < 1

2−a , then the first line of (5.11) suggests that (5.3) is still
the correct definition for the (rescaled) entropy of a (rescaled) continuous path s : [0, 1]→ R;
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0 1
a

1
2

γ

α2

ξ = 1+α(a−1−γ)
aα−1

ξ = 1/2

ξ
=

+
∞

ξ = 1+α(1−γ)
2α−1

γ = 2
α
− 1

γ = 3
2α

0 1
a1

γ

α2

ξ = 1−γα
aα−1

ξ = 1/2

ξ = +∞

ξ = 1+α(1−γ)
2α−1

γ = 2
α
− 1+a(α−1)

α(2−a)

γ = 3
2α

Figure 5.3 – Diagrams presenting the predicted transversal fluctuation exponent ξ, depending on α
and γ. The case a > 1 is presented on the left, and we identify four regions: α ≤ 1/a, for which ξ = +∞;
γ > max( 2

α
− 1, 3

2α
), for which ξ = 1/2; γ ∈ ( 2

α
− 1, 3

2α
), for which ξ ∈ ( 1

2
, 1); and γ < 2

α
− 1, for which

ξ > 1. The case a ∈ (0, 1) is presented on the right, and we also identify four regions: α ≤ 1/a, for which
ξ = +∞; γ > 3

2α
, for which ξ = 1/2; γ ∈ ( 2

α
− 1+a(α−1)

α(2−a) , 3
2α

), for which ξ ∈ ( 1
2
, 1
2−a ); and γ < 2

α
− 1+a(α−1)

α(2−a) ,
for which ξ > 1

2−a (and which corresponds to a one-jump strategy of trajectories).

• if a > 1 and ξ > 1, then the second line of (5.11) suggests to define the (rescaled) entropy of
a (rescaled) path s : [0, 1]→ R as

Ent(s) := ca

∫ 1

0
|s′(t)|adt ; (5.12)

• if a ∈ (0, 1) and ξ > 1
2−a , then the third line of (5.11), based on a big-jump principle, suggests

that the (rescaled) paths s : [0, 1]→ R are not necessarily continuous, and that the (rescaled)
entropy of s should be defined as

Ent(s) := sup
0=t0<t1<···<tk≤1

k∑
i=1

∣∣s(tk)− s(tk−1)
∣∣a , (5.13)

where the supremum is taken over all subdivisions of [0, 1]—this is a generalization of the total
(or of the quadratic) variation of s.

We stress that in [2] (see also Section 6.3), a general Entropy-controlled LPP is defined: this should
enable us to consider the variational problem T := sups{π(s) − Ent(s)} also in the cases of an
entropy given by (5.12) for which one can show that T < +∞ a.s. for α ∈ ( 1

a , 2); or given by (5.13)
for which one can show that T < +∞ a.s. for α ∈ ( 1

a ,
1
a + 1). We refer to Section 6.3 for more

details. Many technicalities remain, and it is not excluded that there are some serious issues, but at
least all the tools seems to be at hand for this problem.

Non-directed paths. We stress that a notion of entropy also makes sense in the context of a non-
directed random walk. Take (Sn)n≥0 a simple symmetric random walk on Zd with d = 2 (for sim-
plicity of the exposition), and consider the partition function Ẑωn,βn = E[exp(βn

∑
x∈Z2 ωx1{x∈Rn})],

where Rn = {S0, . . . , Sn} is the range of the random walk, and (ωx)x≥1 is a field of i.i.d. r.v.s. This
corresponds to having interactions between the polymer and the environment only at the site that
are visited by the random walk—this model has been considered only very recently, in [Hua19]. In
the case where the disorder (ωx)x∈Z2 has a heavy-tail as in (5.1), then one could apply the energy-
entropy argument: one would get that the transversal exponent ξ should be given by (5.2), at least
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when α ∈ (0, 2). One then needs to consider, for fixed x1, . . . , xk ∈ R2 and ξ ∈ (1/2, 1), the (large
deviation) probability for the random walk to visit the points xinξ (in that order), up to time n,
that is

sup
0=t0≤t1<···<tk≤1

P
(
Stin = xin

ξ for all 1 ≤ i ≤ k
)

= exp
(

(1+o(1))
1

2

( k∑
i=1

‖xi − xi−1‖2
)2
n2ξ−1

)
.

Here, we used for the second line that P(Stn = xnξ) = e−(1+o(1))
‖x‖22
2t

n2ξ−1
, together with the fact that∑k

i=1
‖xi−xi−1‖22
2(ti−ti−1) is minimized for the subdivision ti− ti−1 = ‖xi−xi−1‖2/(

∑k
i=1 ‖xi−xi−1‖2). Here

again, this gives rise to a natural definition for a path entropy of a (continous) curve s : [0, 1]→ R2,
defined as Ent(s) = 1

2

( ∫ 1
0 ‖s

′(t)‖2dt
)2, i.e. the length of the curve squared (up to a factor 1/2).

The corresponding Entropy-controlled LPP is naturally defined, and in [2, Sec. 4], it is shown that
the non-directed variational problem T non−dir := sups{π(s)− Ent(s)} is well-defined and finite a.s.
if α ∈ (1, 2) (the definition of the Poison Point Process Pα and of the energy π(s) of a path are
naturally generalized to the non-directed setting). Again, many technicalities remain (and some of
them may be substantial), but it seems that all the arguments needed for the proof are at hand.

Toward the case α ∈ (2, 5)? Maybe the most interesting open problem that remains is to extend
all the results, and possibly our methods, to the case α > 2, more specifically to the case α ∈ (2, 5)
(region C in Figure 5.1), in which trajectories should adopt an elitist strategy, collecting most of
the total energy via a small fraction of the points visited by the path, see [GLDBR15]. One of the
main difficulty is to find the correct centering term for logZωn,βn . Another important difficulty is
that the variational problem T defined in (5.8) is almost surely infinite, because of the contribution
of many small weights (Figure 5.2 illustrates how small weights may accumulate in the case α > 2).
The difficulties are therefore substantial, and there is no apparent reason why the scaling limit of
logZωn,βn could be expressed as a variational problem. As a first step, we believe it should be fruitful
to understand the case α = 2, in the “simpler” context of the last-passage percolation: we refer to
Section 6.2.1 for further discussion on this.

56



Chapter 6

Entropy-controlled Last-Passage
Percolation and applications

Recall that Last-Passage Percolation (LPP) can seen as a zero-temperature version of the directed
polymer model, cf. (4.2). Here, we focus on some continuous-space version of it, in the sense that
the weights are placed (randomly) in R2. The main focus of this chapter is the Entropy-controlled
Last-Passage Percolation introduced in [9], but we also describe further generalizations, from [2].

6.1 Last-Passage Percolation and Entropy-controlled Last-Passage
Percolation

Reminder of Hammersley’s LPP. In order to study the length of the longest increasing subse-
quence of a (uniform) random permutation of {1, . . . ,m}, and its behavior as m→ +∞ (known as
Ulam’s problem), Hammersley [Ham72] introduced the following problem. Takem points {Zi}1≤i≤m
uniformly on the square [0, 1]2: sorting the points in increasing abscissa, the relative order of
their ordinates is a (uniform) random permutation. Then, the longest increasing subsequence of
the permutation is simply the length of the longest increasing chain of points Zi1 ≺ · · · ≺ Zik
(z = (x, y) ≺ z′ = (x′, y′) if x < x′ and y < y′). We denote

Lm := max
{
k ; ∃ (i1, . . . , ik) such that Zi1 ≺ · · · ≺ Zik

}
, (6.1)

referred to as the LPP problem with m uniform points in [0, 1]2. One then wants to study the
asymptotic properties of Lm. The key idea of Hammersley was to replace the random m points by a
Poisson Point Process (PPP) of intensity m, and then use scaling arguments to see that Lm is equal
in law to the LPP problem in [0,

√
m]2 with points given by a PPP of intensity 1. The latter has a

super-additive property: it enabled Hammersley to show that Lm/
√
m converges in probability to

some constant c. He believed that the constant was equal to 2, which was then confirmed by later
works [LS77, VK77]. More recently, and quite remarkably, this model has been found to be exactly
solvable by Baik, Deift and Johansson [BDJ99]: they identify the fluctuations of Lm − 2

√
m, and

prove that the model is in the so-called KPZ universality class.

Theorem 6.1. The centered and normalized LPP Lm−2
√
m

(
√
m)1/3

converges in distribution to the Tracy-
Widom GUE distribution.
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Additionnally, Johansson [Joh00] identifies the transversal fluctuations of a maximizing path: for
the LPP problem in [0, n]2 with points given by a PPP of intensity 1, transversal fluctuations away
from the diagonal are found to be of order n2/3.

6.1.1 Entropy-controlled LPP.

The LPP (6.1) can be thought as the problem of finding the maximal number of points in {Zi}1≤i≤m
that an up-right path going from (0, 0) to (1, 1) can collect. In order to be able to interpret a path
as a possible scaling for the random walk, we perform a 45◦ rotation: the set of up-right paths is
transformed into the set of 1-Lipschitz functions. However, this is not satisfactory for us, since we
wish to consider random walk paths at a scale nξ: their scaling limit will not be 1-Lipschitz (except
when ξ = 1). We therefore develop a notion of Entropy-controlled LPP, in order to replace the
1-Lipschitz constraint by a gobal entropy constraint. This model is introduced and studied in the
article [9] in collaboration with Niccolò Torri, published in The Annals of Applied Probability.

Recall the definition (5.3) of the entropy of a continuous path s : [0, 1] → R. For a finite
(directed) set ∆ = {(ti, xi), 1 ≤ i ≤ k} ⊂ R+ × R with t1 < · · · < tk, we define its entropy as

Ent(∆) :=
1

2

k∑
i=1

|xi − xi−1|2

ti − ti−1
, (6.2)

with the convention that t0 = 0, x0 = 0. This corresponds to the entropy (5.3) of the linear
interpolation of the points of ∆ (∆ the set of points that the path has to go through).

Then, we consider the domain Λ := [0, 1] × [−1
2 ,

1
2 ] (of volume 1), and for m ∈ N, we let

Υm := {Zi}1≤i≤m be a set of m points drawn at random, independently and uniformly in Λ (Υm

may be thought as a random environment, with law denoted by P). We define the Entropy-controlled
Last-Passage Percolation (E-LPP) in Λ, with set of points Υm and entropy constraint B > 0, by

L(B)
m := max

{
|∆| ; ∆ ⊂ Υm, Ent(∆) ≤ B

}
. (6.3)

This is the maximal number of points that can be collected via a path with entropy smaller than B.
We refer to Figure 6.1 for an illustration of the E-LPP (and a comparison with standard Hammers-
ley’s LPP). One of our main result in [9] is to show that as m → +∞, L(B)

m is of the order of
√
m

(with an explicit dependence on B).

Theorem 6.2 ([9], Theorem 2.1). Define Km = Km(B) := min
(
B1/4√m,m

)
. There is a constant

c > 0 such that for any B > 0 and any m ∈ N, we have

P
(
L(B)
m ≥ cKm

)
≤ 2−Km and P

(
L(B)
m ≤ 1

cKm

)
≤ 2−Km . (6.4)

If we fix B, we get that L(B)
m is of the order of B1/4√m as m → +∞, i.e. of the same order as

for Hammersley’s LPP—note that a 1-Lipschitz path s : [0, 1] → R has Ent(s) ≤ 1/2, so that the
E-LPP gives an upper bound on standard LPP. Another important feature of this theorem is that it
allows to take B depending on m, which is essential in our applications to the directed polymer in
heavy-tail random environment (for the clarity of the exposition, we also left aside the dependence
on the domain, that one could choose to be Λt,x = [0, t]× [−x, x]).
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Figure 6.1 – In the box Λ = [0, 1]× [− 1
2
, 1
2
], m = 5000 points are drawn uniformly and independently (we

give
√
m ≈ 70.71). On the left, an optimal path for Hammersley’s LPP, i.e. with a 1-Lipschitz constraint,

which collects 101 points—note that Lm/
√
m ≈

√
2, which is the correct constant for standard LPP

(where an additional
√

2 comes from the length of the diagonal). On the right, a (near)-optimal path for
E-LPP with constraint Ent(s) ≤ B = 1, which collects 151 points—we get L(1)

m /
√
m ≈ 2.13. (We used a

simulated annealing procedure, hence the near -optimality.)

Let us mention that the proof is simple and robust enough to be adapted to other definitions
of entropy: we present more general results in Section 6.3 below (and we refer to the discussions in
Section 5.4 for motivations). Our E-LPP is also easily generalized to the case of higher dimensions,
but for simplicity, we stick to the case of dimension 1 + 1.

About the convergence of E-LPP. In the case where Υ̃m is a PPP on [0, 1] × R of intensity
m, define the constrained Poissonian E-LPP, L̃(B),c

m := sup{|∆| ; ∆ ⊂ Υ̃m,Ent
(
∆c
)
≤ B}, where

∆c = ∆∪{(1, 0)}, i.e. we add the condition that the path returns to 0 at time 1 (and we also drop the
condition that the path is limited to the box Λ). Then, scaling and sub-additive arguments allows us
to show in [2] that L̃(B)

m /
√
m converges a.s. to a (universal) constant c times B1/4, suggesting that

the E-LPP (6.3), renormalized by
√
m, also converges to a constant. However, we have no conjecture

on the value of the constant c, and because the constraint is global (in opposition to Hammersley’s
LPP) this appears as a difficult problem: numerical simulations suggest that c ≈ 2.17.

6.2 (Entropy-controlled) Last-Passage Percolation with heavy-tail
weights

In this section, we show how one can use Theorem 6.2 to get that the variational problem in
Theorem 5.4 is well-defined for α ∈ (1

2 , 2). Recall that Pα is a PPP on [0, 1]×R×R+ with intensity
µ(dtdxdw) := α

2w
−(1+α)dtdxdw, for some α > 0. Recall also that for a path s : [0, 1] → R, we

defined π(s) :=
∑

(t,x,w)w1{s(t)=x} the total weight collected by s. Finally, recall the definition

T := sup
s∈D

{
π(s)− Ent(s)

}
, (6.5)

with Ent(s) := 1
2

∫ 1
0 (s′(t))2dt defined in (5.3). One of the first (and main) application of our E-LPP

has been to prove the following theorem, which answers a conjecture of [DZ16].

Theorem 6.3 ([9], Theorem 2.4). For α ∈ (1
2 , 2), we have that T ∈ (0,+∞) a.s. Moreover, the

supremum in (6.5) is attained by some unique continuous path s∗.
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Idea of the proof. We focus on the proof that T < +∞ a.s. for α ∈ (1
2 , 2).

First, we decompose the variational problem according to the value of the path entropy. Write
T = supB

{
sups,Ent(s)≤B π(s)−B

}
, and split this according to the value of B ∈ (2k, 2k+1], k ≥ 0:

T ≤ H1 ∨ sup
k≥0

{
H2k+1 − 2k

}
with HB := sup

s,Ent(s)≤B
π(s) . (6.6)

We are therefore reduced to having good tail estimates on HB, and in particular, we need to control
P(H2k+1 > v2k) for v > 0 and any k. We may use some scaling relations for Pα. Consider the
function ϕ(t, x, w) = (t, x/b, w) which scales space by a factor 1/b (and hence the entropy by a
factor 1/b2), and ψ(t, x, w) = (t, x, b

1
αw) which scales the weights by a factor b1/α: we have that

ϕ(Pα)
(d)
= ψ(Pα). Applying this scaling with b =

√
B, we get that HB

(d)
= B

1
2αH1. We therefore

obtain that P
(
H2k+1 > v2k

)
= P

(
H1 > cαv2k(1− 1

2α
)
)
, and we realize that if 1− 1

2α < 0 (i.e. α < 1
2)

then this probability goes to 1 as k → +∞. This explains why one needs to have α > 1/2.
On the other hand, if α > 1

2 , then 2k(1− 1
2α

) → +∞ as k → +∞, and we need to get a bound
on the tail of H1: we have reduced our problem to a question of E-LPP in heavy-tail random
environment. In [9, Lem. 4.1], we prove that P(H1 > v) ≤ v−a as v → +∞, for a < α < 2. Here,
we simply give an idea of why H1 < +∞ a.s. The key idea is to “slice up” the field Pα into stripes
with weights of more or less the same value: define Pk := {(t, x, w) ∈ Pα, 2kw ∈ (1

2 , 1]} and write

π(s) :=
∑

(t,x,w)∈Pα
w1{s(t)=x} ≤

∑
(t,x,w)∈Pα,w>1

w1{s(t)=x} +
+∞∑
k=1

2−k
∑

(t,x,w)∈Pk
1{s(t)=x} . (6.7)

Notice that since the paths in H1 have an entropy bounded by 1, they are confined in the box
Λ′ = [0, 1] × [−2, 2]. Hence, the first term in (6.7) is bounded by

∑
(t,x,w)∈Pα,w>1w, which is finite

since there are finitely many points in Pα that lie in [0, 1]× [−2, 2]×(1,+∞). For the second term in
(6.7), notice that |Pk| ≈ 2kα, because the weight density is proportional to w−(1+α); actually, setting
mk := 2kα, one has that a.s. 1

2mk ≤ |Pk| ≤ 2mk for all k sufficiently large. Taking the supremum in
(6.7) over paths s : [0, 1]→ R with Ent(s) ≤ 1, we therefore get

H1 := sup
s,Ent(s)≤1

π(s) ≤ C(Pα) +
+∞∑
k=1

2−kL2mk . (6.8)

Here, for simplicity, we set Lm the E-LPP problem of (6.3) with B = 1, with m points taken in the
domain Λ′ = [0, 1] × [−2, 2] instead of Λ = [0, 1] × [−1

2 ,
1
2 ] (this does not change the conclusion of

Theorem 6.2). Now, Theorem 6.2 gives that L2mk ≤ C
√
mk ≤ C ′2k

α
2 (a.s., for k sufficiently large):

the condition α < 2 appears crucial to show that
∑+∞

k=1 2−kLmk ≤ C ′
∑+∞

k=1 2k(α
2
−1) is finite.

6.2.1 About the case α = 2

Let us now consider the case α ≥ 2. Analogously to (6.7), we write π(s) = π0(s)+
∑+∞

k=1 πk(s), where
π0(s) :=

∑
(t,x,w)∈Pα,w>1w1{s(t)=x} (it is bounded by a constant), and πk(s) :=

∑
(t,x,w)∈Pk w1{s(t)=x}

is the total weight collected by s in Pk, the kth level of the field. Above, we have seen that
sups,Ent(s)≤1 πk(s) is of the order of 2k(α

2
−1), which is summable if α < 2, and diverges if α > 2. In

the case α > 2, using that π(s) ≥ πk(s), we directly get that H1 (hence T ) is infinite a.s.
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Let us focus on the case α = 2, where sups,Ent(s)≤1 πk(s) is of constant order. The idea of the
upper bound sups π(s) ≤ sups π0(s)+

∑+∞
k=1 sups π(s) is that it “decouples” the different weight scales

Pk: it gives and infinite upper bound, but it is not excluded that H1 remains finite—for instance,
collecting many weights in Pk may make it very difficult to collect weights at levels Pk′ , k′ > k. The
first question is therefore to know whether H1 is finite or infinite in the case α = 2. We now state a
conjecture for the 1-Lipschitz LPP (for which we have a better understanding, and where simulations
can be run more easily) and for a simplified Poisson field, for the ease of the presentation.

For k ∈ N, let Pk be a PPP on [0, 1]× R of intensity 22k, whose points carry a weight 2−k (it is
thought as the kth level of our field). Then we define the n-level LPP (with weight field (Pk)k≥1)

Πn := sup
s∈Lip1

{ n∑
k=1

πk(s)
}

with πk(s) := 2−k
∑

(t,x)∈Pk
1{s(t)=x} , (6.9)

which should have the same type of behavior (as n → +∞) as H1 in the case α = 2. We propose
the following conjecture.

“Conjecture” 6.4. The sequence (Πn/
√
n)n≥1 converges a.s. to a constant. Moreover, for n ∈ N

let s∗n be a maximizer of Πn: then a.s. there is some continuous path s∗ : [0, 1] → R such that
limn→+∞ ‖s∗n − s∗‖∞ = 0.

The first part of the conjecture is supported by some work in progress with Niccolò Torri and
Nikos Zygouras (at least for the fact that Πn is of order

√
n), and the second part of the conjecture

is based on discussions with Christophe Garban and on some numerical simulations, see Figure 6.2
below.

Figure 6.2 – Simulations for Πn defined in (6.9): the maximizing paths for Πn are plotted, for n = 6 (in
blue, Π6 ≈ 7.25), n = 8 (in orange, Π8 ≈ 8.72), n = 10 (in green, Π10 ≈ 9.97), n = 11 (in red, Π11 ≈ 10.6).

6.3 Generalizations: Last-Passage Percolation with constraints

In the definition (6.3), we realize that we can replace the constraint Ent(s) ≤ B by any constraint on
the path, such as 1-Lipschitz, entropy, or even convexity constraints. We propose below two natural
examples: one where we generalize the definition of the entropy of a path; one where we replace the
1-Lipschitz condition by a Hölder constraint. This section is based on a work with Niccolò Torri [2].
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6.3.1 More general definitions of path entropy

As mentioned in Section 5.4, if one considers more general random walks for the directed polymer
model (in particular with unbounded jumps), different type of entropy may arise. For this reason, and
in analogy with (6.2), for a finite (directed) set ∆ = {(ti, xi), 1 ≤ i ≤ k} with 0 < t1 < · · · < tk < t
(by convention (t0, x0) = (0, 0)), we define the (a, b)-entropy of ∆ by

Enta,b(∆) :=
k∑
i=1

|xi − xi−1|a

(ti − ti−1)b
, a > b ≥ 0 . (6.10)

The parameters a, b are inherited from the large deviation principle: for the simple random walk,
we get a = 2, b = 1 (we dropped the constant 1

2); if P(S1 = k) ∼ e−|k|
a as k → ±∞ for some

a > 0, then we may get a > 1, b = a − 1 or a ∈ (0, 1), b = 0, see (5.12)-(5.13). In the case
b > 0, a = b + 1, the entropy (6.10) can be extended to continuous paths (a.e. differentiable) by∫ 1

0 |s
′(t)|adt, whereas in the case b = 0, a > 0, it can be extended to non-necessarily continuous

paths by sup0=t0<t1<···<tk≤1

∑k
i=1 |s(ti)− s(ti−1)|a (the supremum is over all subdivisions of [0, t]).

Then, we define, analogously to (6.3) (we keep the same notations for Λ and Υm)

L(B),a,b
m := max

{
|∆| ; ∆ ⊂ Υm, Enta,b(∆) ≤ B

}
. (6.11)

As for Theorem 6.2, we are able to show that L(B),a,b
m is of the ordermκ asm→ +∞, with κ = a

a+b+1 .

Theorem 6.5 ([2], Theorem 2.3). Define κ = a
a+b+1 and Km := Km(B, a, b) := min

(
Bκ/amκ,m

)
.

There is a constant ca,b > 0 such that for any B > 0 and any m ∈ N, we have

P
(
L(B),a,b
m ≥ ca,bKm

)
≤ 2−Km and P

(
L(B),a,b
m ≤ 1

ca,b
Km

)
≤ 2−Km . (6.12)

Notice that when b > 0, a = b+ 1, we still have κ = 1/2 as in Theorem 6.2; on the other hand,
when b = 0, a > 0, we obtain that κ = a

a+1 , which is smaller than 1/2 if a ∈ (0, 1).

An energy-entropy variational problem. Similarly to (6.5), we define an energy-entropy varia-
tional problem for a path s : [0, 1]→ R in the heavy-tail field Pα (recall the definitions of Section 6.2):
for a > 0, define

Ta := sup
s:[0,1]→R,s(0)=0

{
π(s)− Enta(s)

}
, (6.13)

with Enta(s) :=
∫ t

0 |s
′(t)|adt if a > 1 and Enta(s) := sup

0<t1<···<tk<1

∑k
i=1 |s(ti)− s(ti−1)|a if a ∈ (0, 1).

In view of Section 5.4 (see in particular (5.11) and (5.12)-(5.13)), this should arise as the natural
scaling limit of a directed polymer model in heavy-tail environment, with underlying random walk
with unbounded jumps P(S1 = k) ∼ e−|k|

a . Then, Theorem 6.5 allows us to adapt the proof of
Theorem 6.3 to get the following:

Ta ∈ (0,+∞) a.s. for

{
α ∈ ( 1

a , 2) if a > 1;

α ∈ ( 1
a ,

1
a + 1) if a ∈ (0, 1) .

(6.14)

Let us explain in a few words how to proceed to show this. Recall the comments below Theo-
rem 6.3, and in particular (6.6): we may reduce to the study of HaB := sups,Enta(s)≤B π(s). Then,
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the same scaling argument (scaling space by 1/b, hence the entropy by 1/ba, and weights by b1/α)

shows that HaB
(d)
= B

1
aαHa1. It gives that P(Ha

2k+1 > v2k) = P(Ha1 > cαv2k(1− 1
aα

)), and this explains
why one needs that aα > 1 in order to avoid this probability to go to 1 as k → +∞.

On the other hand, one needs to show that Ha1 < +∞ a.s. (more precisely one needs a bound on
the tail of Ha1). It follows the same line of proof as the one sketched in Section 6.2: analogously to
(6.8), we have that

Ha1 := sup
s,Enta(s)≤1

π(s) ≤ C +

+∞∑
k=1

2−kLa2mk ,

where we recall that mk := 2kα ≈ Pk. For simplicity we denoted Lam the E-LPP problem of (6.11)
with B = 1, and b = a − 1 if a > 1; b = 0 if a ∈ (0, 1) (in the box Λ′ = [0, 1] × [−2, 2] instead
of Λ). Now, Theorem 6.5 gives that La2mk ≤ C(mk)

κ ≤ C ′2kκα with κ = 1/2 if a > 1 and κ = a
a+1 if

a ∈ (0, 1). We therefore get that
∑+∞

k=1 2−kLamk is finite if κα < 1: this corresponds to having α < 2
when a > 1 and α < 1

a + 1 when a ∈ (0, 1).

A word on the non-directed case. In Section 5.4, we comment on the case of a non-directed
random walk in heavy-tail environment: we noticed that the moderate deviation for the simple
random walk gives rise to the entropy Ent(s) = 1

2`(s)
2 for continuous curves s : [0, 1]→ R2, s(0) = 0,

where `(s) :=
∫ 1

0 ‖s
′(t)‖2dt is the length of the curve s. In [2], we define a more general entropy for

non-directed paths, and we obtain the correct order for the corresponding E-LPP problem. To state
briefly our result, let Υm be a (random) set of m independent points drawn uniformly in the unit
disk D1 := {x ∈ R2, ‖x‖2 ≤ 1}, and define, for L > 0

L(L),non-dir
m := sup

s:[0,1]→R2,s(0)=0

{ ∑
x∈Υm

1{s(t)=x} ; `(s) ≤ L
}
.

Then we show that L(L),non-dir
m is of the order of L

√
m. In other word, a path with a length smaller

than L (i.e. with entropy smaller than 1
2L

2) collects at most L
√
m points of Υm.

This result allows us to adapt the method used for Theorem 6.3, and enables us to show that
for a > 1 the (non-directed) variational problem

T non-dir
a := sup

s:[0,1]→R2,s(0)=0

{
π(s)− `(s)a

}
. (6.15)

is finite a.s. for α ∈ ( 2
a , 2), see [4, Prop. 4.1]—the definitions of the heavy-tail PPP Pα and of π(s)

are naturally generalized to the non-directed setting.

6.3.2 The case of a Hölder constraint

In this last subsection, we give some results on another variation of the LPP: we study in [2] what
is the effect of replacing the 1-Lipschitz constraint of Hammersley’s LPP by a γ-Hölder one. For a
finite (directed) set ∆ = {(ti, xi), 1 ≤ i ≤ k} with t1 < · · · < tk (by convention (t0, x0) = (0, 0)), we
define its local γ-Hölder norm

Hγ(∆) = sup
1≤i≤k

|xi − xi−1|
(ti − ti−1)γ

, γ ≥ 0 . (6.16)
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Notice here that this definition is not the γ-Hölder norm of the linear interpolation of the points of
∆: it considers only consecutive points (for instance the case γ > 1 is not degenerate). Let Υm be
a set of m points taken uniformly at random in Λ = [0, 1]× [−1

2 ,
1
2 ], and define the γ-Hölder LPP

Lγm := max
{
|∆| ; ∆ ⊂ Υm, Hγ(∆) ≤ 1

}
. (6.17)

In [2], we show that Lγm is of order m1/(1+γ) as m→ +∞.

Theorem 6.6 ([2], Theorem 2.1). Define κ = 1
1+γ , and Km := mκ. There is a constant cγ > 0

such that for any n ∈ N, we have

P
(
Lγm(t, x) ≥ cγKm

)
≤ 2−Km and P

(
Lγm(t, x) ≤ 1

cγ
Km

)
≤ 2−Km . (6.18)

As for the E-LPP of Section 6.1.1, we may take Υ̃m a PPP on [0, 1] × R of intensity m, and
define the constrained Poissonian γ-Hölder LPP as L̃γ,cm := sup{∆ ; ∆ ⊂ Υ̃m,Hγ

(
∆c
)
≤ 1} (recall

∆c = ∆ ∪ {(1, 0)}). Again, scaling and sub-additive arguments lead to showing that L̃γ,cm /mκ

converges a.s. to a constant cγ . We refer to [2, App. A.1] for a discussion on the value of the
constant (and more numerical simulations), and to Figure 6.3 for an illustration of the Poissonian
γ-Hölder LPP.

Figure 6.3 – Maximizing paths for the constrained Poissonian γ-Hölder LPP. We consider a PPP of
intensity 1 on [0, 1000]× [−100, 100], and we find optimal paths for the γ-Hölder LPP for different values
of γ (γ = 0, γ = 0.5, γ = 1 and γ = 1.5).
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Chapter 7

Some (recent and not so recent) results
on renewal processes and random walks

In this chapter, we review some results on univariate and multivariate renewal processes and random
walks, that are the main probabilistic objects at the center of the different models of parts I and II.
In particular, we present our results [5, 7, 16, 17]. We consider processes with increments in Zd
(d ≥ 1), but (most of) the results have corresponding statements for processes in Rd.

7.1 Renewal processes and intersection of renewal processes

Let τ = {τ0, τ1, τ2, . . .} be a one-dimensional renewal process whose law is denoted by P: τ0 = 0,
and (τi − τi−1)i≥1 are i.i.d. N-valued r.v.s—in other words, (τk)k≥0 is a random walk with positive
increments. One of the main question for renewal processes is to estimate the renewal mass function
P(n ∈ τ), depending on the properties of the inter-arrival distribution P(τ1 = n). As in Chapters 1
and 2, we assume that there exists a slowly varying function ϕ(·) and α ≥ 0 such that

P(τ1 = n) = ϕ(n)n−(1+α) . (7.1)

We say that τ is persistent if P(τ1 < +∞) = 1 (there are infinitely many renewal points),
and terminating if P(τ1 < +∞) < 1 (there is only a geometric number of renewal points). In the
literature the terminology recurrent and transient renewals is used, but we keep these terms here
for the standard recurrence/transience of random walks on Z or Zd.

7.1.1 Renewal theorems

The asymptotics of the renewal mass function P(n ∈ τ) have been extensively studied in the lit-
erature, see for instance [GL62, Wil68, Eri70, Don97, Nag12]. Let us review the results—under
assumption (7.1).

First, if τ is terminating, then we have (see [Gia07, App. A.5])

P(n ∈ τ) ∼ P(τ1 = n)

P(τ1 = +∞)2
as n→ +∞ . (7.2)

In the case where τ is persistent, we have the following cases:
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• if E[τ1] < +∞, then the renewal theorem gives that

lim
n→∞

P(n ∈ τ) = E[τ1]−1 ; (7.3)

• if α = 1, E[τ1] = +∞, then Erickson [Eri70] proved that, setting µ(n) := E[τ11{τ1≤n}],

P(n ∈ τ) ∼ µ(n)−1 as n→ +∞ ; (7.4)

• if α ∈ (0, 1), then Doney [Don97, Thm. B] showed that

P(n ∈ τ) ∼ α sin(πα)
π n−(1−α) ϕ(n)−1 as n→ +∞ ; (7.5)

• if α = 0, then Nagaev [Nag12] proved

P(n ∈ τ) ∼ P(τ1 = n)

P(τ1 > n)2
as n→ +∞ . (7.6)

We stress here that the condition (7.1) is not the optimal one for obtaining renewal theorems
with infinite mean. For instance, having P(τ1 > n) ∼ α−1ϕ(n)n−α with α ∈ (0, 1) ensures that
(τk)k≥0 is in the domain of attraction of an α-stable: in that case, Garsia and Lamperti [GL62]
showed that (7.5) is valid for all α ∈ (1

2 , 1) (and (7.4) also holds in the case α = 1 with infinite
mean). When α ∈ (0, 1

2 ], additional conditions are needed: (7.1) is sufficent, and a necessary and
sufficient condition for the strong renewal theorem (7.5) to hold was recently established in [CD16].

About the case α = 0. With Kenneth S. Alexander, we studied the case where α = 0 in (7.1),
in the article [17] published in Electronic Journal of Probability. This appears for example when
τ = {n, S2n = 0}, with (Sn)n≥0 the simple random walk on Z2, see [JP72]. This case had received
very little attention, partly because τ1 has no moment and (τk)k≥0 is not in the domain of attraction
of stable laws (the “0-stable subordinator” is the Dickman subordinator, we refer to [CSZ18] for
recent results). One of our main result in [17] is to derive local large deviations for (τk)k≥1, from
which one may deduce (7.6) easily.

Theorem 7.1 ([17], Theorem 1.1). Assume that (7.1) holds with α = 0, and that τ is persistent.
Then uniformly for k such that kϕ(n)→ 0, we have

P(τk = n) ∼ kP(τ1 = n)P(τ1 ≤ n)k as n→ +∞. (7.7)

This theorem shows that the local large deviation probability comes from a large-jump strategy—
our proof is probabilistic and shows that other trajectories do not contribute to the probability, via
some adapted Fuk-Nagaev inequalities. We refer to Section 7.2 for related results on local large
deviations for random walks in the domain of attraction of an α-stable law, see e.g. Theorem 7.8.

The strength of this results comes from the fact that it is valid for a wide range of k: for
k � P(τ1 > n)−1 we obtain a “big-jump” type asymptotics, P(τk = n) ∼ kP(τ1 = n), but (7.7)
is also valid in a range of k for which P(τ1 ≤ n)k → 0. Indeed, when α = 0, we have that
P(τ1 > n)/ϕ(n)→ +∞ as n→ +∞, cf. [BGT89, Prop. 1.5.9a]. This allows us to derive (7.6) quite
easily: choose θn → +∞ such that P(τ1 > n)−1 � θn � ϕ(n)−1, then write

P(n ∈ τ) =

+∞∑
k=1

P(τk = n) =

θn∑
n=1

P(τk = n) +

+∞∑
k=θn+1

P(τk = n). (7.8)
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For the first term, we may use Theorem 7.1 to get that it is asymptotic to P(τ1 = n)/P(τ1 > n)2.
For the second term, we need to use the following (uniform) upper bound, proven in [17]: there is
some constant c > 0 such that P(τk = n) ≤ ckP(τ1 = n)P(τ1 ≤ n)k for all k ≤ n. This enables us
to show that the second sum in (7.8) is of the order of P(τ1 = n)/θ2

n, which is negligible compared
to the first term.

7.1.2 “Reverse” renewal theorems.

In [17], we also introduce what we call reverse renewal theorems. Indeed, verifying that (7.1) holds
is sometimes difficult, and one has often an easier access to P(n ∈ τ). This is for instance the case
when τ is a set of return times to 0 of a random walk in the domain of attraction of an α-stable law,
τ = {n, Sn = 0}: a standard local limit theorem gives the behavior of P(Sn = 0) = P(n ∈ τ), but
obtaining the asymptotics of P(τ1 = n) is much harder, see [Kes63]. We now present some results
where one is able to infer something on the behavior of P(τ1 = n) from that of P(n ∈ τ).

In the persistent case, define

Un :=
n∑
k=0

P(k ∈ τ), (7.9)

and set U∞ :=
∑∞

k=0 P(k ∈ τ) = P(τ1 = +∞)−1 < +∞ in the terminating case. Note that, if Un
is regularly varying with exponent α ∈ [0, 1), then Tauberian theorems (see [BGT89, Thm. 8.7.3])
give that P(τ1 > n) ∼ sin(πα)

πα (Un)−1. In particular, if Un is slowly varying then P(τ1 > n) ∼ 1/Un.

Theorem 7.2 ([17], Theorem 1.3). Suppose that P(n ∈ τ) is regularly varying of exponent −1
(hence Un is slowly varying). Then there is εn → 0 such that

1

εnn

n∑
k=(1−εn)n

P(τ1 = k) ∼ P(τ1 > n)2P(n ∈ τ) . (7.10)

If in addition P(τ1 = n) is regularly varying, then

P(τ1 = n) ∼ P(τ1 > n)2P(n ∈ τ). (7.11)

Hence, in order to obtain a reverse renewal theorem of the type (7.11),Theorem 7.2 tells that
one only has to show that P(τ1 = k) is approximately constant on the interval [(1− εn)n, n]. In the
case where τ is terminating, we are able to prove a complete reverse renewal theorem.

Theorem 7.3 ([17], Theorem 1.4). If P(n ∈ τ) is regularly varying and τ is transient, then

P(τ1 = n) ∼ P(τ1 =∞)2P(n ∈ τ) .

Our proof in [17] is quite short, and of probabilistic nature. An easy corollary of Theorem 7.3
is the following. Let (Sn)n≥0 be the simple symmetric random walk on Zd, with d ≥ 3, and let
τ = {n, S2n = 0}. The local limit theorem gives that P(n ∈ τ) = P(S2n = 0) ∼ (2πn)−d/2: for
d ≥ 3, the random walk is transient, and we directly get from Theorem 7.3 that P(τ1 = n) ∼ cdn−d/2,
with cd = (2π)−d/2P(Sn 6= 0,∀ n ≥ 1)2—this is very natural but was apparently only proven in
2011 in [DK11].
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7.1.3 About the intersection of two independent renewal processes

Let us now consider two independent renewal processes τ and σ, and their intersection ρ = τ ∩ σ,
which is also a renewal process. In the article [16], in collaboration with Kenneth S. Alexander and
published in Electronic Journal of Probability, we study the asymptotic behavior of P(ρ1 = n) (this
was surprisingly absent from the literature). Intersection of renewals appear in various contexts,
but our original motivation came from the pinning model of Chapter 2, where it appears naturally
when computing the second moment of the partition function; also from the model in Section 2.4.

For the simplicity of the exposition, we assume here that τ and σ have the same distribution,
which verify (7.1)—in [16], we consider the case where they have different distributions, as in Sec-
tion 2.4, see (2.10). From (7.2) and (7.3)–(7.6), we can obtain the behavior of the renewal mass
function of ρ. Our strategy is to derive the asymptotic behavior of P(ρ1 = n) from that of P(n ∈ ρ).

In the case where τ is terminating, we get that as n→ +∞

P(n ∈ ρ) ∼ P(τ1 = +∞)−4 ϕ(n)2n−2(1+α) . (7.12)

In the case where τ is persistent, we get that as n → +∞ (recall that µ(n) := E[τ11{τ1≤n}],
which goes to E[τ1] in the finite mean case)

P(n ∈ ρ) = P(n ∈ τ)2 ∼


µ(n)−2 if α ≥ 1;

cαn
−2(1−α)ϕ(n)−2 if α ∈ (0, 1),with cα = α2 sin(πα)2

π2 ;

ϕ(n)2n−2P(τ1 > n)−4 if α = 0 .

(7.13)

Hence, we find that ρ is terminating if either τ is terminating, or if τ is persistent with α < 1/2 or
α = 1/2 and

∑
n

1
ϕ(n)2n

< +∞.

Cas of a terminating ρ. Suppose that ρ is terminating, i.e. E[|ρ|] =
∑

n≥0 P(n ∈ ρ) < +∞.
Here, a direct application of Theorem 7.3 gives the following.

Theorem 7.4 ([16], Theorem 1.2). In the case where ρ is terminating, we have

P(ρ1 = n) ∼ E[|ρ|]−2P(n ∈ ρ) as n→ +∞ ,

with P(n ∈ ρ) given by (7.12) if τ is terminating, or by (7.13) if τ is persistent.

Case of a persistent ρ. Here, we need to have τ persistent, and α ≥ 1/2. A first step toward
finding the asymptotic behavior of P(ρ1 = n) is to obtain that of P(ρ1 > n). This is somehow easy
in the case α ∈ [1/2, 1): thanks to (7.13) we get the explicit behavior of U∗n :=

∑n
k=0 P(n ∈ ρ),

which is regularly varying with exponent α∗ := 2α−1 ∈ [0, 1); then we can use [BGT89, Thm. 8.7.3]
to get that P(ρ1 > n) ∼ sin(πα∗)

πα∗ (U∗n)−1. In the case α ≥ 1, this is more difficult and it did not
appear in the literature: in [16, Thm. 1.3], we show that P(ρ1 > n) ∼ 2µ(n)P(τ1 > n). The idea is
that in order to have no intersection, one of the two renewals has to make a jump larger than n, but
has the liberty to “wait” a few number of steps before doing that jump: this explains the prefactor
µ(n) which counts that number.

Once we have the behavior of P(ρ1 > n), the key tool is [16, Lem. 1.5], which shows that
under (7.1), P(ρ1 = n) is approximately constant over intervals of length o(n). In the case where
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P(ρ1 > n) is regularly varying with exponent α∗ > 0, this is enough to conclude, whereas when
P(ρ1 > n) is slowly varying (equivalently when U∗n is slowly varying), we need to use the reverse
renewal Theorem 7.2. Overall, we obtain the asymptotics of P(ρ1 = n).

Theorem 7.5 ([16], Theorem 1.5). In the case where ρ is persistent, we have:
(i) if α ≥ 1, then

P(ρ1 = n) ∼ 2µ(n)P(τ1 = n) as n→ +∞ ;

(ii) if α ∈ (1
2 , 1), then setting α∗ = 2α− 1 ∈ (0, 1), we have

P(ρ1 = n) ∼ c∗αϕ(n)2n−(1+α∗), c∗α := πα∗ sin(πα∗)
α2 sin(πα)2

as n→ +∞ ;

(iii) if α = 1/2 and
∑

n≥1
1

ϕ(n)2n
= +∞, then we have

P(ρ1 = n) ∼ (2π)2
( n∑
k=1

1

ϕ(k)2k

)−2
ϕ(n)−2n−1 as n→ +∞ .

As a nice application of item (iii), consider the case where τ = {n, S2n = 0}, with (Sn)n≥0 the
symmetric simple random walk on Z. We have α = 1/2 and limn→+∞ ϕ(n) = 1/2

√
π. Then, ρ1/2 is

the first simultaneous return time to 0 of two independent simple random walks on Z: by a rotation
of π/4, it has the same law as the first return time to 0 of the simple symmetric random walk on Z2.
Item (iii) above gives that

P(ρ1 = n) ∼ π

n(log n)2
as n→ +∞ ,

which recovers a classical result of Jain and Pruitt [JP72].

7.2 Random walks in the domain of attraction of an α-stable law

We now turn to the study of random walks on Z: let (Xi)i≥1 be a sequence of i.i.d. Z-valued r.v.s, with
law denoted P. This includes the case of renewal processes if Xi ∈ N. We let Sn :=

∑n
i=1Xi, and

we consider the case where (Sn)n≥0 is in the domain of attraction of an α-stable distribution, with
α ∈ (0, 2): there are sequences (an)n≥1 and (bn)n≥1 such that (Sn− bn)/an converges in distribution
to a non-trivial α-stable distribution. From [Fel71, IX.8], a condition which is equivalent is that
there is some slowly varying function L(·), such that as x→ +∞, P(|X1| > x) ∼ L(x)x−α and

P(X1 > x) ∼ pL(x)x−α , P(X1 < −x) ∼ qL(x)x−α, (7.14)

with p+q = 1. If p = 0 (or q = 0), then we interpret this as o(L(x)x−α). A renewal process verifying
(7.1) with α ∈ (0, 2) fits into this framework, with p = 1, q = 0, and L(n) = α−1ϕ(n).

The scaling sequence an is defined up to asymptotic equivalence by

L(an)(an)−α ∼ 1
n as n→∞ . (7.15)

The centering sequence bn is defined by (see e.g. [Fel71, IX.8], in particular p. 315 (8.15))

bn ≡ 0 if α ∈ (0, 1) ; bn = nE[X1] if α > 1 ;

bn = nµ(an) with µ(x) = E
[
X11{|X1|≤x}

]
if α = 1 .

(7.16)
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In this section, we review some results on (Sn)n≥0, such as large deviations and local large devia-
tions. The case α = 1 had often been left aside in the literature because of additional technicalities:
it is the object of my article [5], accepted for publication in Probability Theory and Related Fields,
which proves many natural results that were surprisingly absent from the literature.

As an illustration of the subtleties that may appear in the case α = 1, let us mention the following
example. Assume that P(X1 = 1) = 1

2 and that P(X1 < −x) ∼ (log x)−2x−1, with E[X1] = 0;
we have µ(n) = −E[X11{X1<−n}] ∼ 1/ log n as n → +∞. We get that an ∼ n/(log n)2, and
bn ∼ n/ log n. Since (Sn − bn)/an converges in distribution, we get that Sn/bn → 1 in probability.
On the other hand, having E[X1] = 0 proves that the random walk (Sn)n≥1 is recurrent on Z. It
therefore gives an example of a random walk on Z which is recurrent, but goes to +∞ in probability!

7.2.1 Large deviations.

The first natural question is that of estimating the large deviation probabilities P(Sn − bn ≥ x),
with |x|/an → +∞. This is given by a one-jump strategy, as standard in the case α ∈ (0, 1)∪ (1, 2),
but appeared to be missing (in full generality) in the case α = 1. This is one of the results in [5]
which has the most applications.

Theorem 7.6 ([5], Theorem 2.1). With the notations above, we have

P(Sn − bn > x) ∼ npL(x)x−α, as x/an → +∞ ,

P(Sn − bn < −x) ∼ nqL(x)x−α, as x/an → +∞ .

One possible application of this result concerns the first ascending and descending ladder epochs,
T+ := min{n, Sn > 0} and T− := min{n, Sn < 0}, cf. [5, § 3]. A central tool for finding the
asymptotic behavior of P(T± > n) is the Wiener-Hopf factorization (see e.g. [Fel71, XII.7]), which
relates the generating function of P(T− > n) to that of n−1P(Sn ≥ 0). Therefore, knowing the
asymptotics of P(Sn > 0) and P(Sn < 0) gives access to the asymptotics of P(T± > n).

As an example, consider the case where P(X1 > x) ∼ px−1 and P(X1 < −x) ∼ qx−1 with
p+ q = 1; we find that µ(n) ∼ (p− q) log n. A consequence of [5, Thm. 3.2] is that there are some
slowly varying functions L̄(·), L̂(·) such that as n→ +∞

P(T− > n) ∼

{
(log n)

− q
p−q L̄(log n) if p > q ;

1
n(log n)

−1+ p
q−p L̂(log n) if p < q .

(7.17)

Let us mention that if (7.14) holds with α > 2, then (Sn)n≥0 is in the Normal domain of
attraction. In that case, we have some sort of crossover between a Cramér-type and a big-jump
large deviation, see [Nag79, Thm. 1.9]: for n→ +∞ and x ≥

√
n, we have

P
(
Sn − nE[X1] > x

)
= (1+o(1))P

(
Z > x

σ
√
n

)
+ (1+o(1)) pnL(x)x−α , (7.18)

where Z ∼ N (0, 1). Hence, if p > 0, there is a crossover at σ
√

2− α
√
n log n, in the sense that

the main term in (7.18) is the first one if x ≤ a
√
n log n with a < σ

√
2− α; the second one if

x ≥ a
√
n log n with a > σ

√
2− α. (One can do more involved calculations, and find that the

crossover occurs at σ
√

2− α
√
n log n+ σ√

2−α
(

log logn+ logL(
√
n log n) +O(1)

)√
n

logn .)
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7.2.2 Local large deviations

The next question is that of the behavior of the local large deviation P(Sn−bn = x), as |x|/an → +∞
(we do as if bn is an integer). Such estimates appear central in the proof of renewal theorems, see
e.g. [Don97, CD16]. In the case where x is of the order of an, then one can use Gnedenko’s local
limit theorem, cf. [GK54, Ch. 9, §50],

sup
x∈Z

∣∣∣anP(Sn − bn = x
)
− g
(
x
an

)∣∣∣ n→+∞−−−−−→ 0 , (7.19)

where g(·) is the density of the limiting α-stable law. In the case |x|/an → +∞, recent results by
Caravenna and Doney [CD16] give a very general bound in the case α ∈ (0, 1) ∪ (1, 2). The case
α = 1 was again left aside in the literature, and we completed this gap in [5]. The general result
is seen as a local version of Theorem 7.6 and can be stated as follows (we consider only the case
x/an → +∞, the case x/an → −∞ being symmetric).

Theorem 7.7 ([5], Theorem 2.3). There exists a constant C > 0 such that for any x ≥ an

P(Sn − bn = x) ≤ C

an
nL(x)x−α . (7.20)

In the case p = 0, we get that P(Sn − bn = x) = o
(

1
an
nL(x)x−α

)
as x

an
→ +∞.

Improved local large deviation. In order to improve the estimate in Theorem 7.7, some addi-
tional assumption on the (left or right) tail of X1 is needed. For instance, Doney’s condition [Don97]
(Doney considered only the case α ∈ (0, 1)) is that there is a constant C > 0 such that

P(X1 = x) ≤ CL(x)(1 + x)−(1+α) for all x ∈ N , (7.21)

which is a (weak) “local” version (7.14). One can make another (stronger) assumption, analogous to
Eq. (1.3) in [Don97]:

P(X1 = x) ∼ pαL(x)x−(1+α) as x→ +∞ . (7.22)

If p = 0, this is interpreted as o(L(x)x−(1+α)). In [5], we prove the following result, which extends
Doney’s [Don97, Thm. A] to the whole range α ∈ (0, 2)—I was unable to find a reference for this
result in the case α ∈ (1, 2), let alone the case α = 1.

Theorem 7.8 ([5], Theorem 2.4).
If (7.21) holds, then there is a constant C ′ > 0 such that for any x ≥ an,

P(Sn − bn = x) ≤ C ′nL(x)x−(1+α) . (7.23)

If (7.22) holds, then as n→ +∞, x/an → +∞

P(Sn − bn = x) ∼ npαL(x)x−(1+α) . (7.24)

We considered only the right tail here, but similar assumptions can be made on the left tail, with
similar consequences.

These results are useful when trying to find the asymptotic behavior of the Green function
G(x) :=

∑+∞
k=1 P(Sk = x), as x→ +∞. In the case α ∈ (0, 1), this may be found in [Wil68, CD16];

in the case of a finite positive mean this is in [Fel71, XI.9]; in the case of a finite negative mean I
proved it in [5] (even if there must be another reference I am not aware of). In the case α = 1 with
infinite mean, asymptotics of G(x) as x→ +∞ are given in [5], under some local conditions of the
type (7.22)-(7.21).
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7.3 Multivariate random walks and renewals

Let us now consider d-dimensional random walks, d ≥ 1. Let (Xj)j≥0 be an i.i.d. sequence of Zd-
valued r.v.s, and let Sn :=

∑n
j=1 Xj . If X1 takes its values in Nd, then Sn is called a multivariate

renewal process, and we interpret S = {S0,S1,S2, . . .} as a random subset of Nd (with a slight abuse
of notations): this is motivated by the study of the generalized Poland-Scheraga model of Chapter 3.
One of our goal is to give the asymptotic behavior of the Green function G(x) :=

∑+∞
n=1 P(Sn = x)

as ‖x‖1 → +∞; if (Sn)n≥1 is a renewal process, G(x) is the renewal mass function. The literature
is quite vast on the matter, but many questions had remained open: this is the core subject of my
article [7], published in Electronic Journal of Probability.

We assume that (Sn)n≥0 is in the domain of attraction of a d-dimensional α-stable law, α ∈ (0, 2):
there is some sequence bn = (b

(1)
n , . . . , b

(d)
n ) and some sequence an such that 1

an
(Sn − bn) converges

in distribution to a non-trivial multivariate stable law Z, whose density is denoted g(·) (multivariate
domains of attraction are studied in [Rva61]). In [7], we even allow for different scaling sequences
along the different coordinates (with an index αi for each coordinate): this is known as generalized
domains of attractions, see e.g. [MS01]—we also allow for random walks in the Normal domain
of attraction. Here, for the clarity and the simplicity of the exposition, we restrict ourselves to
the “balanced” α-stable case, α ∈ (0, 2): in particular, each coordinate S(i)

n is in the domain of
attraction of a univariate α-stable distribution, and the scaling sequence an is taken to be the same
for all coordinates (but we do not assume that all coordinates have the same law). The bivariate
renewal τ considered in Chapter 3 fits into this framework (if α ∈ (0, 2)), see (3.1). On the other
hand, in Section 3.2, a bivariate renewal with exponential tail in the first coordinate and polynomial
tail in the second one is studied (in a large deviation regime only): it is not “balanced”, and this was
one of the motivations for considering the more general setting of generalized domains of attraction
in [7].

Some notation. There is some slowly varying L(·), and constants pi, qi ≥ 0 (with pi + qi > 0)
such that for all i ∈ {1, . . . , d} we have

P(X
(i)
1 > x) ∼ piL(x)x−α and P(X

(i)
1 ) ∼ qiL(x)x−α as x→ +∞ . (7.25)

This is equivalent to the ith coordinate (S
(i)
n )n≥1 being in the domain of attraction of an α-stable

law, α ∈ (0, 2). However, for having that (Sn)n≥0 is in the domain of attraction of a multivariate
α-stable, a stronger condition than (7.25) is needed: the condition is related to the multivariate
regular variation of the distribution of X1, see e.g. [Mee91].

The scaling sequence an is defined as in (7.15), up to asymptotic equivalence, by

L(an)(an)−α ∼ 1
n as n→ +∞ . (7.26)

As far as the recentering sequence bn = (b
(1)
n , . . . , b

(d)
n ) is concerned, we set as in (7.16)

bn ≡ 0 if α ∈ (0, 1); bn := nµ if α > 1; bn = nµ(an) if α = 1. (7.27)

Here, we defined µ := (µ1, . . . , µd) with µi := E[X
(i)
1 ] when

∑
x L(x)x−1 < +∞; and µ(an) :=

(µ1(an), . . . , µd(an)) with µi(x) := E[X
(i)
1 1{|X(i)

1 |≤x}
]. In the following, we do as if bn ∈ Zd.
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7.3.1 Local large deviations

In order to prove renewal theorems, i.e. find sharp asymptotics of the Green function G(x), a method
is to use local large deviations estimates. Indeed, one divides the sum into

G(x) :=
∑
n≥1

P(Sn = x) =
∑

n<n0−m0

P(Sn = x) +

n0+m0∑
n=n0−m0

P(Sn = x) +
∑

n>n0+m0

P(Sn = x) . (7.28)

Here, n0 = n0(x) and m0 are chosen so that x− bn = O(an) for all n ∈ [n0 −m0, n0 +m0], i.e. so
that P(Sn = x) falls into the range of the local limit theorem [Rva61]

sup
x∈Zd

∣∣∣(an)dP
(
Sn = x

)
− g
(
x−bn
an

)∣∣∣ n→+∞−−−−−→ 0 . (7.29)

The local limit theorem (7.29) enables us to deal with the middle sum in (7.28), but for the first
and the last sum, one needs some estimates on P(Sn = x) when ‖x − bn‖1/an → +∞, in analogy
with Theorems 7.7- 7.8 in the univariate setting.

For a (simple) large deviations estimate, we can use univariate large deviations (see Theorem 7.6):
there is a constant C such that for any x = (x1, . . . , xd) ≥ 0,

P
(
Sn − bn ≥ x

)
≤ C min

i∈{1,...d}

{
nL
(
xi
)
x−αi

}
, (7.30)

where the inequality Sn − bn ≥ x is componentwise. A local version of (7.30) can be proven,
analogously to Theorem 7.7.

Theorem 7.9 ([7], Theorem 2.1). There is a constant C ′ such that, for i ∈ {1, . . . , d}, for any x
with xi ≥ an,

P
(
Sn − bn = x

)
≤ C ′(an)−d nL(xi)x

−α
i . (7.31)

The bound is changed to o(n(an)−dL(xi)x
−α
i ) if pi = 0 in (7.25).

Improved local large deviations. In order to improve the bound in Theorem 7.9, analogously
to (7.21), we need an additional local assumption on the tail of X1. Williamson [Wil68, Eq. (3.10)]
considers the condition that there is some constant C > 0 such that for all x ∈ Zd

P(X1 = x) ≤ CL(‖x‖1)‖x‖−(d+α)
1 . (7.32)

We mention that the bivariate renewal τ of Chapter 3 satisfies this assumption, see (3.1). Un-
der (7.32), one gets improved local large deviations.

Theorem 7.10 ([7], Theorem 2.4). Suppose that (7.32) holds. There is a constant C ′, such that for
any x with ‖x‖1 ≥ an, we have

P
(
Sn − bn = x

)
≤ C ′nL(‖x‖1) ‖x‖−(d+α)

1 .

Let us mention that Williamson’s condition (7.32) is not completely satisfying: for instance,
it does not allow the different components to be independent, or to have different tails. In [7],
we devise a more general condition which enables us to obtain “improved” local large deviations
(different than Theorem 7.10) in the case of generalized domains of attractions. We do not go into
the details, but Assumption 2.2 in [7] is quite intricate, and it implies that Doney’s condition (7.21)
holds for every component (it is essentially Doney’s condition, with an additional twist to ensure
some summability over other coordinates). Note that for all renewal theorems that we present below,
we actually use Assumption 2.2 of [7] instead of (7.32).
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7.3.2 Renewal theorems

In view of (7.28), we realize that the main contribution to G(x) should come from some range
n = n0 + O(m0), where n0 is the typical number of jumps needed for the random walk to reach x.
There may however be two cases. A first case is when x is “reachable” by a typical random walk, in
the sense that there exists some n0 such that ‖x− bn0‖1 = O(an0): we then say that x belongs to
the favorite direction or scaling. A second case is when x cannot be reached easily by the random
walk, in the sense that there is no n such that ‖x− bn‖1 = O(an): we say that x is away from the
favorite direction—in other words, reaching x is in the large deviation regime for the random walk,
whatever n is. In [7], we obtain the sharp asymptotics of G(x) in the favorite direction or scaling
(extending some results in the literature), as well as good upper bounds on G(x) when x is away
from it. We distinguish three different cases, that we treat separately:

I. Centered : bn ≡ 0 (for instance if α ∈ (0, 1), or if α > 1 and µ = 0). The favorite scaling are
the points of the type nt with t ∈ (R∗)d.

II. Non-zero mean: α > 1 and µ 6= 0. The favorite direction are the points of the type nµ+O(an).
III. Marginal : α = 1, with bn 6≡ 0. The favorite direction are the points of the type bn +O(an).
We review the results in cases I-II-III: each time, we give the sharp behavior in the favorite

direction or scaling, as well as some some general bounds which become good when moving away
from it (in dimension d = 2 for simplicity). To lighten notations, we omit the integer parts and
always assume that x ∈ Zd.

Case I. Centered. When bn ≡ 0, the random walk does not drift away. We consider the case
α < min(2, d), which ensures that the random walk (Sn)n≥0 is transient—we have that P(Sn =
0) � a−dn thanks to the local limit theorem (7.29), and this is summable if d/α > 1.

Theorem 7.11 ([7], Theorems 3.1 and 4.1). Suppose that bn ≡ 0 and that α < min(2, d). Assume
additionally either that α > d/2 or that (7.32) holds.
(i) Favorite scaling. Let xn = xn(t) := nt, for some t = (t1, . . . , td) ∈ (R∗)d. Then, as n→ +∞

G(xn) ∼ Ct n
α−dL(n)−1, with Ct = α

∫ ∞
0

ud−1−αg
(
ut
)
du , (7.33)

(ii) General bound. Assume that d = 2 for the simplicity of the statement. If (7.32) holds, for any
δ > 0 there is a constant Cδ such that for any sequence tn ≥ 1, letting xn = (n, ntn)

G
(
xn
)
≤ Cδnα−2L(n)−1 × (tn)−θ+δ with θ := (1 + α) 2−α

2+α . (7.34)

If (Sn)n≥0 is a renewal process, θ can be replaced by 1 + α.

Note that the general bound (7.34) improves (7.33) in the case where tn → +∞. We stress
that (7.33) was obtained in [Wil68] under the conditions of Theorem 7.11. In [7] however, our
Assumption 2.2 is weaker than (7.32), and we also treat the case of generalized domains of attraction.

Case II. Non-zero mean. When α ∈ (1, 2) with µ 6= 0, the random walk drifts in the direction
of µ. We obtain in [7] a strong renewal theorem when x is along that favorite direction: this appears
to be a new result in the case α ∈ (1, 2)—it was only proven for random walks with finite variance
(see e.g. [Nag80]).

76



Quentin Berger Chapter 7. Renewal processes and random walks

Theorem 7.12 ([7], Theorems 3.3 and 4.2). Suppose that α ∈ (1, 2) and µ 6= 0. Assume either that
α > d/2 or that (7.32) holds.
(i) Favorite direction. Let xn = xn(t) := nµ + ant, for some t ∈ Rd. Then, as n→ +∞

G
(
xn
)
∼ C′t (an)−(d−1) with C′t =

∫ +∞

−∞
g
(
t + uµ

)
du . (7.35)

(ii) General bound. Assume that d = 2, and that µ1, µ2 6= 0. If (7.32) holds, for any δ > 0 there is
a constant Cδ such that for any sequence tn ≥ 1, letting xn = (µ1n, µ2n+ tnan)

G
(
xn
)
≤ Cδ (an)−1 × (tn)−(1+α)+δ . (7.36)

Again, (7.36) improves (7.35) when tn → +∞. (A different general bound is found in the case
where µ1 = 0 or µ2 = 0, see [7, Thm. 4.3].) This result is useful for instance when studying the
intersection of two independent (multivariate) renewal process, which appears when computing the
second moment of the partition function of the generalized Poland-Scheraga model, see Section 3.3.
Indeed, (7.35) estimates the contribution from points in the favorite direction, and (7.36) allows to
control the contribution from points away from it, we refer to Section 7.3.3 below for details.

Case III: α = 1, bn 6≡ 0. This case was systematically left aside in the literature, and is studied
in detail in [7]. For the simplicity of exposition, we state only results in the symmetric case, i.e.
when all the coordinates have the same distribution. In particular, we have pi ≡ p and qi ≡ q in
(7.25), and also µi(x) ≡ µ(x), bn = bn1 with bn := nµ(an) (we use the notation 1 = (1, . . . , 1)).

We assume that either
∑

i≥1 L(i)i−1 < +∞ and µ := limn→+∞ µ(n) 6= 0, or that µ(n) → +∞
with p > q so that µ(n) ∼ (p − q)

∑n
i=1 L(i)i−1. It includes in particular the case of the bivariate

renewal process τ considered in Chapter 3 with α = 1, cf (3.1). In all cases, one can show that
bn � an, and the random walks drifts in the direction bn = bn1. We denote kn := n/µ(n), which is
the typical number of steps to reach distance n, i.e. such that bkn ∼ n as n→ +∞.

Theorem 7.13 ([7], Theorems 3.4 and 4.2). Assume that α = 1 with X1 symmetric, and that either
µ ∈ R∗ or µ(n) ∼ (p− q)

∑n
i=1 L(i)i−1 → +∞ with p > q. Suppose that (7.32) holds.

(i) Favorite direction. Let xn := n1 + aknt for some t ∈ Rd (kn = n/µ(n)). Then as n→ +∞

G
(
xn
)
∼ C′′t µ(n)−1(akn)−(d−1) with C′′t =

∫ ∞
−∞

g
(
t + u1

)
du . (7.37)

(ii) General bound. Assume that d = 2 for simplicity. For any δ > 0 there is some Cδ such that for
any sequence tn ≥ 1, letting xn = (n, n+ akntn)

G
(
xn
)
≤ Cδ µ(n)−1(akn)−1 × (tn)−2+δ . (7.38)

Note that in the finite mean case, one recovers the same results as in Theorem 7.12. We now
explain where the scaling µ(n)−1(akn)−(d−1) comes from: in G(n1) =

∑+∞
k=1 P(X1 = n1), the main

contribution comes from the terms k = kn + O(mn), where mn = akn/µ(akn). Indeed, we have
bkn+mn − bkn � mnµ(akn) � akn , so k = kn + O(mn) is the exact range of k for which we have
n = bk + O(ak), see [7, § 8.1]. Therefore, the main contribution to the sum consists of akn/µ(akn)
terms, all of order (akn)−d by the local limit theorem (7.29): it gives that G(n1) is of the order of
(akn)1−d/µ(akn), which is the correct order in (7.37) since µ(akn) ∼ µ(bkn) ∼ µ(n), see [5, Lem. 4.3].
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As an illustration of Theorem 7.13 let us consider the case of a d-dimensional renewal process
similar to that of Chapter 3, with P(X1 = x) ∼ (log ‖x‖1)a‖x‖−(1+d)

1 as ‖x‖1 → +∞, for some
a ∈ R. We have an ∼ c′n(log n)a and µ(n) ∼ c′′(log n)1+a if a > −1; limn→+∞ µ(n) < +∞ if
a < −1. We therefore get from Theorem 7.13 that for t ∈ Rd, as n→ +∞,

if a > −1, G
(
n1 + n

lognt
)
∼ C′′t (log n)d−2−an−(d−1) ;

if a < −1, G
(
n1 + n

(logn)a t
)
∼ C′′t (log n)−a(d−1)n−(d−1) .

(7.39)

The bound (7.38) improves this when going away from the favorite direction: this is useful when
studying the intersection of two bivariate renewals, see Section 7.3.3 below.

7.3.3 Intersection of two independent bivariate renewals

Let us now comment on the implication of the above renewal theorems on the intersection of two
independent bivariate renewals. We consider τ , τ ′ two independent copies of a renewal process
satisfying P(τ = (n,m)) = ϕ(n + m)(n + m)−(2+α), as in Chapter 3, cf. (3.1). Then, we wish to
study Dn :=

∑n
i,j=1 P((i, j) ∈ τ )2, the mean overlap of τ , τ ′ up to length n, as needed in Section 3.3.

Let us rather consider here D̂n :=
∑n

i=1

∑n
r=1 P((i, i+r) ∈ τ )2, which has the same behavior as Dn.

• If α ∈ (0, 1), we use Theorem 7.11 to get that

D̂n ≤ C
n∑
i=1

i∑
r=0

i2α−4L(i)−2 + C
n∑
i=1

+∞∑
r=i

i2α−4L(i)−2
(r
i

)−2
≤ C ′

n∑
i=1

i2α−3L(i)−2 .

To bound P((i, i + r) ∈ τ ), we used (7.33) in the first sum and (7.34) in the second sum. Since
α < 1, we therefore get that supn∈N D̂n < +∞ and τ ∩ τ ′ is terminating.
• If α ∈ (1, 2), we use Theorem 7.12 to get that

D̂n ≤
n∑
i=1

ai∑
r=0

1

(ai)2
+ C

n∑
i=1

+∞∑
r=ai

1

(ai)2

( r
ai

)−2
≤ C ′

n∑
i=1

1

ai
,

and a corresponding lower bound holds. To bound P((i, i + r) ∈ τ ), we used (7.35) in the first
sum, and (7.36) in the second sum: the main contribution to D̂n comes from the terms r = O(ai).
Since ai is regularly varying with exponent 1/α < 1, this gives that D̂n = n

α−1
α

+o(1) as n → +∞,
and τ ∩ τ ′ is persistent. A similar idea works in the case α ≥ 2: the normalizing sequence is then
an = n

1
2

+o(1), and we get that D̂n = n
1
2

+o(1) as n→ +∞, cf. [3, Prop. A.3].
• If α = 1, then one uses Theorem 7.13 (both (7.37) and (7.38)), to get that

D̂n ≤
n∑
i=1

aki∑
r=0

1

µ(i)2(aki)
2

+ C
n∑
i=1

+∞∑
r=aki

1

µ(i)2(aki)
2

( r

aki

)−2
≤ C ′

n∑
i=1

1

µ(i)2aki
.

A corresponding lower bound holds. Therefore, we get that τ ∩ τ ′ is terminating if and only if∑
i≥1

1
µ(i)2aki

< +∞, which is equivalent to
∑

i≥1
1

iϕ(i)µ(i) < +∞, see [3, Rem. A.7]. As an example,
if ϕ(n) ∼ (log n)a for some a ∈ R, then we get that |τ ∩ τ ′| < +∞ a.s. if and only if a > 0 (recall
µ(n) ∼ c(log n)1+a if a > −1).
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A few perspectives of research

Throughout this manuscript, I alluded to several ongoing works, and mentioned some interesting
open problems. Let me highlight again here, briefly, a few problems that I consider as appealing
directions of research.

The critical behavior of the disorder relevant pinning model

The main (and most important) question that remains for the disordered pinning model of Chapter 2
is to describe the critical behavior of the system, in case of a relevant disorder. The Derrida-Retaux
model allows us to make some predictions, namely that F(β, hc(β) + u) = exp(−(1+o(1)) K√

u
), recall

Section 2.3.2. The intense activity and great progress around Derrida-Retaux’s model, cf. [HS18,
HMP18, CDD+19], brings new light on the mechanisms at stake, and gives hope for some progress
on the pinning model. In particular, finding any strategy to improve the “smoothing inequality” of
Theorem 2.3 in the relevant disorder regime would be a great achievement. One related question
that I mention in Section 2.2.2 is that of determining a necessary and sufficient condition for the
existence of a phase transition for the pinning model, i.e. of knowing whether hc(β) > −∞ or not.

Scaling limits of correlated disordered systems

In Chapter 3, I outline some ongoing work with my Ph.D. student Alexandre Legrand: the study
of the gPS model has led us to consider the weak-coupling scaling limit of a disordered system
with long-range correlations. There are some technicalities that need to be overcome, but we have
good hope of proving the convergence of the gPS model at weak-coupling to a disordered continuum
model, with underlying randomness given by a correlated Gaussian field (represented in Figure 3.4).

Our next goal is to consider the pinning model (and the copolymer and directed polymer models)
with disorder given by a correlated Gaussian sequence ($i)i≥1 as in Section 1.3.3, with correlation
function ρi := E[$0$i] ∼ i−a as i → +∞, for some a > 0. For the question of disorder relevance
with a correlated disorder of that type, one turns to the predictions made by Weinrib and Halperin
[WH83], that extend those made by Harris [Har74] in the case of an i.i.d. disorder. The predictions
are that disorder should be irrelevant if ν > 2/min(a, d) and relevant if ν < 2/min(a, d), where
ν is the correlation length critical exponent of the homogeneous system, and d is the dimension
of the system (for the pinning model, d = 1 and ν = max(1, 1

α)): in particular, Harris criterion
should remain valid when a > d, and should be modified when a < d. During my Ph.D., I showed
that for the pinning model, disorder is always relevant when a < 1, contradicting those predictions,
cf. [22]—this is due to the appearance of very large favorable regions whose size do not depend in
general only on the two-point correlation function, see [21]. However, if one scales βn, hn ↓ 0 in the
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appropriate manner, i.e. taking the intermediate disorder limit of the correlated pinning model, we
believe that one could show that the scaling limit is non-trivial if α ∈ (a∧1

2 , 1), and trivial if α < a∧1
2 .

This would prove disorder relevance/irrelevance in the sense of Caravenna-Sun-Zygouras [CSZ16],
and go in the direction of Weinrib-Halperin’s predictions. If a ∈ (0, 1) and α ∈ (a2 , 1), one should
also find that the weak-coupling scaling limit of the model is a disordered continuum model, with
underlying randomness given by a fractional Brownian motion (with Hurst exponent 1− a

2 ).

More general polymers in heavy-tail random environment

As mentioned in Section 5.4, the results of Chapter 5 should extend to the case of more general un-
derlying random walks. For instance, one wishes to consider random walks with unbounded jumps,
with P(S1 = k) ∼ e−|k|a for some a > 0. The phase diagram is then expected to be the one described
in Figure 5.3. The corresponding Entropy-controlled LPP is well defined, cf. Section 6.3.1, so all the
technical tools to mimic the proofs of [4] seem to be at hand—there are however some complications,
due to the fact that the scaling limits of random walk paths are not necessarily continuous. Another
interesting problem is to consider a non-directed version of the model, where the polymer is given by
a (non-directed) random walk, as mentioned in Section 5.4, see also [Hua19]: here again, the corre-
sponding Entropy-controlled LPP is well defined, so aside from technical considerations, we should
also be able to treat this case. Moreover, the non-directed polymer model in random environment of
[Hua19] raises many questions, as that of the super-diffusivity and scaling limit of the trajectories,
the dependence on the dimension being different than for the directed polymer model of Chapter 4
(disorder should be relevant if d ≤ 4 and irrelevant if d ≥ 5). We are currently investigating these
questions, together with Niccolò Torri.

Heavy-tail last-passage percolation

In Chapter 5, we consider the directed polymer model in heavy-tail random environment, with tail
decay exponent α ∈ (0, 2). Our main objective is now to make some progress on the case α ≥ 2,
and specifically on the case α ∈ (2, 5). However, this question appears really difficult: when α > 2
the main contribution to the partition function comes from small weights, and larges weights are
believed to be driving the fluctuations. It is not clear what the correct recentering should be, and
we also do not have any real idea on what the limiting object should be. This is why, as a first step,
together with Niccolò Torri and Nikos Zygouras we are focusing on the case α = 2, in the “simpler”
setting of last-passage percolation, see Section 6.2.1. This case appears to be already very rich, and
it would be a great achievement to be able to prove Conjecture 6.4—it would also possibly give some
insight on the case α > 2.

Additionally, the methods developed should enable us to make progress on a long-standing con-
jecture for last-passage percolation. Define Ln as in (4.2), Ln := maxs

∑n
i=1 ωi,si , where (ωi,j)i∈N,j∈Z

is a field of i.i.d. r.v.s. It is known that 1
nLn converges a.s. as n→ +∞, and that the limit is finite

if
∫∞

0 P(ω > t)1/2dt < +∞, and infinite if E[ω2] = +∞, see [Mar06] for a survey. A necessary
and sufficient condition for limn→+∞ 1

nLn to be finite is believed to be that E[ω2] < +∞, but no
progress has been made over the past fifteen years—it is plausible that understanding the behavior
of last-passage percolation in heavy-tail (Poissonian) environment with α = 2 would be useful to
attack that problem.
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