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TOPICS IN RANDOM WALKS

Quentin Berger1, 2, Céline Bonnet3, Lucile Laulin4 and Kilian Raschel5

Abstract. We collect a few recent results on random walks, which are ubiquitous in probability
theory. The topics covered are: persistence problems for stochastic processes, large fluctuations in
multi-scale modeling for rest hematopoiesis, and fine properties of the elephant random walk.

1. General introduction

We present here some recent results on random walks. These results were presented in the session “Random
walks” of the Journées MAS 2022, which consisted of four talks by Quentin Berger, Céline Bonnet, Lucile Laulin
and Löıc de Raphélis. The talks covered a wide range of topics, reflecting the diversity in this field. The present
article contains extended abstracts of three of these talks. We now give an outlook of their content.

In Section 2, Quentin Berger presents an overview on the question of persistence (or survival) for one-
dimensional stochastic processes—indexed either by discrete of continuous time. This question has several
applications, in particular in physics, and has been studied for a very long time: generally speaking, the main
goal consists in estimating the asymptotic behavior of the probability that the process remains above a given
barrier for a long time t. The main focus here is on the persistence problem for processes (ζt)t≥0 that are
additive functionals of a Markov process, such as the integral of a function of a Markov process. The author
reviews existing and recent results on the persistence probabilities of such processes: more specifically, he shows
that, for a large class, the persistence probability decays like t−θ as t → ∞, for some exponent θ > 0. He also
provides some ideas of the proof, the goal being to explain how the exponent θ appears and how it is related to
the underlying Markov process and the associated integration function.

We now move to Section 3. Hematopoiesis is a biological phenomenon (process) of production of mature
blood cells by cellular differentiation. It is based on amplification steps due to an interplay between renewal
and differentiation in the successive cell types from stem cells to mature blood cells. Céline Bonnet presents
here a published work, [12], in which she studies this mechanism with a stochastic point of view to explain
unexpected fluctuations on the mature blood cell numbers, as surprisingly observed by biologists and medical
doctors in a rest hematopoiesis. The author consider three cell types: stem cells, progenitors and mature blood
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cells. Each cell type is characterized by its own dynamics parameters: its division rate and by the renewal and
differentiation probabilities at each division event. Céline Bonnet models the global population dynamics by a
three-dimensional stochastic decomposable branching process. She shows that the amplification mechanism is
given by the inverse of the small difference between the differentiation and renewal probabilities. Introducing
a parameter K which scales simultaneously the size of the first component, the differentiation and renewal
probabilities and the mature blood cell death rate, she describes the asymptotic behavior of the process for
large K. Finally, the author shows that each cell type has its own size scale and its own time scale. Focusing
on the third component, she proves that the mature blood cell population size, conveniently renormalized (in
time and size), is expanded in a usual way inducing large fluctuations.

The Elephant Random Walk was introduced in 2004 as a variation of the simple random walk on Z with
memory. Instead of choosing its next step independently of its previous movements, the elephant uniformly
selects a time k from its past. For a given memory parameter p, it repeats what it did at that time with
probability p, or does the opposite with probability 1 − p. This memory-dependent behavior results in three
distinct regimes: diffusive, critical, and superdiffusive.

In Section 4, Lucile Laulin presents how this process can be studied from three different approaches: using
a well-chosen martingale, establishing a connection with Polya-type urns, or considering it as a special case of
step-reinforced random walk, which leads to a representation as random recursive trees with Bernoulli bond
percolation.

Acknowledgments. We warmly thank Pierre Calka for his encouragement and support.

2. Persistence problems for (integrated) stochastic processes

Quentin Berger

The goal of this contribution is to give an overview of old and recent results on a very classical topic
in probability theory and in theoretical physics: the question of persistence for (one-dimensional) stochastic
processes, also known as survival problems. Given a stochastic process (ζt)t≥0 with ζ0 = 0, which can be either
in discrete or continuous time, the problem consists in estimating the probability that the process remains above
a given barrier (i.e., survives) for a long period of time. The most natural (and simple) example is when the
barrier is fixed through time: one wants to estimate the probability

P
(
ζs > z for all 0 ≤ s ≤ t

)
= P

(
Tz > t

)
(1)

as t→∞, for z < 0 fixed, where Tz := inf{s ≥ 0, ζs ≤ z} is the hitting time of level z; one may also study the
probability P(ζs ≥ 0 for all 0 ≤ s ≤ t). In many cases of interest, the probability (1) decays polynomially, that
is P(Tz > t) = t−θ+o(1) as t → ∞, for some θ called the persistence exponent. Finding the value of θ is often
a difficult problem which is at the center of what follows. As a second step, one also wants to understand the
behavior of the process (ζt)t≥0 when conditioned on survival, i.e., on {Tz > t}, in the large t limit.

2.1. Some motivations from physics

Persistence problems appear naturally in many contexts, for instance in models of fluctuating interfaces,
polymer chains, population dynamics, reaction-diffusions, etc. The process (ζt)t≥0 can either be a random walk
or a Lévy process, a more general Markov chain or some more involved non-Markovian process, such as an
additive functional of a Markov process. We refer to [13] and [3] for reviews in the physics and mathematical
literature, respectively. My interest in this topic has been fueled by discussions with K. Chanard and F. Pétrélis
who were interested in a sismology-related question; let me briefly describe their question as a motivation for
the specific problem described below.

The one-dimensional model for earthquakes considered in [34] is a chain of sliders connected by springs,
pulled by a force: the system alternates between periods where no slider moves (due to friction, the “stress”
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accumulates) and earthquake events when a slider moves and possibly makes other sliders move with it. One
is led to consider the “stress” profile, which somehow describes in space the intensity of the constraint between
tectonic plates (see Figure 1): physicists then argue that during an earthquake, the local displacement variation
is a function of the stress.

In more mathematical terms, let us denote (σx)x∈R the stress profile; it appears natural to model it by a
stochastic process. For an earthquake that nucleates at x = 0, the displacement ζt at position t ≥ 0 is given by
the accumulation of local displacements: in other words,

ζt = z0 +

∫ t

0

f(σx)dx (2)

for some function f . The earthquake then propagates until ζt = 0 (i.e., there is no displacement anymore),
that is up to distance T = inf{t ≥ 0, ζt ≤ 0}, see Figure 1. Additionally, an important physical quantity is the

moment M =
∫ T
0
ζtdt of the earthquake, closely related to its magnitude.

Random process (σx)x∈R
“Stress”

Position

Moment

Propagation distance

Relative displacement

Position

Integrated process

Figure 1. The stress profile (σx)x∈R describes the intensity of the constraint in space. When
an earthquake nucleates (say at x = 0), the relative displacement ζt at position t is the integral
of a function of the stress. The earthquake propagates up to distance T = inf{t, ζt ≤ 0} (there

is no relative displacement for t > T ) and the moment of the earthquake is M :=
∫ T
0
ζtdt.

We are therefore interested in estimating the probability of the rare events {T > t} and {M > m} as
t,m → ∞, which is directly related to the persistence problem for the process (ζt)t≥0, called an additive
functional of (σx)x≥0. One aims to obtain power-law asymptotics, of the type

P(T > t) = t−θ+o(1) as t→∞ and P(M > m) = m−χ+o(1) as m→∞ . (3)

2.2. Persistence problems for random walks and Lévy processes

Before turning to persistence problems for additive functionals of Markov processes as (2), let us comment
on the case of random walks and Lévy processes. For simplicity, we focus our exposition on the case of random
walks: let (Ui)i≥1 be i.i.d. real random variables and let Xn :=

∑n
i=1 Ui, n ≥ 1, be the associated random walk.

The symmetric case: Sparre Andersen’s formula. Maybe the most striking result is in the symmetric case,
where the persistence probability is known explicitly (at least when the increments are continuous). This is
known as Sparre Andersen’s fluctuation theorem, see [41]; we also refer to [17] for a short and elegant proof of
the statement below.
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Theorem 2.1 (Sparre Andersen, [41]). Let (Ui)i≥0 be i.i.d. symmetric real random variables. Then

P(Xk > 0 for all 1 ≤ k ≤ n) ≤ 1

4n

(
2n

n

)
≤ P(Xk ≥ 0 for all 1 ≤ k ≤ n) .

In particular, if the law of Ui has no atom, i.e., if P(Ui = x) = 0 for all x ∈ R, then the three terms are equal.

This result is striking since it shows that, for symmetric and continuous variables, the survival probability does
not depend on the specific law of the random walk; in particular no moment condition is needed. It also gives
the persistence exponent θ = 1/2, since 1

4n

(
2n
n

)
∼ (πn)−1/2.

The case of general random walks or Lévy processes. The case of a general random walk (or Lévy process)
can also be treated via fluctuation theory, see e.g. [20] and references therein. The so-called Wiener–Hopf
factorization allows one to obtain the joint generating/characteristic function of the first ladder epoch T =
min{n ≥ 1, Sn < 0} and ladder height H = ST , known as Spitzer–Baxter formula: for λ ∈ [0, 1] and µ ∈ C with
Re(µ) ≥ 0, we have1

1− E
[
λT eµH

]
= exp

(
−
∞∑
n=1

λn

n
E
[
eµSn1{Sn≤0}

])
. (4)

Working with formula (4) and using Tauberian theorems, it can be shown that n 7→ P(T > n) is regularly
varying with index −ρ, ρ ∈ (0, 1), if and only if limn→∞

1
n

∑n
k=1 P(Sk < 0) = ρ ∈ (0, 1), the latter being known

as Spitzer’s condition (see e.g. [10]). As a particular case, if the random walk is centered and has finite variance,
one has limn→∞ P(Sn > 0) = 1/2 by the central limit theorem, so the persistence exponent is θ = 1/2; one can
actually show in that case that P(T > n) ∼ c0n−1/2 for some constant c0, see [21, XII §7, Thm. 1.a].

2.2.1. Persistence problems for additive functionals of Markov processes: an overview

We now turn to the problem motivated by Section 2.1: let (Xs)s≥0 be a Markov process (in discrete or
continuous time), and consider similarly to (2) the additive functional

ζt :=

t∑
s=1

f(Xs) or ζt :=

∫ t

0

f(Xs)ds, (5)

for some measurable function f : R→ R, depending on whether we are interested in the discrete or continuous
time setting. We assume that f is sign-preserving, meaning that xf(x) ≥ 0 (by convention we set f(0) = 0);
note that a large part of the literature consider the case f(x) = x.

The general goal is again to estimate, for some fixed z < 0, the persistence probability P(Tz > t) as t → ∞
where Tz := inf{s > 0, ζs ≤ z}. We now present a quick overview of the literature, with some ideas of proof in
the next sections.

Continuous time, part I: integrated Brownian motion and α-stable Lévy processes. The persistence problem

for the integrated process ζt =
∫ t
0
Xsds has first been investigated in the case where (Xs)s≥0 is a standard

Brownian motion, starting with [22]. One finds the following asymptotic behavior2:

P(Tz > t) ∼ c0|z|1/6t−1/4 as
t

|z|2/3
→ +∞ , with c0 =

34/3Γ(2/3)

π213/12Γ(3/4)
.

The results are more recent in the case where (Xt)t≥0 is a strictly α-stable Lévy process, α ∈ (0, 2]. If (Xt)t≥0
has a positivity parameter 1−% := P(Xt > 0) (which is a constant that does not depend on t for strictly α-stable
Lévy processes), then the persistence exponent is found to be θ = %

1+α(1−%) , see [36]. Note that one recovers

1Let us also mention that a Wiener–Hopf factorization holds without taking transforms, see [2].
2Let us point out that Lachal [33] actually provides the explicit density of (Tz , XTz ) for z < 0.
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θ = 1/4 for the Brownian motion since then α = 2, % = 1/2. Also, for spectrally positive α-stable processes
with α ∈ (1, 2), one has % = 1/α so the persistence exponent is θ = α−1

2α , as had been proven by [39].

Discrete time: integrated random walks. Let (Ui)i≥1 be i.i.d. random variables and let Xn :=
∑n
i=1 Ui be the

associated random walk and ζn =
∑n
k=1Xk the integrated walk. If the random variables (Ui)i≥1 are centered

and have a finite variance, then we have3 P(T0 > n) � n−1/4, recovering the persistence exponent θ = 1/4 found
in the case of the integrated Brownian motion. This has first been proved by [40] in the case of the simple
random walk and then by [17] for general walks; finally the precise asymptotics P(T0 > n) ∼ c0n−1/4 as n→∞
was given in [18]. Let us mention that in the simple random walk case, the same persistent exponent θ = 1/4
also holds for the additive functional ζn =

∑n
k=1 f(Xk) provided that f is symmetric, see [8]; we will come back

to that in Section 2.3.
The case of a (centered) random walk in the domain of attraction of an α-stable law, α ∈ (0, 2), remains mostly

open. The results in the continuous setting (see the above paragraph) suggest that for assymptotically α-stable
random walks with positivity parameter 1−%, the persistence exponent of (ζn)n≥0 should be θ = %

1+α(1−%) . We

refer to [17, 43] for examples of asymptotically totally asymmetric α-stable random walks (skip-free centered
random walks, to simplify), where the authors find the persistence exponent θ = α−1

2α as in the continuous case
(see [39] and the above paragraph).

Continuous time, part II: homogeneous additive functionals of self-similar processes. Over the past 30 years,
persistence problems have been studied for additive functionals as in (5), with a focus on the case of a homo-
geneous functional f(x) = |x|γ(c+1{x>0} − c−1{x<0}) for some γ ∈ R and on the case of self-similar Markov
processes (Xs)s≥0.

First, in the case of a Brownian motion, Isozaki and Kotani [26] proved that, for γ > −1,

P(Tz > t) ∼ c0|z|νρt−ρ/2 as
t

|z|2ν
→ +∞ , with ν =

1

2 + γ
,

where ρ is some asymmetry parameter that depends explicitly on γ and c+/c−; one has ρ = 1/2 if c+ = c−,
recovering the persistence exponent θ = 1/4 found in [25].

A more recent work [35] also considered the case of a skew-Bessel process (Xs)s≥0 of dimension δ ∈ (0, 2) and
skewness parameter η ∈ (−1, 1); loosely speaking, it is a Bessel process4 with an asymmetry η when it touches
0. We stress that (Xs)s≥0 enjoys some self-similarity, and so does (ζs)s≥0 if the functional f is homogeneous. In
that setting (for δ ∈ [1, 2) and γ > 0) Profeta [35] proves, among many other things, that P(Tz > t) ∼ c0|z|2νθt−θ
as t→∞, where θ is explicit and depends on δ, η, γ and c+/c−, and ν = 1/(2 + γ) as above.

Continuous time, part III. The above-mentioned results deal with homogeneous additive functionals (ζt)t≥0
of some specific processes (Brownian motion or skew-Bessel process): this way, (ζt)t≥0 is built to enjoy scaling
properties, making some exact computations possible. But the strategy developed in [26], based on an excursion
decomposition of the underlying Markov process (Xs)s≥0 together with a so-called Wiener–Hopf factorization
of some auxiliary Lévy process, actually proves to be robust5.

In that spirit, we attacked in [9] this problem from a general perspective, trying to make the argument as
transparent as possible, clarifying also the role of the different parameters in the persistent exponent θ, which
sometimes appears a bit mysterious (at least at first glance). In particular, in [9], we express the persistence
exponent as θ = βρ, where β ∈ (0, 1] is the scaling exponent for the local time of (Xs)s≥0 at level 0 and
1− ρ ∈ (0, 1) is the (asymptotic) positivity parameter of some auxiliary Lévy process (Zt)t≥0 (we stress that ρ
depends on the asymmetry of the function f and of the process (Xs)s≥0). More precisely, under some relatively

3We use the standard notation an � bn if an/bn is bounded away from 0 and infinity.
4A Bessel process (Ys)s≥0 of dimension δ ∈ (0, 2) is a non-negative process, solution of the SDE dYs = dBs + δ−1

2Ys
ds, with

(Bs)s≥0 a standard Brownian motion; see [37] as a reference. In particular (Ys)s≥0 is the absolute value of a Brownian motion

when δ = 1 and (Ys)s≥0 enjoys some scaling properties; note also that 0 is reflecting when δ ∈ (0, 2).
5Somehow, the probabilist point of view has been abandonned later on for a more analytical approach.
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weak condition on the process (Xs)s≥0 and on the function f , we show in [9] that there exists a slowly varying
function ς(·) and some function V(·) such that

P(Tz > t) ∼ c0V(z) ς(t) t−βρ as t→ +∞ . (6)

The intuition behind this result (and in particular behind the persistence exponent θ = βρ) and some of the
ideas of the proofs are given in Sections 2.3–2.4 below.

2.3. Discrete (symmetric) case: excursions and exchangeable Sparre Andersen

As a warm up, let us consider the discrete setting where (Xn)n≥0 is a (symmetric) birth and death chain, i.e., a
Markov chain on Z with |Xn−Xn−1| ≤ 1 for all n, with symmetric transition probabilities p(x, y) = p(−x,−y)
for x, y ≥ 0. This includes for instance the simple random walk or Bessel-like random walks (which, when
diffusively rescaled, converge to a symmetric skew-Bessel processes, see [1] and references therein). Let us show
that is f is an odd function (with xf(x) ≥ 0) the persistence exponent of ζn :=

∑n
k=1 f(Xk) is θ = β/2, where

β is the scaling exponent for the local time Ln =
∑n
i=1 1{Xi=0}; in particular θ = 1/4 if (Xk)k≥0 is the simple

random walk (full details are given in [8]).

Excursion decomposition. A natural approach is to decompose the process (Xk)k≥0 into excursions, on which
the integrated process (ζn)n≥0 is monotone. Let (τj)j≥0 be the successive returns to 0 of (Xk)k≥0, that is τ0 = 0
and iteratively τj := min

{
k > τj−1, Xk = 0

}
for j ≥ 1. Then, we define

Yj :=

τj∑
k=τj−1+1

f(Xk) , and Zk :=

k∑
j=1

Yj ,

which are the contributions of the j-th excursion, resp. of the k first excursions, to ζn; note that we may also
write Zk = ζτk . By the (strong) Markov property the random variables (Yj)j≥1 are i.i.d., so (Zk)k≥0 is a random
walk; note also that the increments (Yj)j≥1 are symmetric here, since the Xk are symmetric and f is odd.

All together, with Ln =
∑n
i=1 1{Xi=0} the local time of (Xk)k≥0 at 0, we get that

ζn = ZLn + Ŷn , (7)

where Ŷn =
∑n
k=τLn+1 f(Xk) is the contribution of the last (uncomplete) excursion of (Xk)k≥0. Then, either

forgetting the contribution of Ŷn or imposing Ŷn to be non-negative, and recalling that ζk is monotone on each
excursion, one easily gets that

P
(
ζk ≥ 0 for all 0 ≤ k ≤ n

)
� P

(
Zk ≥ 0 for all 0 ≤ k ≤ Ln

)
. (8)

Now, the last expression involves a persistence probability for a sum of i.i.d. symmetric random variables,
(Yj)j≥1, but the number Ln of terms in the sum is random and more importantly is not independent of the
random variables (Yj)j≥1.

Sparre Andersen for exchangeable and sign-invariant vectors. As mentioned above, we cannot a priori di-
rectly apply techniques used for random walks described in Section 2.2. However, Sparre Andersen’s Theo-
rem 2.1 remains valid assuming only that the random vector (U1, . . . , Un) is exchangeable in place of i.i.d., i.e.,
(Uσ(1), . . . , Uσ(n)) has the same distribution as (U1, . . . , Un) for any permutation σ, and sign-invariant as a
substitute for symmetric, i.e., (ε1U1, . . . , εnUn) has the same distribution as (U1, . . . , Un) for any (εi)1≤i≤n ∈
{−1, 1}n; this is only briefly outlined in [41] and we refer to [8] for an elementary proof.
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Theorem 2.1’. Let (U1, . . . , Un) be an exchangeable and sign-invariant random vector and define Sk =
∑k
i=1 Ui

for 1 ≤ k ≤ n. Then we have

P(Sk > 0 for all 1 ≤ k ≤ n) ≤ 1

4n

(
2n

n

)
≤ P(Sk ≥ 0 for all 1 ≤ k ≤ n) .

In particular, if the law of (U1, . . . , Un) has no atom then the three terms are equal.

As an application, we can treat the right-hand side probability in (8), by noticing that conditionally on
{Ln = m, τm = x}, the excursion lengths (τj − τj−1)1≤j≤m are simply conditioned to have a sum equal to x:
this shows that (Y1, . . . , Yn) are exchangeable and they are also sign-invariant since the sign of an excursion is
independent from its length (by symmetry). Hence, conditioning by Ln, τLn then applying Theorem 2.1’, we
get that

P
(
Zk > 0 for all 0 ≤ k ≤ Ln

)
� E

[
1

4LN

(
2Ln
Ln

)]
� E

[
(1 + Ln)−1/2

]
.

Therefore, if Ln is of order nβ for some β ∈ (0, 1] (e.g. β = 1/2 for the simple random walk), then after a bit of
technicality we end up with

P
(
ζk > 0 for all 0 ≤ k ≤ n

)
� n−β/2 as n→∞.

Comments on the non-symmetric case. More generally, the excursion decomposition remains valid and in
particular the relation (8) still holds. The last step then consists in showing that if one has the following two
ingredients: (i) P(Zk > 0 for all k ≤ `) = `−ρ+o(1) as `→∞, which is a persistence estimate for a random walk,
tractable as discussed in Section 2.2; (ii) Ln is of order nβ for some β ∈ (0, 1]; then one can conclude that

P
(
Zk > 0 for all 0 ≤ k ≤ Ln

)
� E

[
(1 + Ln)−ρ

]
� n−βρ .

The difficulty here comes from the intricate relation between (Zk)k≥0 and Ln and is overcome thanks to a
Wiener–Hopf decomposition of the bivariate random walk (τk, Zk)k≥0; we refer to the discussion below, in the
continuous setting. One should also be able to obtain the sharp persistence probability by controlling the last
part of the integral, i.e., Ŷn in (7).

2.4. Continuous case: excursion decomposition and some ideas of the proof

In the continuous setting, we consider a càdlàg strong Markov process (Xs)s≥0 in R and we assume that 0 is
recurrent and regular for itself, i.e., η0 := inf{s > 0, Xs = 0} satisfies P(η0 = 0) = 1. These assumptions allow
one to have some excursion theory of (Xt)t≥0 outside 0. In particular, analogously to the discrete setting, one
may define the local time Lt of (Xt)t≥0 at level 0 and its right-continuous inverse τt := inf{u ≥ 0, Lt > u}.

Then, denoting ξu := inf{ζs, s ≤ u} and gt := sup{s < t,Xs = 0}, we may rewrite the persistence probability
P(Tz > t) = P(ξt > z) as follows:

P(ξt > z) = P(ξgt > z, ξgt + ζgt − ξgt + It > z) ∼ P(ξgt > z, ζgt − ξgt + It > 0) , (9)

where It =
∫ t
gt
f(Xs)ds is the contribution of the last (uncomplete) excursion; we refer to Figure 2 for an

illustration. The last equivalence in (9) has to be justified properly but comes from the fact that z ≤ z−ξgt ≤ 0,
with z much smaller than the typical fluctuations of ζgt − ξgt + It.

Then, analogously to the discrete setting, we define the Lévy process

Zt := ζτt =
∑
s≤t

∫ τs

τs−

f(Xu)du .



8 ESAIM: PROCEEDINGS AND SURVEYS

0 2000 4000 6000 8000 10000
250

0

250

500

750

1000

1250

1500

-

6

t

ξgtz

gt

ζgt

ζt
?

It

Figure 2. Representation of a trajectory of (ζs)s≥0 and of its decomposition into three parts:
ξgt , ζgt − ξgt and It. The blue dots represent the returns to 0 of (Xt)t≥0.

Let us note that, while τt and Zt are not independent, (τt, Zt)t≥0 defines a Lévy process. Then, provided that
f(x) preserves the sign of x and that (Xt)t≥0 cannot cross 0 without touching 0, we get that (ζt)t≥0 is monotone
on excursions of (Xt)t≥0, i.e., on intervals [τs−, τs], so we have that ξτt = inf{ζs, s ≤ τt} = inf{Zs, s ≤ t}. Note
also that ζgt = ZLt and ξgt = inf{Zs, s ≤ Lt}.
A (standard) trick to gain independence. Let e be an exponential random variable of parameter q > 0,
independent of (Xt)t≥0. Then, one may consider the persistence probability P(Tz > e), which corresponds to
taking the Laplace transform of t 7→ P(Tz > t). One can then easily relate the behavior of P(Tz > e) as q ↓ 0
to that of P(Tz > t) as t ↑ ∞ by Tauberian theorems.

It turns out that this trick allows us to gain independence: Proposition 4.2 in [9] shows that (Xt)t<ge and
(Xge+s)s≤e−ge are independent, so in particular ξge , ζge−ξge are independent of Ie. One also gain independence
thanks to a Wiener–Hopf factorization of the Lévy process (τt, Zt), from which one may obtain a formula for
the joint Laplace transform of (ξge , ζge − ξge) (see [9, Cor. 4.6]): one deduces in particular that ξge and ζge − ξge
are also independent.

Going back to (9) and replacing t by the exponential random variable e of parameter q, this gives that

P(Tz > e) ∼ P(ξge > z)P(ζge − ξge + Ie > 0) ,

with ζge − ξge and Ie independent. It then remains to study the probability P(ξge > z) as q ↓ 0 and show that
P(ζge − ξge + Ie > 0) converges to a constant c1 ∈ (0, 1].

The behavior of P(ξge > z) can be deduced from the computation of the Laplace transform of ξge , which is
expressed in terms of (τt, Zt), see [9, Cor. 2.7]. For the term P(ζge − ξge + Ie > 0), one needs some assumption.
In practice the study is divided into two cases: (i) if (Xt)t≥0 is positive recurrent, then Ie actually remains tight
and P(ζge − ξge + Ie > 0) goes to 1; (ii) if there is a scaling sequence (cq)q>0 such that Ie/cq and (ζge − ξge)/cq
converge in distribution as q ↓ 0 to I and W respectively (that are independent), then P(ζge − ξge + Ie > 0)
converges to P(I +W > 0) ∈ (0, 1).

A Wiener–Hopf factorization. A key tool in the analysis in [9] is a Wiener–Hopf factorization for the bivariate
process (τt, Zt). In practice, we introduce the infimum process St = infs∈[0,t] Zs and the last time Gt :=
sup{u < t, Zu = Su} when the process is equal to its infimum. Then, Theorem 4.3 in [9] shows that if e
is an exponential random variable of parameter q > 0 independent of (Xt)t≥0, the triplets (Ge, τGe , Se) and
(e−Ge, τe−τGe , Ze−Se) are independent, with an infinitely divisible distribution that is expressed explicitly in
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terms of the distribution of (τt, Zt). This also allows one to obtain various (Spitzer–Baxter) formulas for joint
Laplace transforms, in particular for (ξgt , ζgt − ξgt) = (SLt , ZLt − SLt), in terms of the distribution of (τt, Zt).

Some results. Let us now briefly describe the results of [9], separated into two parts.

(i) If (Xt)t≥0 is positive recurrent. Then t 7→ P(Tz > t) is regularly varying with exponent −ρ, ρ ∈ (0, 1),

if and only if Spitzer’s condition holds: limt→∞
1
t

∫ t
0
P(ζs < 0)ds = ρ ∈ (0, 1).

(ii) If there are scaling sequences (at)t≥0 (bt)t≥0 such that (τt/bt, Zt/at) converges in distribution to a
(β, α)-stable law with β ∈ (0, 1) and α ∈ (0, 2], and such that It/ct converges in distribution, with
ct = a(b−1)t . Then t 7→ P(Tz > t) is regularly varying with exponent −βρ, with 1− ρ = P(Z > 0) where
Z is the limiting α-stable law.

The assumption (ii) is usually not simple to verify, since it is about the process (τt, Zt)t≥0 rather than simply
on (Xt)t≥0. The context of generalized one-dimensional diffusions (based on a time-and-scale changed Brownian
motion) is considered in [9]: some conditions are given on their speed function and scale measure to make sure
that assumption (ii) is satisfied. This framework allows one to treat a wide variety of processes (Xt)t≥0 that
are skew-Bessel processes only asymptotically and of functions f that are only asymptotically powers (we refer
to [9, §2.5] for a series of examples).

Going further: scaling and heuristics for the tail asymptotic of the moment M . The condition (ii) above implies
that Lt is of order (b−1)t = tβ+o(1) and Zt has fluctuations of order at = t1/α+o(1). One can actually show (thanks
to the Wiener–Hopf factorization) that ζgt/ct = ZLt/ct converges in distribution, with ct = a(b−1)t = tβ/α+o(1).

In view of our physical motivation, this should enable us to obtain the tail asymptotic of the moment

M =
∫ Tz
0
ζsds. By the scaling described above, we expect that M � TzcTz = T

α+β
α +o(1)

z , so that using the
asymptotics (6) we should get that

P(M > m) � P
(
Tz cTz > m

)
� m−

α
α+β βρ as m→∞ ,

leading to a power-decay with exponent χ = αβ
α+β ρ in (3).

2.5. Conclusion: two (challenging) open problems

Naturally, the excursion decomposition approach strongly requires that the integrated process has the Markov
property and cannot jump over 0, and several questions remain open when this is not the case. As a conclusion,
let us simply mention two important models that have attracted a lot of attention where the persistence

exponent θ for the integrated process ζt =
∫ t
0
Xsds remains unknown: when (Xs)s≥0 is a fractional Brownian

motion and when (Xs)s≥0 is an integrated Brownian motion. We refer the reader to the review [3] for further
discussion on these problems and on their relation with the physics literature.

3. Large fluctuations in multi-scale modeling for rest hematopoiesis

Céline Bonnet

3.1. Introduction

Here is a summary of my talk presenting the article [12], written jointly with S. Méléard. I will not repeat
the proofs. My intention is rather to present our work as an example of random walk applications in biology.
Indeed, we have studied a stochastic model of rest hematopoiesis, the blood cells production process. Blood cells
are produced by differentiation stages from stem cells with amplification of the amount of cells. I present and
explain here only the main goal of the article: to analyze the effects of amplification on fluctuations in blood cell
counts, which biological observations have shown to be higher than the expected standard fluctuations (cf. [42]).

We introduce a multi-type branching process on three types of cells (cf. [23, Sec. 12], [4, Sec. 6.9.1]), with
a different size scale for each type, and a different time scale for the birth (or death) rate of each of the three
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types. The dynamics of stem cells (type 1) and progenitors (type 2) result in two distinct events, renewal and
differentiation. Each cell of type 1 and 2 divides into two cells at a constant rate, depending on its type. These
two new cells are either of the same type as the mother cell (renewal) or of the “next” cell type (differentiation).
Blood cells (type 3) do not divide and can only die at a constant rate.

In the model, we introduce as unique scaling parameter K the size of the type 1 cell population. The param-
eter K will also scale the quantities leading to amplification, i.e., the small difference between the differentiation
and renewal probabilities at step 2 and the death rate at step 3. We will see that the amplification from type
1 cells to type 3 cells is proportional to these two quantities, which will play a main role in our analysis.

Indeed, those multi-scale assumptions, biologically inspired, allows us to compare the size and time scales of
each cell type population sizes: they strongly differ from type 1 to type 3 with increasingly slow time scales
and large size scales. Usually, slow and fast components appear naturally, as associated which different species
behaviors (see [29]), contrary to our case, where the different time scales are deduced from a fine study of the
cell differentiation dynamics.

Our approach is inspired by [28] in which a general theorem for convergence and fluctuations of multiscale
processes is obtained but the latter cannot explain the asymptotics of our model. Indeed, in their result, the
fluctuations around the deterministic behavior of the slow component are Gaussian, which will not be the case
of the type 3 cells dynamics previously described.

Notation. As in [32], we will denote by lm(R+) the space of measures µ on [0,∞)×R+ such that µ([0, t]×R+) = t,
for each t ≥ 0.

3.2. Model and assumptions

We consider a jump process in dimension 3 with exponential inter-arrival times to modeling blood cells
production dynamics.

Cells of type 1 evolve according to a critical linear birth and death process. Birth events correspond to renewal
division events, occurring at rate τ1

2 > 0, while death events correspond to differentiation events occurring at
the same rate (a cell of type 1 divides in two cells of type 2). Cells of type 2 divide at rate τ2 > 0 in two
cells of the same type (renewal event) with probability pR2 and in two cells of type 3 (differentiation event) with
probability pD2 = 1− pR2 ∈ (1/2, 1). Cells of type 3 die at rate d3 > 0.

We can summarize the dynamics as follows. If N = (N1, N2, N3) denotes the vector of sub-population sizes,
the transitions of the hematopoietic process are given by

N1 −→ N1 + 1 at rate (τ1/2)N1

(N1, N2) −→ (N1 − 1, N2 + 2) at rate (τ1/2)N1

N2 −→ N2 + 1 at rate τ2 p
R
2 N2

(N2, N3) −→ (N2 − 1, N3 + 2) at rate τ2 p
D
2 N2

N3 −→ N3 − 1 at rate d3N3.

Here, we have assumed that each division is symmetric, so that

pD2 + pR2 = 1. (10)

We could have included asymmetric division without changing the results of our study. Indeed it doesn’t change
the main characteristics of the dynamics.

In the model, we don’t consider mortality rates for type 1 and type 2 cells and we assume that cell loss is
only due to differentiation in the next cell type. Indeed the hematopoietic stem cell and progenitor death rates,
at steady-state, have been biologically estimated and are so small that they can be neglected (cf. [19]).
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As explained in the introduction, we define the scaling parameter K as the size of the type 1 cells population.
K is assumed to be large and to scale pD2 − pR2 and d3, in a way which is defined now. More precisely, inspired
by biological observations [14] and [11], we assume that

the size of the type 1 cells population is of order K, (11)

and there exists a couple of positive parameters (γ2, γ3) ∈ (0, 1) such that

pD2 − pR2 = K−γ2 and d3 = τ3K
−γ3 with τ3 > 0. (12)

Let us note that (10) and (12) make the probabilities pR2 and pD2 depend on K,

pD2 = 1− pR2 = 1/2 +K−γ2/2.

Therefore the dynamics of this cell type is close to a critical process, in the sense that the renewal and differ-
entiation rates are close.

Assumption (12) introduces the different time and size scales playing a role for the multi-scale population
process describing the dynamics of each cell type size. From now on, since the dynamics depend on K, we will
denote by NK , the population process N previously defined.

In the article we have studied the most interested case, i.e,

γ2 < γ3 < 1. (13)

3.3. Simulations and main result

In the article [12], we finely describe the process NK dynamics, when K goes to infinity, using appropri-
ate renormalizations. Here I describe the dynamics using simulations and explain the surprising fluctuations
dynamics in the third component. Then I comment the result regarding biological observations.

3.4. Simulations

We take as initial condition
NK(0) = (K, 0, 0)

and choose K = 2000 cells of type 1, γ2 = 0.55, γ3 = 0.8. Hence Kγ2 ∼ 60 and Kγ3 ∼ 400. The others
parameters are equal to 1.

Figure 3 shows the simulation of a trajectory of the process (NK(t), t ∈ [0, T ]) for T ∼ 1, decomposed on the
three cell types. Figure 4 shows the simulation of a trajectory of the process (NK(t), t ∈ [0, T ]) for T ∼ Kγ2 ,
and Figure 5 shows the simulation of a trajectory of the process (NK(t), t ∈ [0, T ]) for T ∼ Kγ3 . The horizontal
orange line gives the order of magnitude for size of each cell type (K, resp. K1+γ2 , K1+γ2+γ3 , see Remark 3.1).

Remark 3.1. A simple reflection on the expectation of the process allows us to identify the different size scales.
Indeed, the function t 7→ n(t) = ENK(t) = (n1(t), n2(t), n3(t)) satisfies the following system of equations, for
all t ≤ T , 

n1(t) = ENK
1 (0),

d

dt
n2(t) = τ1 n1(t)− τ2K−γ2 n2(t),

d
dtn3(t) = 2τ2p

D
2 n2(t)− τ3K−γ3 n3(t).

By assumption (11),

ENK
1 (0) ∼ K.
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Figure 3. A trajectory of the NK process for t ∈ [0, T ] with T = O(1)

Figure 4. A trajectory of the NK process for t ∈ [0, T ] with T = O(Kγ2).

Figure 5. A trajectory of the NK process for t ∈ [0, T ] with T = O(Kγ3).

Therefore there is a unique equilibrium given for all t ≥ 0 by

n∗1 = ENK
1 (0) ∼ K,

n∗2 =
τ1 n

∗
1

τ2
Kγ2 ∼ K1+γ2 ,

n∗3 =
2pD2 τ2 n

∗
2

τ3
Kγ3 ∼ K1+γ2+γ3 .
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We observe in Figure 3 that at a time scale of order 1, the two last components of the process NK are far
from their equilibrium size. We observe in Figure 4 that the two first components of (NK(t), t ∈ [0, T ]) for
T ∼ Kγ2 evolve around their equilibrium size, which is not the case of the third one. In Figure 5, the process
is considered on a longer period of time, T ∼ Kγ3 and one sees that the third component hits a neighborhood
of its equilibrium. Furthermore, in Figure 6, we can observe the fluctuations of the components of NK around
their equilibrium. Indeed, Figure 6 shows the simulation of a trajectory of the process (NK(t), t ∈ [0, T ])
over a long period of time (of order Kγ3), starting from the “equilibrium values” (K,K1+γ2 ,K1+γ2+γ3). The
horizontal orange line represents this information. We note that they get smoother from cell type 1 to cell type
3 and that the amplitude of the waves get longer.

Figure 6. A trajectory of the process (NK(t), t ∈ [0, T ]) for T = 1000 (days) and starting
from (K,K1+γ2 , K1+γ2+γ3).

3.5. Large fluctuations result

As illustrated with simulations, a size renormalization of the stochastic process is not enough to understand
the dynamics of the model. We need to change the time scale. In order to catch the long time dynamics of the
third component we will study the process NK on the time scale Kγ3 . To this end, let us introduce the jump
process ZK defined for all t ≥ 0 by

ZK(t) =

(
NK

1 (tKγ3)

K
,
NK

2 (tKγ3)

K1+γ2
,
NK

3 (tKγ3)

K1+γ2+γ3

)
. (14)

We can show that ZK converges in some sense, when K tends to infinity, to a deterministic and continuous
function z : t ∈ R+ → (z1(t), z2(t), z3(t)) ∈ R3

+ (for details see Theorem 2 in [12]).
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Then introducing the following two processes, we can give a more precise description of the asymptotics
behavior of the third component, for all t ≥ 0, V K1 (t) := K(1−γ3)/2

(
ZK1 (t)− z1(t)

)
,

V K3 (t) := K(1−γ3)/2
(
ZK3 (t)− z3(t)

)
.

Indeed, we state the following Theorem.

Theorem 3.2. We assume that

sup
K

EV K1 (0)4 < +∞ ; sup
K

EZK2 (0)2 < +∞, (15)

and that there exists V0 = (V
(1)
0 , V

(3)
0 ) a R2-valued random vector such that the sequence (V K1 (0), V K3 (0))K∈N∗

converges in law to V0 and such that

sup
K

E|V K3 (0)| < +∞. (16)

Then for all T > 0, the sequence (V K1 , V K3 )K∈N∗ converges in law in D([0, T ],R2) to (V1, V3) such that for all t,

V1(t) = V
(1)
0 +

√
τ1 z1(0)W1(t),

V3(t) = V
(3)
0 + τ1

∫ t

0

V1(s)ds− τ3
∫ t

0

V3(s) ds,

where W1 is a standard Brownian motion.

Let us interpret this result in terms of fluctuations. Assuming that the initial vector V0 is equal to zero, we
obtain that for any t and large K,

NK
3 (t) ∼ K1+γ2+γ3 z3(tK−γ3) +K(1+2γ2+3γ3)/2 V3(tK−γ3) (17)

where for all t,

V3(t) = τ1
√
τ1z1(0)

∫ t

0

W1(s) ds− τ3
∫ t

0

V3(s) ds

and W1 is a standard Brownian motion.

The order of magnitude appearing in the fluctuation second order term in (17) summarizes the cumulative
effects of the third dynamics driven by the fluctuations of the first level. That can explain the exceptionally
large fluctuations observed for the size of blood cells populations, in hematopoietic systems.

Let us explain why the observed fluctuation scale of the third component is surprising. We have seen that
the size of the population process of the third type is of order of magnitude K1+γ2+γ3 . In the usual setting, the
Central Limit Theorem would lead to fluctuations of order K(1+γ2+γ3)/2. Using Theorem 3.2, we see in (17)
that they are of order K(1+2γ2+3γ3)/2 � K(1+γ2+γ3)/2.

Come back to the simulation of Figure 6, we see that the order of magnitude given by (17) better describe
the dynamics of NK than classical CLT results. Indeed, following [28] (and classical CLT results), the order
of magnitude of the population size fluctuations should be given by the square of the population size, i.e.,
K(1+γ2+γ3)/2 ∼ 7600 cells for type 3. Theorem 3.2 gives these orders of magnitude, with about K(1+3γ2)/2 ∼
24 000 cells of type 2 and K(1+2γ2+3γ3)/2 ∼ 2.7 107 cells of type 3.
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4. The elephant random walk

Lucile Laulin

4.1. The elephant random walk

The elephant random walk (ERW) is a one-dimensional discrete-time random walk on integers, which
has a complete memory of its whole history. It was introduced in 2004 by Schütz and Trimper [38] in order
to investigate the long-term memory effects in non-Markovian random walks and was referred to as the ERW
in allusion to the famous saying that elephants can remember where they have been. It appears to be a
time-inhomogeneous Markov chain.

One of the natural questions regarding the ERW concerns the influence some the memory parameter p on the
asymptotic behavior of the ERW. Depending on the value of p with respect to 3/4, the behavior of the ERW is
quite different and we observe three regimes. More precisely, a strong law of large numbers (LLN) and a central
limit theorem (CLT) for the position Sn, properly normalized, were established in the diffusive regime p < 3/4
and the critical regime p = 3/4. The main change between the two regimes is the rate of the normalization.

The superdiffusive regime p > 3/4 turns out to be harder to deal with. Both Coletti et al. [16] and Bercu [7]
proved a type of law of large numbers: the position of the ERW, properly normalized at some superdiffusive
scale, converges almost surely to a random variable Lq which is not Gaussian. After that, Kubota and Takei [30]
an a result analogous to a central limit theorem and showed that the fluctuation of the ERW around its limit
in the superdiffusive regime is Gaussian.

The one-dimensional ERW is defined as follows. The elephant starts at the origin at time zero, S0 = 0. At
time n = 1, it moves to the right with probability q or to the left with probability 1−q where q lies between zero
and one. Hence, the position of the elephant at time n = 1 is given by S1 = X1 where X1 has a Rademacher
R(q) distribution.

−1 0 1

q1− q

Afterwards, at any time n ≥ 1, the elephant chooses uniformly at random an integer k among the previous
times 1, . . . , n, and we define

Xn+1 =

{
+Xk with probability p,
−Xk with probability 1− p,

where the parameter p ∈ [0, 1] is the memory of the ERW.

0 1 Sn

p1− p

1− pp

Then, the position of the ERW is given by

Sn+1 = Sn +Xn+1.

The main results regarding the behavior of the ERW are given here.
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Figure 7. Histograms of L values when q = 0.5 (left) or q = 0.3 (right) depending on the value of p.

Diffusive Critical Superdiffusive

LLN
Sn
n

a.s.−→
n→∞

0
Sn√
n log n

a.s.−→
n→∞

0
Sn

n2p−1
a.s. / L4

−→
n→∞

Lq

CLT
Sn√
n

L−→
n→∞

N
(

0,
1

3− 4p

) Sn√
n log n

L−→
n→∞

N
(
0, 1
) Sn − n2p−1 − Lq√

n

L−→
n→∞

N
(

0,
1

4p− 3

)
There are various ways to study the asymptotic behavior of the ERW. Baur and Bertoin [6] used the con-

nection to Pólya-type urns as well as two functional limit theorems for multitype branching processes due to
Janson [27]. Bercu [7] and Coletti et al. [16] used martingales to obtain the almost sure convergences and
asymptotic normality, among other results. Kürsten [31] and Businger [15] used a relation between the ERW
and random trees constructed with Bernoulli percolation, which ensures that one remembers all of the past
information. In this note, we will give more details on this three approaches.

4.2. The martingale approach

Martingales were first used by Coletti et al. [16] in order to obtain the law of large numbers and the central
limit theorem. Afterwards, Bercu [7] used a more general martingale theory to obtain the law of iterated
logarithm and the quadratic strong law in the diffusive and critical regimes, as well as the convergence in L4 in
the superdiffusive regime, and also retrieved the previous results.

In order to understand well how the elephant moves, it is straightforward to see that for any time n ≥ 1,

Xn+1 = αn+1Xβn+1

where αn+1 and βn+1 are two independent discrete random variables such that αn+1 has a Rademacher R(p)
distribution while βn+1 is uniformly distributed over the integers {1, . . . , n}. Moreover, αn+1 is independent of
X1, . . . , Xn.

Let (Fn) be the increasing sequence of σ-algebras, Fn = σ(X1, . . . , Xn).We deduce that

E[Sn+1 | Fn] = Sn + E[Xn+1 | Fn] =
(

1 +
a

n

)
Sn = γnSn where a = 2p− 1.
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Then, the process

Mn = anSn where a1 = 1, an =

n−1∏
k=1

γ−1k =
Γ(a+ 1)Γ(n)

Γ(n+ a)

is a locally bounded square-integrable martingale. Indeed,

E[Mn+1 | Fn] = an+1E[Sn+1 | Fn] = an+1γnSn = anSn = Mn

and E[M2
n] ≤ (nan)2. The process (Mn) can be rewritten as

Mn =

n∑
k=1

akεk where εk = Sk − γk−1Sk−1.

The asymptotic behavior of (Mn) is directly given by the one of its quadratic variation and it is possible to
show that

〈M〉n = vn + o(vn) where vn =

n∑
k=1

a2k.

such that the asymptotic behavior of 〈M〉n is closely related to the one of (vn).
Thanks to asymptotic equivalent for the Gamma function, we have that an = O(n−a) and we obtain three

different regimes for the elephant’s behavior :

• The diffusive regime where a < 1/2 (or p < 3/4) and vn = O(n1−2a),
• The critical regime where a = 1/2 (or p = 3/4) and vn = O(log n),
• The superdiffusive regime where a > 1/2 (or p > 3/4) and vn = O(1).

The strategy here to obtain asymptotic results for the ERW relies on the theory of martingales.

4.3. The Pólya-type urns approach

This approach was first introduced by Baur and Bertoin [6] in order to obtain functional convergences for
the elephant random walk thanks to the work of Janson [27]. The method uses a connection to Pólya-type urns
that was already known before in the literature. A bit more precisely, given what is known from the theory of
urns, it implies that the asymptotic behavior of such models is determined by the spectral decomposition of the
(mean) replacement matrix of the corresponding urn.

Let (Un) be discrete-time urn with balls of two colors, red and blue. The composition of the urn at time
n ∈ N is given by a vector Un = (Rn, Bn) where Rn stands for the number of red balls and Bn for the number
of blue balls at time n. The starting composition of the urn is (1, 0) with probability q or (0, 1) with probability
1 − q. Then, the urn is implemented as follows. At any time n ≥ 2 a ball is drawn uniformly at random, its
color observed, then it is returned to the urn together with a ball of the same color with probability p, or with
a ball of the other color with probability 1− p.

The connection to the ERW model is straightforward. Let (Sn) denotes the ERW started from S0 = 0 and
such that S1 = R1 −B1, then for every n ≥ 1

(Sn)n≥1
L
= (Rn −Bn)n≥1

where
L
= refers to equality in law. In other words, the difference between the number of red and blue balls in

the urn behaves like an ERW with first step equals to R1 −B1.
To study this process, we are interested in the spectral decomposition of the mean replacement matrix A,

given by

A =

(
p 1− p

1− p p

)
.
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Figure 8. The Pólya urn representing the ERW.

The eigenvalues of A are λ1 = 1 and λ2 = 2p− 1 = a and the corresponding unit vectors in L1 are

vT1 =
1

2
(1, 1), vT2 =

1

2
(1, −1).

It is well-known that the asymptotics of the urn depends on the ratio λ2/λ1 with respect to 1/2. This is coherent
and yet another good explanation to why the transition between the regimes for the ERW occurs at a = 1/2
which, as expected, is equivalent to p = 3/4 .

4.4. The random recursive tree approach

Let (Zn) be a sequence of i.i.d. R( 1
2 ) random variables and (εn) a sequence of i.i.d. Bernoulli random variables

with parameter 0 < (1− a) < 1. Then, set X̂1 = Z1 and, for n ≥ 1,

X̂n+1 =

{
Zσ(n)+1 if εn+1 = 1,

X̂U(n) if εn+1 = 0,

where U(n) stands for the uniform distribution on {1, . . . , n} and σ(n) =
∑n
j=1 εj is counting the number of

innovations (i.e., the times j where εj = 1). Kürsten [31] explained that the sequence

Ŝn = X̂1 + . . .+ X̂n

is the elephant random walk with memory parameter p = (a + 1)/2. This approach can also be seen as a
sequence of random recursive trees on which a Bernoulli percolation of parameter a has been performed.

More precisely, we first recall that random recursive trees are rooted trees with increasing labels along
branches that are build in a recursive manner in the following way. We denote by T1 the tree with a single node
with label 1. Then Tn−1 stands for the tree with n− 1 nodes and Tn is build by choosing uniformly at random



ESAIM: PROCEEDINGS AND SURVEYS 19

one of the nodes of Tn−1 and adding the n-th node (the node with label n) to the chosen node. Then, each
edge deleted with probability 0 < 1 − a < 1, independently of the other edges, such that we have performed
a Bernoulli bond percolation on the tree. This is the same process as the one were every time a new node is
attached to an old one, the edge is in fact kept with probability p or deleted with probability 1− p.

1

2

69

3

45

7

8

10

Z1 = +1

Z2 = +1

Z3 = −1

Z4 = −1

0 1 2 3 4 5 6 7 8 9 10

Figure 9. On the left, some RRT of size 10 after the Bernoulli bond percolation has been performed.
The deleted edges are represented with dashed lines. On the right, the ERW deduced from the the RRT.

Then, for the ERW: the first step corresponds to the node with label 1 (the root), the second step to the
node with label 2 and so on. We assign the spin Z1 to the root. Then, the tree is built recursively as described
above. For building Tn, we pick one of the nodes of Tn−1 and connect the n-th node to the chosen node. With
probability 1− p the edge connecting the new node to the existing node is deleted and, when this happens, we
assign the spin Zσ(n)+1 to the new node. Otherwise, when the edge is kept (with probability p), the new node
takes the same spin as the node it is attached to.

In that setting, we denote the i-th cluster at time n cn(i) =
{
j ≤ n, X̂j = Zi

}
in the way that

Ŝn =

∞∑
i=1

|cn(i)|Zi

where the size clusters are independant of the sequence (Zi).

We denote by τi the first instant at which the i-th cluster is not empty, τi = inf
{
j ≥ 1, X̂j = Zi

}
= inf

{
j ≥

1, σ(j) = i− 1
}

with τ1 = 1. It has been proved by Baur and Bertoin [5] that

lim
n→∞

|cn(i)|
na

= Ci a.s.

where that C1 has a Mittag-Leffler distribution with parameter a and Ci a random variable with the same
law as (βτi)

a · C1, where βi denotes a beta variable with parameter (1, i− 1) and is further independent of β1.
Consequently, it is possible to obtain the following decomposition of the random variable Lq appearing in the
superdiffusive regime

Lq =

∞∑
i=1

CiZi = C1 ·
∞∑
i=1

(βτi)
aZi.

Then, it is possible to show that the random variable L is continuous, P(L = 0) = 0, via well-known properties
of Rademacher series with infinitely many nonzero random coefficients. However, this is not enough to conclude
that the random variable Lq is absolutely continuous and that it admits a density.
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This was still an open problem until the recent work [24], where thanks to the connection with Pólya urns,
questions such as the existence of a density, an explicit formula for the moments, the moment problem, the
finiteness of the moment-generating function have been solved.
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brownian motion. Séminaire de Probabilités XXXIV, pages 374–387, 2000.

[27] Svante Janson. Functional limit theorems for multitype branching processes and generalized Pólya urns. Stochastic Processes
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[33] Aimé Lachal. Sur le premier instant de passage de l’intégrale du mouvement brownien. Annales de l’IHP Probabilités et

statistiques, 27(3):385–405, 1991.
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