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Sorbonne Université, Institut universitaire de France
gerard.biau@sorbonne-universite.fr

and Claire BOYER
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Summary
We develop a statistical proxy framework for retrieval-augmented generation (RAG), designed
to formalize how a language model (LM) should balance its own predictions with retrieved
evidence. For each query 𝑥, the system combines a frozen base model 𝑞0(· | 𝑥) with a 𝑘-nearest
neighbor retriever 𝑟 (𝑘 ) (· | 𝑥) through a measurable gate 𝜆(𝑥). A retrieval-trust weight 𝑤fact(𝑥)
quantifies the geometric reliability of the retrieved neighborhood and penalizes retrieval in low-
trust regions. We derive the Bayes-optimal per-query gate and analyze its effect on a discordance-
based hallucination criterion that captures disagreements between LM predictions and retrieved
evidence. We further show that this discordance admits a deterministic asymptotic limit governed
solely by the structural agreement (or disagreement) between the Bayes rule and the LM. To
account for distribution mismatch between queries and memory, we introduce a hybrid geometric-
semantic model combining covariate deformation and label corruption. Overall, this note provides
a principled statistical foundation for factuality-oriented RAG systems.

Some key words: Adaptive gating; Hallucination control; Nearest neighbors; Retrieval-augmented generation; Statis-
tical learning.

1. Introduction
Modern language models (LMs) are impressively fluent and versatile, yet they can hallucinate,

producing outputs that sound convincing but are factually wrong [Ji et al., 2023, Kalai and
Vempala, 2024]. Retrieval-augmented generation (RAG) mitigates this issue by enriching model
predictions with information drawn from an external memory, such as curated documents, code
repositories, or previously answered queries. These sources are intended to provide relevant
and potentially reliable contextual evidence [Lewis et al., 2020]. At inference time, the system
retrieves items close to the query in an embedding space and conditions its response on them.
While effective in improving accuracy and grounding, this mechanism raises a central design
question: for each query, how much should the system rely on the LM vs. the retrieved evidence?

Most current RAG systems address this balance through heuristics. A common approach
concatenates the top-𝑘 retrieved items into the prompt [Lewis et al., 2020], while others interpolate
model and retrieval outputs using a fixed mixture weight, as in cache-based or 𝑘NN language
models [Grave et al., 2017, Khandelwal et al., 2020, Xu et al., 2023]. Although often effective,
these strategies lack adaptive control: when retrieved neighbors are noisy or off-topic, excessive
reliance on retrieval may degrade accuracy, while dominant reliance on the LM can lead to



underuse of factual evidence and increased hallucination risk. A principled, query-dependent
mechanism for balancing the two sources of information is therefore needed.

This note develops a simple and mathematically explicit framework for studying this balancing
problem. In our model, the system consists of a frozen base predictor representing the LM,
a 𝑘-nearest neighbor retriever built from an external memory of labeled examples, and a gate
that mixes the two. To make the gating decision interpretable and data-driven, we introduce a
retrieval-trust weight that quantifies how well the retrieved neighborhood geometrically supports
the query. This weight acts as a penalty in training, discouraging retrieval when local evidence is
unreliable and yielding an adaptive, geometry-aware gating rule amenable to statistical analysis.

A central theme of the analysis is hallucination control. We introduce a quantitative discordance
criterion that captures disagreements between LM predictions and retrieved evidence, and show
that the resulting gating rule controls this discordance by activating retrieval only where the
local evidence appears reliable. In this way, our results make explicit how the geometry of the
retrieved neighborhood and the gating mechanism jointly determine when retrieval improves
factual reliability.

To understand retrieval reliability at scale, we analyze the asymptotic regime in which both the
memory size 𝑛 and the number of neighbors 𝑘 grow with 𝑘/𝑛 → 0. In this setting we establish
consistency for the 𝑘-NN retrieval estimator and derive limits for the local discordance signal that
governs hallucination variation. These results show that, asymptotically, disagreements between
retrieval and the LM reflect genuine structural differences rather than finite-sample noise. We
further consider the effect of a mismatch between the query distribution and the retrieval memory.

We emphasize that the model we study is not meant to mirror the architectural details of modern
RAG systems, which typically rely on prompt construction, attention over retrieved documents, or
other integration mechanisms specific to large LMs. Rather, our goal is to provide an analytically
tractable proxy that captures the essential statistical forces governing retrieval-based correction,
with the aim of clarifying these mechanisms and stimulating further theoretical work on the
foundations of retrieval-augmented generation.

Related work. Our approach connects three lines of research. First, RAG architectures have been
extensively explored in NLP and information retrieval [Lewis et al., 2020, Borgeaud et al., 2022,
Izacard et al., 2023, Shi et al., 2024]. Second, the retrieval component is rooted in classical nearest
neighbor theory [Györfi et al., 2006, Biau and Devroye, 2015], providing a rigorous statistical
basis for our analysis. Third, the gating mechanism is related to mixture-of-experts models
[Jacobs et al., 1991, Shazeer et al., 2017, Fedus et al., 2022], although here it is explicitly guided
by geometric trust rather than latent specialization. Previous approaches to hallucination control
include self-consistency checks [Manakul et al., 2023], factuality-oriented evaluation [Min et al.,
2023], and LM calibration [Ulmer et al., 2024], but they lack a clear statistical interpretation. The
present note provides such an interpretation by linking retrieval geometry, probabilistic gating,
and factual reliability within a unified theoretical framework.

2. Model setup
We consider an input-output pair (𝑋,𝑌 ) drawn from an unknown distribution on R𝑑 ×𝒴,

where 𝒴 = {1, . . . , 𝐶} is a finite label set. An external memory

ℳ𝑛 = {(𝑈𝑖 , 𝑉𝑖)}𝑛𝑖=1, (𝑈𝑖 , 𝑉𝑖) ∼ 𝑄𝑈𝑉 ,

stores i.i.d. reference pairs with 𝑈 ∈ R𝑑 and 𝑉 ∈ 𝒴. Throughout the main analysis we assume
that the memory is drawn from the same distribution as (𝑋,𝑌 )—the aligned setting, in which



𝑃𝑋 = 𝑄𝑈 and 𝑃𝑌 |𝑋 = 𝑄𝑉 |𝑈 . In practice, however, the memory may come from a related but
distinct source, such as previously answered queries or labeled documents. For simplicity, we
focus on the aligned setting in the main text and return to this more general situation in Appendix B.
Retrieval operates in the feature space R𝑑 equipped with a norm ∥ · ∥. For any query 𝑥 ∈ R𝑑 , let
𝑈(1) (𝑥), . . . ,𝑈(𝑘 ) (𝑥) denote its 𝑘 nearest neighbors among {𝑈𝑖}𝑛𝑖=1, with corresponding labels
𝑉(1) (𝑥), . . . , 𝑉(𝑘 ) (𝑥). (Ties are broken deterministically by index order.)
Base predictor and retriever distribution. The base language model (LM) is frozen throughout
and provides a conditional probability distribution 𝑞0(· | 𝑥) on 𝒴, interpreted as an estimate of
the law of 𝑌 given 𝑋 = 𝑥. On the retrieval side, the external memory induces its own condi-
tional structure: for any query 𝑥, the retriever constructs a local, nonparametric estimate of the
distribution of 𝑉 given 𝑈 = 𝑥 by averaging the labels of the 𝑘 nearest neighbors of 𝑥 in the
memory:

𝑟
(𝑘 )
𝑦 (𝑥) = 1

𝑘

𝑘∑︁
𝑗=1

1{𝑉( 𝑗) (𝑥 )=𝑦} , 𝑦 ∈ 𝒴.

We write 𝑟 (𝑘 ) (𝑦 | 𝑥) = 𝑟
(𝑘 )
𝑦 (𝑥) for 𝑦 ∈ 𝒴, and refer to 𝑟 (𝑘 ) (· | 𝑥) as the retriever distribution,

which approximates the conditional distribution 𝑄𝑉 |𝑈 (· | 𝑥) in the neighborhood of 𝑥. In the
aligned setting considered here, where 𝑃𝑋 = 𝑄𝑈 and 𝑃𝑌 |𝑋 = 𝑄𝑉 |𝑈 , 𝑟 (𝑘 ) (· | 𝑥) coincides with the
target conditional distribution 𝑃𝑌 |𝑋 (· | 𝑥).
Retrieval-trust weight. To quantify how well the retrieved neighborhood reflects the query, we
define the retrieval-trust weight

𝑤fact(𝑥) =
1
𝑘

𝑘∑︁
𝑗=1

exp
(
− ∥𝑥 −𝑈( 𝑗 ) (𝑥)∥2) . (1)

This scalar measures geometric fidelity between 𝑥 and its retrieved neighbors. When the neigh-
borhood is compact, the distances ∥𝑥 −𝑈( 𝑗 ) (𝑥)∥ are small, the exponential terms are close to
one, and 𝑤fact(𝑥) ≈ 1, indicating high trust in retrieval. When neighbors are far or inconsistent,
𝑤fact(𝑥) decreases toward zero, signaling that the memory provides unreliable support. Thus
𝑤fact(𝑥) provides a continuous, geometry-aware assessment of the reliability of retrieval at the
query location 𝑥.
Mixture model. At the core of our framework lies a gated mixture that blends the base LM with
the retriever. For each query 𝑥, predictions are produced by a convex combination of the LM and
the retriever distribution:

𝑝𝜆(𝑦 | 𝑥) = (1 − 𝜆(𝑥)) 𝑞0(𝑦 | 𝑥) + 𝜆(𝑥) 𝑟 (𝑘 )𝑦 (𝑥), 𝑦 ∈ 𝒴, (2)

where the (measurable) gate 𝜆 : R𝑑 → [0, 1] controls the relative reliance on retrieval. Small
values of 𝜆(𝑥) favor the LM (fluency and generalization), while values near one defer to retrieved
evidence (grounding and factuality). Intermediate values achieve an adaptive trade-off.
Population objective. The population-level loss balances predictive accuracy with trust-
dependent regularization:

ℒ(𝜆) = E
[ ∑︁
𝑦∈𝒴

𝑃𝑌 |𝑋 (𝑦 | 𝑋) (− log 𝑝𝜆(𝑦 | 𝑋))
]
+ 𝜁 E

[
𝜆(𝑋) (1 − 𝑤fact(𝑋))

]
, (3)

where 𝑃𝑌 |𝑋 is the true conditional distribution and 𝜁 ⩾ 0. The first term is the expected cross-
entropy, enforcing predictive fit. The second penalizes retrieval in regions with weak geometric



support (where 𝑤fact(𝑥) is small). The hyperparameter 𝜁 controls how strongly the gate penalizes
retrieval when the geometric support around the query is weak.

When the query 𝑥 is surrounded by close and coherent neighbors, 𝑤fact(𝑥) ≈ 1, so the penalty
term 𝜆(𝑥) (1 − 𝑤fact(𝑥)) becomes negligible and the gate’s decision is governed primarily by the
cross-entropy comparison between the LM and the retriever. In low-density or out-of-distribution
regions, 𝑤fact(𝑥) becomes small, amplifying the penalty and discouraging reliance on retrieval.
The mechanism therefore self-regulates: retrieval is driven by predictive fit, while geometric
support acts as a safeguard, allowing retrieval to compete freely with the LM when support is
strong and otherwise pushing 𝜆(𝑥) toward zero.

3. Per-query optimization and hard gating
The population loss (3) can be written as an expectation over the query space, ℒ(𝜆) =

E[𝐽 (𝜆; 𝑋)], where, for each fixed 𝑥 ∈ R𝑑 ,

𝐽 (𝜆; 𝑥) = ℓ(𝜆; 𝑥) + 𝜁 𝜆(𝑥) (1 − 𝑤fact(𝑥)) and ℓ(𝜆; 𝑥) =
∑︁
𝑦∈𝒴

𝑃𝑌 |𝑋 (𝑦 | 𝑥) (− log 𝑝𝜆(𝑦 | 𝑥)).

Because ℒ(𝜆) is an expectation of the pointwise objective 𝐽 (𝜆; 𝑥), and 𝜆 enters 𝐽 (𝜆; 𝑥) only
through its value at the query 𝑥, minimizing ℒ(𝜆) reduces to minimizing 𝐽 (𝜆; 𝑥) independently
for each 𝑥.

In the simplest and most interpretable implementation, the gate takes binary values 𝜆(𝑥) ∈
{0, 1}, corresponding to a sharp choice between the LM and the retriever. The mixture model (2)
then selects one of its two components:

𝑝𝜆(· | 𝑥) =
{
𝑞0(· | 𝑥), 𝜆(𝑥) = 0,
𝑟 (𝑘 ) (· | 𝑥), 𝜆(𝑥) = 1.

Define the corresponding local cross-entropies:

ℓ0(𝑥) =
∑︁
𝑦∈𝒴

𝑃𝑌 |𝑋 (𝑦 | 𝑥) (− log 𝑞0(𝑦 | 𝑥)) and ℓ𝑟 (𝑥) =
∑︁
𝑦∈𝒴

𝑃𝑌 |𝑋 (𝑦 | 𝑥) (− log 𝑟 (𝑘 )𝑦 (𝑥)).

Because under hard gating the decision 𝜆(𝑥) ∈ {0, 1} selects either the LM or the retriever, the
per-query objective

𝐽 (𝜆; 𝑥) =
{
ℓ0(𝑥), 𝜆(𝑥) = 0,
ℓ𝑟 (𝑥) + 𝜁 (1 − 𝑤fact(𝑥)), 𝜆(𝑥) = 1,

reduces to a simple two-point comparison. The optimal gate at 𝑥 is therefore the choice that yields
the smaller of these two costs.

Proposition 1 (Optimal hard gate). For each query 𝑥 ∈ R𝑑 , the Bayes-optimal hard gate is

𝜆★(𝑥) =
{

0, if ℓ0(𝑥) ⩽ ℓ𝑟 (𝑥) + 𝜁 (1 − 𝑤fact(𝑥)),
1, if ℓ𝑟 (𝑥) + 𝜁 (1 − 𝑤fact(𝑥)) < ℓ0(𝑥).

The rule of Proposition 1 states that retrieval is selected exactly when its improvement in pre-
dictive cross-entropy over the LM exceeds the geometric penalty 𝜁 (1 − 𝑤fact(𝑥)). The decision
therefore depends jointly on model fit and neighborhood quality. When the retriever distribution
𝑟 (𝑘 ) (· | 𝑥) achieves a substantially lower cross-entropy than the LM and 𝑤fact(𝑥) is large (i.e.,
the neighborhood of 𝑥 is dense), the gate switches to retrieval. Conversely, if neighbors are far,



𝑤fact(𝑥) is small, the penalty dominates, and the gate keeps 𝜆★(𝑥) = 0. The parameter 𝜁 acts as
a global regularizer: large values suppress retrieval and favor the LM, while small values permit
more aggressive grounding in memory.

Soft gating. Although binary switching offers direct interpretability, a continuous gate 𝜆(𝑥) ∈
[0, 1] may also be considered. Since− log 𝑝𝜆(𝑦 | 𝑥) is convex in 𝜆, the per-query objective 𝐽 (𝜆; 𝑥)
is convex, and in fact strictly convex whenever 𝑞0(· | 𝑥) and 𝑟 (𝑘 ) (· | 𝑥) differ on the support of
𝑃𝑌 |𝑋 (· | 𝑥). The optimal soft gate satisfies the first-order condition∑︁

𝑦∈𝒴
𝑃𝑌 |𝑋 (𝑦 | 𝑥)

𝑟
(𝑘 )
𝑦 (𝑥) − 𝑞0(𝑦 | 𝑥)

𝑝𝜆★ (𝑦 | 𝑥) + 𝜁 (1 − 𝑤fact(𝑥)) = 0,

which admits an efficient one-dimensional numerical solution. In practice, however, the hard
decision rule of Proposition 1 captures the essential structure of the gating mechanism and
facilitates theoretical analysis of how retrieval, geometry, and factual reliability interact.

4. Hallucination and discordance analysis
Hallucination arises when the LM produces confident predictions that contradict evidence

present in retrieved neighbors. To quantify this phenomenon, we combine the 𝑘-NN retrieval
distribution 𝑟

(𝑘 )
𝑦 (𝑥) with the retrieval-trust weight 𝑤fact(𝑥) defined in (1). For each 𝑥 ∈ R𝑑 , let

𝑦𝑟 (𝑥) ∈ arg max𝑦∈𝒴 𝑟
(𝑘 )
𝑦 (𝑥)

denote the retriever’s modal label (ties broken deterministically). We define the local discordance
score as

ℋdisc(𝑞0; 𝑥) = 𝑤fact(𝑥) (1 − 𝑞0(𝑦𝑟 (𝑥) | 𝑥)),

and the associated population measure

ℋdisc(𝑞0) = E[ℋdisc(𝑞0; 𝑋)] .

This criterion is large when the retrieval neighborhood is geometrically reliable (𝑤fact(𝑥) ≈ 1) but
the LM assigns low probability to the label favored by retrieval. In this regime, the LM prediction
conflicts with locally supported evidence, which we interpret as a risk of hallucination.

4.1. Change under optimal gating
Under the mixture model (2), the hallucination score becomes

ℋdisc(𝑝𝜆; 𝑥) = 𝑤fact(𝑥) (1 − 𝑝𝜆(𝑦𝑟 (𝑥) | 𝑥)).

Thus, the variation relative to the frozen LM is

Δℋ(𝑥;𝜆) = ℋdisc(𝑞0; 𝑥) −ℋdisc(𝑝𝜆; 𝑥)
= 𝜆(𝑥) 𝑤fact(𝑥) (𝑟 (𝑘 )𝑦𝑟 (𝑥 ) (𝑥) − 𝑞0(𝑦𝑟 (𝑥) | 𝑥)), (4)

which is linear in𝜆(𝑥) and satisfies |Δℋ(𝑥;𝜆) | ⩽ 𝜆(𝑥) 𝑤fact(𝑥). So, the sign ofΔℋ(𝑥;𝜆) indicates
whether gating reduces (⩾ 0) or increases (⩽ 0) local discordance.

Recall that, under hard gating, the optimal decision rule from Proposition 1 is

𝜆★(𝑥) = 1{ℓ𝑟 (𝑥 )+𝜁 (1−𝑤fact (𝑥 ) )<ℓ0 (𝑥 ) } , (5)



where ℓ0(𝑥) and ℓ𝑟 (𝑥) are the LM and retriever local cross-entropy, respectively. Substituting (5)
into (4) yields the realized pointwise change

Δℋ(𝑥;𝜆★) = 1{ℓ𝑟 (𝑥 )+𝜁 (1−𝑤fact (𝑥 ) )<ℓ0 (𝑥 ) } 𝑤fact(𝑥) (𝑟 (𝑘 )𝑦𝑟 (𝑥 ) (𝑥) − 𝑞0(𝑦𝑟 (𝑥) | 𝑥)). (6)

Interpretation via three regimes. Equation (6) reveals three qualitatively distinct behaviors
governing how gating affects hallucination.

(i) Gain region. On

𝒜 = {ℓ𝑟 + 𝜁 (1 − 𝑤fact) < ℓ0, 𝑟
(𝑘 )
𝑦𝑟 ⩾ 𝑞0(𝑦𝑟 )},

the retriever achieves a lower cross-entropy and assigns higher (or equal) mass to its own top
label than the LM. Retrieval therefore improves predictive fit while reinforcing factual evidence,
implying Δℋ(𝑥;𝜆★) ⩾ 0. The improvement is largest when 𝑤fact(𝑥) ≈ 1 and is bounded above
by ℋdisc(𝑞0; 𝑥).
(ii) Trade-off region. On

ℬ = {ℓ𝑟 + 𝜁 (1 − 𝑤fact) < ℓ0, 𝑟
(𝑘 )
𝑦𝑟 < 𝑞0(𝑦𝑟 )},

the retriever improves the cross-entropy but places less mass on its modal label than the LM.
Here gating increases discordance (Δℋ(𝑥;𝜆★) ⩽ 0), exhibiting a fundamental tension between
likelihood and factual alignment. The penalty 𝜁 (1 − 𝑤fact(𝑥)) mitigates these cases: when retrieval
is geometrically unreliable, the penalty rises and suppresses harmful switches.

(iii) No-switch region. On

𝒞 = {ℓ𝑟 + 𝜁 (1 − 𝑤fact) ⩾ ℓ0},

the LM remains active (𝜆★(𝑥) = 0) and Δℋ(𝑥;𝜆★) = 0. This region corresponds to sparse or
out-of-distribution queries where retrieval cannot overcome its geometric penalty.

In summary, 𝑤fact(𝑥) plays a dual role: it boosts the benefit of switching in high-confidence
regions through its multiplicative factor and simultaneously reduces the risk of harmful switches
by amplifying the penalty where retrieval is unreliable.

4.2. Asymptotic analysis of discordance
The decomposition in the previous section showed that the pointwise change

Δℋ(𝑥;𝜆★) = 𝜆★(𝑥) 𝑤fact(𝑥) (𝑟 (𝑘 )𝑦𝑟 (𝑥 ) (𝑥) − 𝑞0(𝑦𝑟 (𝑥) | 𝑥))

is entirely governed by the inner quantity

Δ(𝑥) = 𝑟
(𝑘 )
𝑦𝑟 (𝑥 ) (𝑥) − 𝑞0(𝑦𝑟 (𝑥) | 𝑥),

whose sign determines whether the optimal gate reduces or increases the local hallucination
score. Its interpretation differs sharply across the switching regions 𝒜 and ℬ. On 𝒜, Δ(𝑥) ⩾ 0
corresponds to a desirable gain: retrieval improves the local cross-entropy and assigns higher mass
to its own top label. On ℬ, however, we have Δ(𝑥) < 0 despite a cross-entropy improvement, and
it is unclear whether this reflects a genuine semantic disagreement between Bayes and the LM,
or merely finite-sample variability of the 𝑘-NN estimator.

To clarify this, we analyze the asymptotic behavior of Δℋ(𝑥;𝜆★). Recall that we consider the
aligned setting, where the query and memory distributions coincide, 𝑃𝑋 = 𝑄𝑈 and 𝑃𝑌 |𝑋 = 𝑄𝑉 |𝑈 .
The finite-sample mode stability results established below imply that, when 𝑘 → ∞ and 𝑘/𝑛 → 0,



the retriever distribution 𝑟 (𝑘 ) (· | 𝑥) converges in probability to the Bayes conditional distribution
𝑃𝑌 |𝑋 (· | 𝑥), and the induced modal label 𝑦𝑟 (𝑥) converges in probability to the Bayes label 𝑦★(𝑥).
Because 𝑤fact(𝑥) → 1 on the support, the asymptotic behavior of Δℋ(𝑥;𝜆★) is then determined
solely by the structural difference

𝑃𝑌 |𝑋 (𝑦★(𝑥) | 𝑥) − 𝑞0(𝑦★(𝑥) | 𝑥).
As a consequence, any persistent negativity of Δℋ(𝑥;𝜆★) on ℬ must be structural—stemming
from a true mismatch between the Bayes rule and the LM at 𝑥—rather than a by-product of 𝑘-NN
fluctuations.

For notational convenience, let 𝐶 := |𝒴 |. For 𝑥 ∈ R𝑑 and 𝑘 ≥ 1, we denote by

𝑅𝑘 (𝑥) = max
1⩽ 𝑗⩽𝑘

∥𝑈( 𝑗 ) (𝑥) − 𝑥∥

the 𝑘-nearest-neighbor radius of the query 𝑥 among the database points.

Proposition 2 (Finite-sample mode stability). Fix 𝑥 ∈ supp(𝑄𝑈) and assume that the con-
ditional distribution 𝑃𝑌 |𝑋 (· | ·) is 𝐿-Lipschitz in its second argument. Then, for all 𝛿 ∈ (0, 1),

P
(

max
𝑦∈𝒴

��𝑟 (𝑘 )𝑦 (𝑥) − 𝑃𝑌 |𝑋 (𝑦 | 𝑥)
�� > 𝛿

)
⩽ 2𝐶 exp

(
− 2𝑘

(
𝛿
2

)2)
+ P

(
𝑅𝑘 (𝑥) > 𝛿

2𝐿

)
.

In particular, if 𝑘 → ∞ and 𝑘/𝑛 → 0 as 𝑛 → ∞, then

max
𝑦∈𝒴

��𝑟 (𝑘 )𝑦 (𝑥) − 𝑃𝑌 |𝑋 (𝑦 | 𝑥)
�� P−→ 0.

This proposition provides a uniform finite-sample bound on the deviation 𝑟 (𝑘 ) (· | 𝑥) − 𝑃𝑌 |𝑋 (· | 𝑥)
at a fixed query 𝑥, valid whenever 𝑃𝑌 |𝑋 is locally Lipschitz and 𝑥 lies in the support of the retrieval
distribution. In particular, the proposition shows that, as soon as 𝑘 grows while 𝑘/𝑛 → 0, the
𝑘-NN estimate concentrates around its Bayes target uniformly over labels. This uniform control
is precisely what is needed to guarantee that, for large samples, the empirical ordering of the
coordinates of 𝑟 (𝑘 ) (· | 𝑥) matches the ordering of the Bayes vector 𝑃𝑌 |𝑋 (· | 𝑥). The next corollary
makes this consequence explicit by showing that the empirical top label 𝑦𝑟 (𝑥) converges in
probability to the Bayes-optimal label 𝑦★(𝑥) whenever the latter is unique.

Corollary 1 (Asymptotic mode stability). Fix 𝑥 ∈ supp(𝑄𝑈) and assume that the Bayes
label 𝑦★(𝑥) ∈ arg max𝑦∈𝒴 𝑃𝑌 |𝑋 (𝑦 | 𝑥) is unique, so that

𝛾(𝑥) := max
𝑦∈𝒴

𝑃𝑌 |𝑋 (𝑦 | 𝑥) − max
𝑦≠𝑦★ (𝑥 )

𝑃𝑌 |𝑋 (𝑦 | 𝑥) > 0.

Then, under the conditions of Proposition 2, if 𝑘 → ∞ and 𝑘/𝑛 → 0 as 𝑛 → ∞,

P(𝑦𝑟 (𝑥) ≠ 𝑦★(𝑥)) −→ 0.

Asymptotic behavior of the local discordance Δ(𝑥). We are in a position to analyze the large-
sample behavior of the key quantity Δ(𝑥), which determines the sign and magnitude of the
hallucination variation Δℋ(𝑥;𝜆★) in (6).

Fix 𝑥 ∈ supp(𝑄𝑈) and assume that the Bayes label 𝑦★(𝑥) is unique, so that 𝛾(𝑥) > 0. By
Proposition 2, if 𝑘 → ∞ and 𝑘/𝑛 → 0, then

max
𝑦∈𝒴

��𝑟 (𝑘 )𝑦 (𝑥) − 𝑃𝑌 |𝑋 (𝑦 | 𝑥)
�� P−→ 0.



Therefore

𝑟
(𝑘 )
𝑦𝑟 (𝑥 ) (𝑥) − 𝑃𝑌 |𝑋 (𝑦𝑟 (𝑥) | 𝑥)

P−→ 0.

Recalling Δ(𝑥) = 𝑟
(𝑘 )
𝑦𝑟 (𝑥 ) (𝑥) − 𝑞0(𝑦𝑟 (𝑥) | 𝑥), this implies

Δ(𝑥) −
(
𝑃𝑌 |𝑋 (𝑦𝑟 (𝑥) | 𝑥) − 𝑞0(𝑦𝑟 (𝑥) | 𝑥)

) P−→ 0.

Moreover, Corollary 1 yields P
(
𝑦𝑟 (𝑥) = 𝑦★(𝑥)

)
−→ 1. On the event {𝑦𝑟 (𝑥) = 𝑦★(𝑥)},

𝑃𝑌 |𝑋 (𝑦𝑟 (𝑥) | 𝑥) − 𝑞0(𝑦𝑟 (𝑥) | 𝑥) = 𝑃𝑌 |𝑋 (𝑦★(𝑥) | 𝑥) − 𝑞0(𝑦★(𝑥) | 𝑥). Hence,

𝑃𝑌 |𝑋 (𝑦𝑟 (𝑥) | 𝑥) − 𝑞0(𝑦𝑟 (𝑥) | 𝑥)
P−→ 𝑃𝑌 |𝑋 (𝑦★(𝑥) | 𝑥) − 𝑞0(𝑦★(𝑥) | 𝑥),

and combining with the previous display gives

Δ(𝑥) P−→ 𝑃𝑌 |𝑋 (𝑦★(𝑥) | 𝑥) − 𝑞0(𝑦★(𝑥) | 𝑥). (7)

In particular, the sign of Δ(𝑥) coincides with the sign of 𝑃𝑌 |𝑋 (𝑦★(𝑥) | 𝑥) − 𝑞0(𝑦★(𝑥) | 𝑥) with
probability tending to one.

Asymptotic behavior of the local hallucination variation. We are now equipped to describe the
asymptotic behavior of the local hallucination variation Δℋ(𝑥;𝜆★) in (6). The result below shows
that, for fixed 𝑥 in the support, the sign and magnitude of Δℋ(𝑥;𝜆★) converge in probability to
a deterministic quantity governed solely by the Bayes predictor and the LM. We let

ℓBayes(𝑥) =
∑︁
𝑦∈𝒴

𝑃𝑌 |𝑋 (𝑦 | 𝑥) (− log 𝑃𝑌 |𝑋 (𝑦 | 𝑥))

and recall that the LM local cross-entropy is ℓ0(𝑥) =
∑

𝑦∈𝒴 𝑃𝑌 |𝑋 (𝑦 | 𝑥) (− log 𝑞0(𝑦 | 𝑥)).
Theorem 1 (Asymptotic behavior of the local hallucination variation). Under the

aligned setting, let 𝑥 ∈ supp(𝑄𝑈). Suppose that the Bayes label 𝑦★(𝑥) ∈ arg max𝑦∈𝒴 𝑃𝑌 |𝑋 (𝑦 | 𝑥)
is unique. Assume moreover that 𝑃𝑌 |𝑋 (· | ·) is 𝐿-Lipschitz in its second argument and that
ℓBayes(𝑥) ≠ ℓ0(𝑥). Then, if 𝑘 → ∞ and 𝑘/𝑛 → 0 as 𝑛 → ∞,

Δℋ(𝑥;𝜆★) P−→ 𝜆∞(𝑥) (𝑃𝑌 |𝑋 (𝑦★(𝑥) | 𝑥) − 𝑞0(𝑦★(𝑥) | 𝑥)),

where 𝜆∞(𝑥) := 1{ℓBayes (𝑥 )<ℓ0 (𝑥 ) } .

Thus, under mode stability, the local hallucination variation Δℋ(𝑥;𝜆★) converges in probability
to a deterministic quantity determined solely by the structural relationship between the Bayes
rule and the LM at 𝑥. In the limit, the randomness of both the 𝑘-NN estimator and the factuality
weight 𝑤fact(𝑥) disappears, and the gating decision becomes entirely governed by the comparison
between the Bayes cross-entropy ℓBayes(𝑥) and the LM cross-entropy ℓ0(𝑥).

More precisely, when the switching condition ℓBayes(𝑥) < ℓ0(𝑥) holds, the gate eventually
activates with probability tending to one, and

Δℋ(𝑥;𝜆★) −→ 𝑃𝑌 |𝑋 (𝑦★(𝑥) | 𝑥) − 𝑞0(𝑦★(𝑥) | 𝑥).

When ℓBayes(𝑥) ⩾ ℓ0(𝑥), the gate eventually remains off, so that the variation Δℋ(𝑥;𝜆★) → 0
even if the difference 𝑃𝑌 |𝑋 (𝑦★(𝑥) | 𝑥) − 𝑞0(𝑦★(𝑥) | 𝑥) is negative.

In either case, any nonvanishing improvement or deterioration of the hallucination score in the
large-sample regime reflects a genuine structural relationship between the Bayes predictor and
the LM at 𝑥, rather than finite-sample instability of the 𝑘-NN estimator.
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A. Proofs
A.1. Proof of Proposition 2

Conditionally on the neighbor locations 𝑈(1) (𝑥), . . . ,𝑈(𝑘 ) (𝑥), the variables

𝑍𝑗 ,𝑦 := 1{𝑉( 𝑗) (𝑥 )=𝑦} , 𝑦 ∈ 𝒴,

are independent Bernoulli with means 𝑃𝑌 |𝑋 (𝑦 | 𝑈( 𝑗 ) (𝑥)), and 𝑟
(𝑘 )
𝑦 (𝑥) = 𝑘−1 ∑𝑘

𝑗=1 𝑍𝑗 ,𝑦 . Therefore, by
Hoeffding’s inequality and a union bound over all classes, for any 𝛿 ∈ (0, 1),

P
(

max
𝑦∈𝒴

���𝑟 (𝑘 )𝑦 (𝑥) − 1
𝑘

𝑘∑︁
𝑗=1

𝑃𝑌 |𝑋 (𝑦 | 𝑈( 𝑗 ) (𝑥))
��� > 𝛿

2

��� 𝑈(1) (𝑥), . . . ,𝑈(𝑘 ) (𝑥)
)
⩽ 2𝐶 exp

(
− 2𝑘

(
𝛿
2

)2)
. (8)

Dropping the conditioning yields the same bound unconditionally.
Next define the local modulus of continuity

𝜔𝑥 (𝑟) := sup
∥𝑢−𝑥 ∥⩽𝑟

max
𝑦∈𝒴

|𝑃𝑌 |𝑋 (𝑦 | 𝑢) − 𝑃𝑌 |𝑋 (𝑦 | 𝑥) |.

Clearly,

max
𝑦∈𝒴

��� 1
𝑘

𝑘∑︁
𝑗=1

𝑃𝑌 |𝑋 (𝑦 | 𝑈( 𝑗 ) (𝑥)) − 𝑃𝑌 |𝑋 (𝑦 | 𝑥)
��� ⩽ 𝜔𝑥 (𝑅𝑘 (𝑥)).

If 𝑃𝑌 |𝑋 is 𝐿-Lipschitz, then 𝜔𝑥 (𝑟) ⩽ 𝐿𝑟, and combining this with (8) yields

P
(

max
𝑦∈𝒴

��𝑟 (𝑘 )𝑦 (𝑥) − 𝑃𝑌 |𝑋 (𝑦 | 𝑥)
�� > 𝛿

)
⩽ 2𝐶 exp

(
− 2𝑘

(
𝛿
2

)2)
+ P

(
𝑅𝑘 (𝑥) > 𝛿

2𝐿

)
. (9)

Finally, since 𝑥 ∈ supp(𝑄𝑈), the local mass 𝑝𝑥,𝜀 := 𝑄𝑈 (𝐵(𝑥, 𝜀)) is strictly positive for every 𝜀 > 0.
Because

{𝑅𝑘 (𝑥) > 𝜀} = {Bin(𝑛, 𝑝𝑥,𝜀) < 𝑘},

Chernoff’s bound [e.g., Biau and Devroye, 2015, Chapter 20] gives, whenever 𝑘 ⩽ 1
2 𝑛𝑝𝑥,𝜀 ,

P
(
𝑅𝑘 (𝑥) > 𝜀

)
⩽ exp

(
− 𝑛𝑝𝑥,𝜀

8

)
.

Because 𝑘/𝑛 → 0 implies 𝑘 ⩽ 1
2 𝑛𝑝𝑥,𝜀 for large 𝑛, the right-hand side tends to zero. Combining this

with (9) gives the desired convergence.

A.2. Proof of Corollary 1
Fix 𝑥 ∈ supp(𝑄𝑈) and assume that the Bayes label 𝑦★(𝑥) is unique, so that 𝛾(𝑥) > 0. Set 𝜀 := 𝛾 (𝑥 )

3 . By
Proposition 2, applied with this choice of 𝜀, we obtain

P
(

max
𝑦∈𝒴

��𝑟 (𝑘 )𝑦 (𝑥) − 𝑃𝑌 |𝑋 (𝑦 | 𝑥)
�� > 𝜀

)
−→ 0 as 𝑛 → ∞,

whenever 𝑘 → ∞ and 𝑘/𝑛 → 0. Now, define the event

𝐴𝑛 :=
{

max
𝑦∈𝒴

��𝑟 (𝑘 )𝑦 (𝑥) − 𝑃𝑌 |𝑋 (𝑦 | 𝑥)
�� ⩽ 𝜀

}
,

so that P(𝐴𝑐
𝑛) → 0 as 𝑛 → ∞. On 𝐴𝑛, for any 𝑦1, 𝑦2 ∈ 𝒴,

𝑟
(𝑘 )
𝑦1 (𝑥) − 𝑟

(𝑘 )
𝑦2 (𝑥) ⩾ 𝑃𝑌 |𝑋 (𝑦1 | 𝑥) − 𝑃𝑌 |𝑋 (𝑦2 | 𝑥) − 2𝜀.



In particular, taking 𝑦1 = 𝑦★(𝑥) and any 𝑦2 ≠ 𝑦★(𝑥) gives

𝑃𝑌 |𝑋 (𝑦★(𝑥) | 𝑥) − 𝑃𝑌 |𝑋 (𝑦2 | 𝑥) ⩾ 𝛾(𝑥) = 3𝜀,

hence

𝑟
(𝑘 )
𝑦★ (𝑥 ) (𝑥) − 𝑟

(𝑘 )
𝑦2 (𝑥) ⩾ 3𝜀 − 2𝜀 = 𝜀 > 0.

Thus, on 𝐴𝑛,

𝑟
(𝑘 )
𝑦★ (𝑥 ) (𝑥) > 𝑟

(𝑘 )
𝑦 (𝑥) ∀ 𝑦 ≠ 𝑦★(𝑥),

and therefore the empirical and Bayes top labels coincide:

𝑦𝑟 (𝑥) = arg max
𝑦∈𝒴

𝑟
(𝑘 )
𝑦 (𝑥) = arg max

𝑦∈𝒴
𝑃𝑌 |𝑋 (𝑦 | 𝑥) = 𝑦★(𝑥).

Consequently,

P(𝑦𝑟 (𝑥) ≠ 𝑦★(𝑥)) ⩽ P(𝐴𝑐
𝑛) −→ 0 as 𝑛 → ∞,

which establishes the claim.

A.3. Proof of Theorem 1
Since 𝑥 ∈ supp(𝑄𝑈) and 𝑘/𝑛 → 0, Proposition 3 yields

𝑤fact (𝑥)
P−→ 1. (10)

Next, recall that

𝜆★(𝑥) = 1{ℓ𝑟 (𝑥 )+𝜁 (1−𝑤fact (𝑥 ) )<ℓ0 (𝑥 ) } ,

where

ℓ𝑟 (𝑥) =
∑︁
𝑦∈𝒴

𝑃𝑌 |𝑋 (𝑦 | 𝑥) (− log 𝑟 (𝑘 )𝑦 (𝑥)).

By Proposition 2 and the convention 0 log 0 = 0, continuity of log on labels with 𝑃𝑌 |𝑋 (𝑦 | 𝑥) > 0 implies

ℓ𝑟 (𝑥)
P−→ ℓBayes (𝑥).

Using (10), we obtain

ℓ𝑟 (𝑥) + 𝜁 (1 − 𝑤fact (𝑥))
P−→ ℓBayes (𝑥).

Since ℓBayes (𝑥) ≠ ℓ0 (𝑥) by assumption, the indicator

1{ℓ𝑟 (𝑥 )+𝜁 (1−𝑤fact (𝑥 ) )<ℓ0 (𝑥 ) }

converges in probability to

𝜆∞ (𝑥) = 1{ℓBayes (𝑥 )<ℓ0 (𝑥 ) } .

Combining this limit with (7) proves the theorem.

B. Query-memory distribution mismatch
Throughout the main text, we worked in the aligned setting, in which the distribution of query inputs

coincides with that of the memory inputs (𝑃𝑋 = 𝑄𝑈), and the conditional label mechanisms also agree
(𝑃𝑌 |𝑋 = 𝑄𝑉 |𝑈). In realistic retrieval-augmented systems, however, this alignment rarely holds. The retrieval
memory ℳ𝑛 = {(𝑈𝑖 , 𝑉𝑖)}𝑛𝑖=1 is typically built from a large and possibly heterogeneous corpus, whereas
incoming queries (𝑋,𝑌 ) may follow a distinct or temporally evolving distribution. This discrepancy gives



rise to two fundamental sources of mismatch: a geometric shift, where the distribution of query embeddings
differs from that of stored items, and a semantic drift, where the mapping between inputs and labels in
memory no longer reflects that of the current environment.

Such deviations are well known in the broader machine-learning literature. The former corresponds
to covariate shift, while the latter is related to semantic shift, both extensively studied in the context of
domain adaptation and domain generalization; see, for example, Zhou et al. [2023], Tamang et al. [2025].
In RAG, these mismatches manifest concretely as the retrieval of outdated, irrelevant, or off-distribution
items—conditions strongly associated with factual hallucination.

To analyze these effects within a unified framework, we introduce a hybrid geometric-semantic mismatch
model, in which the distribution of queries may differ from that of the memory both through geometric
deformation of the input space and through semantic misalignment between memory labels and the true
query labels. This setting allows us to interpret the retrieval-trust weight 𝑤fact (𝑥) as an implicit correction
mechanism that naturally downweights unreliable retrievals.

B.1. A hybrid geometric-semantic mismatch model
We characterize query-memory mismatch by distinguishing the distribution of query inputs 𝑃𝑋 from

that of memory inputs 𝑄𝑈 , and the query labeling mechanism 𝑃𝑌 |𝑋 from the memory labeling mechanism
𝑄𝑉 |𝑈 . This perspective allows us to model both geometric distortion in the embedding space and semantic
mismatch in the conditional labels.

Geometric shift. Queries are assumed to be generated from memory inputs through a perturbation model:

𝑋 = 𝑇 (𝑈) = 𝑈 + 𝜉 (𝑈),

where 𝑈 ∼ 𝑄𝑈 and 𝜉 : R𝑑 → R𝑑 is a deformation function. The distribution 𝑃𝑋 = 𝑇#𝑄𝑈 thus represents
the law of queries obtained by displacing the memory inputs. When computing the 𝑘 nearest neighbors of
a query 𝑥, the retrieved points 𝑈(1) (𝑥), . . . ,𝑈(𝑘 ) (𝑥) are the elements of {𝑈𝑖}𝑛𝑖=1 that lie closest to 𝑥 in the
embedding space. If ∥𝜉 (𝑢)∥ is small, the neighborhoods of 𝑥 and 𝑢 largely overlap; as ∥𝜉 (𝑢)∥ increases,
retrieved neighbors become less representative of 𝑥, capturing the geometric component of the mismatch.

Label drift. Even when geometric distortion is negligible, the conditional relationship between features
and labels in memory may differ from that of current queries. We model this semantic deviation as a local
corruption process:

𝑄𝑉 |𝑈 (𝑦 | 𝑢) = (1 − 𝜌(𝑢)) 𝑃𝑌 |𝑋 (𝑦 | 𝑢) + 𝜌(𝑢) 𝑠(𝑦 | 𝑢), 0 ⩽ 𝜌(𝑢) ≤ 1,

where 𝜌(𝑢) is a local corruption rate and 𝑠(· | 𝑢) an arbitrary spurious distribution. Thus the retrieval
distribution constructed from ℳ𝑛 approximates a corrupted version of 𝑃𝑌 |𝑋: the memory is reliable when
𝜌(𝑢) is small and increasingly misleading as 𝜌(𝑢) grows.

Retrieval trust and interpretation. The two mechanisms combine into the coupled model

𝑈 ∼ 𝑄𝑈 , 𝑋 = 𝑇 (𝑈), 𝑉 | 𝑈 ∼ 𝑄𝑉 |𝑈 (· | 𝑈), 𝑌 | 𝑋 ∼ 𝑃𝑌 |𝑋 (· | 𝑋). (11)

Both types of shift influence the reliability of retrieval, but in different ways. The retrieval-trust weight
𝑤fact (𝑥), defined in (1), measures the geometric compatibility between the query 𝑥 and its retrieved
neighbors. Large geometric deformations ∥𝜉 (𝑢)∥ inflate the distances ∥𝑥 −𝑈( 𝑗 ) (𝑥)∥ and therefore directly
reduce 𝑤fact (𝑥). By contrast, strong semantic corruption 𝜌(𝑢) does not affect 𝑤fact (𝑥) itself, but makes the
retrieved labels unreliable as proxies for the true query labels, even when geometric proximity is high.
Thus 𝑤fact (𝑥) should be interpreted as a geometry-aware indicator of retrieval quality, while the retrieval
distribution captures the semantic reliability of the retrieved labels under joint geometric and semantic
shift.

In the next subsection, we formalize these observations by characterizing the asymptotic behavior of
both the retrieval-trust weight 𝑤fact (𝑥) and the 𝑘-NN retriever 𝑟 (𝑘 ) (· | 𝑥) under mild regularity assumptions
on 𝑇 and 𝜌. Proposition 3 shows that 𝑤fact (𝑥) converges to a deterministic function of the distance between
the query and the memory support, capturing geometric compatibility, while Proposition 4 establishes that



the retriever converges to the local memory label distribution at the nearest points of the support. Together,
these results give a precise statistical interpretation of the penalty term in (3): retrieval is discouraged
precisely in regions where geometric proximity is weak or where the limiting retrieval distribution reflects
boundary or corrupted semantics.

B.2. Geometry of the trust weight under distribution shift
Let {(𝑈𝑖 , 𝑉𝑖)}𝑛𝑖=1 be the memory pairs with𝑈𝑖 ∈ R𝑑 , drawn i.i.d. from𝑄𝑈𝑉 . Denote by𝑄𝑈 the marginal

law of the 𝑈𝑖’s, and by 𝑆 = supp(𝑄𝑈) its (closed) support. For any query 𝑥 ∈ R𝑑 , we let

𝑑 (𝑥, 𝑆) = inf
𝑢∈𝑆

∥𝑥 − 𝑢∥.

(Since 𝑆 is closed, this infimum is attained.)

Proposition 3 (Asymptotic behavior of the trust weight). Fix 𝑥 ∈ R𝑑 . If 𝑘/𝑛 → 0 as 𝑛 → ∞,
then

𝑤fact (𝑥) =
1
𝑘

𝑘∑︁
𝑗=1

exp
(
− ∥𝑥 −𝑈( 𝑗 ) (𝑥)∥2) a.s.−→ exp

(
− 𝑑 (𝑥, 𝑆)2) .

In particular, if 𝑥 ∈ 𝑆, then 𝑤fact (𝑥)
a.s.−→ 1.

Under the geometric component of the hybrid model, 𝑋 = 𝑇 (𝑈) = 𝑈 + 𝜉 (𝑈) with 𝑈 ∼ 𝑄𝑈 , a query
𝑥 = 𝑇 (𝑢) satisfies 𝑑 (𝑥, 𝑆) ⩽ ∥𝑥 − 𝑢∥ = ∥𝜉 (𝑢)∥. Therefore, Proposition 3 yields the almost-sure limit

𝑤fact (𝑥)
a.s.−−−−→
𝑛→∞

exp
(
− 𝑑 (𝑥, 𝑆)2) ⩾ exp

(
− ∥𝜉 (𝑢)∥2) ,

with equality whenever ∥𝑥 − 𝑢∥ = 𝑑 (𝑥, 𝑆).

Proposition 4 (Asymptotics of the 𝑘-NN retrieval distribution). Fix 𝑥 ∈ R𝑑 . Assume that 𝑘 →
∞ and 𝑘/𝑛 → 0 as 𝑛 → ∞, and define

𝑟
(𝑘 )
𝑦 (𝑥) = 1

𝑘

𝑘∑︁
𝑗=1

1{𝑉( 𝑗) (𝑥 )=𝑦} , 𝑦 ∈ 𝒴.

Let 𝑆 = supp(𝑄𝑈) and let

𝑁𝑆 (𝑥) = {𝑢 ∈ 𝑆 : ∥𝑥 − 𝑢∥ = 𝑑 (𝑥, 𝑆)}

be the (possibly non-singleton) set of nearest points in 𝑆 to 𝑥.
(i) In-support point. If 𝑥 ∈ 𝑆 and 𝑄𝑉 |𝑈 (𝑦 | ·) is continuous at 𝑥, then

𝑟
(𝑘 )
𝑦 (𝑥) a.s.−→ 𝑄𝑉 |𝑈 (𝑦 | 𝑥).

(ii) Unique nearest point off support. If 𝑥 ∉ 𝑆, the nearest set is a singleton 𝑁𝑆 (𝑥) = {𝑢𝑥}, and𝑄𝑉 |𝑈 (𝑦 | ·)
is continuous at 𝑢𝑥 , then

𝑟
(𝑘 )
𝑦 (𝑥) a.s.−→ 𝑄𝑉 |𝑈 (𝑦 | 𝑢𝑥).

(iii) Multiple nearest points. If 𝑄𝑉 |𝑈 (𝑦 | ·) is continuous on 𝑁𝑆 (𝑥), then almost surely,

min
𝑢∈𝑁𝑆 (𝑥 )

𝑄𝑉 |𝑈 (𝑦 | 𝑢) ⩽ lim inf
𝑛→∞

𝑟
(𝑘 )
𝑦 (𝑥) ⩽ lim sup

𝑛→∞
𝑟
(𝑘 )
𝑦 (𝑥) ⩽ max

𝑢∈𝑁𝑆 (𝑥 )
𝑄𝑉 |𝑈 (𝑦 | 𝑢).

In particular, if 𝑄𝑉 |𝑈 (𝑦 | 𝑢) is constant on 𝑁𝑆 (𝑥), then 𝑟
(𝑘 )
𝑦 (𝑥) converges to that common value.

Interpretation under the hybrid shift model. Proposition 4 shows that the empirical retriever 𝑟 (𝑘 ) (· | 𝑥)
consistently estimates the memory’s local label mechanism in the region of the database that is geomet-
rically closest to the query. When 𝑥 ∈ 𝑆, the estimate converges to 𝑄𝑉 |𝑈 (· | 𝑥); when 𝑥 ∉ 𝑆 but admits



a unique projection 𝑢𝑥 ∈ 𝑁𝑆 (𝑥), it converges to 𝑄𝑉 |𝑈 (· | 𝑢𝑥). Proposition 3 complements this semantic
characterization with a geometric one: 𝑤fact (𝑥) ≈ 1 indicates that 𝑥 lies in or close to 𝑆, whereas small
values of 𝑤fact (𝑥) flag out-of-support queries for which retrieval reflects boundary behavior rather than
genuine local structure. Thus, under geometric and semantic mismatch, the pair (𝑟 (𝑘 ) , 𝑤fact) jointly encodes
the reliability of retrieved evidence, a property that directly supports and stabilizes the gating rule.

Propositions 3 and 4 yield almost-sure pointwise limits for 𝑤fact (𝑥) and—when the limit exists—for
𝑟 (𝑘 ) (· | 𝑥). In particular, in cases (i) and (ii) of Proposition 4, the 𝑘-NN retriever admits a deterministic
limit 𝑟∞ (· | 𝑥). Whenever 𝑟∞ (· | 𝑥) exists, continuity of the mixture implies that, for any measurable
𝜆 : R𝑑 → [0, 1],

𝑝𝜆 (𝑦 | 𝑥) = (1 − 𝜆(𝑥)) 𝑞0 (𝑦 | 𝑥) + 𝜆(𝑥) 𝑟 (𝑘 )𝑦 (𝑥)
a.s.−−−−→
𝑛→∞

𝑝𝜆,∞ (𝑦 | 𝑥) := (1 − 𝜆(𝑥)) 𝑞0 (𝑦 | 𝑥) + 𝜆(𝑥) 𝑟∞ (𝑦 | 𝑥).

Thus, under the hybrid shift model (11), we obtain

𝑟∞ (𝑦 | 𝑥) − 𝑃𝑌 |𝑋 (𝑦 | 𝑥)
= (1 − 𝜌(𝑢𝑥))

(
𝑃𝑌 |𝑋 (𝑦 | 𝑢𝑥) − 𝑃𝑌 |𝑋 (𝑦 | 𝑥)

)
+ 𝜌(𝑢𝑥)

(
𝑠(𝑦 | 𝑢𝑥) − 𝑃𝑌 |𝑋 (𝑦 | 𝑥)

)
,

and, writing ∥ · ∥1 =
∑

𝑦∈𝒴 | · |,

∥𝑟∞ (· | 𝑥) − 𝑃𝑌 |𝑋 (· | 𝑥)∥1 ⩽ (1 − 𝜌(𝑢𝑥)) 𝛿geom (𝑥) + 𝜌(𝑢𝑥) 𝛿sem (𝑥),

where

𝛿geom (𝑥) = ∥𝑃𝑌 |𝑋 (· | 𝑢𝑥) − 𝑃𝑌 |𝑋 (· | 𝑥)∥1, 𝛿sem (𝑥) = ∥𝑠(· | 𝑢𝑥) − 𝑃𝑌 |𝑋 (· | 𝑥)∥1.

If 𝑃𝑌 |𝑋 (· | 𝑥) is locally Lipschitz as a map from R𝑑 to (R𝐶 , ∥ · ∥1), then

𝛿geom (𝑥) = ∥𝑃𝑌 |𝑋 (· | 𝑢𝑥) − 𝑃𝑌 |𝑋 (· | 𝑥)∥1 ⩽ 𝐿 ∥𝑥 − 𝑢𝑥 ∥ ⩽ 𝐿 𝑑 (𝑥, 𝑆).

Hence the total retrieval bias is jointly driven by the geometric displacement 𝑑 (𝑥, 𝑆) and the local corruption
level 𝜌(𝑢𝑥). When 𝑥 lies near the memory support and corruption is small, the limiting retriever 𝑟∞ (· |
𝑥) is close to the true conditional distribution, and 𝑤fact (𝑥) ≈ 1 makes the penalty 𝜆(𝑥) (1 − 𝑤fact (𝑥))
negligible, so retrieval is not discouraged. As 𝑥 moves away from the support or corruption increases,
∥𝑟∞ (· | 𝑥) − 𝑃𝑌 |𝑋 (· | 𝑥)∥1 grows while 𝑤fact (𝑥) ≈ 𝑒−𝑑 (𝑥,𝑆)

2 shrinks, naturally steering the gate toward the
base model.

B.3. Proof of Proposition 3
Let 𝐷 ( 𝑗 )

𝑛 (𝑥) = ∥𝑥 −𝑈( 𝑗 ) (𝑥)∥ be the 𝑗-th nearest-neighbor distance among {𝑈𝑖}𝑛𝑖=1. By Lemma 2.2 of
Biau and Devroye [2015], if 𝑘/𝑛 → 0 then 𝐷

(𝑘 )
𝑛 (𝑥) a.s.−→ 𝑑 (𝑥, 𝑆) as 𝑛 → ∞. Since 𝐷 (1)

𝑛 (𝑥) ⩽ · · · ⩽ 𝐷
(𝑘 )
𝑛 (𝑥)

and 𝐷
(1)
𝑛 (𝑥) ⩾ 𝑑 (𝑥, 𝑆), we obtain

0 ⩽ max
1⩽ 𝑗⩽𝑘

��𝐷 ( 𝑗 )
𝑛 (𝑥) − 𝑑 (𝑥, 𝑆)

�� ⩽ 𝐷
(𝑘 )
𝑛 (𝑥) − 𝑑 (𝑥, 𝑆) a.s.−→ 0,

so 𝐷
( 𝑗 )
𝑛 (𝑥) a.s.−→ 𝑑 (𝑥, 𝑆) uniformly over 1 ⩽ 𝑗 ⩽ 𝑘 . With 𝜑(𝑡) = exp(−𝑡2) continuous, uniform convergence

gives

max
1⩽ 𝑗⩽𝑘

��𝜑(𝐷 ( 𝑗 )
𝑛 (𝑥)) − 𝜑(𝑑 (𝑥, 𝑆))

�� a.s.−→ 0.

This shows the desired claim.

B.4. Proof of Proposition 4
Let 𝐷 ( 𝑗 )

𝑛 (𝑥) = ∥𝑥 −𝑈( 𝑗 ) (𝑥)∥. As in the proof of Proposition 3, when 𝑘/𝑛 → 0 as 𝑛 → ∞,

0 ⩽ max
1⩽ 𝑗⩽𝑘

|𝐷 ( 𝑗 )
𝑛 (𝑥) − 𝑑 (𝑥, 𝑆) | ⩽ 𝐷

(𝑘 )
𝑛 (𝑥) − 𝑑 (𝑥, 𝑆) a.s.−→ 0.



Thus the neighbor locations satisfy almost surely: if 𝑥 ∈ 𝑆, then 𝑈( 𝑗 ) (𝑥) → 𝑥; if 𝑥 ∉ 𝑆 and 𝑁𝑆 (𝑥) = {𝑢𝑥},
then 𝑈( 𝑗 ) (𝑥) → 𝑢𝑥 ; in general, every cluster point of the sequence {𝑈( 𝑗 ) (𝑥)}𝑘𝑗=1 lies in 𝑁𝑆 (𝑥).

Conditionally on the neighbor locations, the variables 𝑍𝑗 ,𝑦 := 1{𝑉( 𝑗) (𝑥 )=𝑦} are independent Bernoulli
with means 𝑄𝑉 |𝑈 (𝑦 | 𝑈( 𝑗 ) (𝑥)), and 𝑟

(𝑘 )
𝑦 (𝑥) = 𝑘−1 ∑𝑘

𝑗=1 𝑍𝑗 ,𝑦 . Thus, Hoeffding’s inequality yields

P
(���𝑟 (𝑘 )𝑦 (𝑥) − 1

𝑘

𝑘∑︁
𝑗=1

𝑄𝑉 |𝑈 (𝑦 | 𝑈( 𝑗 ) (𝑥))
��� > 𝜀

��� 𝑈(1) (𝑥), . . . ,𝑈(𝑘 ) (𝑥)
)
⩽ 2𝑒−2𝑘𝜀2

,

hence, as 𝑘 → ∞,

𝑟
(𝑘 )
𝑦 (𝑥) − 1

𝑘

𝑘∑︁
𝑗=1

𝑄𝑉 |𝑈 (𝑦 | 𝑈( 𝑗 ) (𝑥))
a.s.−→ 0.

For (i), continuity at 𝑥 ∈ 𝑆 implies

max
1⩽ 𝑗⩽𝑘

|𝑄𝑉 |𝑈 (𝑦 | 𝑈( 𝑗 ) (𝑥)) −𝑄𝑉 |𝑈 (𝑦 | 𝑥) | a.s.−→ 0,

so the Cesàro mean converges to 𝑄𝑉 |𝑈 (𝑦 | 𝑥). The same argument gives (ii).
For (iii), continuity on 𝑁𝑆 (𝑥) implies the Cesàro averages of {𝑄𝑉 |𝑈 (𝑦 | 𝑈( 𝑗 ) (𝑥))}𝑘𝑗=1 must lie within

the convex hull of the function values on 𝑁𝑆 (𝑥), giving the stated bounds.
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