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Abstract

A large majority of summary indicators derived from the individual re-
sponses to qualitative Business Tendency Surveys (which are mostly three-
modality questions) result from standard aggregation and quantification
methods. This is typically the case for the indicators called balances of
opinion, which are currently used in short term analysis and considered by
forecasters as explanatory variables in many models. In the present paper,
we discuss a new statistical approach to forecast the manufacturing growth
from firm-survey responses. We base our predictions on a forecasting algo-
rithm inspired by the random forest regression method, which is known to
enjoy good prediction properties. Our algorithm exploits the heterogeneity
of the survey responses, works fast, is robust to noise and allows for the
treatment of missing values. Starting from a real application on a French
dataset related to the manufacturing sector, this procedure appears as a
competitive method compared with traditional algorithms.

Index Terms — Business Tendency Surveys, balance of opinion, short-term
forecasting, manufactured production, random forests.

JEL Classification: C8, C42, E23, E37, C14.
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1 Introduction

Due to their early release (by the end of the month in which they are conducted), Business
Tendency Surveys (BTS) are widely used as potential indicators of economic activity, ahead
of the publication of data from quarterly national accounts. In particular, BTS results allow
the elaboration of short-term forecasting models of the main aggregates of the national
accounts on the basis of summary indicators derived from the surveyed responses.

Most BTS questions are qualitative and require either a positive response (“up” or “superior
to average”), an intermediate one (“stable” or “close to average”) or a negative one (“down”
or “inferior to average”). A large majority of summary indicators derived from the individual
responses to these questions result from standard quantification methods, mostly based on
a combination of the percents of positive, stable and negative answers. This is typically the
case with the so-called balance of opinion, which is the most currently used indicator for
short-term analysis, and which is defined as the difference between the (generally weighted)
proportion of positive responses with respect to the negative ones.

As such, these kinds of indicators encounter some criticism, essentially because they do not
exploit the heterogeneity of the surveyed individual responses. In this respect, Mitchell,
Smith, and Weale (2004, 2005) discuss alternative indicators of the economic activity, by
relating firm categorical responses to official data via ordered discrete-choice models. Their
applications to British and German survey data suggest that their indicators provide more
accurate early estimates of manufacturing output growth than a set of classical aggregate
indicators. However, on French data, Biau, Erkel-Rousse, and Ferrari (2006) find that
the balances of opinion lead to better or, at least, as accurate short-term forecasts of the
manufacturing production growth rate as the Mitchell, Smith, and Weale indicators.

In the present paper, we discuss a new statistical approach to forecast the manufacturing
growth, with two important novelties. Firstly, we propose to exploit the heterogeneity of the
firm-level survey responses by working out untreated data instead of balances of opinion.
Secondly, we base our predictions on a forecasting algorithm inspired by the random forest
regression method (Breiman, 2001a,b), which is known to be robust to noise and enjoy good
prediction properties. Our algorithm exploits the heterogeneity of the survey responses,
works fast, and allows for the treatment of missing values.

The paper is organized as follows. In Section 2, we describe the dataset used in this study.
Section 3 is devoted to the presentation of our forecasting algorithm. Finally, in Section
4, we briefly describe the INSEE (National Institute for Statistics and Economic Studies)
traditional methodology and compare its performance with our model.

2 The data

Our application will be based on a French dataset related to the manufacturing sector.
The quarterly manufacturing production growth rate is a quantitative data derived from
the Quarterly National Accounts1. The entrepreneur individual qualitative responses are
collected by the Business Survey Unit of the French Statistical Institute. Even if the French
Industry survey is carried out on a monthly basis, we decided to use quarterly observations
instead of monthly observations. This was motivated by the fact that the regular short-term
forecasts of the economic activity performed by INSEE are precisely made on a quarterly
basis. Our analysis covers the period ranging from the first quarter 1995 to the third quarter
2006. Moreover, we decided to test the forecasting performance of the methods on the type

1The empirical analysis was carried out in early January 2008. At that period, the last published release
of the French quarterly accounts was the one presenting the detailled figures relating to the third quarter of
2007.
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of data which are used in the operational conditions of the INSEE forecasting exercises.
Therefore, we focused on the survey responses carried out in February, May, September and
November2.

The INSEE surveys deal with questions relating to production at the product level (not
at the firm level). More precisely, each firm can declare up to four products3 and answers
questions regarding each of these products. In our analysis, we chose to retain only the
biggest products (in terms of amount of sales). The total number of firms entering the
survey during the sample period is 6,6864. On average, the number of responses during the
period is equal to 17. In order to apply our methods, we selected firms whose number of
responses was larger than the 3rd Quartile (Q3). Hence, we retained 1,760 firms, and this
gives on average 39 responses out of a maximum of 47 possible during the period (see Table
1 which presents a summary).

Table 1: Selection of firms.

BTS quarterly data from 1995-1 to 2006-3
(February, May, September, November).

Maximum responses in the period: 47.

Total number of firms: 6,686.
Average number of responses: 17.
Median: 12.
Q3 (3rd quartile): 26.

Selection of 1,760 firms whose number of responses is larger than 26.
Average of their response: 39.
Median of their response: 32.
Q3: 45.

Let us consider a BTS, related to quarter t, in which m = 1760 manufacturing firms are
asked whether their production has risen, remained unchanged or fallen. The responses are
collected in a m × 2 matrix denoted by Xt:

Xt =
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where xt
i,j stands for the answer of the firm i regarding the past production (j = 1) and the

2The “Notes de conjoncture” are issued three times a year in March, June, and December. A more concise
“Point de Conjoncture” updates the June Note in October. These publications present INSEE short term
forecasts.

31.4 products per firm are reported on average.
4Note that about 4,000 industrial entrepreneurs are interviewed during each survey. However, owing to

economic developments (closure or restructuring of enterprises), the sample is updated periodically.
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expected production (j = 2). As explained earlier, each xt
i,j can take four values:

xt
i,j =















−1 for the answer “down”
0 for the answer “unchanged”
1 for the answer “up”

NA when there is no response.

With this notation, each observation Xt consists of 2m features. Associated with Xt is the
manufacturing production quarterly growth rate observed at quarter t, denoted hereafter
by Yt. Thus, given a new BTS represented by a generic matrix X = (xi,j), the statistical
problem is to predict the associated manufacturing production quarterly growth rate Y from
the dataset (X1, Y1), . . . , (XT , YT ), where T is the number of data items which are available
to make the prediction. In our problem, T = 47.

Despite their qualitative nature, the surveys can be used to make quantitative short-term
predictions of the macroeconomic magnitudes. This is a very useful exercise, as it can be
carried out well before the national accounts figures become available. The results of the
BTS are available about two months before the publication of the first estimates of the
growth of Gross Domestic Product (GDP), that is at a particularly early point in time
from the point of view of forecasters. We are now in a position to present our forecasting
algorithm.

Remark. As pointed out by a referee, the explanatory information at hand is qualitative,
and the codes -1 for down, +1 for up and 0 for same are, to a large extent, arbitrary. We
realize that more involved codings may be more appropriate, depending on the forecast
algorithm used. We believe however that such an analysis is beyond the scope of the paper.

3 The forecasting algorithm

3.1 Random forests

In the last years of his life, Breiman (2001a,b) promoted random forests for use in classi-
fication and regression. In one word, a random forest is a method which consists of many
decision trees and outputs predictions which are obtained by aggregating over the tree set,
typically using equal weights. Random forests are one of the most successful ensemble meth-
ods which exhibits performance on the level of boosting and support vector machines. The
method is fast, robust to noise, does not overfit and offers possibilities for explanation and
visualization of its input, such as variable selection. Moreover, as demonstrated below, it
can easily be adapted to deal with missing data. Random forests have been shown to give
excellent performance on a number of practical problems and are undoubtedly among the
most accurate general-purpose regression methods available.

Algorithms for inducing a random forest were first developed by Breiman and Cutler, and
“Random Forests” is their trademark. The web page

http://www.stat.berkeley.edu/users/breiman/RandomForests

provides a collection of downloadable technical reports, and gives an overview of random
forests as well as comments on the features of the method.

3.2 From trees to forests

Trees-based methods partition the feature space into a set of rectangles, and then fit a simple
model (usually a constant) in each one. They are conceptually simple yet powerful. The
tree regression algorithms are presented in detail in the monograph of Hastie, Tibshirani,
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Figure 1: An example of binary tree.

and Friedman (2001). Let us briefly describe how to grow a binary regression tree using a
dataset (X1, Y1), . . . , (XT , YT ). Recall that, in our context, each observation has 2m features
(variables) and is of form

X =





















x1,1 x1,2

x2,1 x2,2

...
...

xi,1 xi,2

...
...

xm,1 xm,2





















.

The algorithm CART automatically decides both splitting variables and split points. Sup-
pose for example that we have a partition into M regions, say R1, R2, . . . , RM , and we model
the tree regressors as a constant cm in each region. Then the best ĉm is just the average
of the Yt falling in region Rm. Finding the best binary partition in terms of minimum sum
of squares is generally computationally infeasible. Hence, it is usually done through the
following heuristic. Starting with all observations, consider a splitting variable xi,j and split
point s, and define the pair of half-planes

R1

[

(i, j), s
]

= {xi,j ≤ s} and R2[(i, j), s
]

= {xi,j > s}.

Then we seek the splitting variable (i, j) and split point s which solve

min
(i,j),s

[

min
c1

∑

Xt∈R1[(i,j),s]

(Yt − c1)
2 + min

c2

∑

Xt∈R2[(i,j),s]

(Yt − c2)
2
]

.

For any choice (i, j) and s, the inner minimization is solved by ĉ1 (respectively ĉ2) equal to the
average of the Yt associated with the Xt falling in R1 (respectively R2). For each splitting
variable, the determination of the split point s can be done very quickly. Therefore, by
scanning through all the inputs, determination of the best pair [(i, j), s] is feasible. Having
found the best split, we partition the dataset into two resulting regions, we repeat the
splitting process on each of the two regions, and so on. The process continues until each
node (i.e., a region) reaches a user-specified minimum node size Nmin and becomes a terminal
node. In our problem, the terminal nodes, taken together, form a partition of R

2m, and the
tree regressor h is then defined on each terminal region by the empirical mean

h(X) =
1

Card {t : Xt ∈ N (X)}

∑

t:Xt∈N (X)

Yt,

where N (X) stands for the terminal node containing X .
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The principle of random forests is to build K decision trees (often many hundreds) from
different subsets of entities from the dataset and from different subsets of the features, to
obtain substantial performance gains over single trees. Each decision tree is built from a
bootstrapped sample of the full dataset (Efron and Tibshirani, 1993), and a random sample
of the available variables is used for each node of each tree. Thus, instead of determining
the optimal split on a given node by evaluating all possible splits on all variables, a subset
of the variables, drawn at random, is used. Formally each tree is grown as follows:

1. Construct a bootstrap sample from (X1, Y1), . . . , (XT , YT ).

2. Choose Nmin, the minimum node size.

3. Specify p << 2m such that, at each node, p variables only are selected at random out
of the 2m. The best splits (calculated with the CART algorithm) on these p variables
for the bootstrap sample is used to split the node. Note that the value of p is held
constant during the growth of the forest.

For the free parameters K, Nmin and p, we used the default values K = 500, Nmin = 5 and
p = 2m

3 of the random forest R-package5.

Having built an ensemble of models, the final decision is the average value of the models. In
other words, denoting by h1, . . . , hK the individual tree predictors, the final output is

h(X) =
1

K

K
∑

k=1

hk(X). (3.1)

We would like the reader to be aware that, although the mechanism of random forest algo-
rithms appears simple, it is difficult to analyze and remains largely unknown. Some attempts
to investigate the mathematical driving force behind consistency of random forests are by
Breiman (2001a,b), Lin and Jeon (2006) (who establish a connection between random forests
and adaptive nearest neighbor methods), and Biau, Devroye, and Lugosi (2007).

Nevertheless, random forests are known to enjoy exceptional prediction accuracy, and this
accuracy is achieved for a wide range of settings of the tuning parameters. In addition,
random forests possess a number of interesting features, including measures of proximities
between the observations and measures of variable importance. In the next paragraph, we
investigate how these features can be used to deal with the problem of missing values and
variable selection.

3.3 Missing values and variable selection

The random forest predictor (3.1) does not support missing values in the Xt. As suggested
by Breiman (2001b), missing values can be estimated by constructing proximities between
the observations in the training sample. To this aim, after a tree is grown, we put all the
data items Xt, t = 1, . . . , T , down the tree. If t and t′ are in the same terminal node, we
increase the proximity between Xt and Xt′ by one. To finish, we normalize by dividing by
the number of trees. Thus, if K stands for the number of tree predictors, the proximity
P (Xt, Xt′) between Xt and Xt′ is defined by

P (Xt, Xt′) =
1

K

K
∑

k=1

1{Xt∈Nk(Xt′ )}
=

1

K

K
∑

k=1

1{Xt′∈Nk(Xt)},

where Nk(X) is the terminal node of the tree hk which contains X .

5http://lib.stat.cmu.edu/R/CRAN/src/contrib/Descriptions/randomForest.html
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Starting from Breiman’s idea of proximity, we propose a new algorithm, called RF1, which
allows the treatment of missing values. For notational convenience, X will be denoted by
XT+1.

'

&

$

%

RF1

INPUT: (X1, Y1), . . . , (XT , YT ), XT+1.

1. Consider any prediction ỸT+1 associated with XT+1. Denote by S the aug-
mented sample (X1, Y1), . . . , (XT , YT ), (XT+1, ỸT+1).

2. Fill in the missing values by the method of your choice. Denote by S̃ the
sample (X̃1, Y1), . . . , (X̃T , YT ), (X̃T+1, ỸT+1) without missing values.

3. Run the random forest algorithm on S̃ and compute proximities.

4. Replace the missing values in the sample S by the average of the correspond-
ing variables weighted by the proximities between the relevant cases and the
non missing-value cases. More precisely, if xt

i,j = NA, replace it by

1
∑

{t′:t′ 6=t,xt′

i,j
6=NA}

P (X̃t, X̃t′)

∑

{t′:t′ 6=t,xt′

i,j
6=NA}

P (X̃t, X̃t′)x
t′

i,j .

Denote by S̃ = (X̃1, Y1), . . . , (X̃T , YT ), (X̃T+1, ỸT+1) the resulting sample.

5. Iterate N times step 3. and step 4.

OUTPUT: the outcome predicted for X̃T+1 by the random forest algorithm based
on (X̃1, Y1), . . . , (X̃T , YT ).

Breiman argues that N = 5 iterations are generally enough. In our experiments, we chose
for the initial ỸT+1 the (linear) prediction obtained by the traditional INSEE methodology,
which will be described in Section 4.

Recall that each observation Xt takes its values in a space of dimension 2m = 3, 520. How-
ever, it is well established that in high dimensional spaces, learning suffers from the curse
of dimensionality (see for example Abraham, Biau, and Cadre, 2006). Thus, in practice,
before applying any learning technique to model real data, a preliminary dimension reduc-
tion or model selection step is crucial for appropriate smoothing and circumvention of the
dimensionality effect. In this respect, Breiman (2001b) suggests a measure, called variable
importance, to discriminate between informative and noninformative variables. In the algo-
rithm RF2 below, we include this measure. The general idea is to run the random forest
algorithm only on the most important variables.
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%

RF2

INPUT: (X1, Y1), . . . , (XT , YT ), XT+1.

1. Run the algorithm RF1 with input data (X1, Y1), . . . , (XT , YT ), XT+1 and
compute the variable importance for each of the 2m variables.

2. Specify pmax ≤ 2m and for t = 1, . . . , T +1, denote by X̄t the vector composed
of the pmax most important variables of Xt.

OUTPUT: the outcome predicted by RF1 with input data
(X̄1, Y1), . . . , (X̄T , YT ), X̄T+1.

It is our experience that the choice pmax = 700 variables was enough. Thus, this dimension
reduction step means that the algorithm automatically selects the 700 most representative
entrepreneur answers out of the 3,520 possible ones.

4 Results and comparison with the INSEE methodology

Before presenting the practical results, we briefly describe the traditional INSEE methodol-
ogy, which is based on linear models on the balances of opinion. These models are the most
currently used indicators for short-term analysis.

4.1 INSEE methodology

Balances of opinion are interesting indicators in many respects. Firstly, they are easy to
implement. As univariate series, they are simple to read and to track over time, at the price
of an acceptable loss of information with respect to the corresponding exhaustive three-
dimensional statistics. Secondly, balances of opinion are subject to limited revisions across
time. Finally, the main balances of opinion—notably those relating to activity—are highly
correlated with the corresponding aggregates of interest, even though they are generally
smoother (and therefore easier to read). This is typically the case, for instance, for the
balances of opinion relating to past production derived from the INSEE Industry survey
(see Figure 2). All these interesting properties explain why the balances of opinion are the
main (if not the only) indicators used by short-term analysts as explanatory variables in a
linear model. All in all, due to their good empirical properties, the balances of opinion prove
to be very useful, as they are well adapted to the quick production and release conditions of
BTS. Since Theil (1952) and later Fansten (1976), balances of opinion have benefited from
solid theoretical foundations, although they appear to be linked to the economic aggregate
of interest (production, workforce size, exports...) under fairly restrictive assumptions (such
as normality). For more involved information on balance measure methodologies, we refer
the reader to Dasgupta and Lahiri (1992).

The most common methodology to predict the quarterly national accounts using business
surveys, known as calibrations (see Raynaud and Scherrer, 1996, Buffeteau and Mora, 2000,
Dubois and Michaux, 2006), consists in fitting a linear model between the balances of opinion
St

j (as before, j = 1 for the past production, and j = 2 for the expected production), and
the dependent variable Yt, which may typically be the manufacturing production growth.
In mathematical terms,

Yt = c + a1S
t
1 + a2S

t
2 + ut,

where ut is some random noise.
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Figure 2: Balances of opinion relating to manufactured production together with the man-
ufacturing production quarterly growth rate. (Note that the dataset has been centered and
standardized).

The quality of this kind of model can be slightly improved by including the past values of
Y and by taking into account the variation of the balance of opinion. Nevertheless, in the
present paper, we will focus on this simple model, whose validity and robustness have already
been established, through the application of several specification tests using the estimated
residuals, such as tests of stability of the coefficients (Chow test), tests of homoskedasticty
(White test), or test of normality. We finally note that the calibration model uses the
balances of opinion as computed and published by the INSEE. These balances are based
on the 4,000 firms data items, which are preprocessed to deal with missing values and
seasonal adjustement. In the present study, the INSEE approach should be considered as a
benchmark.

4.2 Results

The error rate for forecasting new observations is unknown. However, it can be estimated
using a simple leave one out methodology. To this aim, we select one item Xt together with
its outcome Yt out of the 47 observations, and we consider it as new observation. Next, we
determine the outcome Ŷt using the procedure under study worked out with the 46 remaining
data items, and we finally compare the estimated outcome with the true one. This process,
repeated for each of the 47 observations, provides us with an estimate of the mean square
error rate, denoted hereafter by MSE:

MSE =
1

47

47
∑

t=1

(Yt − Ŷt)
2.

We will use the following acronyms:
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• LM refers to the linear model on the balances of opinion.

• RF1 and RF2 stand for the random forest-type algorithms described in Section 3.

The results obtained by the different procedures are presented in Table 2 and in Figure 3.

Table 2: Results of the different procedures.

Method MSE

LM 1.27
RF1 1.23
RF2 1.18

Table 2 further emphasizes the good results achieved by the random forest algorithms. We
note in particular the performance of RF2 which achieves, on average, the best MSE. The
difference between RF1 and RF2 enlightens the importance of the variable selection step.
We finally note that te RF2 algorithm works fast (using the R-package “RandomForest”, our
prediction take less than one minute) and is robust to the parameters (Bardaji, 2007). Our
approach gives a new tool to the short term analysts, especially those of the INSEE, who
can work on individual data.

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

−
2

−
1

0
1

2
3

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

RF1

RF2

LM

Observed

Figure 3: Manufacturing production quarterly growth rate and predictions obtained by the
different methods.
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5 Perspectives

To improve the results of the present study, we suggest two research directions. Firstly,
it seems important to study the impact of putting weights on the entrepreneur responses:
under the assumption that the firm size is correlated with the macro-economic production,
an improvement in the relative performances of the random forest approach is possible.
Secondly, one could use this new algorithm with other surveys (e.g. using retail trade
survey to forecast household consumption) or mix the surveys (e.g. industry and services)
to forecast the GDP. Finally, it would also be interesting to identify the 700 variables which
are automatically selected by the algorithm RF2 (size, sector...). With this preliminary
selection step, the calibration model using balances of opinion could also undoubtedly be
improved.

Acknowledgments. The authors would like to thank Matthieu Cornec for his discussion
of a preliminary version of the paper at the DEEE Workshop, INSEE, Paris, June 26, 2006,
and Prof. Dr. Marco Lippi who served as a chairman at the 28th CIRET Conference in
Rome, Italy, Septembre 2006. They are also indebted to José Bardaji for his comments and
suggestions and an anonymous referee for his careful reading and insigthful comments to
improve the manuscript.

References

[1] C. Abraham, G. Biau, and B. Cadre. On the kernel rule for function classification.
Annals of the Institute of Statistical Mathematics, 58:619–633, 2006.

[2] J. Bardaji. Etude de la méthode des forêts aléatoires à des fins de prévision de la
production manufacturière. In N. 036/DG75-G120, Insee, February 2007.

[3] G. Biau, L. Devroye, and G. Lugosi. Consistency of random forests and other averaging
classifiers. 2007. Preprint, University Paris VI.

[4] O. Biau, H. Erkel-Rousse, and N. Ferrari. Individual responses to business tendency
surveys and the forecasting of manufactured production: An assessment of the Mitchell,
Smith and Weale dis-aggregate indicators on French data. Economie et Statistique, 395-
396:91–116, 2006.

[5] L. Breiman. Statistical modeling: The two cultures. Statistical Science, 13:119–215,
2001a.

[6] L. Breiman. Random forests. Machine Learning, 45:5–32, 2001b.

[7] L. Breiman, J.H. Friedman, R.A. Olsen, and C.J. Stone. Classification and Regression
Trees. Wadsworth, Belmont, 1984.

[8] S. Buffeteau and V. Mora. Predicting the national accounts of the euro zone using
business surveys. Conjoncture in France, INSEE, December 2002.

[9] S. Dasgupta and K. Lahiri. A comparative study of alternative methods of quantify-
ing qualitative survey responses using napm data. Journal of Business and Economic
Statistics, 10:391–400, 1992.

[10] L. Devroye, L. Györfi, and G. Lugosi. A Probabilistic Theory of Pattern Recognition.
Springer-Verlag, New-York, 1996.

[11] E. Dubois and E. Michaux. Etalonnages à l’aide d’enquêtes de conjoncture : de nou-
veaux résultats. Economie et Prévision, 172:11–28, 2006.

10



Nonparametric Forecasting of the Manufacturing Output Growth

[12] B. Efron and R.J. Tibshirani. An Introduction to the Bootstrap. Chapman and Hall,
New York, 1993.

[13] M. Fansten. Introduction à une théorie mathématique de l’opinion. Annales de l’Insee,
21:3–55, 1976.

[14] T. Hastie, R.J. Tibshirani, and J. Friedman. The Elements of Statistical Learning.
Springer, 2001.

[15] Y. Lin and Y. Jeon. Random forests and adaptive nearest neighbors. Journal of the
American Statistical Association, 101:578–590, 2006.

[16] J. Mitchell, R.J. Smith, and M.R. Weale. Aggregate versus disaggregate survey-based
indicators of economic activity. In 27th CIRET conference, Warsaw, September 2004.

[17] J. Mitchell, R.J. Smith, and M.R. Weale. Forecasting manufacturing output growth
using firm-level survey data. The Manchester School, 73(4):479–499, 2005.

[18] M. Reynaud and S. Scherrer. Une modélisation VAR de l’enquête de conjoncture de
l’INSEE dans l’industrie. Document de travail de la Direction de la Prévision, 96-12,
1996.

[19] H. Theil. On the time shape of economic microvariables and the munich business test.
Revue de l’Institut International de Statistique, 20:105–220, 1952.

11


