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Chapter 1

Introduction and generalities

1 Phenomenology: the wetting transition for a substrate

A polymer is interacting with a colloid or anther type of attractive substrate. We observe the
following transition when the temperature varies (see Figure 1.1)

• When the temperature is low, the polymers stick to the colloids and form macroscopic
aggregates.

• At high temperature, there are no aggregates.
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Figure 1.1: Schematic representation of the phase transition of a colloid interacting with a single
polymer.

We want to model this phenomenon in the frame work of statistical mechanics with the
simplest possible model. We decide to place ourselves in a two dimensional setup:

• The substrate (colloids) are represented by an half-space.

• The polymer is represented by a two dimensional path. To avoid complications due to
self-interaction of the polymer we also choose the trajectory to be directed. The polymer
will be the graph of a one dimensional random-walk (Figure 1.2) .
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polymer (simple path (Sn)n∈[0,N ])

N = 9

WALL

Figure 1.2: Representation of the polymer trajectory as the graph of a function from [0, N ] to
Z+. The presence of the colloid is materialized by a solid wall which constrains the trajectory
to remain positive.

We let N ∈ N denote the size of the system. Our state-space is the space of polymer
configuration

S+
N :=

{
S = (Sn)

2N
n=0 : S0 = S2N = 0,∀n ∈ J1, 2NK, Sn ≥ 0 and |Sn − Sn−1| = 1

}
. (1.1)

where for two integers a, b
Ja, bK = {a, a+ 1, . . . , b}. (1.2)

The condition S0 = S2N = 0 are boundary conditions. They are needed for instance to have
a finite state space, they might seem a bit arbitrary but in the end they do not have a strong
effect of the behavior of the system. The condition Sn ≥ 0 models the presence of a substrate
in the bottom half-space.

The state of the polymer is given by a probability measure on S+
N . We want the interaction

with the substrate to appear in the expression of the probability measure Set

HN (S) :=
2N∑

n=1

1{Sn=0}. (1.3)

Given a parameter β ∈ R we define µβ
N a probability on S+

N

µβ,+
N (S) :=

1

Ẑβ,+
N

eβHN (S), (1.4)

where
Ẑβ,+
N =

∑

S∈S+
N

eβHN (S). (1.5)

If β > 0 the measure gives higher probability to paths with more contacts with the wall (this is
the contrary for negative β).
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For the physicists

β = −kbE

T
, (1.6)

where T is the temperature, kb is the Boltzman constant and E is the interaction energy of a
monomer with the substrate. The term eβHN (S) is often referred to as the Boltzman-weight of
the state S. With a small abuse of language, in statistical mechanics β is often referred to as
the inverse-temperature. If E < 0 (this is the case of an attractive substrate), β close to zero
corresponds to high temperature, while β close to infinity corresponds to high temperature.

We would like to be able to show that there exists βc such that

(a) For β < βc, under µ
β
N , S typically does not stick to the wall (i.e. S has very few return to

zeros).

(b) For β > βc, under µ
β
N , S typically sticks to the wall (i.e. S has a lot of contact, possibly

of order N)

This βc will be called the critical value for the parameter β. For the moment it is difficult
to predict what should be the behavior of the system when β is equal to βc.

Note that for N > 0 and S ∈ S+
N fixed, µβ,+

N (S) is a very regular (C∞) function of β, hence
there is no chance to observe an abrupt transition when β varies. For this reason, statistical
mechanics is interested in the behavior of the system when the size parameter tends to infinity.
It turns out that to understand the behavior of µβ,+

N , it is essential to understand the asymptotic

behavior of the normalizing factor Ẑβ,+
N (called the partition function ).

Let us finally introduce a variant of the model where paths can also visit the negative half-
space. It models e.g. a polymer interaction of a polymer with a “crossable” interface.

SN :=
{
S = (Sn)

2N
n=0 : S0 = S2N = 0,∀n ∈ J1, 2NK, |Sn − Sn−1| = 1

}
. (1.7)

We have

µβ
N (S) :=

1

Ẑβ
N

exp (βHN (S)) , (1.8)

where
Ẑβ
N =

∑

S∈SN

exp (βHN (S)) . (1.9)

2 Counting paths, case β = 0

Let us first try to understand the case β = 0. We are going to show that under µ0,+
N , the polymer

has very few contact with the walls. Note that the partition function Z0,+
N is simply the cardinal

of S+
N which we denote by #S+

N . We will try to get a simple expression and an asymptotic
equivalent for it. We use the notation

f(N)
N→∞∼ g(N),

to say that the ratio f(N)/g(N) tends to one.
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Let us first deal with the simpler case of SN . Note that a path in SN is made of N up (+1)
steps and N down (−1) steps. Choosing a path corresponds to choosing the position of the up
steps among the 2N . Hence

#SN :=

(
2N

N

)
=

2N !

(N !)2
(1.10)

Using Stirling’s formula (n! ∼
√
2πn(n/e)n) we obtain that

#SN
N→∞∼ 4N√

πN
. (1.11)

The case of #S+
N is a bit more delicate

Lemma 1.1. We have

#S+
N =

1

N + 1

(
2N

N

)
. (1.12)

In particular

#SN
N→∞∼ 1√

πN3/2
4N . (1.13)

Proof. We decide to count the paths that make one more step and end at −1

S̄+
N :=

{
S = (Sn)

2N+1
n=0 : S0 = 0, S2N+1 = −1,

∀n ∈ J0, 2NK, Sn ≥ 0 and |Sn+1 − Sn| = 1
}
. (1.14)

Obviously #S̄+
N = #S+

N . We define the counterpart of S̄+
N without the constraint of being

positive.

S̄N :=
{
S = (Sn)

2N+1
n=0 : S0 = 0, S2N+1 = −1,∀n ∈ J0, 2NK, |Sn+1 − Sn| = 1

}
. (1.15)

Obviously we have

#S̄N =

(
2N + 1

N

)
=

2N + 1

N + 1

(
2N

N

)
. (1.16)

Now we will prove that
#S̄N = (2N + 1)S̄+

N , (1.17)

by constructing an explicit bijection S̄N → J1, 2N + 1K × S̄+
N . For S ∈ S̄N and x ∈ J0, 2N + 1K,

we define θxS to be the path whose increments are given by a periodic shift of those of S (note
that θ2N+1 = θ0 simply corresponds to the identity)

(θxS)n =

{
(Sn+x − Sx) if n ≤ 2N + 1− x,

(Sn+x−2N−1 − 1− Sx) if n ≥ 2N + 2− x.
(1.18)

It is rather easy to check that (θxS) is still a path with ±1 increments which ends at −1. Now
we are going to check that the for any S ∈ S̄N , there is only one value of x which makes (θxS)
an element of S̄+

N .
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Given S ∈ S̄N , set

y(S) := inf

{
n ∈ J1, 2N + 1K : Sn = min

m∈J0,2N+1K
Sm

}
. (1.19)

Then one can check that

S̄N → J0, 2NK × S̄+
N ,

S 7→ (y(S), θy(S)S).
(1.20)

A look at Figure 1.3 will convince the reader that θy(S)S is indeed in S̄+
N . To check that the

application is bijective, we just notice that the original path can obtained from the image just
by shifting the increments a second time as

θ2N+1−y(S)θy(S)S = S.

θy(S)(S)

2N + 1 − y(S)

y(S)

00

2N + 12N + 1

Figure 1.3: Illustration of the transformation θ2N+1−y(S)(S) which to a path in S̄N associates

one in S̄+
N .

2.1 Trajectory property: the entropic repulsion phenomenon

Now we want to use the asymptotic expression we have for the partition function to get infor-
mation on the trajectories. The reader might already know that a simple symmetric random
walk on Z, with N steps typically visits 0 of order

√
N times. We are going to show that this

remains the case under the constraint S2N = 0.

Proposition 1.2.

c
√
N ≤ µ0

N (HN (S)) ≤ C
√
N (1.21)

A more advanced study could show that these contact points are “spread on the whole
interval”.

We are going to show that the constraint of staying in the upper-half space has a drastic
consequences on the number of contacts and their repartition.

Proposition 1.3. The measure µ0,+
N has the following property for some constant C which does

not depend on N :
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(i) We have
µ0,+
N (HN (S)) ≤ C. (1.22)

(ii) We have

lim
N→∞

µ0,+
N (HN(S) = 1) ≥ 1

4
. (1.23)

(iii) For any a ∈ N

µ0,+
N (∃n ∈ Ja,N − aK, S2n = 0) ≤ C√

a
(1.24)

To avoid having to deal with a spurious factor 4N everywhere, we will now modify our
definition of the partition function and of the polymer measure.

We let P denote the law of the simple symmetric random walk on Z. This is the process
(Sn)n≥0 under which the increments

Xn := Sn − Sn−1

are independent and identically distributed with distribution P[Xn = ±1] = 1/2. We redefine

Zβ,+
N := E

[
eβHN (S)1{S2N=0 and S↾J0,2NK≥0}

]
and Zβ

N := E
[
eβHN (S)1{S2N=0}

]
. (1.25)

We define P
β,+
N as a law on the set of infinite trajectories , which is absolutely continuous with

respect to P and whose density is given by

dPβ,+
N

dP
=

1

Zβ,+
N

eβHN (S)1{S2N=0 and S↾J0,2NK≥0}. (1.26)

where S↾J0,2NK denotes the restriction of S to the interval J0, 2NK. Similarly we define P
β
N by

dPβ,+
N

dP
=

1

Zβ
N

eβHN (S)1{S2N=0}. (1.27)

This means that for any measurable event A

P
β,+
N (A) :=

1

Zβ,+
N

E
[
eβHN (S)1{S2N=0 and S↾J0,2NK≥0}1A

]
. (1.28)

Note that even though P
β,+
N is now formally defined on infinite trajectory, but of course we only

care about the behavior of S↾J0,2NK. Note finally that

P
β,+
N

[
S↾J0,2NK ∈ ·

]
= µβ,+

N . (1.29)

Note that from the previous section

Z0,+
N := 4−N#S+

N =
1√

πN3/2
. (1.30)

We define P
β
N in the same manner without the positivity constraint. As there are 4N choices

for the first 2N steps of N it follows that

Zβ,+
N = 4−N Ẑβ,+

N and Zβ
N = 4−N Ẑβ

N (1.31)
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Lemma 1.4. There exists constants c and C such that for all n ∈ {1, . . . , N/2}

c

n3/2
≤P

0,+
N (S2n = 0) ≤ C

n3/2
,

c

n1/2
≤P0

N (S2n = 0) ≤ C

n1/2
.

(1.32)

The result is valid also for n ∈ {N/2, . . . , N} if n is replaced by N − n in the right-hand side.

Proof. We have from the Markov Property from the simple random walk

µ0,+
N (S2n = 0) =

1

Z0,+
N

P
[
S2N = 0, S2n = 0 and S↾J0,2NK ≥ 0

]

=
P
[
S2n = 0 and S↾J0,2nK ≥ 0

]
P
[
S2(N−n) = 0 and S↾J0,2(N−n)K

]

Z0,+
N

=
Z0,+
n Z0,+

N−n

Z0,+
N

. (1.33)

The right-hand side of the above inequality is asymptotically equivalent to
(

N
(N−n)n

)3/2
hence

the result.

Proof of Proposition 1.2. It follows immediately from the first point of the Lemma.

Proof of Proposition 1.3. Note that by symmetry

E
0,+
N (HN(S)) ≤

N/2∑

k=0

P
0,+
N (S2k = 0) ≤ C

N/2∑

k=0

k−3/2 ≤ C ′. (1.34)

For the second point it is sufficient to see that

P
0,+
N (HN (S) = 1) = P

0,+
N

[
S1 = S2N−1 = 1, and S↾J1,2N−1K ≥ 1

]
=

Z0,+
N−1

4Z0,+
N

. (1.35)

For the third point we simple observe that

P
0,+
N (∃n ∈ Ja,N − aK, S2n=0) ≤ 2

N/2∑

n=a

P
0,+
N [S2n = 0] ≤ C ′

N/2∑

k=a

k−3/2 ≤ C√
a
. (1.36)

.



Chapter 2

The free energy

In this chapter we are going to prove the existence and underline the importance of the free
energy (or pressure) defined as

lim
N→∞

1

N
logZβ,+

N .

1 Definition and importance

Let us, first enumerate some properties of the free energy.

Proposition 2.1. The following statements hold:

(i) The quantity

lim
N→∞

1

N
logZβ,+

N = f
+(β), (2.1)

is well defined.

(ii) β 7→ f
+(β) is a non-decreasing convex function of β.

(iii) There exists βc > 0 such that

{
f
+(β) = 0, for β ≤ β+

c ,

f
+(β) > 0, for β > β+

c .
(2.2)

Remark 2.2. We can define f(β) the free-energy of the polymer without the positivity constraint
as

f(β) := lim
N→∞

1

N
logZβ

N . (2.3)

It enjoys the same properties and we define in the same manner

βc := inf{β ∈ R : f(β) > 0}. (2.4)

We will prove the existence of the free energy in the next section, but let us first analyze
how one can extract properties for the polymer trajectories from those of the free-energy.

10
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Let us start with a short digression on convexity. We note that

∂β logZ
β,+
N =

∂βZ
β,+
N

Zβ,+
N

=
E
[
HN (S)eβHN (S)1{S2N=0 and S↾J0,2NK≥0}

]

Zβ,+
N

= E
β,+
N (HN (S)). (2.5)

A second differentiation gives

∂2
βZ

β,+
N = E

β,+
N ((HN (S)2)−

[
E

β,+
N (HN (S))

]2
≥ 0. (2.6)

Hence in particular logZβ,+
N is convex β.

Lemma 2.3. If a sequence of differentiable convex function of R, fN tends to f then f is convex
and at all point where f is derivable (all R but possibly finitely many points) f ′

N converges and

lim
N→∞

f ′
N (x) = f ′(x). (2.7)

Proof. The fact that f is convex is obvious so we concentrate on proving the convergence of f ′
N

to f ′. Let us assume that f is differentiable at x. Fixing ε > 0 we can find y0(ε) such that for
all y ∈ (x, y0)

lim
N→∞

fN (x)− fN (y) = f(y)− f(x) ≤ (y − x)(f ′(x) + ε). (2.8)

By convexity of fN we have for all y ≥ x

f ′
N (x) ≤ fN (y)− fN (x)

y − x

and hence
lim sup
N→∞

f ′
N (x) ≤ (f ′(x) + ε). (2.9)

We get an analogous inequality (in the other direction) for the lim inf by considering y1 ≤ x
such that conclude

This statement is enough to ensure that f+(β) is convex (and non-decreasing) and we have

∂βf
+(β) = lim

N→∞
1

N
P

β,+
N (HN (S)), (2.10)

whenever the r.h.s. us well defined This implies the following

• When β > βc, the expected number of contact with the wall µβ,+
N (HN (S)) is of order N ,

we say we are in the localized phase.

• When β > βc, the expected number of contact with the wall µβ,+
N (HN (S)) = o(N), we say

we are in the delocalized phase.
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2 Proof of the existence of the free-energy

First we are going to prove that for every M and N we have

Zβ,+
N+M ≥ Zβ,+

N Zβ,+
M (2.11)

We have

E
[
eβHN+M (S)1{S2(N+M)=0 and S↾J0,2(N+M)K≥0}

]

≥ E
[
eβHN+M (S)1{S2N=0, S2(N+M)=0 and S|J0,2(N+M)K≥0}

]

= E
[
eβHN (S)1{S2N=0 and S↾J0,2NK≥0}

× E
[
eβ

∑
n=2N+1 2(N+M)1{Sn=0}1{SN+M=0 and S↾J2N,2(N+M)K≥0}

∣∣∣(Sn)n∈J0,2NK

]]
. (2.12)

By the Markov property for S we have, whenever S2N = 0

E
[
eβ

∑
n=2N+1 2(N+M)1{Sn=0}1{SN+M=0 and S|J2N,2(N+M)K≥0}

∣∣∣(Sn)n∈[0,2N ]

]
= Zβ,+

M . (2.13)

Hence (2.11) holds. We will use this fact to prove the existence of the free energy.

Lemma 2.4. Let u be a super-additive sequence of real numbers. That is one which satisfies

∀N,M ∈ N uN+M ≥ uN + uM (2.14)

then uN/N converges and

lim
N→∞

uN
N

= sup
N≥1

uN
N

. (2.15)

As logZβ,+
N is super additive, cf. (2.11), we have the existence of the free-energy. Furthermore

we have

f
+(β) = sup

N

1

N
logZβ,+

N . (2.16)

We have

Zβ,+
N ≥ eβP

[
S2N = 0 and S|↾J1,2N−1K ≥ 1

]
= eβ

1

4
Z0,+
N−1. (2.17)

As Z0,+
N−1 ∼ N−3/2/

√
π, this implies that

lim
N→∞

1

N
logZβ,+

N ≥ 0. (2.18)

As trivially Zβ,+
N ≤ 1 for β ≤ 0 this implies

∀β < 0, f
+(β) = 0. (2.19)

On the other hand, by considering the contribution of the path with N contacts we have

Zβ,+
N ≥ 4−NeNβ (2.20)

and hence

lim
N→∞

1

N
logZβ,+

N ≥ β − 2 log 2. (2.21)

As a result we have
0 ≤ βc ≤ 2 log 2. (2.22)
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3 Proof of Fekété’s Lemma

Assume for simplicity that

sup
n≥1

un
n

= l < ∞ (2.23)

We fix ε > 0 and let n0 be such that

un0 ≥ n0(l − ε/2).

Now for m ∈ N we let
m = n0p+ q, (2.24)

denote the Euclidean division of m by n0 (p and q ≤ n0 − 1 are natural integers). Using the
sub-additivity assumption, we have

um ≤ un0 + um−n0 ≤ un0 + un0 + um−2n0 · · · = pun0 + uq (2.25)

Hence
um
m

≥ p

m
un0 +

1

m
uq =

1

n0
un0 +

1

m

(
− q

n0
un0 + uq

)
. (2.26)

Set
K := max

1≤i≤n0

|ui|. (2.27)

For m ≥ 4Kε−1 we have
um
m

≥ un0

n0
− ε/2 ≥ l − ε. (2.28)

4 Identifying βc

To conclude this chapter let us finally determine where the localization transition occurs.

Proposition 2.5. We have β+
c = log 2.

Let us now try to identify where the phase transition occurs. First let us show that the
condition Sn ≥ 0 can be removed from the partition function at the cost of shifting the value of
β. With this in mind we only need to show that the critical point for f (cf. Remark 2.2) is 0.

Lemma 2.6. We have for all β ∈ R

Zβ,+
N = Zβ−log 2

N , (2.29)

as a consequence we have f
+(β) = f(β − log 2) and β+

c = βc + log 2.

Proof. We prove the equality for the original partition functions Ẑ Let SN,k, S+
N,k, be the set of

paths in SN resp. S+
N with HN (S) = k There is a natural bijection

SN,k → S+
N,k × {−1, 1}k (2.30)
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− ++ +00

2N2N

Figure 2.1: Illustration for the bijection SN,k → S+
N,k × {−1, 1}k: the original path can be

recovered by flipping the excursions that receive − signs.

It goes as follows (see Figure 2.1): to a path in S ∈ SN,k we associate the sequence of sign of
the k excursions away from zero and the path reflected above the axis (|Sn|)Nn=0.

Hence

Ẑβ,+
N =

N∑

k=1

eβk#S+
N,k =

N∑

k=1

eβk2−k#SN,k = Ẑβ−log 2
N . (2.31)

Let us now show that βc = 0. First we notice that

Z0
N = P[S2N = 0] ≤ 1

The we have f(0) ≤ 0 and thus βc ≥ 0.

To conclude the proof we need to show that f(β) > 0 whenever β > 0. As P0
N (S2n = 0) ≥

cn−1/2 we have

∂β logZ
β
N |β=0 = P0

N [HN (S) | S2N = 0] ≥ c
√
N. (2.32)

Using convexity we have, for any β > 0

logZβ
N ≥ logZ0

N + cβ
√
N. (2.33)

Using the fact that
Z0
N = P[S2N = 0] ≥ cN−1/2

we have for N sufficiently large, for all β ≥ log 2,

f(β) =
1

N
logZβ

N ≥ 1

N

(
cβ

√
N − logN

)
. (2.34)

Choosing N = β−2| log β|3, we obtain that for β > 0.

f(β) ≥ c′β2| log β|−3/2. (2.35)

Hence we can conclude that βc = 0 and thus that β+
c = 0.



Chapter 3

Pinning based on a renewal

1 From random walk to renewal process

In the previous chapter, the polymer measure Pβ
N was presented as a modification of the law of

a simple random walk. However the only object whose distribution is affected be the change is
the set of the return time to zero

T := {n ≥ 0 : S2n = 0}.

Indeed it can immediately be checked that the distribution of the excursions of S away from
zero are the same under Pβ

N and P.

�
�
�
�

�������������������������������������������������������������
�������������������������������������������������������������
�������������������������������������������������������������

�������������������������������������������������������������
�������������������������������������������������������������
�������������������������������������������������������������

�������������������������������������������������������������
�������������������������������������������������������������
�������������������������������������������������������������

�������������������������������������������������������������
�������������������������������������������������������������
�����������������������������������������������������������������

��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

τ1 = 2 τ2 = 3 τ3 = 7 τ4 = 8

2N

N

Figure 3.1: The sequence τ of returned time to zero extracted from a trajectory S.

Given a simple random walk trajectory (Sn)n≥0 starting from 0, we define (see Figure 3.1)
the sequence τ of its return times to zero by

τ0 := 0

τk+1 :=
1

2
min{n > 2τk | Sn = 0}.

(3.1)

15
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The choice of dividing by two is made so that the increments of τ can take arbitrary values in
N. With some small abuse of notation we will write n ∈ τ instead of n ∈ T .

Within this setup, the polymer measure P
β
N density with respect to P (see (1.27) in the

previous chapter) can be rewritten as

dPβ
N

dP
=

1

Zβ
N

exp

(
N∑

n=1

β1{n∈τ}

)
1{N∈τ}, (3.2)

and the partition function can be rewritten as

Zβ
N = E

[
exp

(
N∑

n=1

β1{n∈τ}

)]
. (3.3)

Remark 3.1. In fact Pβ,+
N can also be defined in this manner, we just have to replace P by

P+ := P [. . . |∀n ∈ N, Sn ≥ 0] . (3.4)

Some moderate effort is required for the definition since we are conditioning with respect to an
event of zero probability.

One might want to try to generalize this setup to an arbitrary renewal processes τ .

Definition 3.2. A renewal process τ is an increasing sequence with value in N∪{∞} satisfying

(i) τ0 = 0

(ii) (τk+1 − τk)k≥0 are IID variables with value in N ∪ {∞}.

From now on, we forget about random walks: P
β
N will be the definition of our polymer

measure, where P is the law of an arbitrary renewal process τ . We set

HN (τ) :=
N∑

n=1

1{n∈τ} (3.5)

We are interested in renewals for which there exists α > 0, and a constant CK > 0 such that

P[τ1 = n] := K(n)
n→∞∼ CKn−(1+α). (3.6)

For simplicity we will also assume that K(n) > 0 for every n ∈ N.
We do not require τ1 to be almost surely-finite, and hence the sum of the (K(n))n≥1 is not

necessarily equal to one. We introduce the notation.

K(∞) = 1−
∞∑

n=1

K(n) ≥ 0. (3.7)

When K(∞) > 0 we say that the renewal is terminating (or almost surely terminating). In
that case the sequence τ has almost surely only finitely many terms and #{n : τn < ∞} is a
Geometric random variable of parameter (1−K(∞)).

The case α = 1/2 corresponds to the simple random walk in dimension 1 (as can be deduced
from Lemma 1.1 in Chapter 1). We do not prove the existence of the free-energy as the proof
from the previous chapter can straightforwardly be generalized.
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Proposition 3.3. The limit

f(β) := lim
N→∞

1

N
logE

[
exp

(
N∑

n=1

HN (τ)

)
1{N∈τ}

]
:= lim

N→∞
1

N
logZβ

N , (3.8)

is defined and is a non-negative, non-decreasing, convex function of β.

Moreover
βc := inf{β ∈ R : f(β) > 0} ∈ [0,∞)

is finite and we have

lim
N→∞

1

N
E

β
N [HN (τ)]

{
= 0 if β < βc,

> 0 if β > βc.
(3.9)

2 Solving the model

The above setup is more-general than the random-walk model, it is also more easy to work with
as we will see. Let b be defined as the only solution of

eβ
∞∑

n=1

K(n)e−nb = 1, (3.10)

if there is one, and b = 0 if not.

Note that
∑

n≥1 e
−nbK(n) < ∞ only for b ≥ 0. It is continuous decreasing and takes value

in (0, 1 −K(∞)). Hence Equation (3.10) admits a solution if and only if

β ≥ − log(1−K(∞)). (3.11)

We set
K̃(n) = eβK(n)e−nb, (3.12)

and as
∑∞

n=1 K̃(n) ≤ 1, one can associate to it a renewal process τ̃ of law P̃ (τ̃0 = 0, and the

increments of τ̃ are IID and with distribution given by K̃(·)). We have

Zβ
N =

N∑

k=1

∑

l1,l2,...,lk∑k
i=1 li=n

k∏

i=1

eβK(li) =
N∑

k=1

∑

l1,l2,...,lk∑k
i=1 li=n

k∏

i=1

ebliK̃(li) = ebN P̃ (N ∈ τ̃) . (3.13)

When b = 0, it is not hard to see that as

K̃(n) = eβK(n) ≤ P̃ (N ∈ τ̃) ≤ 1 (3.14)

and thus
N−1(β + logK(n)) ≤ N−1 logZβ

N ≤ 0.

For b > 0, we have

Ẽ[τ̃1] = eβ
∑

n≥1

nK(n)e−bn < ∞. (3.15)

Hence one can use the Discrete Renewal Theorem (proved in the next chapter) which asserts
that asymptotically each point is equally likely to be in the renewal.
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Theorem 3.4 (Erdös-Feller-Pollard ’49). If τ is a renewal process whose associated inter-arrival
distribution K satisfies

∀n ≥ 0,K(n) > 0, and K(∞) = 0. (3.16)

then we have

lim
N→∞

E[N ∈ τ ] =
1

E [τ1]
. (3.17)

Hence we have
N−1 logZβ

N = b+N−1 log P̃ (N ∈ τ̃) , (3.18)

and the second term on the right-hand side tends to zero. In every case we have

lim
N→∞

1

N
logZβ

N = b. (3.19)

We have thus identified the free-energy.

Proposition 3.5. The free-energy is given by

f(β) :=

{
0 if β ≤ − log(1−K(∞))

g
−1(β) if β ≥ − log(1−K(∞))

(3.20)

Where where g is the function

R+ → [− log(1−K(∞)),∞)

b 7→ − log


∑

n≥1

e−nbK(n)


 .

(3.21)

Note also that this computation gives a complete description of Pβ
N . Indeed if A is an event

for the renewal τ which depends only on τ ∩ [0, N ], repeating (3.13) gives

E
[
eβH(τ)1{N∈τ}1A

]
= ebN Ẽ

[
1{N∈τ̃}1A

]
. (3.22)

And hence after dividing by the partition function we obtain τ̃ ∩ [0, N ] under

P
β
N [A] = P̃[A | τ̃ ∈ N ]. (3.23)

One can use this fact to prove many sharp statements on the trajectories

Proposition 3.6. When the free-energy f(β) is positive, one has

(i) For any ε > 0 we have

lim
N→∞

P
β
N

[
HN (τ) ∈ [(f′(β)− ε)N, (f′(β) + ε)N ]

]
= 0. (3.24)

(ii) Let LN (τ) be the length of the longest jump of τ in the interval [0, N ], for any ε we have

lim
N→∞

P
β
N

(
LN (τ) ∈ [(f(β)−1 − ε) logN, (f(β)−1 + ε) logN ]

)
= 0. (3.25)
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Proof. Note that for event concerning only the renewal on segment [0, N ] we have

P
β
N [A] = P̃[A | N ∈ τ̃ ] ≤ P̃[A]

P̃[N ∈ τ̃ ]
. (3.26)

As b > 0 by assumption, the denominator converges due to the Renewal Theorem, and thus is
uniformly bounded away from zero, it is in fact sufficient to show that our statements hold for
the measure P̃. Under P̃ the mean length of a of a jump is

Ẽ[τ1] =
∑

n≥1

neβe−bnK(n) =

∑
n≥1 ne

βe−bnK(n)∑
n≥1 e

βe−bnK(n)
= ∂bg(b) = [f′(β)]−1. (3.27)

where the last equality comes from the formula for the derivative of an inverse. Hence by the
law of large number we have

lim
N→∞

Ẽ
[
τ(f′(β)−ε)N ≥ N

]
= 0,

lim
N→∞

Ẽ
[
τ(f′(β)+ε)N ≤ N

]
= 0.

(3.28)

For the second point note that there are at most N jumps in J0, 2NK hence

LN (τ̃) ≤ max
1≤k≤N

(τ̃k − τ̃k−1). (3.29)

Hence we have

P̃[LN (τ̃) ≥ t] ≤ NP̃[τ̃1 ≥ t] ≤ N


∑

n≥t

e−βe−bnK(n)


 ≤ Ne−bt

1− e−b
. (3.30)

Obviously for t ≥ (b−1 + ε) logN we get something negligible on the right-hand side. On the
other hand we have for any δ we have

P̃[LN (τ̃) ≤ t] ≤ P

[
max

1≤k≤δN
(τ̃k − τ̃k−1) ≤ t

]
+P[τ̃δN ≥ N ]. (3.31)

The second term is negligible if one chooses δ = f
′(β)/2. As for the first one it is equal to


1−

∑

n≥t

eβe−bnK(n)




δN

≤ exp


−δN

∑

n≥t

eβe−bnK(n)


 . (3.32)

We have for t sufficiently large

δN
∑

n≥t

e−βe−bnK(n) ≥ δNeβe−btK(t) ≥ δNCKeβe−bt

2t1+α
. (3.33)

for t = (b−1 − ε) logN , this is larger than N b−1ε/2 and we can conclude.
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3 The free-energy

Proposition 3.7. The following statements hold:

(i) The free energy is real-analytic on R \ {βc}.

(ii) The critical point is given by βc = − log(1−K(∞))

(iii) Moreover if K(n)
N→∞∼ CKn−(1+α), with α ∈ (0,∞) \ 1 we have

f(β)
β→β+

c∼ C ′
K(β − βc)

max(α−1,1) (3.34)

where

C ′
K =





(
CKΓ(1−α)
α(1−K(∞))

)−1/α
, if α < 1,

(1−K(∞))
(∑

n≥1 nK(n)
)−1

, if α > 1,
(3.35)

where

Γ(s) =

∫ ∞

0
e−xxs−1dx

is Euler’s Gamma function.

(iv) We have
lim

N→∞
f(β)− β = logK(1). (3.36)

Note that f(β) is the limit of 1
N logZβ

N which is a sequence of analytic functions. The
appearance of a point-of non analyticity in the limit is the signature of a phase transition. We
say that the phase transition is of order n if the (n − 1)-th derivative of the free energy is
continuous. Note that here the transition is of first order for α > 1 but of second order for
α < 1. In fact the asymptotic of f(β) seems to indicate that the order of the phase transition
should be ⌈α−1⌉.

Proof. The value of βc is given by the remark above (3.11). It is obvious that the function is
analytic on (−∞, βc). On the interval (βc,∞) the free energy given by the inverse of the function
g defined in (3.21) which is real analytic. Without loss of generality one can restrict to the case
βc = 0 (i.e. K(∞) = 0), by changing the renewal K for K̂ defined by

K̂(n) =
K(n)

1−K(∞)
. (3.37)

If one defines ĝ using (3.21) with K̂(n) we see that

ĝ(b) = g(b)− log(1−K(∞)).

Thus the transform K → K̂ has the effect of performing an horizontal translation in the free-
energy diagram which shifts βc to zero. Hence from now on assume that βc = 0.

Let us compute the asymptotic at zero of the function given by (3.20). It is straight forward
to check that g(b) tends to 0 when b goes to zero, and thus the asymptotic behavior of f can
be obtained by studying that of g and inverting it. We thus need to prove that
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g(b) ∼





(
CKΓ(1−α)

α

)
bα, if α < 1,(∑

n≥1 nK(n)
)
b if α > 1,

(3.38)

The log quantity is equivalent to

1−
∑

n≥1

e−nbK(n) =
∑

n≥1

(1− e−nb)K(n). (3.39)

In the case α > 1, the sum can be rewritten as

b
∑

n≥1

(1− e−nb)

nb
nK(n). (3.40)

Then applying the dominate convergence theorem for the sum above, we can check that

lim
b→0

∑

n≥1

(1− e−nb)

nb
nK(n) =

∑

n≥1

nK(n) < ∞. (3.41)

We can then treat the case of α < 1. We note that

g(b)

CKbα
= b

∑

n≥1

1− e−nb

(nb)1+α

K(n)n1+α

CK
. (3.42)

Apart for the last term K(n)n1+α/CK which tends to one, this looks very much like a Riemann
sum for the function

gα(x) :=
1− e−x

x1+α
.

It is a simple exercise to check that

lim
b→0

b
∑

n≥1

gα(bn) =

∫ ∞

0
gα(x)dx.

We also have to care about a correcting term. Given ε > 0 one sets C1 and C2 which satisfies
K(n)n1+α

CK
≤ C1 for all n and, ∣∣∣∣

K(n)n1+α

CK
− 1

∣∣∣∣ ≤ ε (3.43)

for all n ≥ C2. We have

b

∣∣∣∣∣∣
∑

n≥1

(1− e−nb)(nb)1+α

(
K(n)n1+α

CK
− 1

)∣∣∣∣∣∣
≤ C1b

∑

1≤n≤C2

gα(bn) + εb
∑

n≥C2

gα(bn). (3.44)

The first term is smaller than b1−αC3 for some constant C3 (it is a finite sums of terms which
are all of that order) and the second is smaller than

2ε

∫
gα(x)dx.
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We only need to check that ∫
gα(x)dx =

Γ(1− α)

α
. (3.45)

but this is readily checked by an integration by part 1− e−x → e−x, x−(1+α) → α−1x−α.

For the last item, first note that the lower bound is easy: by considering the renewal trajec-
tories which only make jumps of size one we have

Zβ
N ≥ K(1)NeNβ. (3.46)

Note that it implies in particular that f(β) tends to infinity. Hence we have

e−β =
∑

n≥1

K(n)e−f(β)n β→∞∼ K(1)e−f(β) (3.47)

which proves the result.

4 The free-boundary condition

We set
Zβ,f
N = E

[
eβHN (τ)

]
(3.48)

and let Pβ,f
N denote the pinning measure with no constraint for the end point

dPβ,f
N

dP
(τ) = eβHN (τ). (3.49)

We want to show here briefly that the change in the boundary condition does not change the
free-energy.

Proposition 3.8.

lim
N→∞

1

N
logZβ,f

N = f(β). (3.50)

Proof. Note that
Zβ,f
N ≥ Zβ

N , (3.51)

hence we only have to prove that

lim
N→∞

1

N
logZβ,f

N ≤ f(β). (3.52)

For a renewal τ we let
LN (τ) := inf{n ≤ N | n ∈ τ}. (3.53)

We have

E
[
eβHN (τ)1{LN (τ)=a}

]
= Zβ

a

( ∞∑

n=N−a+1

K(n) +K(∞)

)
. (3.54)

Hence if one sets

K̄(n) := 1−
n∑

m=1

K(m)
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we have

Zβ,f
N =

N∑

a=0

Zβ
a K̄(N − a) ≤

N∑

a=0

ef(β)aK̄(N − a) ≤ Nef(β)N . (3.55)

Hence the result.

Of course more than the free-energy, one would like to know if Pβ,f
N and P

β
N look alike. A

close look at (3.55) shows that when f(β) > 0, the main contrition to the partition function is
given by by the a that are close to N and thus that the measures are very similar.

5 The sub-critical and the critical case

We know that when β > βc partition function is asymptotically equivalent to ef(β)/Ẽ[τ̃1]. Now
let us give some result concerning the case β = βc and β ≤ βc.

Proposition 3.9. (i) When β < βc we have

Zβ
N

N→∞∼ eβK(n)

(1− ρ)2
(3.56)

where ρ = eβ−βc < 1. As a consequence we have

E
β
N [HN (τ)] < ∞. (3.57)

(ii) For all α ∈ (0, 1) we have

Zβc

N
N→∞∼ (1−K(∞)) sin(πα)

CKπ
Nα−1. (3.58)

In particular there exists constants such that

cNα ≤ E
βc

N [HN (τ)] ≤ CNα. (3.59)

The expected number of contact in (3.57) and (3.59) can be deduced from the asymptotic
of the partition function with the following formula valid for all n ≤ N

E
β
N [n ∈ τ ] =

Zβ
nZ

β
N−n

Zβ
N

. (3.60)

The asymptotic of the partition function in the critical point is a quite delicate computation
due to Doney [3], and requires a few pages of computation. We focus on the sub-critical case.
Recall that

Zβ
N = P̃ [N ∈ τ̃ ], (3.61)

where the renewal τ̃ has inter-arrival distribution given by

K̃(n) = eβK(n),

which satisfies ∑

n≥0

K̃(n) = eβ−βc < 1. (3.62)
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Let us write eβcK(n) = q(n) and recall eβ−βc = ρ < 1. Finally we let ∗ denote the convolution
operator

q∗n :=
∑

l1,...,lk∑k
i=1 li

q(l1) . . . q(lk). (3.63)

We have

P̃ [N ∈ τ̃ ] =

N∑

k=1

K̃∗k(n) =
∑

k≥1

ρkq∗k(N). (3.64)

To compute the asymptotic equivalent of the sum we use the following results

Lemma 3.10. Let q be a positive function on N such that

∑

n≥1

q(n) = 1 and q(n)
n→∞∼ Cqn

−(1+α).

Then for any k ≥ 0

lim
n→∞

q∗k(n)
q(n)

= k. (3.65)

Moreover there exists c > 0 such that for all n and k

q∗k(n) ≤ kcq(n) (3.66)

We have, by dominated convergence

lim
n→∞

∑

n≥1

ρk
q∗k(n)
q(n)

=
∑

n≥1

kρk =
ρ

(1− ρ)2
. (3.67)

and hence

Zβ
N

N→∞∼ ρq(n)

1− ρ)2
=

eβK(n)

(1− ρ)2
, (3.68)

which is the desired result.

Proof of Lemma 3.10. We prove the two points by induction on k. In both cases the result is
trivial for k = 1 so we just need to perform the induction step.

We start with (3.66). Let us assume that the statement holds for all n and all k < 2m we
have

q∗2m(n)

q(n)
≤ 2

⌊n/2⌋∑

j=1

q∗m(j)
q∗m(n− j)

q(n)
≤ 2mc

⌊n/2⌋∑

j=1

q∗m(j)
q(n − j)

q(n)
. (3.69)

Using the assumption we have for the tail distribution of q(·), there exists c1 such that for all n

max
1≤j≤n/2

q(n− j)

q(n)
≤ c1.
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Hence

q∗2m(n)

q(n)
≤ 2c1m

c

⌊n/2⌋∑

j=1

q∗m(j) ≤ 2c1m
c ≤ (2m)c, (3.70)

if c has been chosen such that 2c ≥ 2c1. The case k = 2m+ 1 works in the same manner with
the same c.

For k ≥ 2 we have

q∗k+1(n)

q(n)
=

n−1∑

m=1

q∗k(m)(n −m)

q(n)
=

⌊n/2⌋∑

m=1

q∗k(m)
q(n−m)

q(n)
+

⌈n/2⌉−1∑

m=1

q(m)
q∗k(n−m)

q(n)
. (3.71)

For m fixed q(n−m)
q(n) and q∗k(n−m)

q(n) tend to one and k respectively and the ratio are uniformly

bounded (cf. (3.66)) on m = 1, . . . , ⌈n/2⌉. Hence by dominated convergence, the two sums
above converge respectively to 1 and k.

6 Back to the random walk case

Let us see how the formula of the free-energy gives in the case of the random walk pinning.
Recall that we have in that case

K(n) = P[τ1 = n] =
2#S+

n−1

4n
n→∞∼ n−3/2

2
√
π
. (3.72)

Thus K satisfies (3.6) with α = 1/2 and CK = 1
2
√
π
. Note also that with the change of variable

x = u2/2 we obtain

Γ(1/2) =

∫ ∞

0
x−1/2e−xdx =

√
2

∫ ∞

0
e−u2

du =
√
π. (3.73)

Hence we have in that case
f(β)

β→0+∼ β2. (3.74)

Hence from Lemma 2.6 we have

f
+(β)

β→0+∼ (β − log 2)2.

Moreover we can show that f
+(β) > 0 corresponds to a physical localization of the trajec-

tories

Proposition 3.11. For any β > β+ there exists a constant Cβ such that

∀n ∈ J0, NK, P[Sn ≥ h] ≤ Cβe
−2f(β)h. (3.75)

In particular

lim
N→∞

P

[
max

n∈J0,NK
Sn ≥ logN

2f(β)
(1 + ε)

]
= 0. (3.76)
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Proof. Given n let rn and ln be the last resp. first point of contact before and after n. We have

Sn ≤ min(n− ln, rn − n). (3.77)

Hence

P
β,+
N (Sn ≥ h) ≤ Pβ,+[ln ≤ n− h ; rn ≥ n+ h]. (3.78)

The contribution of the right hand side to the partition function can be computed by decom-
posing over all the possible values for n. It is equal to

Zβ,+
N Pβ,+[ln ≤ n− h ; rn ≥ n+ h] =

∑

l≤n−h
r≥n+h

Zβ,+
r K(l − r)eβZβ,+

N−r ≤ eβef(β)(N−(l−r)). (3.79)

Hence

Pβ,+[ln ≤ n− h ; rn ≥ n+ h] ≤ 1

P̃ [N ∈ τ̃ ]

∑

l≤n−h
r≥n+h

e−f(β)(l−r) ≤ Cβe
−f(β)2h. (3.80)



Chapter 4

The renewal Theorem

1 Reformulation of the result

It comes out to be practical to rewrite the result in a less probabilistic setting. Let (fn)n≥1 be a
sequence of positive number that sums to one:

∑
n≥0 fn = 1. Set µ :=

∑
n≥1 nfn ∈ [1,∞]. We

define u to be the sequence recursively defined by the relation

{
u0 := 1,

un :=
∑n

k=1 fnun−k.
(4.1)

The second line in (4.1) is called the renewal equation, and the reader can check that this is the
one satisfied by P[n ∈ τ ], if one sets fn = K(n). This probabilistic interpretation or a simple
induction implies

∀n ≥ 1, 0 ≤ un ≤ 1. (4.2)

Theorem 4.1. We have
lim
n→∞

un = µ−1. (4.3)

Remark 4.2. Note that the Theorem fails to be true if one assumes the (fn)n≥1 are only non-
negative. Indeed if f2n > 0 for every n and f2n+1 = 0 then a trivial consequence of the theorem
stated above is that

lim
n→∞

u2n = (µ/2)−1 lim
n→∞

u2n+1 = 0. (4.4)

It turns out that this periodicity problem is the only thing that can prevent the result to be true,
and the result remains true on the assumption that there exists no integer k ≥ 2 such that

{n ∈ N : fn > 0} ⊂ kN.

2 Technical Lemmas

In the proof of Theorem we will need two technical results. The first one is somehow a general-
ization of the Bolzano-Weierstrass Theorem.

27
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Lemma 4.3. Let (rin)n≥0,i≥1, be a sequence indexed by two integers, which satisfies

∀n ≥ 0, i ≥ 1, 0 ≤ rin ≤ 1.

Then one can find an increasing sequence of integers nk and a sequence of real numbers li ∈ [0, 1]
such that

∀i ≥ 1, lim
k→∞

rink
= li. (4.5)

Proof. The proof relies on what is called the diagonal argument (similar to the one used in the
proof of Cantor’s Theorem). Applying Bolzano-Weirstrass’ Theorem to the sequence (r1n)n≥0,
one can find l1 ∈ [0, 1] and a sequence m1

k such that

lim
k→∞

r1m1
k
= l1. (4.6)

Applying Bolzano-Weierstrass Theorem to the sequence r2
m1

k

, one can find extract from m1
k and

increasing subsequence m2
k such that

lim
k→∞

r2m2
k
= l2. (4.7)

Finally one proceeds recursively and for all i ≥ 3 we find li a subsequence mi
k of mi−1

k such that

lim
k→∞

rimi
k
= li. (4.8)

Finally one decides to set nk := mk
k. For any given i the terms of the sequence nk belongs to

mi
k for k ≥ i and hence (4.5) holds.

Lemma 4.4. Let (wn)n∈Z be a sequence of numbers in [0, 1] satisfying

wn =

∞∑

k=1

wn−kfk, (4.9)

then, if w0 = 1, all the wn are also equal to one.

Proof. From the assumption that the fk are positive and sum to one.

w0 =

∞∑

k=1

w−kfk, (4.10)

implies that the w−k are all equal to one. It is then immediate by recursion to obtain the result
for the positive integers.
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3 Proof of the renewal Theorem

Set
η = lim sup

n→∞
un (4.11)

and let (umk
), k ≥ 0 be a subsequence converging to η. Now if we consider the sequences ri,

i ∈ Z,
rin := umk+i, (4.12)

By Lemma 4.3 one can extract from mk, a subsequence nk, k ≥ 0 along with all the unk+i,
converge simultaneously. Let ηi denote the corresponding limits. Necessarily 0 ≤ ηi ≤ η and
η0 = η. As we have for all i ∈ Z

unk+i =

nk+i∑

j=0

fjunk+i−j
, (4.13)

passing to the limit we have

ηi =
∞∑

j=0

fjηi−j . (4.14)

and hence from Lemma 4.4 we have

∀i ∈ Z, ηi = η. (4.15)

By summing the recursive equation defining f from we have

n∑

i=0

ui = f1un−1 + (f1 + f2)un−2 + · · ·+ (f1 + · · ·+ fn) u0 + 1. (4.16)

And hence if one sets

ρr :=
∞∑

n=r+1

fn = 1−
r∑

n=1

fn

we have for all N
n∑

i=0

ρiun−i = 1. (4.17)

Note that ρn tends to zero and is summable

∞∑

i=0

ρi = µ. (4.18)

Passing to the limit along the subsequence nk and using the dominate convergence Theorem,
we have

1 = lim
n→∞

n∑

i=0

ρiun−i =

( ∞∑

i=0

ρiη−i

)
= µη = 1, (4.19)

and hence η = µ−1. Note that it ends the proof in the case µ = ∞.
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Now we can show that un converges to η. Let us fix ε. From the definition of η note that all
terms of the sequence u are smaller than η+ ε after a certain rank. Hence for any fixed r, for n
sufficiently large, one has (recall (4.17) and note that ρ0 = 1)

1 =
n∑

i=0

ρiun−i ≤ un +
r∑

i=1

ρn(η + ε) +
n∑

i=r+1

ρi (4.20)

Hence choosing r such that
∑∞

i=r+1 ρi ≤ ε we have

un + (µ− 1)(η + ε) + ε = (un − η) + µ(η + ε) ≥ 1 (4.21)

Which implies that for all large n,
un ≥ η − µε. (4.22)



Chapter 5

A weakly inhomogeneous model:

periodic disorder

Until now, we have supposed that the energy reward (or penalty) for a contact with the wall
was the same along the whole trajectory.

However, several physical consideration may lead us to consider models where this is not the
case:

• A first reason is that polymers can be formed by combining monomers of several types
(these polymers are called heteropolymer), these different monomers can be combined in
a periodic pattern or a randomly.

• Secondly the substrate with which polymer interact and the polymer itself might present
impurity.

For this reason we alter our previously defined polymer model to introduce inhomogeneity
in the interaction. Let (ωn)n≥1 be a sequence of real numbers. We might assume to fix ideas
that ω has “zero mean”

lim
N→∞

1

N

N∑

n=1

ωn = 0. (5.1)

Given a renewal τ with inter-arrival distribution K(·) which satisfies (3.6) (as usual, we
let P denote the associated probability), two real parameters β (which quantifies amplitude of
variation of the reward) and h (the mean reward), N ∈ N. Using the notation δn := 1{n∈τ}. we
define

dPβ,ω
N,h

dP
(τ) :=

1

Zβ,ω
N,h

exp

(
N∑

n=1

(βωn + h)δn

)
δN , (5.2)

where

Zβ,ω
N,h := E

[
exp

(
N∑

n=1

(βωn + h)δn

)]
. (5.3)

31
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We assume without loss of generality (see the proof of Proposition 3.7 ) that

∑

n≥1

K(n) = 1.

Our aim remains to understand the asymptotic behavior of τ under Pβ,ω
N,h and in particular

we would like study the effect of the presence of homogeneity on the localization transition. We
study the system for a fixed value of β and try identify the characteristics of the phase transition
when h varies.

The present chapter is focused on the case where ω is a periodic sequence . This case is
referred to as “weakly inhomogeneous” since the inhomogeneity can in some sense be washed
out by considering steps of size proportional to the period of ω. Our aim is to show that this
periodic model is still “solvable” in the sense of Proposition 3.5. However the solution has a
more complex expression and it requires more advanced tools to derive the critical behavior

We study a truly inhomogeneous version of the model in Chapter 6, where we consider ω to
be given by the realization of a sequence of IID random variables.

1 Existence of the free energy in the periodic setup

For simplicity we consider only the case where the period T (ω) associated to ω is equal to 2.
While the proof can easily be extended to the general case (see [5, Chapter 3]) but this restriction
considerably simplifies the notation.

Up to a change for β and a translation in h, we can thus restrict to the case ωn := (−1)n

(allowing β to be negative if must be).

Let us check that in that case, the free-energy is well defined.

Proposition 5.1. Assuming that

K(N)
N→∞∼ CKN−(1+α),

the following limit

f(β, h) := lim
N→∞

1

N
logZβ,ω

N,h, (5.4)

is well defined and h 7→ f(β, h) is non-negative, non-increasing, convex, and

hc(β) := max{h ∈ R : f(β, h) > 0} ∈ [−|β|, |β|].

Proof. We have for any N,M

Zβ,ω
2N+M,h ≥ E

[
e
∑2

n=1 N(βωn+h)δnδ2Ne
∑2N+M

n=2N+1(βωn+h)δnδ2(N+M)

]
= Zβ,ω

2N,hZ
β,ω
2M,h (5.5)

Hence logZβ,ω
2N,h is a super-additive sequence and thus 1

2N logZβ,ω
2N,h converges. To ensure that

convergence holds also along the sequence of odd integers, it is sufficient to observe that for
every N ≥ 2

e−|β|+hK(1)Zβ,ω
N−1,h ≤ Zβ,ω

N,h ≤
(
e−|β|+hK(1)

)−1
Zβ,ω
N+1,h. (5.6)
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The lower bound is obtained by considering the contribution of trajectories visiting N−1 and the
upper bound is exactly the lower bound applied toN+1. Finally, using the notation ZN,h = Z0,ω

N,h

for the partition function of the homogeneous system it is straightforward to observe that

Zβ,ω
N,h−|β| ≤ Zβ,ω

N,h ≤ Zβ,ω
N,h+|β|

which setting f(h) = f(0, h) yields

f(h− |β|) ≤ f(β, h) ≤ f(h+ |β|)
and the corresponding inequality on h.

Our concern is now to try to identify the value of hc(β). A particular point of concern is to
show that f(β, 0) > 0, that is, the system is localized when h = 0. This would prove that that
there exists a strategy to localize even when the mean reward is zero.

Another question is to identify the critical exponent associated to f(β, ·), and see if there is
a dependence in β.

2 Writing the partition function in matrix form

We try to adapt the strategy adopted in Section 2. Recall that starting point in the homogeneous
case was to express the partition function in terms of convolution of K and then to replace K
by another function K̃ in order to absorb the extra-factor produced by the pinning reward.

Setting by convention Z0,h = 1 we have

Zβ,ω
N,h =

N∑

n=1

Zβ,ω
N−n,he

hK(n) exp
(
h+ β(−1)N

)
. (5.7)

The main concern with this expression is that the term K(n) exp
(
h+ β(−1)N

)
depends not

only on n but also on the parity of N − n.

To find a way out of this we decide to add an additional variable in the problem, which is
the parity of N . We define a line vector

ZN,h =

{
(Zβ,ω

N,h, 0) if N is even ,

(0, Zβ,ω
N,h) if N is odd .

(5.8)

and try to write (5.7) like a matrix convolution. For this sake we introduce

Mβ(n) =





(
eβK(n) 0

0 e−βK(n)

)
if n is even,

(
0 e−βK(n)

eβK(n) 0

)
if N is odd .

(5.9)

With this notation the reader can check that we have
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ZN,h := eh
N∑

n=1

ZN−n,hMβ(n). (5.10)

Now let us introduce the convolution power of a sequence of matrices ((A(n))n≥0) being defined
by

A∗0(n) = 10(n)

(
1 0
0 1

)

(from now on we will write I2 for the identity matrix when more practical) and for k ≥ 1

A∗k(n) :=
∑

(li,...,lk)∑k
i=1 li=N

Mβ(l1)Mβ(l2) · · ·Mβ(lk). (5.11)

A rather direct consequence of (5.10) is the following

Lemma 5.2. We have for every N ≥ 0

ZN,h :=
(
1 0

) ∞∑

k=0

ekhM∗k
β (N) (5.12)

Proof. Let us prove the statement by induction on N . The statement is easily checked for N = 0,
and the result follows from the fact that for N ≥ 1.

N−1∑

n=0

ZN−n,hMβ(n) =
∞∑

k=0

e(k+1)h
N∑

n=1

M∗k
β (N − n)Mβ(n)

=
∞∑

k=0

e(k+1)hM
∗(k+1)
β (N) =

∞∑

k=0

ekhM∗k
β (N). (5.13)

where in the last equality we used the fact that M∗0
β (N) = 0.

3 Characteristics of the phase transition

To compute the free-energy in the homogeneous case, the idea was to cancel the term ekh by
introducing an inter-arrival function K̃ that would include it. Here we are working with matrices,
and the analogous of a renewal process, would be a Markov process which includes information
about the parity.

Let us now present the matrix formulation of the condition eh
∑

n=1 e
−bnK(n) = 1 which

appeared in the case β = 0. For b ≥ 0 we define

M̂β(b) :=
∑

n≥1

e−bnMβ(n). (5.14)

We let λβ(b) be the largest eigenvalue of M̂β

Having a 2 × 2 matrix, we have no problem in giving an expression for λβ(b), however to
justify its existence in the more general case we can rely on Perron-Frobenius theory.
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Proposition 5.3 (Perron-Frobenius Theorem). Let A be an T × T matrix with positive coeffi-
cients, let λA = maxλ∈Sp(A) λ be its spectral radius.

(i) ΛA is a simple eigenfunction of A and the left and right eigenvectors associated to it have
positive coordinates.

(ii) We have maxλ∈Sp(A)\λA
|λ| < λA.

(iii) λA is a strictly increasing function of every coefficient of A in the sense that if B is
non-zero matrix with non negative coefficients

λA+B > λA. (5.15)

We also have
λA+B ≤ λA + λB . (5.16)

Remark 5.4. The last point of the theorem can be deduced from the fact that

λA = max
v∈(0,∞)n

min
i

(Av)j
vj

.

Remark 5.5. As a consequence of (ii), b 7→ λβ(b) is a decreasing function. Note also that λβ(b)
is a single root of a polynomial with analytic coefficients and thus it is an analytic function of b.

We are now ready to state our result

Theorem 5.6. Under assumption (3.6) we have

f(β, h) =

{
0 if h ≤ − log λβ(0),

g
−1
β (h) if h ≥ − log λβ(0).

(5.17)

where gβ : R+ → (−∞,− log λβ(0)], is defined by

gβ(b) = − log λβ(b).

In particular hc(β) := − log λβ(0).

Note that according to the previous remarks, gβ is an analytic function in b and thus f(β, h)
is analytic in h out of the critical point .

We prove the result in the next section and quickly deduce some properties from the above
theorem. We define K̂0 and K̂1 as follows

K̂0(b) :=
∑

n≥1

e−2nbK(2n),

K̂1(b) :=
∑

n≥0

e−2(n+1)bK(2n+ 1).
(5.18)

We let p0 := K̂0(0) and p1 := K̂1(0) denote the respective probabilities of observing jump of
even and odd side.

Note that we have

M̂β(b) =

(
eβK̂0(b) e−βK̂1(b)

eβK̂1(b) e−βK̂0(b)

)
. (5.19)
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Proposition 5.7. (i) We have hc(β) = − log
(
p0 cosh(β) +

√
sinh(β)2p20 + p21

)
< 0, and

gβ(b) := − log

(
K̂0(b) cosh(β) +

√
sinh(β)2K̂0(b)2 + K̂1(b)2

)
.

(ii) Under assumption (3.6), there exists a constant C (depending on β) such that for all
b ∈ [0, 1]

C−1bmin(1,α) ≤ gβ(b)− gβ(0) ≤ Cbmin(1,α), (5.20)

and thus there exists C for all u ∈ [0, 1]

C−1umax(1,α−1) ≤ f(β, hc(β) + u) ≤ Cumax(1,α−1). (5.21)

Proof. The respective determinant and trace of M̂β(b) are given by

tr(M̂β(b)) = 2 cosh(β)K̂0(b) and Det(M̂β(b)) = K̂0(b)
2 − K̂1(b)

2. (5.22)

and thus λβ(b) is the largest root of the polynomial

X2 − 2 cosh(β)K̂0(b)X + K̂0(b)
2 − K̂1(b)

2

which yields immediately

λβ(b) = K̂0(b) cosh(β) +

√
(cosh(β)2 − 1) K̂0(b)2 + K̂1(b)2 (5.23)

and thus the first point.

The second point could be proved directly by performing a Taylor expansion of (5.23) but
we wish to give a proof which extends to higher values of the period T (ω) We observe that we
have for i = 0, 1

pi − K̂i(b)
b→0∼ Ci,Kbmin(1,α). (5.24)

And thus, using ≤ for the partial order induced by comparison by coordinate, there exists a
constant C such that for all b ∈ [0, 1]

C−1bmin(1,α)

(
1 0
0 1

)
≤ M̂β(0)− M̂β(b) ≤ Cbmin(1,α)

(
1 1
1 1

)
(5.25)

With (5.15) the lower bound asserts that the spectral radius of M̂β(0) is larger than that of

M̂β(b) + C−1bmin(1,α)I2 meaning

λβ(0) ≥ λβ(b) + C−1bmin(1,α).

From (5.16), the upper bound implies that

λβ(0) ≥ λβ(b) + 2Cbmin(1,α).

which ends the proof of (5.20). Equation (5.20) implies immediately that gβ(b) − gβ(0) is of
order bmin(1,α), which in turns implies (5.21)
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4 Proof of Theorem 5.6

Let b ≥ 0 be such that λβ(b) = e−h if the equation has a solution and b = 0 if not. We set

M̃(n) := e−bnehMβ(n)

Observe that
∑

n≥0 M̃(n) = ehM̂β(b) is a matrix of spectral radius one (if b > 0) or smaller (if

b = 0). Using Lemma 5.2 and the fact that Zβ,h
N,h is obtained by summing the two coordinates

of ZN,h

Zβ,h
N,h =

(
1 0

) ∞∑

k=0

ekhM∗k
β (N)

(
1
1

)
= ebN

(
1 0

) ∞∑

k=0

M̃∗k(N)

(
1
1

)
. (5.26)

To show that b is the free energy we must show that the term that remains does decay or increase
exponentially

lim
N→∞

1

N
log
(
1 0

) ∞∑

k=0

M̃∗k(N)

(
1
1

)
= 0. (5.27)

The case b > 0 Let us start we the localized phase. We want, as in the homogeneous case, get

an interpretation of
∑∞

k=0 M̃
∗k(N) in terms of renewal. For this sake, let us consider ξ =

(
ξ0
ξ1

)

the right eigenvector of M̃ associated to eigenvalue 1 and define

Aξ :=

(
ξ0 0
0 ξ1

)
.

We define the matrix Γ(n) as the conjugate of M̃ by Aξ

Γ(n) := A−1
ξ M̃(n)Aξ =





K(n)eh−bn

(
eβ 0

0 e−β

)
if n is even,

K(n)eh−bn

(
0 e−β(ξ1/ξ0)

eβ(ξ0/ξ1) 0

)
if n is odd.

(5.28)

Note that

∑

n≥1

Γ(n)



(
1
1

)
= A−1

ξ


∑

n≥1

M̃(n)


Aξ

(
1
1

)
= A−1

ξ


∑

n≥1

M̃(n)


 ξ = A−1

ξ ξ =

(
1
1

)
. (5.29)

Thus any i ∈ {0, 1} we have,
∑

n≥1

∑
j∈{0,1} Γi,j(n) = 1.

We can thus define a process (J, τ̃) = (Jk, τ̃k)k≥0: First we define a Markov process (J, η)k≥0

with the following transition

P̃ [(Jk, ηk) = (j, n) | (Jk−1, ηk−1) = (i,m)] = Γi,j(n). (5.30)

This means that with the convention j0 = 0 we have
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P̃ [∀m ∈ J1, kK, (Jm, ηm) = (jm, nm)] =

k∏

m=1

Γjm−1,jm(nm). (5.31)

Then we set

τ̃k :=

k∑

m=1

ηk.

Note that (J, τ̃ ) itself a Markov process with transition

P̃ [(Jk, τ̃k) = (j, n) | (Jk−1, τ̃k−1) = (i,m)] = Γi,j(n−m). (5.32)

For this reason, it is called a Markov renewal process. With our choice for Γ, one can check that
Jk is the parity of τ̃k.

Note that as M(n) = AξΓ(n)A
−1
ξ we have

e−bnZβ,ω
N,h =

(
1 0

) ∞∑

k=0

M̃∗k(N)

(
1
1

)
=
(
1 0

)
Aξ

( ∞∑

k=0

Γ̃∗k(N)

)
A−1

ξ

(
1
1

)

=
(
ξ0 0

)
( ∞∑

k=0

Γ̃∗k(N)

)
A−1

ξ

(
ξ−1
0

ξ−1
1

)
(5.33)

This is equivalent to

e−bnZβ,ω
N,h =





(
1 0

) (∑∞
k=0 Γ

∗k(N)
)
(
1

1

)
if N is even ,

(ξ0/ξ1)
(
1 0

) (∑∞
k=0 Γ

∗k(N)
)
(
1

1

)
if N is odd.

(5.34)

Now, from the definition of τ̃ is follows that

(
1 0

)
( ∞∑

k=0

Γ∗k(N)

)(
1
1

)
=

∞∑

k=1

∑

(n1,...,nk)∑k
m=1 nm=N

∑

(jm)km=1∈{0,1}k
Γjk−1,jk(nk) = P̃[N ∈ τ̃ ]. (5.35)

Now τ̃ not being a renewal we cannot apply the renewal theorem. Let us define

τ̃ ′ := {n ∈ N : 2n ∈ τ̃}

Lemma 5.8. The process τ̃ ′ is a recurrent renewal process,

Ẽ[τ ′1] < ∞

Proof. The first thing to prove is that the inter-arrival in τ ′ are IID, that is, that

P̃[∀k ∈ J0,mK, τ̃ ′k − τ̃ ′k−1 = nk] =

m∏

k=1

P̃[τ̃ ′k = nk]. (5.36)
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This can be either deduced from (5.31), summing over all possible trajectories (using the fact
that as Jn = 0 when τ̃ ′k = τ̃n to factorize the sum), or by iteratively using the strong Markov
property (the index Tk such that τ̃ ′k = τ̃Tk

is a stopping time for the Markov chain (J, τ)).

Let us now show that P[τ̃ ′1 < ∞] = 1. τ̃ being a recurrent renewal process we have to show that

P̃[∀k ≥ 1, τ̃k is odd ] = P̃[∀k ≥ 1, J1 = 1] = 1. (5.37)

We have

P̃[∀k ∈ J1,mKτ̃k is odd ] =


∑

n≥1

Γ0,1(2n− 1)




∑

n≥1

Γ1,1(2n)




m−1

, (5.38)

which obviously goes to zero when m goes to infinity.

Finally let us check that the renewal has finite mean. We have

P̃[τ̃ ′1 = n] = Γ0,0(2n) +

∞∑

k=1

∑

(l0,...,lk)∑k
i=1 li=n+1

Γ0,1(2l0 − 1)

(
k−1∏

i=1

Γ1,1(2li)

)
Γ1,0(2lk − 1)

=: Γ0,0(2n) +

∞∑

k=1

Λ(k). (5.39)

Note that there exists a constant such that Γi,j(n) ≤ Ce−bn for every n thus all the terms
appearing in the sum Λ(k) can be bounded by CKe−bn. Are there are at most nk choices for
(l0, . . . , lk) this yields

Λ(k) ≤ (Cn)ke−bn.

This bound is sufficient for small values of k but not for large ones. However we have

Λ(k) ≤ P̃[∀i ∈ J1, k − 1Kτ̃i is odd ] ≤


∑

n≥1

Γ1,1(2n)




i−2

≤ e−c(i−2). (5.40)

Using this last bound for k ≥ √
n and the other one for k <

√
n we obtain for some positive

constants c and C
P̃[τ̃ ′1 = n] ≤

√
n(Cn)

√
ne−bn + Ce−c

√
n. (5.41)

from which we deduce that
Ẽ[τ̃ ′1] =

∑

n≥1

nP̃[τ̃ ′1 = n] < ∞

Thus using the renewal Theorem, P̃[2N ∈ τ̃ ], converges to (E[τ̃ ′1])
−1. From this it is trivial

to see that P̃[(2N + 1) ∈ τ̃ ] is bounded away from zero.

Finally we obtain that there exists a constant C (depending on β and h) such that

C−1ebN ≤ Zβ,ω
N,h ≤ CebN
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Case b = 0, λβ(0) = e−h In this case what has been said before remains valid except that τ ′1
possibly has infinite mean. However this does not matter since the important part is the upper
bound, since we already know that f(β, h) is positive. As P̃[N ∈ τ̃ ] ≤ 1 we thus obtain

e−|β|+hK(n) ≤ Zβ,ω
N,h ≤ C. (5.42)

Case b = 0, λβ(0) < e−h In that case
∑

n≥1 M̃(n) has a spectral radius smaller than one but
(5.28) still makes sense if one consider ξ to be the right Perron-Frobenius eigenvector. Then∑

n≥1 Γ(n) is a sub-stochastic Matrix, and we define a process (J, τ̃ ) using it, with the additional
assumption when Jk−1 = i the process is killed with rate

1−
∑

n≥1
j∈{0,1}

Γi,j(n).

We recover (5.42) again by noticing that P̃[N ∈ τ̃ ] ≤ 1.



Chapter 6

Adding disorder into the game

1 The Poland-Scherhaga Model for DNA

2 Existence and Self averaging of the free-energy

In this chapter and the following ones, we will always assume that K(∞) = 0 for simplicity.
Let us fix h ∈ R and β > 0 to be fixed parameters. Let (ωn)n≥1 be a fixed realization of a

sequence of random variables. We assume that

E[|ωn|] < ∞

We define P
β,ω
N,h by its density with respect to P

dPβ,ω
N,h

dP
=

1

Zβ,ω
N,h

exp

(
N∑

n=1

(βωn + h)δn

)
δN (6.1)

where
δn := 1{n∈τ}

and

Zβ,ω
N,h := E

[
exp

(
N∑

n=1

(βωn + h)δn

)
δN

]
. (6.2)

We can define the free-energy of this system

Theorem 6.1. The free-energy of the disordered model defined by

f(β, h) := lim
N→∞

1

N
logZβ,ω

N,h, (6.3)

is well defined and non-random. Moreover we have

f(β, h) = lim
N→∞

1

N
E

[
logZβ,ω

N,h

]
= sup

N

1

N
E

[
logZβ,ω

N,h

]
(6.4)

For simplicity we prove the result under the assumption that (3.6) holds for some α > 0, but
the result holds in full generality. The proof can be decomposed in three steps

41
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Lemma 6.2. The following limit exists

f = lim
N→∞

1

N
E

[
logZβ,ω

N,h

]
(6.5)

and it is equal to the sup of the same sequence.

Proof. According to Fékété’s Lemma it is sufficient to prove that

1

N
E

[
logZβ,ω

N,h

]

is a super additive sequence. First note that

logK(N) + βωN + h ≤ logZβ,ω
N,h ≤

N∑

n=1

β|ωn|+ |h|. (6.6)

Hence that ensures that the expectation of logZ exists and that the free energy is finite.

Let θN denote the shift-operator on ω: the sequence θNω is defined by

(θNω)n = ωn+N (6.7)

Using the Markov property for the renewal

Zβ,h,ω
N+M = E

[
exp

(
N+M∑

n=1

(βωn + h)δn

)
δN+M

]
≥ E

[
exp

(
N+M∑

n=1

(βωn + h)δn

)
δNδN+M

]

= E

[
exp

(
N∑

n=1

(βωn + h)δn

)
δN

]
E

[
exp

(
M∑

n=1

(βωn+N + h)δn

)
δM

]
= Zβ,ω

N,hZ
β,θNω
M,h (6.8)

Now for a fixed N note that the distribution of ω and that of θNω are identical. Hence

E

[
Zβ,h,ω
N+M

]
≥ E

[
logZβ,ω

N,h

]
+ E

[
logZβ,θNω

M,h

]
= E

[
logZβ,ω

N,h

]
+ E

[
logZβ,ω

M,h

]
(6.9)

and the result follows by super-additivity.

Lemma 6.3. We have almost surely

lim inf
N→∞

1

N
logZβ,ω

N,h ≥ f (6.10)

Proof. Given ε > 0, let N0 be an integer such that

1

N0
E

[
logZβ,h,ω

N0

]
≥ f− ε. (6.11)

Now let m be an integer. By iterating the inequality (6.8) we obtain that

1

N0m
logZβ,h,ω

N0m
≥ 1

m

m−1∑

i=0

1

N0
logZh,β,θiMω

N0
. (6.12)
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As the ωs are IID, 1
N0

logZh,β,θiMω
N0

are also IID random variables with finite mean. Hence by
the law of large number we have

lim inf
m→∞

1

N0m
logZβ,h,ω

N0m
≥ 1

N0
E

[
logZβ,h,ω

N0

]
≥ lim

m→∞
1

m

m−1∑

i=0

1

N0
logZh,β,θiMω

N0

= E

[
logZβ,h,ω

N0

]
≥ f− ε (6.13)

For the case of general N we consider the Euclidean division N = mN0+ q for q = 1, . . . , N0− 1
fixed. From the same computation we have

lim inf
N→∞

1

N
logZβ,h,ω

q ≥ lim
N→∞

m

N

1

m

m−1∑

i=0

logZ
h,β,θiN0

ω

N0
+ lim

N→∞
1

N
logZ

h,β,θmN0
ω

q . (6.14)

The first term converges by the law of large number to 1
N0

E

[
logZβ,h,ω

N0

]
≥ f− ε. It remains to

show that the second term converges to zero. We have

∣∣∣logZh,β,θmN0
ω

q

∣∣∣ ≤ | log P (q ∈ N)|+
mN0+q∑

n=mN0+1

|βωn + h| . (6.15)

Hence

max
q∈{0,...,N0−1}

∣∣∣logZh,β,θmN0
ω

q

∣∣∣ ≤ β

(m+1)N0−1∑

n=mN0+1

|ωn|+ C(N0, h). (6.16)

and hence the r.h.s. is an l1 variable. Hence from a corollary of the law of large numbers

lim
m→∞

1

m

∣∣∣∣ max
q∈{0,...,N0−1}

logZ
h,β,θmN0

ω
q

∣∣∣∣ = 0, (6.17)

and one can conclude.

There is no direct sub-additivity property like (6.8) but we can cook up one at the cost of
adding some extra terms in order to prove the reverse inequality

Lemma 6.4. Assume that (3.6) holds. We have

lim sup
N→∞

1

N
logZβ,ω

N,h ≤ f (6.18)

Proof. We first prove that there exists a constant C such that for all N , β and h

Zβ,ω
N+M,h ≤ Zβ,ω

N,hZ
β,θNω
M,h

(
1 + Ce−βωN−hmin(N1+α,M1+α)

)
(6.19)

To prove this statement, we have to decompose Zβ,ω
N+M,h according to the first and last renewal

point before N

Zβ,ω
N+M,h = Zβ,ω

N,hZ
β,θNω
M,h +

∑

0≤a<N
N<b≤N+M

Zβ,ω
a,h K(b− a)eβωb+hZβ,θbω

N+M−b,h. (6.20)
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Here and latter we take the convention that Z0 = 1.
Now we want to compare the second term with Zβ,ω

N,hZ
h,β,θNω
M,h As we have

Zβ,ω
N,h =

∑

0≤a<N

eβωN+hZβ,h,ω
a K(N − a),

Zβ,θNω
M,h =

∑

N<b≤N+M

K(b−N)eβωb+hZβ,θbω
N+M−b,h.

(6.21)

Combining (6.20) and (6.21) we have

Zβ,h,ω
N+M ≤ Zβ,ω

N,hZ
h,β,θNω
M

(
1 + e−βωN−h max

a<N<b

K(b− a)

K(N − a)K(b−N)

)
. (6.22)

Finally because of our assumption K(n) ∼ CKN−(1+α) we have

K(b− a)

K(N − a)K(b−N)
≤ Cmin(N1+α,M1+α) (6.23)

and this finishes the proof of (6.19).
Now let us fix N0 and write N = N0m + q with q ∈ {1, . . . , N0}. We can iterate (6.19) to

obtain

logZβ,ω
N,h ≤

m−1∑

i=0

Z
β,θiN0

ω

N0,h
+

m∑

i=1

log
(
1 + Ce−βωiN0

−hN1+α
0

)
+ logZ

β,θmN0
ω

q,h . (6.24)

Hence using the law of large numbers and (6.17) we obtain that

lim sup
N→∞

1

N
logZβ,ω

N,h ≤ 1

N0
E

[
Z

β,θiN0
ω

N0,h

]
+

1

N0
E log

(
1 + Ce−βωN0

−hN1+α
0

)
(6.25)

The first term is always smaller than f. The second term is smaller than

1

N0

(
log[CN1+α

0 ] + |h|+ βE [|ωn|]
)
.

which can be made arbitrarily small by choosing N0 large. And hence the conclusion.

3 A sufficient condition for the existence of a phase transition

Let us note first that the result of the previous section does not imply that the existence of a
phase transition, as one might have

∀h ∈ R, f(β, h) > 0. (6.26)

For this reason we introduce a new assumption on ω which prevents this to happen

∀β ∈ R, λ(β) := logE
[
eβω1

]
< ∞. (6.27)

For convenience we will also assume

E[ω1] = 0, and E[ω2
1] = 0. (6.28)
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Using Jensen’s inequality we have

1

N
E

[
logZβ,h,ω

N

]
≤ 1

N
logE

[
Zβ,h,ω
N

]
. (6.29)

The right-hand side can be computed explicitly.

E

[
Zβ,h,ω
N

]
= EE

[
e
∑N

n=1(βωn+h)δnδN

]
= E

[
e
∑N

n=1(λ(β)+h)δnδN

]
. (6.30)

It corresponds to the partition function of an homogeneous system with pinning parameter
λ(β) + h.

f(β, h) ≤ lim
N→∞

1

N
logZ

λ(β)+h
N = f(0, λ(β) + h). (6.31)

We can also obtain a lower bound for f(β, h). We have

∂β logZ
β,ω
N,h =

1

Zβ,ω
N,h

(
N∑

n=1

ωnδn

)
e
∑N

n=1(βωn+h)δnδN , (6.32)

and

∂2
β logZ

β,ω
N,h = E

β,ω
N,h



(

N∑

n=1

ωnδn

)2

−E

β,ω
N,h

[
N∑

n=1

ωnδn

]2
≥ 0. (6.33)

Hence β 7→ E logZ
λ(β)+h
N is convex in β, and its derivative at zero is equal to

E

[
N∑

n=1

ωnδn

]
= 0. (6.34)

Thus
E

[
logZβ,ω

Nh

]
≥ logZh

N (6.35)

and hence
f(β, h) ≥ f(0, h). (6.36)

We can summarize these statements

Proposition 6.5. We have for all β and h

f(0, h) ≤ f(β, h) ≤ f(0, h + λ(β)), (6.37)

and in particular
hc(β) := inf{h | f(β, h) > 0} (6.38)

is finite and we have
−λ(β) ≤ hc(β) ≤ 0. (6.39)

Now the question if the inequalities above are sharp. A first question of interest is to wonder
whether hc(β) < 0. Even though the environment has mean zero, can one find a strategy to get
a benefice of the zones with positive ω without losing too much when ω is negative.
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4 The delocalized phase

Theorem 6.6. When h < hc(β), there exists a constant C such that

EE
β,ω
N,h

[
N∑

n=1

δn

]
≤ C logN. (6.40)

With a lot more efforts, one can show that EEβ,ω
N,h

[∑N
n=1 δn

]
≤ C.

Proof. A simple computation gives

∂h logZ
β,ω
N,h = E

β,ω
N,h

[
N∑

n=1

δn

]
. (6.41)

Hence by convexity, we have for every u ≥ 0

logZβ,ω
N,,h+u ≥ logZβ,ω

N,h + uEβ,ω
N,h

[
N∑

n=1

δn

]
. (6.42)

We choose to apply the inequality for u = hc(β)−h. We have E logZβ,ω
N,hc(β)

≤ Nf(β, hc(β)) = 0
and hence one has

EE
β,ω
N,h

[
N∑

n=1

δn

]
≤ −

E logZβ,ω
N,h

hc(β)− h
≥ − logK(N) + h

hc(β)− h
. (6.43)

In the last inequality we have used the trivial inequality

Zβ,ω
N,h ≥ K(N)eβωN+h. (6.44)

This gives the result.

5 The localized phase

It is almost immediate to prove that when h > hc(β)

lim
N→∞

1

N
E

β,ω
N,h

[
N∑

n=1

δn

]
= ∂hf(β, h), (6.45)

whenever the r.h.s. exists. What one would like to check then is that the function f(β, h) is
indeed differentiable, and that

∑N
n=1 δn behaves likes its mean value. The following result was

prove in [7]. The proof is quite demanding and relies on estimates on correlation between the
variables (δn)n≥0.

Theorem 6.7. The function (β, h) 7→ f(β, h) is infinitely derivable in β and h in the domain

{(β, h) | h > hc(β)}

In particular the variance of 1√
N

∑N
n=1 δn under E

β,ω
N,h converges to

∂2
hf(β, h). (6.46)



Chapter 7

Disorder helping localization

1 Getting something better than the mean reward

We assume for simplicity that K(∞) = 0. We are going to show that

Proposition 7.1. For all β > 0 we have

f(β, 0) > 0 (7.1)

as a consequence
hc(β) > 0. (7.2)

This argument is due in part to Alexander and Sidoravicius [1]. The idea is to change
the expression of the partition function so that an environment with positive mean appears
artificially.

We set
δn := 1{n∈τ} (7.3)

and

δ̂n =

{
1{{n−1,n+1}⊂τ}, if n is odd,

0 if n is even.
(7.4)

Finally we set

ω̂n(β) = log
K(1)2eβω +K(2)

K(1)2 +K(2)
= logE

[
eβωnδn | {n− 1, n + 1} ⊂ τ

]
. (7.5)

The ω̂n(β) are IID and when β > 0 Jensen’s inequality (strict) gives

E[ω̂1(β)] > 0. (7.6)

The idea is thus to identify the places where δ̂n = 1 and to say that they correspond to an
energetic reward ω̂n.

Proposition 7.2. We have for all even N

Zβ,0,ω
N = E

[
e
∑N

n=1 βωnδn(1−δ̂n)+
∑N

n=1 βω̂n(β)δ̂nδN

]
. (7.7)

47
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Proof. Set

TN := {n ∈ J1, NK | n ∈ τ, and δ̂n = 0},
IN := {n ∈ J1, NK | δ̂n = 1}.

(7.8)

We have
E
[
e
∑N

n=1 βωnδnδN | Tn
]
= e

∑
n∈Tn

βωnδNE
[
e
∑

n∈In
βωnδn | Tn

]
. (7.9)

Note that given Tn the variable (δn)n∈In are IID Bernouilli of parameter K(1)2/(K(1)2 +K(2))
and hence

E
[
e
∑N

n=1 βωnδn δ̂n | Tn
]
= e

∑
n∈In

ω̂n(β). (7.10)

Hence
Zβ,ω
N,0 = E

[
E
[
e
∑

n∈In
βωn | Tn

]]
= E

[
e
∑

n∈Tn
βωn+

∑
n∈In

ω̂n(β)δN

]
(7.11)

Recall that we have for all N

f(β, 0) ≥
E

[
logZβ,ω

N,0

]

N
. (7.12)

And we have by Jensen’s inequality

logZβ,ω
N,0 = logP[N ∈ τ ] + logE

[
e
∑N

n=1 βωnδn(1−δ̂n)+
∑N

n=1 βω̂n(β)δ̂n | N ∈ τ
]

≥ logP[N ∈ τ ] +E

[
N∑

n=1

βωnδn(1− δ̂n) +
N∑

n=1

βω̂n(β)δ̂n | N ∈ τ

]
. (7.13)

As the ωns have mean zero, we have

f(β, 0) ≥ 1

N

(
logP[N ∈ τ ] + E[ω̂1(β)]

N∑

n=1

E
[
δ̂n | N ∈ τ

])
. (7.14)

We know that E[ω̂1(β)] is positive and does not depend on N and also that

logP[N ∈ τ ] ≥ logK(N) ≥ −(2 + α) logN

for N sufficiently large. Hence to conclude it is sufficient to show that

N∑

n=1

E
[
δ̂n | N ∈ τ

]

grows faster than logN . We have

E
[
δ̂n | N ∈ τ

]
=

P[n− 1 ∈ τ ]P[2 ∈ τ ]P[N − n− 1 ∈ τ ]

P[N ∈ τ ]
. (7.15)

When α ∈ (0, 1), knowing (cf. Proposition 3.9) that

P[N ∈ τ ] ∼ c′KNα−1
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we can conclude that there exists a constant c such that for all odd n

E
[
δ̂n | N ∈ τ

]
≥ c (min(n,N − n))α−1 . (7.16)

Hence we have
N∑

n=1

E
[
δ̂n | N ∈ τ

]
≥ Nα. (7.17)

We can show, that the sum is of order N for α > 1 in the same manner by the use of the
Renewal Theorem. As a result we have the following lower bound on the free-energy valid for
all N suffiently large

f(β, 0) ≥ 1

N
(logP[N ∈ τ ] + E[ω̂1(β)]N

α) . (7.18)

Choosing N large enough, one can show it is positive (and even get an explicit lower bound).



Chapter 8

Comparison with the annealed

bound: the Harris Criterion

1 The Harris Criterion

We have seen in the previous chapter that for all choices of β we have hc(β) > 0 and hence that
the inequality f(β, h) ≥ f(0, h) is never sharp.

The question for the inequality f(β, h) ≤ f(0, h + λ(β)) turns out to have a more complex
answer and is very much related to that of disorder relevance: if one introduces a small amount
(small β) of disorder, will it change its critical properties?

Here for the pinning problem, we are interested in two properties: the position of the critical
point hc(β) and the critical-exponent of the free-energy (which is equal to max(1, α−1)). We ask
ourselves

• If hc(β) = −λ(β) (if the critical point is that of the annealed system).

• If f(β, h)
h→hc(β)+∼ (h − hc(β))

ν for some exponent ν. In particular, do we have ν =
max(1, α−1)?

The physicists A.B. Harris gave a suprizingly very efficient heuristic criterion to predict the
effect of disorder. It depends on the value of the critical exponent for the free-energy of the pure
system: If this is exponent is larger than 2 then the disorder is irrelevant, and a small amount
of disorder should not change the critical properties. If on the contrary the exponent is smaller
than 2, the critical properties of the disordered system should differ from that of the pure one
for every β.

In the case of random pinning, this corresponds to saying that disorder is relevant for α < 1/2
and irrelevant for α > 1/2. Note that the criterion does not make any prediction in the case
α = 1/2 (that of the simple random walk).

2 The case α < 1/2: disorder irrelevance

For this chapter, we set
h := −λ(β) + u

50
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With some slight abuse of notation we will denote by f(β, u) the corresponding free-energy.

Theorem 8.1. When α < 1/2, there exists β0 (which depends both on K and of the law of ω)
such that for all β ∈ [0, β0] we have

hc(β) = −λ(β).

and there exists a constant cβ such that for all u ≤ 1/2

f(β, u) ≥ cβ

(
u

| log u|

)1/α

(8.1)

To prove this result we need to work with the free partition function, which bears no constrain
for the end point N

Z̃β,ω
N,u := E

[
exp

(
N∑

n=1

(βωn − λ(β) + u)δn

)]
. (8.2)

We let P̃β,u,ω
N be the associated measure defined by

dP̃β,ω
N,u

dP̃
= exp

(
N∑

n=1

(βωn − λ(β) + u)δn

)
. (8.3)

We let Zβ,ω
N,u denote the constrained partition function.

A first fundamental observation is that to prove the result, we only need to prove a bound
on the contact density at the critical point.

Lemma 8.2. There exists a constant C(β) such that for all u ∈ [0, 1] we have

f(β, u) ≥ u

N
EẼ

β,ω
N,0

[
N∑

n=1

δn

]
− (1 + α) logN + C(β)

N
. (8.4)

The main statement to prove Theorem 8.1 is then

Proposition 8.3. When α < 1/2, there exists β0 such that for all β ∈ [0, β0] there exists cβ
such that for all N ≥ 0

EẼ
β,ω
N,0

[
N∑

n=1

δn

]
≥ cβN

α. (8.5)

Note that Nα corresponds to the order of magnitude for E
[
[
∑N

n=1 δn

]
. The idea is thus to

prove that Eβ,ω
N,0 are not that different.

Proof of Theorem 8.1 from Proposition 8.3. Combining Lemma 8.2 and Proposition 8.3

f(β, u) ≥ ucβN
α−1 − (1 + α) logN + C

N
. (8.6)

Choosing N = C ′(| log u|/u)1/α for a large C ′ we obtain

f(β, u) ≥ c′u1/α | log u|1−α−1
(8.7)
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Proof of Lemma 8.2. By decomposing over the possible location of the last renewal point before
N , we have (recall that K̄(n) =

∑
m>n K(n))

Z̃β,ω
N,u =

N−1∑

n=0

Zβ,ω
N,uK̄(N − n) + Zβ,ω

N,u,

Zβ,ω
N,u =

N−1∑

n=0

Zβ,ω
N,uK(N − n)eβωN−λ(β)+u.

(8.8)

Hence

Z̃β,ω
N,u ≤ Zβ,ω

N,u

(
1 + max

n∈1,...,N−1

K̄(n)

K(n)
e−(βωN−λ(β)+u)

)
≤ C(β)NZβ,ω

N,ue
β|ωN |. (8.9)

where the last inequality is valid for u ∈ [0, 1]. As f(β, u) ≥ 1
NE

[
logZβ,ω

N,u

]
this yields

f(β, u) ≥ 1

N
E

[
log Z̃β,ω

N,u

]
− logC(β)N

N
. (8.10)

Using convexity we have

log Z̃β,ω
N,u ≥ u

(
∂u log Z̃

β,ω
N,u|u=0

)
+ log Z̃β,ω

N,0 ≥ uẼβ,ω
N,0

[
N∑

n=1

δn

]
− log

∞∑

n=N+1

K(n). (8.11)

Combining (8.10) and (8.11) we obtain the following finite volume criterion.

3 Proof of Proposition 8.3

The idea is to show first that Nα corresponds indeed to the typical number of contact under the
measure P (Section 3.1) and then to show using a second moment computation (Section 3.2)

that P̃β,ω
N,0 and P are close (Section 3.3).

3.1 A lower bound for the typical number of contact

We want to show the event

AN :=

{
N∑

n=1

δn ≥ εNα

}

has a large probability under the renewal measure.

Lemma 8.4. Given δ there exists ε such that for all N sufficiently large

P

[
N∑

n=1

δn ≥ εNα

]
≥ 1− δ (8.12)

Proof of Lemma 8.4. Given N we set n = n(ε,N) = εNα. We want to prove

P[τn ≥ N ] ≤ δ. (8.13)
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Let us set

τ̃n :=
N∑

k=1

(τk − τk−1)1{τk−τk−1≥N}. (8.14)

We have
P[τn ≥ N ] ≤ P[τ̃n ≥ N ] +P[max

k≤n
(τk − τk−1) ≥ N ]. (8.15)

The second term can be easily bounded by

nP[τ1 ≥ N ] ≤ nK̄(N) ≤ εC ≤ δ/2, (8.16)

provided that ε is chosen sufficiently small. As for the second term we have for any choice of
b > 0.

P[τ̃n ≥ N ] = P[ebτ̃n ≥ ebN ] ≤ e−NbE[e−bτ̃n ] = en logE[ebτ̃1 ]−bN . (8.17)

Let us choose b = 2N−1 log δ−1. We must show that

n logE[ebτ̃1 ] ≤ 1

2
log δ−1. (8.18)

Indeed this would imply that
P[τ̃n ≥ N ] ≤ δ3/2. (8.19)

Note that if X ∈ [0, A], A ≥ 1 we have by convexity of the exponential

logE[eX ] ≤ logE

[
1 +

eA − 1

A
E[X]

]
≤ eA

A
E[X]. (8.20)

Hence we have

logE[ebτ̃1 ] ≤ δ−2N−1E[τ̃1]. (8.21)

We have

E[τ̃1] ≤
N∑

m=1

mK(m) ≤ CN1−α. (8.22)

Hence we have
n logE[ebτ̃1 ] ≤ Cεδ−2, (8.23)

and we can conclude by choosing ε small enough.

3.2 Computing the second moment

One can readily check that

E

[
Z̃β,ω
N,0

]
= 1. (8.24)

We are going to show that when β is small the second moment is also bounded.
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Lemma 8.5. When α < 1/2 and

λ(2β) − 2λ(β) < log

(
1 +

N∑

n=0

P(n ∈ τ2)

)

we gave

sup
N≥0

E

[
(Z̃β,ω

N,0)
2
]
< ∞. (8.25)

Proof. The second moment of Z̃β,ω
N,0 can be computed explicitly. One obtains

E

[(
Z̃β,ω
N,0

)2]
= E⊗2

[
E

[
exp

(
N∑

n=1

(βωn − λ(β))
(
δ(1)n + δ(2)n

))]]
. (8.26)

where δ
(1)
n = 1{τ (i)∈N} and the τi are two independent renewals with law P. It is quite straight

forward to check that

E

[
exp

(
N∑

n=1

(βωn − λ(β))
(
δ(1)n + δ(2)n

))]
= e(λ(2β)−2λ(β))δ

(1)
n δ

(2)
n . (8.27)

Hence we have

E

[(
Z̃β,ω
N,0

)2]
= E⊗2

[
e
∑N

n=1(λ(2β)−2λ(β))δ
(1)
n δ

(2)
n

]
≤ E⊗2

[
e
∑∞

n=1(λ(2β)−2λ(β))δ
(1)
n δ

(2)
n

]
(8.28)

Now note that
δ(1)n δ(2)n = 1{N∈τ (1)∩τ (2)},

and it is not difficult to check that τ ′ = τ (1) ∩ τ (2) is a renewal process. Hence the important
question is: is τ ′ recurrent (with infinitely many contact point almost surely) or not? From
Lemma 3.9 there exists a constant ĈK such that

P[N ∈ τ ] = ZN,0
N→∞∼ ĈKNα−1. (8.29)

Hence we have

P⊗2[N ∈ τ ′] = P [N ∈ τ ]2
N→∞∼ Ĉ2

KN2(α−1). (8.30)

By the Markov property for renewals,
∑∞

n=1 δ
(1)
n δ

(2)
n is distributed like a geometric variable, and

in particular it is a.s. infinite if and only if its expectation is finite. Because of (8.30) we have

∞∑

n=1

P [n ∈ τ ]2 < ∞ ⇔ α < 1/2. (8.31)

In particular τ ′ is finite if and only if α < 1/2. When τ ′ is finite the total number of renewal
point a geometric variable. In particular we have

E⊗2
[
e
∑∞

n=1(λ(2β)−2λ(β))δ
(1)
n δ

(2)
n

]
=

∞∑

k=0

P[τ ′1 < ∞]kP[τ ′1 = ∞]ek(λ(2β)−2λ(β)) . (8.32)
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As we know the mean of this geometric variable, we can deduce that

1

P[τ ′1 < ∞]
= 1 +

1∑
n≥1 P [n ∈ τ ]2

. (8.33)

Hence we can conclude that

sup
N

E

[(
Z̃β,ω
N,0

)2]
< ∞ ⇔ λ(2β)− 2λ(β) ≤ log

(
1 +

1∑
n≥1P [n ∈ τ ]2

)
. (8.34)

We can set
β0 := sup

{
β : λ(2β)− 2λ(β) ≤ − logK ′(∞)

}
, (8.35)

and prove Proposition 8.3 under the assumption β < β0. Note that we can have β0 = ∞ if ω is
almost surely bounded, and that β0 > 0 provided α < 1/2.

3.3 Comparing measure using second moment estimates

We introduce a tool called Paley-Zygmund inequality, which allows to control the probability
for Z to be small if one knows its second moment.

Lemma 8.6 (Paley-Zygmund inequality). Let Z be a positive random variable. We have for
every θ ∈ (0, 1)

P[Z ≥ θE[Z]] ≥ (1− θ)2
E[Z]2

E[Z2]
. (8.36)

Proof. Using the Cauchy-Schwartz inequality we have

E[Z] ≤ θE[Z] + E[Z1{Z≥θE[Z]}] ≤ θE[Z] +
√

E[Z2]
√

P[Z ≥ θE[Z]]. (8.37)

Rearranging the inequality gives the result.

We want to use this to show that the probability P̃
β,0,ω
N is not too different from P.

Lemma 8.7. If

sup
N≥0

E

[
(Z̃β,ω

N,0)
2
]
< C (8.38)

then there exists a constant δβ > 0such that for all N for all event A satisfying

P(A) ≥ 1− δ (8.39)

we have
E

[
P̃

β,ω
N,0(A)

]
≥ δ. (8.40)
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Proof. Note

P̃
β,ω
N,0(A

c) ≤ 2E

[
1Ac exp

(
N∑

n=1

(βωn − λ(β) + u)δn

)]
+ 1{Z̃N<1/2}. (8.41)

Hence by averaging with respect to ω we obtain

P̃
β,ω
N,0(A

c) ≤ 2δ + P

[
Z̃β,ω
N,0 < 1/2

]
. (8.42)

The Paley-Zygmund inequality guaranties that the second term is smaller than

1− 1

4E[(Z̃β,ω
N,0)

2]
≤ 1− 1/(4C). (8.43)

Hence the result holds if δ < 1/(12C).

Proof of Proposition 8.3. When β ≤ β0, using (8.5), one can set a δβ for which Lemma 8.7 is
valid. We use it for the event

AN := P

[
N∑

n=1

δn ≥ εNα

]
.

for ε sufficiently small (cf. Lemma 8.4).

The we can conclude that

Ẽ
β,ω
N,0

[
N∑

n=1

δn

]
≥ εNαP̃

β,ω
N,0

[
N∑

n=1

δn ≥ εNα

]
≥ δεNα. (8.44)

4 For α ∈ (1/2, 1): a bound on hc(β)

4.1 Extracting the right statement from the previous proof

Let us now investigate how the results of the previous Section can be used to say something
about the case α > 1/2. The combination of Lemma 8.7 (or rather its proof) and Lemma 8.4
we deduce that we can find ε > 0 such that for all N and β which satisfy

E[(Z̃β,ω
N,0)

2] ≤ 10, (8.45)

we have

E

[
P̃

β,ω
N,0

(
N∑

n=1

δn ≥ εNα

)]
≥ 1

120
. (8.46)

Hence by Lemma 8.2 we can find a constant C such that

f(β, u) ≥ u
ε

120
Nα−1 − (1 + α) logN + C

N
. (8.47)

In particular
f(β, u) > 0 (8.48)
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for

u >
120(1 + α) logN + C

Nα
. (8.49)

Hence we have

Lemma 8.8. There exists a constant C such that for all β ≤ 1 we have, and all α > 1/2 we
have

uc(β) ≤
120(1 + α) logNβ + C

Nα
β

(8.50)

where
Nβ := max

{
N | E[(Z̃β,ω

N,0)
2] ≤ 10

}
. (8.51)

The question is now, how can one estimate Nβ.

4.2 General remarks on how to compute the variance

Recall that from previous computation we have

E

[
Z̃β,ω
N,0)

2
]
= E

[
e[λ(2β)−2λ(β)]HN (τ ′)

]
(8.52)

where τ ′ is the renewal obtain by the intersection of two independent copies of τ , and

HN (τ ′) :=
N∑

n=1

1{n∈τ ′}. (8.53)

Note that for α > 1/2, τ ′ is recurrent from Lemma 3.9 there is a constant c′ such that

P[n ∈ τ ′]
n→∞∼ c′n2(α−1). (8.54)

We will use this information to estimate Nβ the length at which the variance starts to blow up

(it corresponds to the length at which P
β,0,ω
N and P start to look different).

First let us notice that as λ(β) ∼ β2/2 there exists positive constants c1 and c2 such that
for all β ≤ 1 we have

c1β
2 ≤ λ(2β) − 2λ(β) ≤ c2β

2. (8.55)

Hence we can reduce to treating the Gaussian case (where [λ(2β)− 2λ(β)] = β2) and the result
will remain true for other environments after a multiplication by a constant. Our aim is to prove
the following result.

Proposition 8.9. Set

Nβ := max
{

N | E
[
eβ

2HN (τ ′)
]
≤ 10

}
. (8.56)

(i) For α ∈ (1/2, 1), there exists a constant c (which depends on K) such that for every
β ∈ (0, 1]

Nβ ≥ cβ
2

2α−1 . (8.57)

(ii) For α = 1/2, there exists a constant c (which depends on K) such that for every β ∈ (0, 1]

Nβ ≥ e−cβ−2
. (8.58)
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Note that this result is in fact optimal up to the choice of the constant c. Indeed by convexity
one has

E
[
eβ

2HN (τ ′)
]
≥ exp

(
β2E

[
HN (τ ′)

])
. (8.59)

As from (8.54) E[HN (τ ′)] is of order N2α−1 for α ∈ (1/2, 1) and of order logN when α = 1/2,
one sees readily that the laplace transform blows up when N is much larger than the bound
given in Proposition 8.9.

Combining this result with Lemma 8.8 we obtain

Theorem 8.10. There exists a constant CK (depending the the interarrival law) which is such
that for all β ∈ (0, 1) we have

uc(β) ≤
{
CK | log β|β

2α
(1−2α) if α ∈ (1/2, 1),

e−CKβ−2
if α = 1/2.

(8.60)

Our job is now to prove Proposition 8.9 and thus to find a way to control the laplace transform
of HN(τ ′).

4.3 Getting a bound on the Laplace transform of HN(τ
′) in terms of that of

τ ′1

Note that if X is a random variable with integer values and f is an increasing function such
that f(X) has finite expectation. Then

E[f(X)] := f(0) +

∞∑

k=1

[f(k)− f(k − 1)]P[X ≥ k]. (8.61)

In particular

E
[
eβ

2HN (τ ′)
]
≤ 1 + (eβ

2 − 1)
N∑

k=1

eβ
2kP

[
HN (τ ′) ≥ k

]
. (8.62)

Now we have to find a good bound on

P
[
HN(τ ′) ≥ k

]
= P[τ ′k ≤ N ]. (8.63)

We have for any x > 0

P[τ ′k ≤ N ] = P[e−xτ ′
k ≥ e−xN ] ≤ exNE[e−xτ ′

k ] ≤ exp
(
k logE[e−xτ ′1 ] + xN

)
(8.64)

and hence
logP[τ ′k ≤ N ] ≤ max

x>0

(
k logE[e−xτ ′1 ] + xN

)
. (8.65)

As we do not have directly access to the distribution of τ ′1 we use the following trick to estimate
its Laplace transform

Lemma 8.11. We have

1− E[e−xτ ′1 ] =
1∑

n≥0 e
−nxP[n ∈ τ ′]

(8.66)
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Proof. We have

∑

n≥0

e−nxP[n ∈ τ ′] = 1 +
∞∑

k=1

∑

n≥1

e−nxP[τ ′k = n]

= 1 +

∞∑

k=1

E
[
e−xτ ′

k

]
=
∑

k≥0

(
E[e−xτ ′1 ]

)k
=

1

1− E[e−xτ ′1 ]
. (8.67)

4.4 Wrapping up the case α ∈ (1/2, 1)

Lemma 8.12. We have ∑

n≥0

e−nxP[n ∈ τ ′]
x→0+∼ c′′x1−2α, (8.68)

where
c′′ := c′Γ(2α − 1)

for c′ given by (8.54).

Proof. We have

∑

n≥0

e−nxP[n ∈ τ ′] = 1 + c′x1−2α


x

∑

n≥1

e−nx(nx)2(α−1)


 P[n ∈ τ ′]

c′n2(1−α)
. (8.69)

As the quotient on the left-hand side tends to one, we can infer that the sum is asymptotically
equivalent to

c′x1−2α


x

∑

n≥1

e−nx(nx)2(α−1)


 . (8.70)

We conclude by noticing that the Riemann sum in the bracket converges to

∫
e−yy2(α−1)dy = Γ(2α− 1) (8.71)

As logZ ∼ Z − 1 for Z around one, Lemma 8.11-8.12 combined allow to conclude thus that

logE[e−xτ ′1 ]
x→0+∼ −(c′′)−1x2α−1. (8.72)

In particular one can find c1 such that for all x ∈ [0, 1]

E[e−xτ ′1 ] ≤ −c1x
2α−1. (8.73)

Hence from (8.65) we obtain that

logP[τ ′k ≤ N ] ≤ max
x∈[0,1]

(
xN − c1kx

2α−1
)
. (8.74)
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By taking the differentiating over x we obtain that the max on the r.h.s. is attained for

xmax =

(
2c1(α− 1)k

N

) 1
2(1−α)

,

which is always smaller than 1 if c1 is small enough. For an adequate choice of c2, we thus have

logP[τ ′k ≤ N ] ≤ −c2

(
k

N2α−1

) 1
2(1−α)

. (8.75)

which implies

N∑

k=1

eβ
2kP[τ ′k ≤ N ] ≤ β−2e+

N∑

k=β−2+1

exp

(
β2k − c2

(
k

N2α−1

) 1
2(1−α)

)
. (8.76)

We want to show that for all k ∈ {β−2, . . . , N}

c2

(
k

N2α−1

) 1
2(1−α)

≥ 2β2k. (8.77)

As the ratio between the two quantities is monotone in k, it is sufficient to check this for the
smallest value k = β−2. This gives

N ≤ c3β
2

2α−1 . (8.78)

with

c3 =
(c2
2

) 1
2(1−α)

.

With this choice one has

E
[
eβ

2HN (τ ′)
]
≤ 1 +

(
eβ

2 − 1
)

eβ−2 +

N∑

k=β−2+1

e−kβ2


 ≤ 2 + 2e ≤ 10. (8.79)

and hence we have proved

Nβ ≥ c3β
2

2α−1 . (8.80)

4.5 The case α = 1/2

We assume in this section that α = 1/2 and thus (8.54) becomes

P[τ ′1 = n]
n→∞∼ c′n−1 (8.81)

This yields the following estimate on the Laplace transform

Lemma 8.13. We have ∑

n≥0

e−nxP[n ∈ τ ′]
x→0+∼ c′| log x|, (8.82)

As a consequence

logE[e−xτ ′1 ]
x→0+∼ (c′ log x)−1. (8.83)
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Proof. Note that the second point follows from the first by Lemma 8.11. The sum is equivalent
to

c′
∑

n≥1

e−nx 1

n
= c′

⌈x−1⌉∑

n=1

1

n
+ x

∑

n≥⌈x−1⌉

(
e−nx − 1{n≤x−1}

) 1

nx
. (8.84)

The first term is equivalent to c′| log x|. The second is a Riemann sum which converges to

∫ ∞

0

e−y − 1y∈[0,1]
y

dy.

Hence as for the case α > 1/2 we have for an adequate choice of c2, for all k ≥ 1

logP[τ ′k ≤ N ] ≤ max
x∈[0,1]

(
xN + c1k(log x)

−1
)
≤ −c2k

(
log

N

c1k

)−1

. (8.85)

Thus we have
N∑

k=1

eβ
2kP[τ ′k ≤ N ] ≤

N∑

k=1

exp

(
β2k − c2k

(
log

N

c1k

)−1
)
. (8.86)

As before we want to choose N such that for all k ≥ 1 we have

c2

(
log

N

c1k

)−1

≥ 2β2. (8.87)

Of course it is sufficient to deal with the case k = 1 and to choose N satisfying

N ≤ c1e
− c2

2β2 (8.88)

With this choice we have

N∑

k=1

eβ
2kP[τ ′k ≤ N ] ≤

N∑

k=1

e−kβ2 ≤ 1

eβ2 − 1
, (8.89)

and hence

E[(Z̃β,ω
N,0)

2] ≤ 1 + (eβ
2 − 1)

N∑

k=1

eβ
2k ≤ 2. (8.90)

This implies

Nβ ≥ c1e
− c2

2β2 . (8.91)



Chapter 9

Disorder relevance

1 Shift of the critical point and smoothing of the free-energy

curve

The aim of this chapter is to prove a caracteristic feature of the relevant disorder regime: a shift
of the quenched critical point with respect to the annealed one.

Theorem 9.1. When α > 1/2, the quenched and annealed critical point differ, for all β > 0.

Furthermore for all α ∈ (1/2,∞) \ {1} we have there exist constants c and C such that for
all β ∈ (0, 1)

cβmin( 2α
1−2α

,2) ≤ hc(β) + λ(β) ≤ Cβmin( 2α
1−2α

,2). (9.1)

These two results are deep ones and are technical to prove and we shall in these notes prove
weaker versions. Note that the lower-bound on the critical point shift was (up to log correction)
proved in the previous chapter.

2 Either smoothing or critical point shift holds

2.1 The result

The aim of this chapter is to prove that both smoothing of the critical curve and critical point
shift holds. However, for didactical purpose, we choose to prove first that at least one of the
two holds. More precisely we are going to show that

Proposition 9.2. For all β > 0 there exist cβ > 0 such that

f(β, u) ≤ cβu
2 (9.2)

Note that first, if we had hc(β) = −λ(β) the inequality would coincide with (10.1). Hence
this proposition asserts that if we do not have a shift of the critical point, we have a smoothing
of the free energy curve.

Second, the result holds for all values of α > 0. However, it does not say much in the case
α > 1/2 as the annealed bound gives for small α

f(β, u) ≤ f(0, u) ≤ cu1/α. (9.3)

62
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2.2 Fractional moment

Let us transform the problem of estimating the expection of a logZβ,ω
N,u which is a difficult one,

to that of estimating the expectation of a non-integer moment of Zβ,ω
N,u Consider θ ∈ (0, 1). We

have

E

[
logZβ,ω

N,u

]
=

1

θ
E

[
log(Zβ,ω

N,u)
θ
]
≤ 1

θ
logE

[
(Zβ,ω

N,u)
θ
]
. (9.4)

Hence the free-energy can be bounded above as follows

f(β, u) ≤ lim inf
N→∞

1

Nθ
logE

[
(Zβ,ω

N,u)
θ
]
. (9.5)

In this section we choose use the inequality in the case θ = 1/2. The question is then, how
can we estimate

E

[√
Zβ,ω
N,u

]
.

2.3 Change of measure

Let us introduce g(ω) an arbitrary positive function of the environment. By Cauchy-Schwartz
inequality we have

E

[√
Zβ,ω
N,u

]
= E

[√
Zβ,ω
N,ug(ω)g(ω)

−1/2

]
≤
√

E

[
Zβ,ω
N,ug(ω)

]√
E[(g(ω)−1]. (9.6)

If the quenched and annealed free-energy differ it is that Zβ,ω
N,u is typically much smaller

(exponentially smaller in N) than its expectation E[Zβ,ω
N,u]. Hence the expectation E[Zβ,ω

N,u] is

typically supported by an event of very small probability on which Zβ,ω
N,u. The idea is thus to

choose a function g(ω) which penalizes this event a lot while E[(g(ω)−1] does not grow too fast.
Note that if E[g(ω)] = 1 one can consider g as the probability density of a new measure P̃ with

dP̃/dP(ω) = g(ω).

We have

E

[√
Zβ,ω
N,u

]
≤
√

Ẽ

[
Zβ,ω
N,u

]√
E[(g(ω)−1]. (9.7)

2.4 The choice for P̃N

One thing which is clear is that P̃N must depend on N and has to be a change of measure which
only concerns (ωn)

N
n=1, as modifying the law of the rest will only make the cost E[(gN (ω)−1]

higher while it will not give any benefits. Another remark is that it seems reasonable that g(ω)
should be increasing in ω.

For a moment let us assume that the ωn are standard Gaussians (we will explain later how
the proof adapts to other cases). Let us choose P̃N to be the law under which (ωn)

N
n=1 are

standard Gaussians with mean −δ. We have

dP̃N

dP
(ω) = gN (ω) = exp

(
−
(

N∑

n=1

δnωn

)
−Nδ2/2

)
. (9.8)
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Hence we have

E[gN (ω)−1] = eNδ2 ,

ẼN

[
Zβ,ω
N,u

]
= E

[
Zβ,u−βδ,ω
N

]
= Zu−δβ

N .
(9.9)

Hence we have

1

N
E

[
logZβ,ω

N,u

] 2

N
logE

[√
Zβ,ω
N,u

]
≤ 1

N

(
log Ẽ

[
Zβ,ω
N,u

]
+ logE[(g(ω)−1]

)

=
1

N
logZu−δβ

N + δ2. (9.10)

Hence passing to the limit we obtain

f(β, u) ≤ f(0, u − δβ) + δ2. (9.11)

Note first that this implies that,

∀u > 0, f(β, u) < f(0, u − δβ)

(it is sufficient to choose δ sufficiently small). Second, choosing δ = uβ−1 we obtain

f(β, u) ≤ u2

β2
. (9.12)

Let us explain now how to treat the case of general ω. We have to replace the shift of the ωs by
an exponential tilt, and choose

gN (ω) = exp

(
−
(

N∑

n=1

δnωn

)
−Nλ(−δ)

)
. (9.13)

We have then

E[gN (ω)−1] = eNλ(−δ)+λ(δ) ,

Ẽ

[
Zβ,ω
N,u

]
= Z

u−λ(β)+λ(β−δ)−λ(−δ)
N .

(9.14)

where the second equation is due to

Ẽ

[
eβωn−λ(β)+u

]
= E

[
e(β−δ)ωn−λ(−δ)−λ(β)+u

]
= eλ(β−δ)−λ(−δ)−λ(β−δ)+u (9.15)

This yields
f(β, u) ≤ f [0, u+ λ(β − δ)− λ(−δ) − λ(β − δ)] + λ(δ) + λ(−δ). (9.16)

Let us choose δ(u, β) such that

λ(β − δ)− λ(−δ)− λ(β) = u. (9.17)

It is not difficult to check that this equation has one unique solution at least for u small enough
as the right hand side is increasing in δ (by convexity of λ(·))

Note that as ω are centered and of unit variance λ(x) ∼ x2/2, hence when u tends to zero
we have δ(u, β) ∼ u/λ′(β) and thus

f(β, u) ≤ λ(δ(u, β)) + λ(−δ(u, β))
u→0+∼ u2

(λ′(β))2
. (9.18)

For the rest of the chapter, for simplicity we may assume that the environment in Gaussian to
avoid technicalities.
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3 Critical point shift

3.1 Finite volume criterion

Note that by super-additivity we know that from super-additivity

E[logZβ,ω
N,u] > 0 ⇒ f(β, u) > 0. (9.19)

However, we do not have yet such a criterion to show that f(β, u) = 0 only observing a system
of finite size N . We will exhibit such a criterion by using fractional moments. For now just
recall that from (9.5)

lim inf
N→∞

1

N
logE

[
(Zβ,ω

N,u)
θ
]
= 0 ⇒ f(β, u) = 0. (9.20)

for some θ ∈ (0, 1). In this section we derive a simple recursive inequality for AN := E

[
(Zβ,ω

N,u)
θ
]
,

which will allows to prove (9.20) only by checking the value of finitely many AN .

Zβ,ω
N,u =

N−1∑

n=0

Zβ,ω
N,uK(N − n)eβωN−β2

2
+u. (9.21)

Hence using the inequality (∑

i∈I
ai

)
≤
∑

i∈I
aθi . (9.22)

valid for any θ ∈ (0, 1), and averaging we obtain that

AN ≤
N−1∑

n=0

An(K(N − n))θe−
β2

2
θ(1−θ)+θu (9.23)

Lemma 9.3. If θ < 1 and u satisfies

ρ := eθu−
θ(1−θ)β2

2

∞∑

n=1

(K(n))θ ≤ 1, (9.24)

then the sequence AN is bounded.

Proof. From (9.23) one has for all N ≥ 1

AN ≤
N−1∑

n=0

(K(N − n))θeθu−
θ(1−θ)β2

2 max(A0, A1, . . . , AN−1) ≤ ρmax(A0, A1, . . . , AN−1). (9.25)

Hence by immediate induction we have AN ≤ A0 = 1 and the result is proved.

As a consequence we have the following

Proposition 9.4. If ω are Gaussian variables then for any α ∈ (0,∞), there exists βc(K) such
that for all β > βc

uc(β) > 0.



CHAPTER 9. DISORDER RELEVANCE 66

Proof. If we fix θ ∈
(
(1 + α)−1, 1

)
, (e.g θ = (1 + α/2)−1) we have

η :=

∞∑

n=1

(K(n))θ < ∞. (9.26)

Hence we have ρ ≤ 1 provided that

β ≥
√

2(log η + θu)

θ(1− θ)
. (9.27)

and in particular the above inequality is valid for some u > 0 sufficiently small as soon as

β >

√
2 log η

θ(1− θ)
. (9.28)

4 Critical point shift at all disorder intensity (α > 1/2)

Theorem 9.5. If K satisfies (3.6) with α > 1/2 then every β > 0 there exists uβ > 0 such that

f(β, uβ) = 0.

We give a complete proof for the statement in the case α ∈ (1/2, 1) which is the more difficult
and explain how to adapt it to the case α > 1 Note that in Lemma 9.6 the choice of k and θ
can be made arbitrary.

The tool we use to prove the result is the following generalized version of Lemma 9.3

Lemma 9.6. If given θ ∈ (0, 1), k ∈ N, β > 0 and u ∈ R we have

ρk := e−
β2θ(1−θ)

2
+u

k∑

m=0

Am

∞∑

n=k−m+1

Kθ(n) ≤ 1 (9.29)

then
f(β, u) = 0.

Proof. For this, for a fixed k > 0 we modify our decomposition (9.21) to make partition function
of size up to k appear. For

Zβ,ω
N,u =

N−k−1∑

n=0

k∑

m=0

Zβ,ω
n,uK(N − n−m)eβωN−m−β2

2
+uZ

β,u,θN−mω
m . (9.30)

Using (∑

i∈I
ai

)
≤
∑

i∈I
aθi ,
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and averaging we obtain

AN ≤
N−k−1∑

n=0

k∑

m=0

AnK
θ(N − n−m)e−

β2θ(1−θ)
2

+uAm (9.31)

Note that for N ≥ k + 1 we have from (9.31)

AN ≤ max(A0, A1, . . . , AN−k−1)e
−β2θ(1−θ)

2
+u

k∑

m=0

N−k−1∑

n=0

Kθ(N − n−m)Am

≤ max(A0, A1, . . . , AN−k−1)ρk. (9.32)

Hence by an immediate induction we have for every N ≥ k + 1

AN ≤ A0 = 1. (9.33)

The challenge is then choose an appropriate value of k and to find a proper way to bound
Am for m ≤ k. In what follows, we always assume that

u ≤ β2θ(1− θ)

2

and thus it is sufficient to find an upper bound on

k∑

m=0

Am

∞∑

n=k−m+1

K(n)θ (9.34)

It will be simpler in the computation to consider θ close to one. This is in order to make
K(n)θ very close to K(n) (and will also be used to estimate A(m)) We set for the rest of the
proof

θ = θk = 1− (log k)−1.

It turns out from the computation that the good value to chose for k is k := u−1/α. From
now on we keep theses parameters fixed, and we aim to prove that ρk ≤ 1 provided that u is
sufficiently small.

Our first task is to show that
∑∞

n=k−m+1K(n)θ is of the same order as
∑∞

n=k−m+1K(n).

Lemma 9.7. There exists a constant C such that if k is sufficiently large m ≤ k

∑

n≥m+1

K(n)θk ≤ CP[τ1 > m] (9.35)

Proof. We split the sum into two parts n ≤ k3 and n ≥ k3. For the first part, using assumption
(3.6) we have

k3∑

n=m+1

K(n)θ ≤
(
max
r≤k3

K(r)(θ−1)

)( ∞∑

n=m+1

K(n)

)
. (9.36)
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According to (3.6) the second factor is of order m−α. And concerning the first factor, it is
smaller than

(ck−3(1 + α))1−θ ≤ 2e3(1+α)

.

Now if k is large enough, we have (1 + α)θ ≥ (1 + α/2). Hence from (3.6)

∑

n≥k3+1

K(n)θ ≤
∑

n≥k3+1

Cn−(1+α/2) ≤ Ck−3α/2. (9.37)

which is of a smaller order than the first term.

Thus we can prove prove that ρk ≤ 1 and thus that Theorem 9.5 holds, if we show the
following.

Proposition 9.8. Given η > 0 one can choose such that if a (in the definition of uβ) is
sufficiently small, then for all β ∈ [0,M ].

k∑

m=0

AmP[τ1 > k −m] < η

What we are going to prove is actually that Am is much smaller than E[Zβ,ω
m,0] for most values

of m.

Lemma 9.9. Given η > 0 and ε >: 0 if u is chosen sufficiently small We have for all m ∈ J[kε, k]

Am ≤ ηP [m ∈ τ ] (9.38)

On the other hand, if u is sufficiently small then for all m ≤ kε we have

Am ≤ 2P [m ∈ τ ] (9.39)

Proof of Proposition 9.8. We have

k−1∑

m=0

AmP[τ1 > m]

≤ 2

kε∑

m=0

P [m ∈ τ ]P[τ1 > k −m] + η

k∑

m=kε+1

P [m ∈ τ ]P[τ1 > k −m]

≤ η + 2(kε + 1)P [τ1 > k/2] ≤ 2η. (9.40)

The first is obtained by noticing that
∑k

m=1P [m ∈ τ ]P[τ1 ≥ k −m] = 1 (as the terms in the
sum corresponds to the probability distribution of the last renewal point before k). The last
inequality is valid for ε small if k is chosen sufficiently large.
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5 Proving Lemma 9.9

5.1 The case of small m

Note that we have
Am ≤ E[Zβ,ω

m,u]
θ = Zθ

m,u ≤ eθmuP[m ∈ τ ]θ. (9.41)

The upper bound is obtained just by observing that the number of contact is smaller than m.
We notice that if m ≤ kε, as u = k−α the first term is smaller than

√
2 if u is small enough.

And we can conclude by observing that for the value of m considered

P[m ∈ τ ]1−θ ≤ K(m)1−θ ≤
√
2.

5.2 The change of measure

To show that Am is small the idea is to perform a change of measure similar to that used in
Section 2.3. We introduce

gm(ω) := e
∑m

n=1 εωn−mε2

2 (9.42)

where ε := εk,m = 1√
m log k

. We define P̃m as the measure whose density with respect to P is

dP̃m/dP(ω) = gm(ω). Using Hölder inequality we have

E

[(
Zβ,ω
m,u

)θ]
= E

[
γ(ω)−θ

(
g(ω)Zβ,ω

m,u

)θ]
≤ E

[
gm(ω)−

θ
1−θ

]1−θ
E
[
gm(ω)Zβ,ω

m,u

]θ
. (9.43)

To conclude we need to show that the first term is not too large and that the second is much
smaller than P[m ∈ τ ].

Lemma 9.10. We have

E
[
g(ω)−

θ
1−θ

]1−θ
≤ 2. (9.44)

Proof. We have

E
[
g(ω)−

θ
1−θ

]
= E

[
e−

θ
1−θ

∑m
n=1 εωn+

θ
1−θ

mε2

2

]
≤ e

θε2m
2(1−θ)2 . (9.45)

Hence

E
[
g(ω)−

θ
1−θ

]1−θ
≤ e

ε2m
2(1−θ) ≤ e1/2. (9.46)

Lemma 9.11. Given η > 0, if u is chosen sufficiently small, for all m ≥ kε

E
[
gm(ω)Zβ,ω

m,u

]
= Ẽm[Zβ,ω

m,u]. (9.47)

Note that under P̃m the first m ωs are Gaussian with mean −εk,m and hence

Ẽm[Zβ,ω
m,u] = E

[
Zβ,ω
m,u−εβ

]
= Zm,u−εβ. (9.48)
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Now the important observation, is that with our choice u = k−α, given A > 0 arbitrary, we
have for u sufficiently small

u− εβ = k−α − β√
m| log k|

≤ −Am−α

Hence to prove (9.11), we just need an estimate on

Zm,−Am−α ≥ Zm,β−uε.

5.3 Estimating pure partition function close to the critical point

Lemma 9.12. For any η there exists m0 and A such that for every m ≥ m0

Zm,−Am−α ≤ ηP[m ∈ τ ]. (9.49)

Note that
Zm,−Am−α = P[m ∈ τ ]E

[
e−Am−α

∑m
n=1 δn | m ∈ τ

]
. (9.50)

Our objective is to show that the second term is small. We have

E
[
e−Am−α

∑m
n=1 δn | m ∈ τ

]
≤ e−Aε +P

[
m∑

n=1

δn ≤ εmα | m ∈ τ

]
. (9.51)

Hence we are left to prove

Lemma 9.13.

lim
ε→0

lim sup
m→∞

P

[
m∑

n=1

δn ≤ εmα | m ∈ τ

]
= 0 (9.52)

Note that we already proved the statement for the unconditional measure. Hence we just
need to show that the conditioning m ∈ τ is not that much of a problem. We admit the following
result (for a proof see [2]).

Lemma 9.14. Let A be any event that can be expressed in terms of τ ∩ [0,m/2]. We have

P [A | m ∈ τ ] ≤ CP [A] , (9.53)

where the constant C does not depend on m.

Using this Lemma we obtain that

P[

m∑

n=1

δn ≤ εmα | m ∈ τ ] ≤ P[

m/2∑

n=1

δn ≤ εmα | m ∈ τ ] ≤ CP[

m/2∑

n=1

δn ≤ εmα]. (9.54)

And by Lemma 8.4 the r.h.s can be made arbitrarily small by choosing ε small.

5.4 The case α > 1

To perform the proof in the case α > 1, it is sufficient to consider k = u−1 in the computation,
and to show that the pinning parameter after the change of measure is larger than Ak−1. Note
that using the renewal Theorem, we have P[m ∈ τ ] converges to a positive constant in this case,
and thus Lemma 9.14 is trivial.



Chapter 10

Smoothing of the free-energy

1 The result

This result is valid for all α but bears more meaning when α > 1/2

Theorem 10.1. For any β > 0, there exists a constant cβ such that

f(β, h) ≤ cβ(h− hc(β))
2. (10.1)

Moreover, there exists a constant C such that for β ≤ 1 we can choose cβ = Cβ−2.

The result implies in particular that

lim inf
h→hc(β)

log f(β, h)

log(h− hc(β))
≥ 2. (10.2)

In particular the value of this exponent differ from that corresponding to β = 0.

lim
h→hc(β)

log f(0, h)

log(h− hc(0))
= max(1, α−1). (10.3)

We are going to restrict the proof to the Gaussian case. The base of the proof is to say that
if the free-energy is too big, then one can find a localization strategy at the critical point hc(β).

The ideas for the localization strategy is to visit only regions where the ω takes higher values.

2 The contribution and frequency of rare stretches

In this chapter we use the notation u = h − hc(β) Let us consider u > 0, fix ε > 0. From the
definition of the free-energy, there exists N0(u, ε) which is such that for all N > N0

P

[
logZ

β,hc(β)+u
N ≥ N (f(β, hc(β) + u)− ε)

]
≥ 1/2. (10.4)

Now we want to get a lower bound for the probability for the event

AN :=
{
logZ

β,hc(β),ω
N ≥ N (f(β, hc(β) + u)− ε)

}
. (10.5)
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Lemma 10.2. For any ε, β, u > 0, one can find N1 ≥ N0 such that for all N ≥ N1

P[AN ] ≥ exp

(
−
(

u2

2β2
+ ε

)
N

)
. (10.6)

Proof. Set

gN (ω) := e
∑N

n=1(u/β)ωn− u

2β2 . (10.7)

and set
dP̃N

dP
(ω) = gN0(ω). (10.8)

We have (10.4)
P̃N(AN ) ≥ 1/2 (10.9)

On the other hand we have for all θ < 1

P̃N (A) = E [gN (ω)1A] ≤ (P[A])θ E
[
gN (ω)

1
1−θ

]1−θ
. (10.10)

As we have

E

[
gN (ω)

1
1−θ

]1−θ
θ

= e
− Nu2

2β2(1−θ) , (10.11)

by choosing θ sufficiently close to zero (e.g N−1/2), we get

P[AN ] ≥ 2−(1/θ)e
− N0u

2

2β2(1−θ) ≥ exp

(
−
(

u2

2β2
+ ε

)
N

)
. (10.12)

In the rest of this chapter, we are going to use the Lemma for a partition function which
includes environment at the first point but not at the last

Zω
[a,b] := E

[
e
∑b−a−1

n=0 (ωa+n+h)δnδb−a

]
(10.13)

3 The strategy

We split the system in stretches of size N2 ≥ N1, and we consider a system of size mN2 for
m ≥ 1. We want the renewal to visit only the regions [(i− 1)N2, iN2] which are such that

logZω
[(i−1)N2,iN2]

≥ N2 (f(β, hc(β) + u)− ε) . (10.14)

We set T0 = 0 and

Tk := inf
{
i ≥ Tk−1 + 2 | logZω

[(i−1)N2,iN2]
≥ N2 (f(β, hc(β) + u)− ε)

}
. (10.15)

Setting
Im := max{k | Tk ≤ N − 2}, (10.16)
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we have (using our strategy) and setting by convention

Z
β,hc(β),ω
N2m

≥
Im∏

k=1

K((Tk − Tk − 1− 1)N2)Z
ω
[(i−1)N2,iN2]

eβωN2Tk
+hc(β)

×K(N2(m− TIm))e
βωN2m

+hc(β). (10.17)

Using the definition of Ti this implies

logZ
β,hc(β),ω
N2m

≥ |Im|N2 (f(β, hc(β) + u)− ε)

+

Im∑

k=1

[(βωN2Tk
+ hc(β)) + logK((Tk − Tk − 1− 1)N2)]

+ logK(N2(m− TIm)) + (βωN2m + hc(β)) . (10.18)

Note that the increment of Tk are IID variables (this comes from the fact the law of (ωn)n≥(Ti+1)N

is independent of Ti and of i) and that the ωN2Tk
are also IID For this reason as Im goes to

infinity almost surely

lim
m→∞

1

|Im|

Im∑

k=1

[(βωN2Tk
+ hc(β)) + logK((Tk − Tk − 1− 1)N2)] = hc(β)+E[log (K(T1 − 1)N2)].

(10.19)
Now not also that by the law of large numbers we have

lim
m→∞

|Im|
m

= P[AN2 ]. (10.20)

Hence we have

0 = f(β, hc(β)) ≥ P[AN2 ]

(
1

N2
(hc(β) + E [log (K(T1 − 1)N2)]) + f(β, hc(β) + u)− ε

)
.

(10.21)
Hence we have

f(β, hc(β) + u) ≤ 1

N2
(−E [logK ((T1 − 1)N2)]− hc(β)) + ε. (10.22)

Hence we are left with estimating

− 1

N2
E [log (K(T1 − 1)N2)] . (10.23)

Note that T1 − 1 is a geometric variable of parameter pN2 := P[AN2 ]
We will use the following Lemma

Lemma 10.3. Let TN be a geometric variable of parameter pN := P[AN ]. We have we have

lim inf
N→∞

1

N
E [log (K(TNN))] ≥ −(1 + α)

u2

2β2
. (10.24)
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Proof. Set p = pN2 we have

Pp [logK (TNN)] =
∑

n≥1

p(1− p)n−1 logK(nN)

= −(1 + α)
∑

n≥1

p(1− p)n−1 log(nN) +
∑

n≥1

p(1− p)n−1 log
(
(nN)1+αK(nN)

)
. (10.25)

Note that the second sum is bounded uniformly in N2 from the assumption on K. The first sum
is equal to

logN − log p+
∑

n≥1

p(1− p)n−1 log pn, (10.26)

and we have

lim
p→0

p
∑

n≥1

∑

n≥1

p(1− p)n−1 log pn =

∫ ∞

0
log te−tdt. (10.27)

in particular the sum is uniformly bounded in p As we have

lim inf
N→∞

log pN
N

≥ − u2

2β2
, (10.28)

we can conclude.

Hence choosing N2 sufficiently large we have

f(β, hc(β) + u) ≤ (1 + α)
u2

2β2
+ 2ε. (10.29)

As ε is arbitrary, this finishes the proof.

4 Consequences on number of contact at the critical point

Proposition 10.4. There exists a constant Cβ such that for all N ≥ 1

EE
β,ω,hc(β)
N

[
N∑

n=1

δn

]
≤ Cβ

√
N logN (10.30)

Recall that E[HN(τ)] = Nα, hence for α > 1/2 we obtain that the number of contact at the
critical point is much smaller in the critical case.

Proof. As we have seen before we have for all u

f(β, hc(β) + u) ≥ u

N
EE

β,ω,hc(β)
N

[
N∑

n=1

δn

]
+

1

N
E logZ

β,ω,hc(β)
N . (10.31)

Hence

EE
β,ω,hc(β)
N

[
N∑

n=1

δn

]
≤ Nf(β, hc(β) + u)

u
− E logZ

β,ω,hc(β)
N

u
≤ (1 + α)Nu

2β2
− logK(N)− hc(β)

u
.

(10.32)
Choosing u = N−1/2(logN)1/2 we obtain the result.
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