Errata for

Biau, G. (2012). Analysis of a random forests model, Journal of Machine Learning Research, Vol. 13, pp. 1063-1095

June 2, 2018

The following corrections have been pointed out by Qiannan Gao, Markus Pauly, and Jason Klusowski.

- In Proposition 2, Theorem 5, and Corollary 6, the constant C should be

$$
C=\frac{576}{\pi}\left(\frac{\pi \log 2}{16}\right)^{S / 2 d}
$$

- Modify the end of the proof of Proposition 2 from line 9 of page 1085 as follows: Clearly,

$$
\begin{aligned}
\lambda\left(A_{n j}(\mathbf{X}, \Theta) \cap A_{n j}\left(\mathbf{X}, \Theta^{\prime}\right)\right) & \leq 2^{-\max \left(K_{n j}, K_{n j}^{\prime}\right)} \\
& =2^{-\left(K_{n j}+K_{n j}^{\prime}\right) / 2} 2^{-\left|K_{n j}-K_{n j}^{\prime}\right| / 2}
\end{aligned}
$$

and, consequently,

$$
\prod_{j=1}^{d} \lambda\left(A_{n j}(\mathbf{X}, \Theta) \cap A_{n j}\left(\mathbf{X}, \Theta^{\prime}\right)\right) \leq 2^{-\left\lceil\log _{2} k_{n}\right\rceil} \prod_{j=1}^{d} 2^{-\left|K_{n j}-K_{n j}^{\prime}\right| / 2}
$$

(since, by Fact $1, \sum_{j=1}^{d} K_{n j}=\sum_{j=1}^{d} K_{n j}^{\prime}=\left\lceil\log _{2} k_{n}\right\rceil$). Plugging this inequality into (3) and applying Hölder's inequality, we obtain

$$
\begin{aligned}
\mathbb{E}\left[\bar{r}_{n}(\mathbf{X})-\tilde{r}_{n}(\mathbf{X})\right]^{2} & \leq \frac{12 \sigma^{2} k_{n}}{n} \mathbb{E}\left[\prod_{j=1}^{d} 2^{-\left|K_{n j}-K_{n j}^{\prime}\right| / 2}\right] \\
& =\frac{12 \sigma^{2} k_{n}}{n} \mathbb{E}\left[\mathbb{E}\left[\prod_{j=1}^{d} 2^{-\left|K_{n j}-K_{n j}^{\prime}\right| / 2} \mid \mathbf{X}\right]\right] \\
& \leq \frac{12 \sigma^{2} k_{n}}{n} \mathbb{E}\left[\prod_{j=1}^{d} \mathbb{E}^{1 / d}\left[2^{-d\left|K_{n j}-K_{n j}^{\prime}\right| / 2} \mid \mathbf{X}\right]\right] \\
& \leq \frac{12 \sigma^{2} k_{n}}{n} \mathbb{E}\left[\prod_{j=1}^{d} \mathbb{E}^{1 / d}\left[2^{-\left|K_{n j}-K_{n j}^{\prime}\right|} \mid \mathbf{X}\right]\right]
\end{aligned}
$$

(since $d \geq 2$).

Therefore,
$\mathbb{E}\left[\bar{r}_{n}(\mathbf{X})-\tilde{r}_{n}(\mathbf{X})\right]^{2} \leq \frac{24 \sigma^{2} k_{n}}{n} \mathbb{E}\left[\prod_{j=1}^{d} \mathbb{E}^{1 / d}\left[2^{-\left(K_{n j}-K_{n j}^{\prime}\right)} \mathbf{1}_{\left[K_{n j} \geq K_{n j}^{\prime}\right]} \mid \mathbf{X}\right]\right]$.
Each term in the product may be bounded by technical Proposition 13, and this leads to

$$
\begin{aligned}
\mathbb{E}\left[\bar{r}_{n}(\mathbf{X})-\tilde{r}_{n}(\mathbf{X})\right]^{2} & \leq \frac{576 \sigma^{2} k_{n}}{\pi n} \prod_{j=1}^{d} \min \left(1,\left[\frac{\pi}{16\left\lceil\log _{2} k_{n}\right\rceil p_{n j}\left(1-p_{n j}\right)}\right]^{1 / 2 d}\right) \\
& \leq \frac{576 \sigma^{2} k_{n}}{\pi n} \prod_{j=1}^{d} \min \left(1,\left[\frac{\pi \log 2}{16\left(\log k_{n}\right) p_{n j}\left(1-p_{n j}\right)}\right]^{1 / 2 d}\right) .
\end{aligned}
$$

Using the assumption on the form of the $p_{n j}$, we finally conclude that

$$
\mathbb{E}\left[\bar{r}_{n}(\mathbf{X})-\tilde{r}_{n}(\mathbf{X})\right]^{2} \leq C \sigma^{2}\left(\frac{S^{2}}{S-1}\right)^{S / 2 d}\left(1+\xi_{n}\right) \frac{k_{n}}{n\left(\log k_{n}\right)^{S / 2 d}}
$$

where

$$
C=\frac{576}{\pi}\left(\frac{\pi \log 2}{16}\right)^{S / 2 d}
$$

and

$$
1+\xi_{n}=\prod_{j \in \mathcal{S}}\left[\left(1+\xi_{n j}\right)^{-1}\left(1-\frac{\xi_{n j}}{S-1}\right)^{-1}\right]^{1 / 2 d}
$$

Clearly, the sequence $\left(\xi_{n}\right)$, which depends on the $\left\{\left(\xi_{n j}\right): j \in \mathcal{S}\right\}$ only, tends to 0 as n tends to infinity.

- Statement (iii) of Lemma 12 page 1091 is incorrect and should be: For all $d \geq 1$,

$$
\mathbb{E}\left[2^{-d\left(Z_{1}-Z_{2}\right)} \mathbf{1}_{\left[Z_{1} \geq Z_{2}\right]}\right] \leq \frac{24}{\pi} \int_{0}^{1} \exp \left(-4 N p(1-p) t^{2}\right) \mathrm{d} t
$$

The first two lines of the proof should be modified accordingly, and, everywhere, $\mathbb{E}\left[2^{-d\left(Z_{1}-Z_{2}\right)_{+}}\right]$should be replaced by $\mathbb{E}\left[2^{-d\left(Z_{1}-Z_{2}\right)} \mathbf{1}_{\left[Z_{1} \geq Z_{2}\right]}\right]$.

- In Proposition 13 , replace $\mathbb{E}\left[2^{-d\left(Z_{1}-Z_{2}\right)_{+}}\right]$by $\mathbb{E}\left[2^{-d\left(Z_{1}-Z_{2}\right)} \mathbf{1}_{\left[Z_{1} \geq Z_{2}\right]}\right]$.

