
SIRUS: Stable and Interpretable RUle Set for
Classification

Clément Bénard∗ Gérard Biau † Sébastien Da Veiga ‡ Erwan Scornet§

Abstract

State-of-the-art learning algorithms, such as random forests or neural networks, are
often qualified as “black-boxes” because of the high number and complexity of operations
involved in their prediction mechanism. This lack of interpretability is a strong limitation
for applications involving critical decisions, typically the analysis of production processes
in the manufacturing industry. In such critical contexts, models have to be interpretable,
i.e., simple, stable, and predictive. To address this issue, we design SIRUS (Stable and
Interpretable RUle Set), a new classification algorithm based on random forests, which
takes the form of a short list of rules. While simple models are usually unstable with
respect to data perturbation, SIRUS achieves a remarkable stability improvement over
cutting-edge methods. Furthermore, SIRUS inherits a predictive accuracy close to random
forests, combined with the simplicity of decision trees. These properties are assessed both
from a theoretical and empirical point of view, through extensive numerical experiments
based on our R/C++ software implementation sirus available from CRAN.
Keywords: classification, interpretability, rules, stability, random forests.

1 Introduction

State-of-the-art learning algorithms, typically tree ensembles or neural networks, are well-
known for their remarkable predictive performance. However, this high accuracy comes at
the price of complex prediction mechanisms: a large number of operations are computed for
a given prediction. Because of this complexity, learning algorithms are often considered as
black-boxes. This lack of interpretability is a serious limitation for many applications involv-
ing critical decisions, such as healthcare, criminal justice, or industrial process optimization.
This latter example is interesting to illustrate how interpretability can be essential. Indeed, in
the manufacturing industry, production processes involve complex physical and chemical phe-
nomena, whose control and efficiency are of critical importance. In practice, data is collected
along the manufacturing line, describing both the production environment and its conformity.
The retrieved information enables to infer a link between the manufacturing conditions and

∗Safran Tech, Sorbonne Université
†Sorbonne Université
‡Safran Tech
§Ecole Polytechnique

1

the resulting quality at the end of the line, and then to increase the process efficiency. Since
the quality of the produced entities is often characterized by a pass or fail output, the prob-
lem is in fact a classification task, and state-of-the-art learning algorithms can successfully
catch patterns of these complex and nonlinear physical phenomena. However, any decision
impacting the production process has long-term and heavy consequences, and therefore cannot
simply rely on a blind stochastic modelling. As a matter of fact, a deep physical understanding
of the forces in action is required, and this makes black-box algorithms inappropriate. In a
word, models have to be interpretable, i.e., provide an understanding of the internal mech-
anisms that build a relation between inputs and outputs, to provide insights to guide the
physical analysis. This is for example typically the case in the aeronautics industry, where the
manufacturing of engine parts involves sensitive casting and forging processes. Interpretable
models allow us to gain knowledge on the behavior of such production processes, which can
lead, for instance, to identify or fine-tune critical parameters, improve measurement and con-
trol, optimize maintenance, or deepen understanding of physical phenomena. In the following
paragraphs, we deepen the discussion about the definition of interpretability to highlight the
limitations of the most popular interpretable nonlinear models: decision trees and rule al-
gorithms (Guidotti et al., 2018). Despite their high predictivity and simple structure, these
methods are unstable, which is a strong operational limitation. The goal of this article is to
introduce SIRUS (Stable and Interpretable RUle Set), an interpretable rule classification al-
gorithm which considerably improves stability over state-of-the-art methods, while preserving
their simple structure, accuracy, and computational complexity.

As stated in Rüping (2006), Lipton (2016), Doshi-Velez and Kim (2017), or Murdoch et al.
(2019), to date, there is no agreement in statistics and machine learning communities about
a rigorous definition of interpretability. There are multiple concepts behind it, many different
types of methods, and a strong dependence on the area of application and the audience. Here,
we focus on models intrinsically interpretable, which directly provide insights on how inputs
and outputs are related, as opposed to the post-processing of black-box models. In that case,
we argue that it is possible to define minimum requirements for interpretability through the
triptych “simplicity, stability, and predictivity”, in line with the framework recently proposed
by Yu and Kumbier (2019). Indeed, in order to grasp how inputs and outputs are related,
the structure of the model has to be simple. The notion of simplicity is implied whenever
interpretability is invoked (e.g., Rüping, 2006; Freitas, 2014; Letham, 2015; Letham et al.,
2015; Lipton, 2016; Ribeiro et al., 2016; Murdoch et al., 2019) and essentially refers to the
model size, complexity, or the number of operations performed in the prediction mechanism.
Yu (2013) defines stability as another fundamental requirement for interpretability: conclu-
sions of a statistical analysis have to be robust to small data perturbations to be meaningful.
Indeed, a specific analysis is likely to be run multiple times, eventually adding a small new
batch of data, and an interpretable algorithm should be insensitive to such modifications.
Otherwise, unstable models provide us with a partial and arbitrary analysis of the underlying
phenomena, and arouses distrust of the domain experts. Finally, if the predictive accuracy of
an interpretable model is significantly lower than the one of a state-of-the-art black-box algo-
rithm, it clearly misses strong patterns in the data and will therefore be useless, as explained
in Breiman (2001b). For example, the trivial model that outputs the empirical mean of the
observations for any input is simple, stable, but brings in most cases no useful information.
Thus, we add a good predictivity as an essential requirement for interpretability.

2

Decision trees are a class of supervised learning algorithms that recursively partition the in-
put space and make local decisions in the cells of the resulting partition. Trees can model highly
nonlinear patterns while having a simple structure, and are therefore good candidates when
interpretability is required. However, trees are unstable to small data perturbations (Oates
and Jensen, 1997; Guidotti and Ruggieri, 2019). More precisely, as explained in Breiman
(2001b): by randomly removing only 2 − 3% of the training data, the tree structure can be
quite different, which is a strong limitation to their practical use. Another class of supervised
learning methods that can model nonlinear patterns while retaining a simple structure are
the so-called rule models. As such, a rule is defined as a conjunction of constraints on in-
put variables, which form a hyperrectangle in the input space where the estimated output is
constant. A collection of rules is combined to form a model. Here, the term “rule” does not
stand for “classification rule” but, as is traditional in the rule learning literature, to a piecewise
constant estimate that simply reads “if conditions on x, then response, else default response”.
Despite their simplicity and excellent predictive skills, rule algorithms are unstable and, from
this point of view, share the same limitation as decision trees (Letham et al., 2015; Murdoch
et al., 2019).

In line with the above, we design SIRUS in the present paper, a new rule classification
algorithm which inherits an accuracy close to random forests and the simplicity of decision
trees, while having a stable structure. The core aggregation principle of random forests is
kept, but instead of aggregating predictions, SIRUS focuses on the probability that a given
hyperrectangle (i.e., a node) is contained in a randomized tree. The nodes with the highest
probability are robust to data perturbation and represent strong patterns. They are therefore
selected to form a stable rule ensemble model. Here, we provide a first illustration of SIRUS
with a simple and real case: the Titanic dataset (Piech, 2016). The survival status of 887
passengers are recorded, as well as various personal characteristics: age, sex, class, number of
siblings and parents aboard, and the paid fare. SIRUS outputs the following simple set of 7
rules, which enables to grasp at a glance the main patterns to explain passenger survival:

Average survival rate ps = 39%.

if sex is male then ps = 19% else ps = 74%

if 1st or 2nd class then ps = 56% else ps = 24%

if 1st or 2nd class
& sex is female then ps = 95% else ps = 25%

if fare < 10.5£ then ps = 20% else ps = 50%

if no parents or
children aboard then ps = 35% else ps = 51%

if 2st or 3nd class
& sex is male then ps = 14% else ps = 64%

if sex is male
& age ≥ 15 then ps = 16% else ps = 72%

To generate the prediction for a new query point x, SIRUS checks for each rule whether the
conditions are satisfied to assign one of the two possible ps output values. Let us say for

3

example that x(sex) is female, then x satisfies the condition of the first rule, which returns
ps = 74%. Next, the 7 rule outputs are averaged to provide the predicted probability of
survival for x. The model is stable: when a 10-fold cross-validation is run to simulate data
perturbation, 5 to 6 rules are consistent across two folds in average. The model error (1-AUC)
is 0.17, close to the 0.13 of random forests, whereas simplicity is drastically increased: 7 rules
versus about 104 operations for a forest prediction.

First, we review the main rule algorithms and present their mechanism principles in Section
2. Next, Section 3 is devoted to the detailed description of SIRUS. One of the main contri-
butions of this work is the development of a software implementation, via the R/C++ package
sirus (Benard and Wright, 2020) available from CRAN, based on ranger, a high-performance
random forest implementation (Wright and Ziegler, 2017). In Section 4, we show that the good
empirical behavior of SIRUS is theoretically understood by proving its asymptotic stability.
Then, in Section 5, we illustrate the efficiency of our algorithm through numerical experi-
ments on real datasets. Finally, Section 6 summarizes the main contributions of the article
and provides directions for future research.

2 Related Work

As stated in the introduction, SIRUS has two types of competitors: decision trees and rule
algorithms. More precisely, the latter can further be split into three different kinds: classical
rule algorithms based on greedy heuristics, those built on top of frequent pattern mining
algorithms, and those extracted from tree ensembles.

Decision trees may be the most popular competitors of SIRUS because of their simple
structure. The main algorithms are CART (Breiman et al., 1984) and C5.0 (Quinlan, 1992).
However, trees are unstable as we have already highlighted. A widespread method to stabilize
decision trees is bagging (Breiman, 1996), in which multiple trees are grown on perturbed data
and aggregated together. Random forests is an algorithm developped by Breiman (2001a) that
improves over bagging by randomizing the tree construction. Predictions are stable, accuracy
is increased, but the final model is unfortunately a black box. Thus, simplicity of trees is lost,
and some post-treatment mechanisms are needed to understand how random forests make
their decisions. Nonetheless, even if they are useful, such treatments only provide partial
information and can be difficult to operationalize for critical decisions (Rudin, 2018). For
example, variable importance (Breiman, 2001a, 2003a) identifies variables that have a strong
impact on the output, but not which inputs values are associated to output values of interest.
Similarly, local approximation methods such as LIME (Ribeiro et al., 2016) or Tolomei et al.
(2017) do not provide insights on the global relation.

Rule learning originates from the influential AQ system of Michalski (1969). Many al-
gorithms based on greedy heuristics were subsequently developped in the 1980’s and 1990’s,
including Decision List (Rivest, 1987), CN2 (Clark and Niblett, 1989), FOIL (First-Order In-
ductive Learner, Quinlan, 1990; Quinlan and Cameron-Jones, 1995), IREP (Incremental Re-
duced Error Pruning, Fürnkranz andWidmer, 1994), RIPPER (Repeated Incremental Pruning
to Produce Error Reduction, Cohen, 1995), PART (Partial Decision Trees, Frank and Witten,
1998), SLIPPER (Simple Learner with Iterative Pruning to Produce Error Reduction, Cohen

4

and Singer, 1999), LRI (Leightweight Rule Induction, Weiss and Indurkhya, 2000), and EN-
DER (Ensemble of Decision Rules, Dembczyński et al., 2010). Since these methods are based
on greedy heuristics, they are computationally fast, but similarly to decision trees, they are
unstable and their accuracy is often limited.

At the end of the 1990’s a new type of rule algorithms based on frequent pattern mining
is introduced with CBA (Classification Based on Association Rules, Liu et al., 1998), then
extended with CPAR (Classification based on Predictive Association Rules, Yin and Han,
2003). Frequent pattern mining is originally used to identify frequent occurrences in database
mining. Since the output Y ∈ {0, 1} is discrete and the input data can be discretized, we can
generate candidate rules for classification by identifying frequent patterns associated with each
output label. This exhaustive search for association rules is computationally costly (exponen-
tial with the input dimension), and efficient heuristics are used, essentially Apriori (Agrawal
et al., 1993) and Eclat (Zaki et al., 1997). The rule aggregation mechanism is specific to each
algorithm. More recently, BRL (Bayesian Rule List, Letham et al., 2015) uses a more sophis-
ticated Bayesian framework for the rule aggregation than the simple approach of CBA and
CPAR, while IDS (Lakkaraju et al., 2016, Interpretable Decision Sets) uses a multi-objective
optimization to select interpretable rules. Finally, CORELS (Angelino et al., 2017, Certifi-
ably Optimal RulE ListS) generates optimal rule lists for categorical data. Interestingly, these
methods exhibit quite good stability properties as we will see, higher than decision trees, but
on the other hand, their predictive accuracy is worse.

The last decade has seen a resurgence of rule models through powerful algorithms based
on rule extraction from tree ensembles, especially RuleFit (Friedman and Popescu, 2008)
and Node harvest (Meinshausen, 2010). Notice that SIRUS is also based on this principle.
More specifically, RuleFit extracts all the rules of a boosted tree ensemble (Friedman and
Popescu, 2003), while Node harvest is based on random forests. Then, the extracted rules
are linearly combined in a sparse linear model, respectively a logistic regression with a Lasso
penalty (Tibshirani, 1996) for RuleFit, and a constraint quadratic linear program for Node
harvest. These two methods have a computational complexity comparable to random forests
and SIRUS, since the main step of all these algorithms is to grow a tree ensemble with a
large number of trees. However, both algorithms are unstable, and both output quite complex
and long lists of rules. Even running RuleFit or Node harvest multiple times on the same
dataset produces quite different rule lists because of the randomness in the tree ensembles—
see Appendix A.1. On the other hand, SIRUS is built to have its structure converged for the
given dataset, as explained later in Section 3.

To the best of our knowledge, the signed iterative random forest method (s-iRF, Kumbier
et al., 2018) is the only procedure that tackles both rule learning and stability. Using random
forests, s-IRF manages to extract stable signed interactions, i.e., feature interactions enriched
with a thresholding behavior for each variable, lower or higher, but without specific thresh-
olding values. Therefore, s-IRF can be difficult to operationalize since it does not provide
any specific input thresholds, and thus no precise information about the influence of input
variables. On the other hand, an explicit rule model identifies specific regions of interest in
the input space.

5

3 SIRUS Algorithm

Within the general framework of supervised (binary) classification, we assume to be given an
i.i.d. sample Dn = {(Xi, Yi), i = 1, . . . , n}. Each (Xi, Yi) is distributed as the generic pair
(X, Y) independent of Dn, where X = (X(1), . . . , X(p)) is a random vector taking values in
Rp and Y ∈ {0, 1} is a binary response. Throughout the document, the distribution of (X, Y)
is assumed to be unknown and is denoted by PX,Y . For x ∈ Rp, our goal is to accurately
estimate the conditional probability η(x) = P(Y = 1|X = x) with few simple and stable rules.

To tackle this problem, SIRUS first builds a (slightly modified) random forest. Next,
each hyperrectangle of each tree of the forest is turned into a simple decision rule, and the
collection of these elementary rules is ranked based on their frequency of appearance in the
forest. Finally, the most significant rules are retained and are averaged together to form an
ensemble model. We describe the four steps of SIRUS algorithm in the following paragraphs:
the rule generation, rule selection, rule post-treatment, and the rule aggregation. This section
ends with a discussion of SIRUS stability.

Rule generation. SIRUS uses at its core the random forest method (Breiman, 2001a),
slightly modified for our purpose. As in the original procedure, each single tree in the forest
is grown with a greedy heuristic that recursively partitions the input space using a random
variable Θ. The essential difference between our approach and Breiman’s one is that, prior to
all tree constructions, the empirical q-quantiles of the marginal distributions over the whole
dataset are computed: in each node of each tree, the best split can be selected among these
empirical quantiles only. This constraint is critical to stabilize the forest structure and keeps
almost intact the predictive accuracy, provided q is not too small (typically of the order of 10—
see the experimental Subsection 5.4). Apart from this difference, the tree growing is similar to
Breiman’s original procedure. The tree randomization Θ is independent of the sample and has
two independent components, denoted by Θ(S) and Θ(V), which are respectively used for the
subsampling mechanism and randomization of the split direction. Throughout the manuscript,
we let q̂(j)

n,r be the empirical r-th q-quantile of {X(j)
1 , . . . , X

(j)
n }, with typically q = 10. The

construction of the individual trees is summarized in Algorithm 1 below.

Algorithm 1 Tree construction
1: Parameters: Number of quantiles q, number of subsampled observations an, number of

eligible directions for splitting mtry.
2: Compute the empirical q-quantiles for each marginal distribution over the whole dataset.
3: Subsample with replacement an observations, indexed by Θ(S). Only these observations

are used to build the tree.
4: Initialize the cell H as the root of the tree.
5: Draw uniformly at random a subset Θ(V) ⊂ {1, . . . , p} of cardinality mtry.
6: For all j ∈ Θ(V), compute the CART-splitting criterion at all empirical q-quantiles of X(j)

that split the cell H into two non-empty cells.
7: Choose the split that maximizes the CART-splitting criterion.
8: Recursively repeat lines 5− 7 for the two resulting children cells HL and HR.

6

x(1)

x(2)

q̂
(1)
n,7q̂

(1)
n,5

q̂
(2)
n,4

P5 = {(2, 4, R),
(1, 7, L)}

P6 = {(2, 4, R),
(1, 7, R)}

P3 = {(2, 4, L),
(1, 5, L)}

P4 = {(2, 4, L),
(1, 5, R)}

X
(2)
i < q̂

(2)
n,4 X

(2)
i ≥ q̂(2)

n,4

P1 P2

X
(1)
i < q̂

(1)
n,7

X
(1)
i ≥ q̂(1)

n,7

P5 P6

X
(1)
i < q̂

(1)
n,5

X
(1)
i ≥ q̂(1)

n,5

P3 P4

Figure 1: Example of a root node R2 partitionned by a randomized tree of depth 2: the tree on the
right side, the associated paths and hyperrectangles of length d = 2 on the left side.

The main step of SIRUS is to extract rules from the modified random forest. The corner-
stone of this extraction mechanism is the notion of path in a decision tree. Indeed, a path
describes the sequence of splits to go from the root of the tree to a specific (inner or terminal)
node. Since a hyperrectangle is associated to each node, a rule can be defined as a piecewise
constant estimate with this hyperrectangle as support. Therefore, to rigorously define the
rule extraction, we introduce the symbolic representation of a path in a tree. We insist that
such definition is valid for both terminal leaves and inner nodes, which are all used by SIRUS.
To begin, we follow the example shown in Figure 1 with a tree of depth 2 partitioning the
input space R2. For instance, let us consider the node P6 defined by the sequence of two
splits X(2)

i ≥ q̂(2)
n,4 and X(1)

i ≥ q̂(1)
n,7. The first split is symbolized by the triplet (2, 4, R), whose

components respectively stand for the variable index 2, the quantile index 4, and the right side
R of the split. Similarly, for the second split we cut coordinate 1 at quantile index 7, and pass
to the right. Thus, the path to the considered node is defined by P6 = {(2, 4, R), (1, 7, R)}.
Also notice that the first split already defines the path P2 = {(2, 4, R)}, associated to the
right inner node at the first level of the tree. Of course, this generalizes to each path P of
length d under the symbolic compact form

P = {(jk, rk, sk), k = 1, . . . , d},

where, for k ∈ {1, . . . , d}, the triplet (jk, rk, sk) describes how to move from level (k − 1) to
level k, with a split using the coordinate jk ∈ {1, . . . , p}, the index rk ∈ {1, . . . , q − 1} of
the corresponding quantile, and a side sk = L if we go the the left and sk = R if we go to
the right. The set of all possible such paths is denoted by Π. It is important to note that
Π is in fact a deterministic (that is, non random) quantity, which only depends upon the
dimension p and the order q of the quantiles. Of course, given a path P ∈ Π one can recover
the hyperrectangle (i.e., the tree node) Ĥn(P) associated with P and the entire dataset Dn

7

via the correspondence

Ĥn(P) =

{
x ∈ Rp :

{
x(jk) < q̂

(jk)
n,rk if sk = L

x(jk) ≥ q̂(jk)
n,rk if sk = R

, k = 1, . . . , d

}
. (3.1)

Finally, an elementary rule ĝn,P can be defined from Ĥn(P) as a piecewise constant estimate:
ĝn,P(x) returns the empirical probability that the output Y is of class 1 conditional on whether
the query point x belongs to Ĥn(P) or not. Thus, the rule ĝn,P associated to the path P ∈ Π
is formally defined by

∀x ∈ Rp, ĝn,P(x) =

1

Nn(Ĥn(P))

∑n
i=1 Yi1Xi∈Ĥn(P) if x ∈ Ĥn(P)

1
n−Nn(Ĥn(P))

∑n
i=1 Yi1Xi /∈Ĥn(P) otherwise

,

using the convention 0/0 = 0, and whereNn(Ĥn(P)) is the number of observations in the node
associated with P. This formal definition can be illustrated with the Titanic dataset presented
in the introduction. For the fourth rule, fare is the 6th variable and since q̂(6)

n,4 = 10.5, the
corresponding path is P = {(6, 4, L)}, and the associated rule is thus

ĝn,P(x) =

{
0.20 if x(6) < 10.5

0.50 if x(6) ≥ 10.5
.

Finally, a Θ-random tree generates a collection of paths in Π, one for each internal and terminal
nodes. In the sequel, we let T (Θ,Dn) be the list of such extracted paths, a random subset of
Π.

Rule selection. Using our modified random forest algorithm, we are able to generate a large
numberM of trees, randomized by Θ1, . . . ,ΘM , i.i.d. copies of the generic variable Θ, and then
to extract a large collection of rules. Since we are interested in selecting the most important
rules, i.e., those which represent strong patterns between the inputs and the output, we select
rules that are shared by a large portion of trees. Such occurrence frequency is formally defined
by

p̂M,n(P) =
1

M

M∑
`=1

1P∈T (Θ`,Dn),

which is the Monte-Carlo estimate of the probability that a path P belongs to a Θ-random
tree, that is

pn(P) = P(P ∈ T (Θ,Dn)|Dn).

As a general strategy, once the modified random forest has been built, we draw the list of all
paths that appear in the forest and only retain those that occur with a frequency larger than
the threshold p0 ∈ (0, 1), the only influential parameter of SIRUS—see Subsection 5.4 for its
tuning procedure. We are thus interested in the set of the extracted paths

P̂M,n,p0 = {P ∈ Π : p̂M,n(P) > p0}. (3.2)

An important feature of SIRUS algorithm is to stop the growing of the forest with an appro-
priate number of trees M . Although the right order of magnitude for M is required, no fine

8

tuning is necessary. Indeed, the uncertainty of the importance estimate p̂M,n(P) of each rule
decreases with M , whereas the computational cost linearly increases with M . Thus, to obtain
a robust rule extraction, M needs to be high enough to make the uncertainty of p̂M,n(P)

negligible. More precisely, M is set to get the same list of selected rules P̂M,n,p0 when SIRUS
is run multiple times on the same dataset Dn. On the other hand, M should be small enough
to avoid useless computations. Therefore, the growing of the forest is automatically stopped
when 95% of the selected rules would be shared by a new run of SIRUS on Dn in average,
as it is possible to derive a simple stopping criterion based on the properties of the estimates
p̂M,n(P)—all the technical details are provided in Subsection 5.4. A random forest is usu-
ally built with around 500 trees, as the predictive accuracy cannot be significantly increased
by adding more trees. SIRUS typically grows 10 times more trees to obtain a robust rule
extraction.

Besides, we insist that the quantile discretization is critical for the rule selection. The
expected value of the rule importance is

E[p̂M,n(P)] = P(P ∈ T (Θ,Dn)),

but without the discretization, the list of extracted paths from a random tree T (Θ,Dn) takes
values in an uncountable space when at least one component of X is a continuous random
variable, and therefore the above quantity is null, making the path selection procedure unstable
with respect to data perturbation.

Rule post-treatment. By construction, there is some redundancy in the list of rules gen-
erated by the set of distinct paths P̂M,n,p0 . The hyperrectangles associated with the paths
extracted from a Θ-random tree overlap, and so the corresponding rules are linearly depen-
dent. Therefore a post-treatment to filter P̂M,n,p0 is needed to remove redundancy and obtain
a compact rule model. The general idea is straightforward: if the rule associated with the path
P ∈ P̂M,n,p0 is a linear combination of rules associated with paths with a higher frequency
in the forest, then P is removed from P̂M,n,p0 .

To illustrate the post-treatment, let the tree of Figure 1 be the Θ1-random tree grown
in the forest. Since the paths of the first level of the tree, P1 and P2, always occur in the
same trees, we have p̂M,n(P1) = p̂M,n(P2). If we assume these quantities to be greater than
p0, then P1 and P2 both belong to P̂M,n,p0 . However, by construction, P1 and P2 are
associated with the same rule, and we therefore enforce SIRUS to keep only P1 in P̂M,n,p0 .
Each of the paths of the second level of the tree, P3, P4, P5, and P6, can occur in many
different trees, and their associated p̂M,n are distinct (except in very specific cases). Assume
for example that p̂M,n(P1) > p̂M,n(P4) > p̂M,n(P5) > p̂M,n(P3) > p̂M,n(P6) > p0. Since
ĝn,P3 is a linear combination of ĝn,P4 and ĝn,P1 , P3 is removed. Similarly P6 is redundant
with P1 and P5, and it is therefore removed. Finally, among the six paths of the tree, only
P1, P4, and P5 are kept in the list P̂M,n,p0 .

Rule aggregation. Now, the resulting small set of rules P̂M,n,p0 is combined to form a
simple, compact, and stable rule classification model. We simply average the set of elementary

9

rules {ĝn,P : P ∈ P̂M,n,p0} that have been selected in the first steps of SIRUS. The aggregated
estimate η̂M,n,p0(x) of η(x) is thus defined by

η̂M,n,p0(x) =
1

|P̂M,n,p0 |

∑
P∈P̂M,n,p0

ĝn,P(x). (3.3)

Finally, the classification procedure assigns class 1 to an input x if the aggregated estimate
η̂M,n,p0(x) is above a given threshold, and class 0 otherwise. In the introduction, we presented
an example of a list of 7 rules for the Titanic dataset. In this case, for a new input x, η̂M,n,p0(x)
is simply the average of the output probability of survival ps over the 7 selected rules.

In past works on rule ensemble models, such as RuleFit (Friedman and Popescu, 2008)
and Node harvest (Meinshausen, 2010), rules are also extracted from a tree ensemble and
then combined together through a regularized linear model. In our case, it happens that the
parameter p0 alone is enough to control sparsity. Indeed, in our experiments, we observe that
adding such linear model in the aggregation method hardly increases the accuracy and hardly
reduces the size of the final rule set, while it can significantly reduce stability, add a set of
coefficients that makes the model less straightforward to interpret, and requires more intensive
computations. We refer to the experiments in Appendix A.3 for a comparison between η̂M,n,p0

defined a as simple average (3.3) versus a definition with a logistic regression.

Categorical and numerical discrete variables. For the sake of clarity, the description of
SIRUS algorithm is limited to the case of numerical continuous variables. However, SIRUS can
obviously handle numerical discrete and categorical data, as it is the case for random forests.
On one hand, numerical discrete variables are left untouched since the number of possible
split points is already finite, and the rule definition introduced for continuous variables also
applies. On the other hand, we naturally extend the rule definition for categorical variables
to “if X(1) is category 1 or 2 then response else default response”—see the Titanic dataset
example in the introduction. Originally, categorical variables are efficiently handled in trees
by transformation in ordered variables. Such ordering of categories is done with respect to
the output mean for each category—see Breiman et al. (1984); Friedman et al. (2001), and we
follow ranger implementation. Notice that trees are likely to often cut on categorical variables
with a high number of categories, as highlighted in Strobl et al. (2006). Consequently, SIRUS
is likely to output irrelevant rules associated to such categorical variables. Thus, it is best to
discard categorical variables with a high number of categories, or transform them by regrouping
categories or using one-hot-encoding before running SIRUS. Finally, note that ordinal variables
(e.g. X(1) ∈ {small, medium, big}) are treated like categorical variables.

Stability. The three main properties to assess the interpretability of SIRUS are simplicity,
stability, and predictivity, as already stated. On one hand, a measure of simplicity is naturally
provided by the number of rules, and predictivity is given by the missclassification rate or
the AUC. On the other hand, stability requires a more thorough discussion. In the statistical
learning theory, stability refers to the stability of predictions (e.g., Vapnik, 1998). In particular,
Rogers and Wagner (1978), Devroye and Wagner (1979), Bousquet and Elisseeff (2002), and
Poggio et al. (2004) show that stability and predictive accuracy are closely connected. In our

10

case, we are more concerned by the stability of the internal structure of the model, and, to
our knowledge, no general definition exists. So, we state the following tentative definition:
a rule learning algorithm is stable if two independent estimations based on two independent
samples result in two similar lists of rules. Thus, given a new sample D ′n independent of Dn, we
define p̂′M,n(P) and the corresponding set of paths P̂ ′

M,n,p0
based on a modified random forest

drawn with a parameter Θ′ independent of Θ. Then, we measure the stability of SIRUS by the
proportion of rules shared by the two sets P̂M,n,p0 and P̂ ′

M,n,p0
, selected over these two runs

of SIRUS on independent samples. We take advantage of a dissimilarity measure between two
sets, the so-called Dice-Sorensen index, often used to assess the stability of variable selection
methods (Chao et al., 2006; Zucknick et al., 2008; Boulesteix and Slawski, 2009; He and Yu,
2010; Alelyani et al., 2011). This index is defined by

ŜM,n,p0 =
2
∣∣P̂M,n,p0 ∩ P̂ ′

M,n,p0

∣∣∣∣P̂M,n,p0

∣∣+
∣∣P̂ ′

M,n,p0

∣∣ (3.4)

with the convention 0/0 = 1. This is a measure of stability taking values between 0 and
1: if the intersection between P̂M,n,p0 and P̂ ′

M,n,p0
is empty, then ŜM,n,p0 = 0, while if

P̂M,n,p0 = P̂ ′
M,n,p0

, then ŜM,n,p0 = 1. Notice that it is possible to use other metrics to assess
the distance between two finite sets (Zucknick et al., 2008): the Jaccard Index is another
popular example. Although the stability values slightly vary with a different definition, both
the asymptotic stability of SIRUS—see Section 4—and the empirical stability comparisons
between algorithms—see Section 5—are insensitive to the stability metric choice.

4 Theoretical Analysis of Stability

Among the three minimum requirements for interpretability defined in Section 1, simplicity
and predictivity are quite easily met for rule models (Cohen and Singer, 1999; Meinshausen,
2010; Letham et al., 2015). On the other hand, as Letham et al. (2015) recall, building a stable
rule ensemble is challenging. Therefore the main goal of this section is to prove the asymptotic
stability of SIRUS, i.e., provided that the sample size is large enough, SIRUS systematically
outputs the same list of rules when run multiple times with independent samples. On the
other hand, we also argue that existing tree-based rule algorithms are unstable by design.

In order to show the asymptotic stability of SIRUS, we first need to introduce formal
definitions of the mathematical elements involved in the empirical algorithm. We additionally
define the theoretical counterpart of SIRUS, an abstract procedure which is not based on the
sample Dn, but only on the unknown distribution PX,Y . Next, we will prove the stochastic
convergence of SIRUS towards its theoretical counterpart. This means that the list of selected
rules does not depend on the training data Dn, but only on PX,Y , provided that the sample
size is large enough. Therefore, the same list of rules is output when SIRUS is run multiple
times on independent samples. This mathematical analysis highlights that the remarkable
stable behavior of SIRUS in practice has theoretical groundings, and that the discretization
of the cut values with the quantiles, as well as using random forests, are the cornerstones to
stabilize rule models extracted from tree ensembles.

11

Empirical algorithm. First, we define the empirical CART-splitting criterion used to find
the optimal split at each node of each tree of the forest. In our context of binary classification
where the output Y ∈ {0, 1}, maximizing the so-called empirical CART-splitting criterion is
equivalent to maximizing the criterion based on Gini impurity (see, e.g., Biau and Scornet,
2016). More precisely, at node H and for a cut performed along the j-th coordinate at the
empirical r-th q-quantile q̂(j)

n,r, this criterion reads

Ln(H, q̂(j)
n,r)

def
=

1

Nn(H)

n∑
i=1

(Yi − Y H)21Xi∈H

− 1

Nn(H)

n∑
i=1

(
Yi − Y HL1X(j)

i <q̂
(j)
n,r
− Y HR1X(j)

i ≥q̂
(j)
n,r

)2
1Xi∈H ,

(4.1)

where Y H is the average of the Yi’s such that Xi ∈ H, Nn(H) is the number of data points
Xi falling into H,

HL
def
= {x ∈ H : x(j) < q̂(j)

n,r}, HR
def
= {x ∈ H : x(j) ≥ q̂(j)

n,r},

and for r ∈ {1, . . . , q − 1} the empirical r-th q-quantile of {X(j)
1 , . . . , X

(j)
n } is defined by

q̂(j)
n,r = inf

{
x ∈ R :

1

n

n∑
i=1

1
X

(j)
i ≤x

≥ r

q

}
. (4.2)

Note that, for the ease of reading, (4.1) is defined for a tree built with the entire dataset Dn

without resampling. As it is often the case in the theoretical analysis of random forests, we
assume throughout this section that the subsampling of an observations to build each tree is
done without replacement to alleviate the mathematical analysis.

Recall that the rule selection is based on the probability pn(P) that a Θ-random tree of
the forest contains a particular path P ∈ Π, that is,

pn(P) = P(P ∈ T (Θ,Dn)|Dn),

and that the Monte-Carlo estimate p̂M,n(P) of pn(P) is directly computed using the random
forest, and takes the form

p̂M,n(P) =
1

M

M∑
`=1

1P∈T (Θ`,Dn).

Clearly, p̂M,n(P) is a good estimate of pn(P) when M is large since, by the law of large
numbers, conditional on Dn,

lim
M→∞

p̂M,n(P) = pn(P) a.s.

We also see that p̂M,n(P) is unbiased since E[p̂M,n(P)|Dn] = pn(P).

12

Theoretical algorithm. Next, we define all theoretical counterparts of the empirical quan-
tities involved in SIRUS, which do not depend on Dn but only on the unknown distribution
PX,Y of (X, Y). For a given integer q ≥ 2 and r ∈ {1, . . . , q − 1}, the theoretical q-quantiles
are defined by

q?(j)r = inf
{
x ∈ R : P(X(j) ≤ x) ≥ r

q

}
,

i.e., the population version of q̂(j)
n,r defined in (4.2). Similarly, for a given hyperrectangle

H ⊆ Rp, we let the theoretical CART-splitting criterion be

L?(H, q?(j)r) = V[Y |X ∈ H]

− P(X(j) < q?(j)r |X ∈ H)× V[Y |X(j) < q?(j)r ,X ∈ H]

− P(X(j) ≥ q?(j)r |X ∈ H)× V[Y |X(j) ≥ q?(j)r ,X ∈ H].

Based on this criterion, we denote by T ?(Θ) the list of all paths contained in the theoretical
tree built with randomness Θ, where splits are chosen to maximize the theoretical criterion
L? instead of the empirical one Ln, defined in (4.1). We stress again that the list T ?(Θ) does
not depend upon Dn but only upon the unknown distribution of (X, Y). Next, we let p?(P)
be the theoretical counterpart of pn(P), that is

p?(P) = P(P ∈ T ?(Θ)),

and finally define the theoretical set of selected paths P?
p0 by {P ∈ Π : p?(P) > p0} (with

the same post-treatment as for the empirical procedure—see Section 3). Notice that, in the
case where multiple splits have the same value of the theoretical CART-splitting criterion, one
is randomly selected.

Consistency of the path selection. The construction of the rule ensemble model essen-
tially relies on the path selection and on the estimates p̂M,n(P), P ∈ Π. Therefore, our
theoretical analysis first focuses on the asymptotic properties of those estimates in Theorem 1.
Our consistency results hold under conditions on the subsampling rate an and the number of
trees Mn, together with some assumptions on the distribution of the random vector X. They
are given below.

(A1) The subsampling rate an satisfies lim
n→∞

an =∞ and lim
n→∞

an
n = 0.

(A2) The number of trees Mn satisfies lim
n→∞

Mn =∞.

(A3) X has a strictly positive density f with respect to the Lebesgue measure. Furthermore,
for all j ∈ {1, . . . , p}, the marginal density f (j) of X(j) is continuous, bounded, and
strictly positive.

We can now state the consistency of the occurrence frequency of each possible path P ∈ Π in
the modified random forest.

Theorem 1. If Assumptions (A1)-(A3) are satisfied, then, for all P ∈ Π, we have

lim
n→∞

p̂Mn,n(P) = p?(P) in probability.

13

Stability. The only source of randomness in the selection of the rules lies in the estimates
p̂Mn,n(P). Since Theorem 1 states the consistency of such an estimation, the path selection
consistency follows, for all threshold values p0 that do not belong to the finite set U? =
{p?(P) : P ∈ Π} of all theoretical probabilities of appearance for each path P. Indeed, if
p0 = p?(P) for some P ∈ Π, then P(p̂Mn,n(P) > p0) does not necessarily converge to 0 and
the path selection can be inconsistent. Then, we can deduce that SIRUS is asymptotically
stable in the following Corollary 1.

Corollary 1. Assume that Assumptions (A1)-(A3) are satisfied. Then, provided p0 ∈ [0, 1]\
U?, we have

lim
n→∞

P(P̂Mn,n,p0 = P?
p0) = 1,

and then
lim
n→∞

ŜMn,n,p0 = 1 in probability.

Competitors. As we will discuss further in the experimental Section 5, CART, C5.0, Rule-
Fit, and Node harvest are top competitors of SIRUS, which are also based on rule extraction
from trees. However, these algorithms do not include a pre-processing step of discretization,
which makes them unstable by design. To see this, we first adapt the definition of an extracted
path without discretization as P = {(jk, zk, sk), k = 1, . . . , d}, where zk ∈ R is now the cut-
ting value of the k-th split. For any rule algorithm, we also define ŜM,n as the proportion
of rules shared between the output rule lists over two runs with two independent samples.
Note that M = 1 for CART and C5.0, and as already mentioned, it is possible to define a
rule algorithm from CART, by extracting its nodes, as in C5.0. Thus, we obtain that for any
tree-based rule algorithm, ŜM,n = 0 almost surely. Indeed, since the input X takes continuous
values (Assumption (A3)) and decision trees can cut at the middle of two observations in all
directions, the probability that a cutting value from the tree built with Dn and one from the
tree built with D ′n are equal is null.

However, recall that in the experiments, we include a pre-processing discretization step to
stabilize competitors and enable fair comparisons. With this modification, they reach a value
of ŜM,n > 0, but still not in par with SIRUS. This shows that the high stability improvement
of SIRUS does not only come from the discretization, but mainly from the rule selection
procedure, based on the probability of the rule occurrence in a random tree.

Proofs. The proof of Theorem 1 is to be found in Appendix C. It is however interesting to
give a sketch of the proof here. Corollary 1 is a direct consequence of Theorem 1, the full
proof follows.

Sketch of proof of Theorem 1. The consistency is obtained by showing that p̂Mn,n(P) is
asymptotically unbiased with a null variance. The result for the variance is quite straightfor-
ward since the variance of p̂Mn,n(P) can be broken into two terms: the variance generated by
the Monte-Carlo randomization, which goes to 0 as the number of trees increases (Assumption
(A2)), and the variance of pn(P). Following Mentch and Hooker (2016), since pn(P) is a
bagged estimate it can be seen as an infinite-order U-statistic, and a classic bound on the
variance of U-statistics gives that V[pn(P)] converges to 0 if limn→∞

an
n = 0, which is true

14

by Assumption (A1). Next, proving that p̂Mn,n(P) is asymptotically unbiased requires to
dive into the internal mechanisms of the random forest algorithm. To do this, we have to
show that the CART-splitting criterion is consistent (Lemma 3) and asymptotically normal
(Lemma 4) when cuts are limited to empirical quantiles (estimated on the same dataset) and
the number of trees grows with n. When cuts are performed on the theoretical quantiles,
the law of large numbers and the central limit theorem can be directly applied, so that the
proof of Lemmas 3 and 4 boils down to showing that the difference between the empirical
CART-splitting criterion evaluated at empirical and theoretical quantiles converges to 0 in
probability fast enough. This is done in Lemma 2 thanks to Assumption (A3).

Proof of Corollary 1. The first result is a consequence of Theorem 1 since

P
(
P̂Mn,n,p0 6= P?

p0

)
≤
∑
P∈Π

P(p̂Mn,n(P) > p0)1p?(P)≤p0 + P(p̂Mn,n(P) ≤ p0)1p?(P)>p0 .

Next, we have

ŜMn,n,p0 =

2
∑

P∈Π

1p̂Mn,n(P)>p0∩p̂′Mn,n(P)>p0∑
P∈Π

1p̂Mn,n(P)>p0 + 1p̂′Mn,n(P)>p0

.

Since p0 /∈ U?, we deduce from Theorem 1 and the continuous mapping theorem that, for all
P ∈ Π,

lim
n→∞

1p̂Mn,n(P)>p0 = 1p?(P)>p0 in probability.

Therefore, lim
n→∞

ŜMn,n,p0 = 1 in probability.

5 Experiments

We begin this section by providing overall experimental settings. Next, we focus on a case study
to illustrate SIRUS with an industrial process example: the semi-conductor manufacturing
process SECOM data (Dua and Graff, 2017). In particular, it shows the excellent performance
of SIRUS on real data in a noisy and high-dimensional setting. In Subsection 5.3, we use 19 UCI
datasets (Dua and Graff, 2017) to perform extensive comparisons between SIRUS and its main
competitors. We show that SIRUS produces much more stable rule lists, while preserving a
predictive accuracy and computational complexity comparable to the top competitors. Finally,
in Subsection 5.4, we detail the tuning procedure of the single hyperparameter p0, along with a
thorough discussion on the design of SIRUS. In particular, the cut limitations to the quantiles
and the number of constraints in the selected rules are analyzed, and we also provide the
stopping criterion for the number of trees.

5.1 Experiment Description

Performance metrics. We first introduce relevant metrics to assess the three interpretabil-
ity properties in the experiments. By definition, the size (i.e., the simplicity) of the rule ensem-
ble is the number of selected rules, i.e., |P̂M,n,p0 |. To measure the error, 1-AUC is used and

15

Dataset Sample size Total number
of variables

Number of
categorical variables

Authentification 1372 4 0
Breast Wisconsin 699 9 9
Credit Approval 690 15 9
Credit German 1000 20 13

Diabetes 768 8 0
Haberman 306 3 0
Heart C2 303 13 7
Heart H2 294 13 7

Heart Statlog 270 13 3
Hepatitis 155 19 0
Ionosphere 351 33 0
Kr vs Kp 3196 36 36

Liver Disorders 345 6 0
Mushrooms 8124 21 21
SECOM 1567 590 0
Sonar 208 60 0

Spambase 4601 57 0
Titanic 887 6 1
Vote 435 16 16
Wilt 4339 5 0

Table 1: Description of UCI datasets

estimated by 10-fold cross-validation (repeated 10 times for robustness and standard deviation
estimates). With respect to stability, an independent dataset is not available for real data to
compute ŜM,n,p0 as defined in (3.4) in the Section 3. Nonetheless, we can take advantage of
the cross-validation process to compute a stability metric: the proportion of rules shared by
two models built during the cross-validation, averaged over all possible pairs (Guidotti and
Ruggieri, 2019).

Datasets. We have conducted experiments on the SECOM data, as well as 19 diverse public
datasets from the UCI repository (Dua and Graff, 2017; data is described in Table 1). These
experiments aim at illustrating the good behavior of SIRUS over its competitors in various
settings. To compare stability of the different methods, data is discretized using the 10-
empirical quantiles for each continuous variable and the same stability metric is used for all
algorithm comparisons. For simplicity and predictivity metrics, we do not apply this pre-
processing step of discretization, unless the algorithm only handles categorical data.

Competitors. For decision trees, we run both CART and C5.0, and trees are pruned to
maximize their performance. Notice that, to enable simplicity and stability comparisons for
CART, a list of rules is extracted from its nodes, as it is originally possible for C5.0. For
rule algorithms based on greedy heuristics, we evalute RIPPER, PART, and FOIL. Next,

16

for rule algorithms based on tree ensembles, we evaluate RuleFit and Node harvest. Note
that categorical features are transformed in multiple binary variables as it is required by
the two software implementations, and RuleFit is limited to rule predictors. For RuleFit,
the lasso penalty is tuned by cross-validation as defined in Friedman and Popescu (2008).
As advertised in Meinshausen (2010), Node harvest does not require parameter tuning by
default, but it is also possible to add a regularization term to reduce the model size. We
use the same tuning procedure as for SIRUS to maximize accuracy with the smallest possible
model—see Subsection 5.4. Finally, for rule algorithms based on frequent pattern mining,
we run the experiments for CBA and BRL. Note that we use default settings for BRL, since
modifying its parameters does not significantly improve accuracy and can hurt stability. We
use available R implementations: rpart (Therneau and Atkinson, 2019, CART), C50 (Kuhn
and Quinlan, 2020, C5.0), RWeka (Hornik et al., 2009, RIPPER, PART), arulesCBA (Johnson
and Hahsler, 2020, FOIL, CBA), pre (Fokkema, 2020, RuleFit), nodeHarvest (Meinshausen,
2015, Node harvest), and sbrl (Yang et al., 2017, BRL). We also use our R/C++ software
implementation sirus (Benard and Wright, 2020) (available from CRAN), adapted from ranger,
a fast random forest implementation (Wright and Ziegler, 2017). Besides, notice that for SIRUS
experiments, we use the default settings of random forests well known for their excellent
behavior, in particular mtry = bp3c. We set q = 10 quantiles and tune p0 as specified in
Subsection 5.4.

5.2 Case Study: Manufacturing Process Data

SIRUS is run on a real manufacturing process of semi-conductors, the SECOM dataset (Dua
and Graff, 2017). Data is collected from sensors and process measurement points to monitor
the production line, resulting in 590 numeric variables. Each of the 1567 data points represents
a single production entity associated with a pass or fail output (0/1) for in-house line testing.
As it is often the case for a production process, the dataset is unbalanced and contains 104
fails, i.e., a failure rate pf of 6.6%. We proceed to a simple pre-processing of the data: missing
values (about 5% of the total) are replaced by the median.

Figure 2 shows predictivity versus the number of rules when p0 varies, with the optimal
p0 displayed. Notice that the relation between p0 and the number of rules is monotone by
construction, but also highly nonlinear. Therefore, we use the number of rules for the x-
axis of Figure 2 to improve readability. The 1-AUC value is 0.30 for SIRUS (for the optimal
p0 = 0.04), 0.29 for Breiman’s random forests, and 0.48 for a pruned CART tree. Thus, in that
case, CART tree predicts no better than the random classifier, whereas SIRUS has a similar
accuracy to random forests. The final model has 6 rules and a stability of 0.72, i.e., in average
4 to 5 rules are shared by 2 models built in a 10-fold cross-validation process, simulating data
perturbation. By comparison, Node harvest outputs 36 rules with a value of 0.32 for 1-AUC.

Finally, the output of SIRUS may be displayed in the simple and interpretable form of
Figure 3, the output in the R console of the package sirus for the SECOM data. Such a
rule model enables to catch immediately how the most relevant variables impact failures.
Among the 590 variables, 5 are enough to build a model as predictive as random forests, and
such a selection is robust. Other rules alone may also be informative, but they do not add
additional information to the model, since predictive accuracy is already minimal with the 6

17

Figure 2: For the SECOM dataset, error (1-AUC) versus the number of rules when p0 varies, estimated
via 10-fold cross-validation (averaged over 10 repetitions of the cross-validation). Errors for CART
and random forests are reported for comparisons.

Figure 3: List of rules output by our software sirus in the R console for the SECOM dataset.

18

selected rules. Then, production engineers should first focus on those 6 rules to investigate an
improved setting of the production process. We insist that the stability of the output rule list
is critical in practice. Indeed, the algorithm may be run multiple times during the analysis,
eventually with an additional small new batch of data. The output rule list should be quite
insensitive to such perturbation: domain experts are skeptical of unstable results, which are
the symptoms of a partial and arbitrary modelling of the true phenomenon. SIRUS is stable,
but it is not the case for decision trees or existing rule algorithms, as we show in the next
subsection and illustrate in Appendix A.1.

5.3 Improvement over Competitors

Overall, we observe that SIRUS provides a high improvement of stability compared to state-
of-the-art rule algorithms, while preserving the other properties. For the top competitors,
experimental results are gathered in Table 2 for model size, Table 3 for stability, and Table 4
for predictive accuracy. Experiments for additional competitors are provided in Appendix A.2
in Tables 7, 8 and 9. Standard deviations are made negligible by averaging metrics over 10
repetitions of the cross-validation and are not displayed in the tables to increase readability.

Figure 4 provides an example for the dataset “Credit German” of the dependence between
predictivity and the number of rules when p0 varies. In that case, the minimum of 1-AUC is
about 0.25 for SIRUS, 0.20 for Breiman’s forests, and 0.29 for CART tree. For the chosen p0,
SIRUS returns a compact set of 22 rules and its stability is 0.66. Figure 5 provides another
example of the good practical performance of SIRUS with the “Heart Statlog” dataset. Here,
the predictivity of random forests is reached with 16 rules, with a stability of 0.83, i.e., about
13 rules are consistent between two different models built in a 10-fold cross-validation. Thus,
the final models are simple, quite robust to data perturbation, and have a predictive accuracy
close to random forests.

We can draw the following conclusions from the experimental comparisons with competi-
tors, displayed in Tables 2, 3, and 4. SIRUS produces more stable and predictive rule lists
than decision trees, for a comparable simplicity, but at the price of a higher computational
complexity since many trees are grown. SIRUS produces much more stable and shorter rule
lists than RuleFit and Node harvest, for a comparable accuracy and computational complexity.
Classical rule algorithms exhibit similar properties as decision trees: a smaller computational
complexity, but a high instability and a reduced predictivity. Finally, algorithms based on fre-
quent pattern mining exhibit quite good stability properties, higher than for the other types
of competitors. On the other hand, their predictive accuracy is worse than decision trees.
Experiments in Tables 2, 3, and 4 show that SIRUS exhibits a high stability and predictivity
improvement over these methods. Besides, simplicity varies across algorithms: CBA produces
much longer rule lists than SIRUS, whereas BRL generates shorter models.

5.4 SIRUS Parameters

SIRUS relies on a single tuning hyperparameter: the selection threshold p0 involved in the
definition of P̂M,n,p0 to filter the most important rules, which therefore controls the simplicity
of the model, and consequently also its accuracy and stability. On the other hand, SIRUS is

19

Figure 4: For the UCI dataset “Credit German”, 1-AUC (on the left) and stability (on the right)
versus the number of rules when p0 varies, estimated via 10-fold cross-validation (results are averaged
over 10 repetitions).

Figure 5: For the UCI dataset “Heart Statlog”, 1-AUC (on the left) and stability (on the right) versus
the number of rules when p0 varies, estimated via 10-fold cross-validation (results are averaged over
10 repetitions).

20

Decision
tree

Classical
rule learning

Frequent
pattern mining Tree ensemble

Dataset CART RIPPER CBA BRL RuleFit Node
harvest SIRUS

Authentification 21 7 7 17 49 30 13
Breast Wisconsin 7 12 24 7 24 32 24
Credit Approval 5 4 55 4 15 27 16
Credit German 18 3 69 4 33 33 20

Diabetes 13 3 17 6 26 31 8
Haberman 2 1 2 2 3 17 5
Heart C2 10 3 34 4 23 36 20
Heart H2 5 2 29 3 12 24 12

Heart Statlog 10 3 27 4 22 35 16
Hepatitis 2 2 14 2 8 14 12
Ionosphere 4 4 38 4 20 35 15
Kr vs Kp 16 15 29 9 18 13 24

Liver Disorders 15 3 2 3 19 33 17
Mushrooms 4 8 25 11 10 22 23

Sonar 6 4 33 2 32 83 19
Spambase 14 16 126 16 68 60 21
Titanic 13 4 4 3 19 23 6
Vote 2 2 25 NA 12 10 7
Wilt 9 5 3 10 31 19 24

Table 2: Mean model size over a 10-fold cross-validation for UCI datasets. Results are averaged
over 10 repetitions of the cross-validation.

21

Decision
tree

Classical
rule learning

Frequent
pattern mining Tree ensemble

Dataset CART RIPPER CBA BRL RuleFit Node
harvest SIRUS

Authentification 0.41 0.36 0.87 0.86 0.48 0.59 0.81
Breast Wisconsin 0.21 0.55 0.80 0.78 0.34 0.71 0.70
Credit Approval 0.52 0.32 0.43 0.52 0.25 0.23 0.75
Credit German 0.46 0.22 0.51 0.41 0.24 0.48 0.66

Diabetes 0.29 0.21 0.46 0.73 0.39 0.45 0.81
Haberman 0.83 0.09 0.79 0.50 0.46 0.52 0.65
Heart C2 0.25 0.35 0.38 0.60 0.39 0.49 0.71
Heart H2 0.46 0.27 0.52 0.73 0.29 0.29 0.65

Heart Statlog 0.30 0.41 0.41 0.75 0.35 0.48 0.83
Hepatitis 0.26 0.16 0.24 0.34 0.26 0.49 0.68
Ionosphere 0.96 0.39 0.13 0.70 0.17 0.33 0.69
Kr vs Kp 0.71 0.74 0.84 0.80 0.19 0.27 0.87

Liver Disorders 0.23 0.10 0.91 0.50 0.24 0.31 0.58
Mushrooms 1 0.84 0.98 0.80 0.69 0.48 0.86

Sonar 0.34 0.04 0.09 0.19 0.09 0.20 0.55
Spambase 0.49 0.10 0.46 0.86 0.28 0.66 0.78
Titanic 0.55 0.42 0.69 0.88 0.37 0.36 0.76
Vote 1 0.52 0.68 NA 0.21 0.30 0.75
Wilt 0.36 0.32 0.72 0.94 0.47 0.64 0.73

Average Rank 4.2 5.9 3.3 2.8 5.6 4.3 1.9
p-values 0.07 0.33 0.33 0.08 0.05 0.98

Final Rank 4 6 2 2 6 4 1

Table 3: Mean stability over a 10-fold cross-validation for UCI datasets. Results are averaged
over 10 repetitions of the cross-validation. Values within 10% of the maximum are displayed
in bold. Algorithms are ranked with a Mann-Whitney-Wilcoxon test, the p-value with the
previous performing algorithm determines the final rank (10%-level test).

22

Black
box

Decision
tree

Classical
rule

learning

Frequent
pattern mining Tree ensemble

Dataset Random
Forest CART RIPPER CBA BRL RuleFit Node

harvest SIRUS

Authentification 10−4 0.02 0.02 0.14 0.009 9.10−49.10−49.10−4 0.02 0.03
Breast Wisconsin 0.009 0.06 0.07 0.05 0.02 0.01 0.01 0.01
Credit Approval 0.07 0.14 0.15 0.14 0.11 0.08 0.07 0.09
Credit German 0.20 0.29 0.38 0.40 0.33 0.23 0.26 0.25

Diabetes 0.17 0.25 0.29 0.30 0.25 0.18 0.19 0.19
Haberman 0.31 0.48 0.39 0.50 0.43 0.37 0.34 0.35
Heart C2 0.10 0.19 0.23 0.17 0.23 0.12 0.12 0.10
Heart H2 0.11 0.23 0.24 0.24 0.16 0.11 0.11 0.12

Heart Statlog 0.10 0.20 0.21 0.17 0.22 0.12 0.12 0.10
Hepatitis 0.12 0.48 0.39 0.36 0.33 0.20 0.23 0.17
Ionosphere 0.02 0.11 0.12 0.13 0.10 0.04 0.07 0.07
Kr vs Kp 9.10−4 0.02 0.009 0.05 0.01 0.009 0.04 0.04

Liver Disorders 0.23 0.33 0.35 0.48 0.44 0.27 0.30 0.35
Mushrooms 0 0.007 3.10−5 5.10−4 2.10−52.10−52.10−5 5.10−4 0.002 6.10−4

Sonar 0.07 0.27 0.26 0.25 0.44 0.12 0.16 0.2
Spambase 0.01 0.11 0.08 0.12 0.05 0.02 0.04 0.07
Titanic 0.13 0.19 0.21 0.27 0.21 0.14 0.16 0.17
Vote 0.01 0.06 0.04 0.06 NA 0.02 0.02 0.02
Wilt 0.007 0.18 0.13 0.48 0.07 0.02 0.08 0.11

Average Rank 5 4.9 5.8 4.4 1.4 2.4 2.8
p-values 0.22 0.24 0.01 6.10−3 0.01 0.34

Final Rank 4 4 7 4 1 2 2

Table 4: Model error (1-AUC) over a 10-fold cross-validation for UCI datasets. Results are
averaged over 10 repetitions of the cross-validation. Values within 10% of the minimum are
displayed in bold, random forest is put aside. Algorithms are ranked with a Mann-Whitney-
Wilcoxon test, the p-value with the previous performing algorithm determines the final rank
(10%-level test).

23

not very sensitive to the other parameters: the number of trees, the number of quantiles, and
the tree depth. Therefore, they do not require fine tuning, and we simply set efficient default
values as explained below.

Tuning of SIRUS. This parameter p0 should be set to optimize a tradeoff between the
number of rules, stability, and accuracy. In practice, it is difficult to settle such a criterion,
and we choose to optimize p0 to maximize the predictive accuracy with the smallest possible
set of rules. To achieve this goal, we proceed as follows. The error 1-AUC is estimated by
10-fold cross-validation for a fine grid of p0 values, defined such that |P̂M,n,p0 | varies from
1 to 25 rules. (We let 25 be an arbitrary upper bound on the maximum number of rules,
considering that a bigger set is not readable anymore.) The randomization introduced by the
partition of the dataset in the 10 folds of the cross-validation process has a significant impact
on the variability of the size of the final model. Therefore, in order to get a robust estimation
of p0, the cross-validation is repeated multiple times (typically 10) and results are averaged.
The standard deviation of the mean of 1-AUC is computed over these repetitions for each p0 of
the grid search. We consider that all models within 2 standard deviations of the minimum of
1-AUC are not significantly less predictive than the optimal one. Thus, among these models,
the one with the smallest number of rules is selected, i.e., the optimal p0 is shifted towards
higher values to reduce the model size without decreasing predictivity—see Figures 4 and 5
for examples. This approach is very similar to the tuning procedure of the Lasso (Tibshirani,
1996).

Number of trees. The accuracy, stability, and computational cost of SIRUS increase with
the number of trees M . Thus, we simply design a stopping criterion to grow the minimum
number of trees which ensures that accuracy and stability are higher than 95% of their maxi-
mum asymptotic values with respect to M and conditionally on Dn. We empirically observe
that the stability requirement is met for a much higher number of trees than the accuracy re-
quirement (about 10 times). Therefore, the stopping criterion is only based on stability. More
precisely, we require that 95% of the rules are identical across two runs of SIRUS on a given
dataset Dn in average. Formally, the mean stability E[ŜM,n,p0 |Dn] measures the expected pro-
portion of rules shared by two fits of SIRUS on Dn, for fixed n (sample size), p0 (threshold),
and M (number of trees). Thus, the stopping criterion takes the form 1− E[ŜM,n,p0 |Dn] < α,
with typically α = 0.05.

There are two obstacles to operationalize this stopping criterion: its estimation and its de-
pendence to p0. We make two approximations to overcome these limitations and give empirical
and theoretical evidence of their good practical behavior in Appendix B. First, Theorem 2 in
Appendix B.2 provides an asymptotic equivalent with respect to M of 1−E[ŜM,n,p0 |Dn], that
we simply estimate by

εM,n,p0 =

∑
P∈Π Φ(Mp0,M, p̂M,n(P))(1− Φ(Mp0,M, p̂M,n(P)))∑

P∈Π(1− Φ(Mp0,M, p̂M,n(P)))
,

where Φ(Mp0,M, pn(P)) is the cdf of a binomial distribution with parameter pn(P),M trials,
evaluated atMp0. Secondly, εM,n,p0 depends on p0, whose optimal value is unknown in the first
step of SIRUS, when trees are grown. It turns out however that εM,n,p0 is not very sensitive

24

Dataset Breiman’s RF q=2 q=5 q=10 q=20
Authentification 0.0002 0.08 0.002 0.0005 0.0004

Diabetes 0.17 0.23 0.18 0.18 0.18
Haberman 0.32 0.35 0.30 0.32 0.30

Heart Statlog 0.10 0.10 0.10 0.10 0.10
Hepatitis 0.13 0.15 0.14 0.14 0.13
Ionosphere 0.02 0.07 0.03 0.02 0.02

Liver Disorders 0.23 0.32 0.27 0.25 0.24
Sonar 0.07 0.09 0.07 0.07 0.07

Spambase 0.01 0.14 0.03 0.02 0.01
Titanic 0.13 0.15 0.14 0.14 0.13
Wilt 0.007 0.15 0.03 0.02 0.02

Table 5: Accuracy, measured by 1-AUC on UCI datasets, for two algorithms: Breiman’s random
forests and random forests with splits limited to q-quantiles, for q ∈ {2, 5, 10, 20}.

to p0, as shown by the experiments in Appendix B.1. Consequently, our strategy is to simply
average εM,n,p0 over a set V̂M,n of many possible values of p0 and use the resulting average as
a gauge. These values are chosen to scan all possible path sets P̂M,n,p0 , of size ranging from
1 to 50 paths. When a set of 50 paths is post-treated, its size reduces to around 25 paths (as
explained in the previous paragraph, 25 is an arbitrarily threshold on the maximum number
of rules above which a rule model is not readable anymore). In order to generate path sets of
such sizes, values of p0 are chosen halfway between two distinct consecutive p̂M,n(P),P ∈ Π,
restricted to the highest 50 values. Thus, in the experiments, we utilize the following criterion
to stop the growing of the forest, with typically α = 0.05:

argmin
M

{ 1

|V̂M,n|

∑
p0∈V̂M,n

εM,n,p0 < α
}
. (5.1)

Quantile discretization. In the modified random forest grown in the first step of SIRUS,
the split at each tree node is limited to the empirical q-quantiles of each component of X,
as described in Section 3. Thus, we check that this modification alone of the forest has little
impact on its accuracy. Using the R package ranger, 1-AUC is estimated for each dataset
with 10-fold cross-validation for q ∈ {2, 5, 10, 20}. We leave aside datasets with a majority
of categorical variables, results are averaged over 10 repetitions of the cross-validation, and
displayed in Table 5. Clearly, the decrease of accuracy generated by this discretization is small,
and not very sensitive to q, provided that q is not too small. Thus, q = 10 appears to be a
good default choice from the experiments. In fact, the small impact of the discretization on
the forest error is not surprising: with only p = 10 input variables, the input space is split
in a fine grid of 1010 hyperrectangles for q = 10 quantiles, providing a high flexibility to the
modified random forest to identify local patterns.

Tree depth. When SIRUS is fit using fully grown trees, the final set of rules P̂M,n,p0 contains
almost exclusively rules made of one or two splits, and rarely of three splits. Although this

25

may appear surprising at first glance, this phenomenon is in fact expected. Indeed, rules made
of multiple splits are extracted from deeper tree levels and are thus more sensitive to data
perturbation by construction. This results in much smaller values of p̂M,n(P) for rules with
a high number of splits, and then deletion from the final set of path through the threshold p0:
P̂M,n,p0 = {P ∈ Π : p̂M,n(P) > p0}. To illustrate this, let us consider the following typical
example with p = 100 input variables and q = 10 quantiles. There are qp = 100 × 10 = 103

possible splits at the root node of a tree, and then 2pq = 2.103 paths of one split. Since the
left and right paths of one split at the root node are associated to the same rule, there are
qp = 103 distinct rules of one split, about (2qp)2 ≈ 106 distinct rules of two splits, and about
(2qp)3 ≈ 1010 distinct rules of three splits. Using only rules of one split is too restrictive since
it generates a small model class (a thousand rules for 100 input variables) and does not handle
variable interactions. On the other hand, rules of two splits are numerous (about one million)
and thus provide a large flexibility to SIRUS. More importantly, since there are 10 billion rules
of three splits, a stable selection of a few of them is clearly a difficult task, and such complex
rules are naturally discarded by SIRUS.

In the software implementation sirus, the tree depth parameter max.depth is a modifiable
input, set to 2 by default to reduce the computational cost while leaving the output list of
rules almost untouched as explained above. We conduct experiments where SIRUS is run
with a tree depth of 1, 2, and 3, and results are displayed in Table 6. Over the nineteen UCI
datasets, rules of three splits appear in SIRUS rule list in only four cases, and a significant
accuracy improvement over a tree depth of 2 occurs only once, for the ‘Mushrooms’ dataset.
On the other hand, for all datasets except two, SIRUS outputs rules of two constraints, and
predictivity is improved over a tree depth of 1 for half of the datasets. The Titanic example
shows how the rule list is drastically simplified by limiting tree depth to 1, lowering the insights
provided by SIRUS:

Average survival rate ps = 39%.

if sex is male then ps = 19% else ps = 74%

if 1st or 2nd class then ps = 56% else ps = 24%

This analysis of tree depth is not new. Indeed, both RuleFit (Friedman and Popescu,
2008) and Node harvest (Meinshausen, 2010) articles discuss the optimal tree depth for the
rule extraction from a tree ensemble in their experiments. They both conclude that the optimal
depth is 2. Hence, the same hard limit of 2 is used in Node harvest. RuleFit is slightly less
restrictive: for each tree, its depth is randomly sampled with an exponential distribution
concentrated on 2, but allowing few trees of depth 1, 3, and 4. We insist that they both reach
such conclusion without considering stability issues, but only focusing on accuracy. Further
considering stability properties consolidates that growing shallow trees is optimal for rule
extraction from tree ensembles.

26

Dataset SIRUS - depth = 1 SIRUS - depth = 2 SIRUS - depth = 3
Authentification 0.07 0.03 0.03
Breast Wisconsin 0.01 0.01 0.01
Credit Approval 0.11 0.09 0.09
Credit German 0.25 0.25 0.26

Diabetes 0.19 0.19 0.19
Haberman 0.35 0.35 0.35
Heart C2 0.11 0.10 0.11
Heart H2 0.12 0.12 0.12

Heart Statlog 0.11 0.10 0.10
Hepatitis 0.15 0.17 0.18
Ionosphere 0.07 0.07 0.07
Kr vs Kp 0.05 0.04 0.06

Liver Disorders 0.38 0.35 0.35
Mushrooms 3.10−3 6.10−4 3.10−43.10−43.10−4

Sonar 0.19 0.2 0.2
Spambase 0.06 0.07 0.07
Titanic 0.19 0.17 0.16
Vote 0.02 0.02 0.02
Wilt 0.19 0.11 0.11

Table 6: SIRUS error (1-AUC) over a 10-fold cross-validation (averaged over 10 repetitions) when
tree depth is limited to 1, 2 or 3. Values within 10% of the minimum are displayed in bold, except for
datasets with no significant variations.

27

6 Conclusion

Interpretability of learning algorithms is required for applications involving critical decisions,
for example the analysis of production processes in the manufacturing industry. Although
interpretability does not have a precise definition, we argued that simplicity, stability, and
predictivity are minimum requirements. In particular, decision trees and rule algorithms both
combine a simple structure and a good accuracy for nonlinear data, and are thus considered as
state-of-the-art interpretable algorithms. However, these methods are unstable with respect to
data perturbation, which is a strong operational limitation. Therefore, we proposed a new rule
algorithm for classification, SIRUS (Stable and Interpretable RUle Set), which takes the form
of a short list of rules. We proved that SIRUS considerably improves stability over state-of-
the-art algorithms, while preserving simplicity, accuracy, and computational complexity of top
competitors. The principle of SIRUS is to extract rules from a random forest, based on their
probability of occurrence in a random tree, and to stop the growing of the forest when the rule
selection is converged. Thus, SIRUS inherits the computational complexity of random forests,
and has only one tuning parameter. A software implementation, the R/C++ package sirus
(Benard and Wright, 2020), is available from CRAN. Besides, we believe that the extension
of SIRUS to regression is a promising future research direction: the main challenge is the
construction of an appropriate rule aggregation framework to accurately estimate continuous
outputs without hurting stability. Furthermore, although SIRUS has the ability to handle
high-dimensional data, as illustrated with the SECOM dataset (590 inputs), specific variable
selection strategies could be used to reduce the number of possible rules and then improve
SIRUS performance.

Acknowledgements

We thank the Editor and the referees for their insightful comments and suggestions.

References

R. Agrawal, T. Imieliński, and A. Swami. Mining association rules between sets of items in
large databases. In Proceedings of the 1993 ACM SIGMOD International Conference on
Management of Data, pages 207–216, New York, 1993. ACM.

S. Alelyani, Z. Zhao, and H. Liu. A dilemma in assessing stability of feature selection algo-
rithms. In 13th IEEE International Conference on High Performance Computing & Com-
munication, pages 701–707, Piscataway, 2011. IEEE.

E. Angelino, N. Larus-Stone, D. Alabi, M. Seltzer, and C. Rudin. Learning certifiably optimal
rule lists for categorical data. The Journal of Machine Learning Research, 18:8753–8830,
2017.

C. Benard and M.N. Wright. sirus: Stable and Interpretable RUle Set, 2020. URL https:
//CRAN.R-project.org/package=sirus. R package version 0.2.1.

28

https://CRAN.R-project.org/package=sirus
https://CRAN.R-project.org/package=sirus

G. Biau and E. Scornet. A random forest guided tour (with comments and a rejoinder by the
author). TEST, 25:197–268, 2016.

A.-L. Boulesteix and M. Slawski. Stability and aggregation of ranked gene lists. Briefings in
Bioinformatics, 10:556–568, 2009.

O. Bousquet and A. Elisseeff. Stability and generalization. Journal of Machine Learning
Research, 2:499–526, 2002.

L. Breiman. Bagging predictors. Machine Learning, 24:123–140, 1996.

L. Breiman. Random forests. Machine Learning, 45:5–32, 2001a.

L. Breiman. Statistical modeling: The two cultures (with comments and a rejoinder by the
author). Statistical Science, 16:199–231, 2001b.

L. Breiman. Setting up, using, and understanding random forests v3.1. Technical report,
UC Berkeley, 2003a. URL https://www.stat.berkeley.edu/~breiman/Using_random_
forests_V3.1.pdf.

L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone. Classification and Regression Trees.
Chapman & Hall/CRC, Boca Raton, 1984.

A. Chao, R.L. Chazdon, R.K. Colwell, and T.-J. Shen. Abundance-based similarity indices
and their estimation when there are unseen species in samples. Biometrics, 62:361–371,
2006.

P. Clark and T. Niblett. The CN2 induction algorithm. Machine Learning, 3:261–283, 1989.

W.W. Cohen. Fast effective rule induction. In Proceedings of the Twelfth International Con-
ference on Machine Learning, pages 115–123, San Francisco, 1995. Morgan Kaufmann Pub-
lishers Inc.

W.W. Cohen and Y. Singer. A simple, fast, and effective rule learner. In Proceedings of
the Sixteenth National Conference on Artificial Intelligence and Eleventh Conference on
Innovative Applications of Artificial Intelligence, pages 335–342, Palo Alto, 1999. AAAI
Press.

M. Cvitković, A.-S. Smith, and J. Pande. Asymptotic expansions of the hypergeometric
function with two large parameters application to the partition function of a lattice gas in
a field of traps. Journal of Physics A: Mathematical and Theoretical, 50:265206, 2017.

K. Dembczyński, W. Kotłowski, and R. Słowiński. ENDER: A statistical framework for
boosting decision rules. Data Mining and Knowledge Discovery, 21:52–90, 2010.

L. Devroye and T. Wagner. Distribution-free inequalities for the deleted and holdout error
estimates. IEEE Transactions on Information Theory, 25:202–207, 1979.

F. Doshi-Velez and B. Kim. Towards a rigorous science of interpretable machine learning.
arXiv:1702.08608, 2017.

29

https://www.stat.berkeley.edu/~breiman/Using_random_forests_V3.1.pdf
https://www.stat.berkeley.edu/~breiman/Using_random_forests_V3.1.pdf

D. Dua and C. Graff. UCI machine learning repository, 2017. URL http://archive.ics.
uci.edu/ml.

M. Fokkema. Fitting prediction rule ensembles with R package pre. Journal of Statistical
Software, 92:1–30, 2020.

E. Frank and I.H. Witten. Generating accurate rule sets without global optimization. In
Proceedings of the Fifteenth International Conference on Machine Learning, pages 144–151,
San Francisco, 1998. Morgan Kaufmann Publishers Inc.

A.A. Freitas. Comprehensible classification models: A position paper. ACM SIGKDD Explo-
rations Newsletter, 15:1–10, 2014.

J. Friedman, T. Hastie, and R. Tibshirani. The Elements of Statistical Learning, volume 1.
Springer series in statistics New York, 2001.

J.H. Friedman and B.E. Popescu. Importance sampled learning ensembles. Technical report,
Stanford University, 2003.

J.H. Friedman and B.E. Popescu. Predictive learning via rule ensembles. The Annals of
Applied Statistics, 2:916–954, 2008.

J. Fürnkranz and G. Widmer. Incremental reduced error pruning. In Proceedings of the 11th
International Conference on Machine Learning, pages 70–77, San Francisco, 1994. Morgan
Kaufmann Publishers Inc.

R. Guidotti and S. Ruggieri. On the stability of interpretable models. In International Joint
Conference on Neural Networks, pages 1–8, Piscataway, 2019. IEEE.

R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Giannotti, and D. Pedreschi. A survey of
methods for explaining black box models. ACM Computing Surveys, 51:1–42, 2018.

Z. He and W. Yu. Stable feature selection for biomarker discovery. Computational Biology
and Chemistry, 34:215–225, 2010.

W. Hoeffding. A class of statistics with asymptotically normal distribution. The Annals
of Mathematical Statistics, 19:293–325, 09 1948. doi: 10.1214/aoms/1177730196. URL
https://doi.org/10.1214/aoms/1177730196.

K. Hornik, C. Buchta, and A. Zeileis. Open-source machine learning: R meets Weka. Com-
putational Statistics, 24:225–232, 2009.

I. Johnson and M. Hahsler. arulesCBA: Classification Based on Association Rules, 2020. URL
https://CRAN.R-project.org/package=arulesCBA. R package version 1.1.6.

M. Kuhn and R. Quinlan. C50: C5.0 Decision Trees and Rule-Based Models, 2020. URL
https://CRAN.R-project.org/package=C50. R package version 0.1.3.

K. Kumbier, S. Basu, J.B. Brown, S. Celniker, and B. Yu. Refining interaction search through
signed iterative random forests. arXiv:1810.07287, 2018.

30

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://doi.org/10.1214/aoms/1177730196
https://CRAN.R-project.org/package=arulesCBA
https://CRAN.R-project.org/package=C50

H. Lakkaraju, S.H. Bach, and J. Leskovec. Interpretable decision sets: A joint framework
for description and prediction. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 1675–1684, New York, 2016.
ACM.

B. Letham. Statistical learning for decision making: Interpretability, uncertainty, and infer-
ence. PhD thesis, Massachusetts Institute of Technology, 2015.

B. Letham, C. Rudin, T.H. McCormick, and D. Madigan. Interpretable classifiers using rules
and bayesian analysis: Building a better stroke prediction model. The Annals of Applied
Statistics, 9:1350–1371, 2015.

Z.C. Lipton. The mythos of model interpretability. arXiv:1606.03490, 2016.

B. Liu, W. Hsu, and Y. Ma. Integrating classification and association rule mining. In Pro-
ceedings of the 14th International Conference on Knowledge Discovery and Data Mining,
volume 98, pages 80–86, New York, 1998. ACM.

N. Meinshausen. Node harvest. The Annals of Applied Statistics, 4:2049–2072, 2010.

N. Meinshausen. Node harvest, 2015. URL https://CRAN.R-project.org/package=
nodeHarvest. R package version 0.7-3.

L. Mentch and G. Hooker. Quantifying uncertainty in random forests via confidence intervals
and hypothesis tests. Journal of Machine Learning Research, 17:841–881, 2016.

R.S. Michalski. On the quasi-minimal solution of the general covering problem. In Proceedings
of the Fifth International Symposium on Information Processing, pages 125–128, New York,
1969. ACM.

W.J. Murdoch, C. Singh, K. Kumbier, R. Abbasi-Asl, and B. Yu. Interpretable machine
learning: Definitions, methods, and applications. arXiv:1901.04592, 2019.

T. Oates and D. Jensen. The effects of training set size on decision tree complexity. In
Proceedings of the 14th International Conference on Machine Learning, pages 254–262, San
Francisco, 1997. Morgan Kaufmann Publishers Inc.

F.W.J. Olver, D.W. Lozier, R.F. Boisvert, and C.W. Clark. NIST Handbook of Mathematical
Functions Hardback and CD-ROM. Cambridge University Press, 2010.

C. Piech. Titanic dataset. https://web.stanford.edu/class/archive/cs/cs109/cs109.
1166/problem12.html, 2016. Accessed: 2020-10-26.

T. Poggio, R. Rifkin, S. Mukherjee, and P. Niyogi. General conditions for predictivity in
learning theory. Nature, 428:419–422, 2004.

J.R. Quinlan. Learning logical definitions from relations. Machine learning, 5:239–266, 1990.

J.R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers Inc., San
Mateo, 1992.

31

https://CRAN.R-project.org/package=nodeHarvest
https://CRAN.R-project.org/package=nodeHarvest
https://web.stanford.edu/class/archive/cs/cs109/cs109.1166/problem12.html
https://web.stanford.edu/class/archive/cs/cs109/cs109.1166/problem12.html

J.R. Quinlan and R.M. Cameron-Jones. Induction of logic programs: Foil and related systems.
New Generation Computing, 13:287–312, 1995.

M.T. Ribeiro, S. Singh, and C. Guestrin. Why should I trust you? Explaining the predictions
of any classifier. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 1135–1144, New York, 2016. ACM.

R.L. Rivest. Learning decision lists. Machine Learning, 2:229–246, 1987.

W.H. Rogers and T.J. Wagner. A finite sample distribution-free performance bound for local
discrimination rules. The Annals of Statistics, 6:506–514, 1978.

C. Rudin. Please stop explaining black box models for high stakes decisions. arXiv:1811.10154,
2018.

S. Rüping. Learning interpretable models. PhD thesis, Universität Dortmund, 2006.

R.J. Serfling. Approximation Theorems of Mathematical Statistics, volume 162. John Wiley
& Sons, 2009.

C. Strobl, A.-L. Boulesteix, A. Zeileis, and T. Hothorn. Bias in random forest variable im-
portance measures. In Workshop on Statistical Modelling of Complex Systems. Citeseer,
2006.

T. Therneau and B. Atkinson. rpart: Recursive Partitioning and Regression Trees, 2019. URL
https://CRAN.R-project.org/package=rpart. R package version 4.1-15.

R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical
Society. Series B (Methodological), pages 267–288, 1996.

G. Tolomei, F. Silvestri, A. Haines, and M. Lalmas. Interpretable predictions of tree-based
ensembles via actionable feature tweaking. In Proceedings of the 23rd ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, pages 465–474, New York,
2017. ACM.

V. Vapnik. Statistical Learning Theory. Wiley, New York, 1998.

S.M. Weiss and N. Indurkhya. Lightweight rule induction. In Proceedings of the Seventeenth
International Conference on Machine Learning, pages 1135–1142, San Francisco, 2000. Mor-
gan Kaufmann Publishers Inc.

M.N. Wright and A. Ziegler. ranger: A fast implementation of random forests for high dimen-
sional data in C++ and R. Journal of Statistical Software, 77:1–17, 2017.

H. Yang, C. Rudin, and M. Seltzer. Scalable Bayesian rule lists. In Proceedings of the 34th
International Conference on Machine Learning, pages 3921–3930, Cambridge MA, 2017.
JMLR.

X. Yin and J. Han. CPAR: Classification based on predictive association rules. In Proceedings
of the 2003 SIAM International Conference on Data Mining, pages 331–335, Philadelphia,
2003. SIAM.

32

https://CRAN.R-project.org/package=rpart

B. Yu. Stability. Bernoulli, 19:1484–1500, 2013.

B. Yu and K. Kumbier. Three principles of data science: Predictability, computability, and
stability (PCS). arXiv:1901.08152, 2019.

M.J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li. Parallel algorithms for discovery of
association rules. Data Mining and Knowledge Discovery, 1:343–373, 1997.

M. Zucknick, S. Richardson, and E.A. Stronach. Comparing the characteristics of gene ex-
pression profiles derived by univariate and multivariate classification methods. Statistical
Applications in Genetics and Molecular Biology, 7:1–34, 2008.

33

A Additional Experiments

A.1 Robustness Illustration

For the SECOM dataset used in the experimental Section 5 of the article, only three rule
algorithms achieve the same predictivity as random forests: RuleFit, Node harvest, and SIRUS
(1-AUC of 0.30, whereas CART and BRL are no better than the random classifier with an
error of 1-AUC = 0.5). SIRUS produces a short and stable list of 6 rules, while RuleFit and
Node harvest generate complex, long, and unstable rule lists. Rule algorithms based on tree
ensembles are stochastic since they rely on the tree randomness Θ1, . . . ,ΘM . Consequently,
RuleFit and Node harvest output different rule lists when run multiple times on the same
dataset. Such behavior is a strong limitation in practice, as domain experts become skeptical
of the algorithm conclusions. On the other hand, SIRUS is built to have a robust rule extraction
mechanism, and the same list of rules is output over multiple repetitions with the same data,
as proved in Theorem 2 in the next Section.

To illustrate this, we run each algorithm twice on the SECOM dataset, and display the
output models in Figure 6 for SIRUS, Figure 7 for Node harvest, and Figure 8 for RuleFit.
We set the regularization parameter of Node harvest and SIRUS as explained in Subsection
5.3 of the article, to maximize accuracy with the smallest possible model: for Node harvest
λ = 4, and for SIRUS p0 = 0.04. RuleFit is tuned as defined in Friedman and Popescu (2008).
Figures 7 and 8 show that the rule lists output by RuleFit and Node harvest are quite different
across multiple runs with the exact same data, while SIRUS has the same output.

We also observe that for the same accuracy, RuleFit and Node harvest models are longer
and more complex than SIRUS. In addition, rules are aggregated using weights to generate
predictions. This is not the case for SIRUS, which simply averages the 6 output rules. Finally,
we can also mention that manually increasing the regularization of Node harvest, to reduce
the model size to 6 rules as in SIRUS, strongly hurts accuracy, which drops to 0.39.

A.2 Additional Competitors

Additional experiments are provided to compare SIRUS to other competitors: C5.0 (Quinlan,
1992) (decision tree), PART (Frank and Witten, 1998), and FOIL (Quinlan and Cameron-
Jones, 1995) (classical rule learning algorithms). Model size results are provided in Table 7,
stability in Table 8, and error in Table 9. The stability and accuracy improvement of SIRUS
is clear.

A.3 Rule Aggregation

In Section 3 of the article, η̂M,n,p0(x) (3.3) is a simple average of the set of rules, defined as

η̂M,n,p0(x) =
1

|P̂M,n,p0 |

∑
P∈P̂M,n,p0

ĝn,P(x). (A.1)

34

Figure 6: The two lists of rules output by two runs of SIRUS for the SECOM dataset.

Dataset C5.0 PART FOIL SIRUS
Authentification 11 8 20 13
Breast Wisconsin 5 10 41 24
Credit Approval 9 32 40 16
Credit German 22 68 101 22

Diabetes 12 7 36 8
Haberman 2 2 4 5
Heart C2 10 20 31 20
Heart H2 4 15 29 12

Heart Statlog 10 18 28 15
Hepatitis 7 8 14 12
Ionosphere 9 6 28 15
Kr vs Kp 11 21 24 24

Liver Disorders 14 7 2 17
Mushrooms 7 9 14 23

Sonar 10 6 20 19
Spambase 29 46 73 21
Titanic 7 15 17 6
Vote 5 7 19 7
Wilt 10 8 10 24

Table 7: Mean model size over a 10-fold cross-validation for UCI datasets (averaged over 10
repetitions).

35

Figure 7: The two lists of rules output by two runs of Node harvest for the SECOM dataset.
36

Figure 8: The two lists of rules output by two runs of RuleFit for the SECOM dataset.

37

Dataset C5.0 PART FOIL SIRUS
Authentification 0.44 0.43 0.81 0.81
Breast Wisconsin 0.17 0.49 0.36 0.70
Credit Approval 0.18 0.31 0.17 0.75
Credit German 0.03 0.16 0.11 0.65

Diabetes 0.07 0.15 0.18 0.81
Haberman 0.28 0.25 0.64 0.65
Heart C2 0.09 0.15 0.16 0.71
Heart H2 0.32 0.31 0.39 0.65

Heart Statlog 0.11 0.15 0.15 0.82
Hepatitis 0.10 0.15 0.05 0.68
Ionosphere 0.24 0.13 0.07 0.69
Kr vs Kp 0.65 0.51 0.85 0.87

Liver Disorders 0.05 0.07 0.69 0.58
Mushrooms 0.79 0.78 0.93 0.86

Sonar 0.06 0.06 0.04 0.55
Spambase 0.08 0.08 0.11 0.78
Titanic 0.49 0.27 0.77 0.76
Vote 0.67 0.40 0.39 0.75
Wilt 0.34 0.37 0.48 0.73

Table 8: Mean stability over a 10-fold cross-validation for UCI datasets (averaged over 10
repetitions). Values within 10% of the maximum are displayed in bold.

Dataset C5.0 PART FOIL SIRUS
Authentification 0.02 0.01 0.08 0.03
Breast Wisconsin 0.06 0.07 0.08 0.01
Credit Approval 0.15 0.17 0.15 0.09
Credit German 0.37 0.36 0.41 0.25

Diabetes 0.28 0.30 0.28 0.19
Haberman 0.46 0.42 0.50 0.35
Heart C2 0.20 0.23 0.19 0.10
Heart H2 0.23 0.23 0.23 0.12

Heart Statlog 0.21 0.24 0.20 0.10
Hepatitis 0.34 0.34 0.39 0.17
Ionosphere 0.10 0.10 0.13 0.07
Kr vs Kp 0.006 0.008 0.02 0.04

Liver Disorders 0.34 0.38 0.50 0.35
Mushrooms 0.001 0 6.10−56.10−56.10−5 6.10−4

Sonar 0.26 0.26 0.26 0.2
Spambase 0.07 0.07 0.12 0.07
Titanic 0.20 0.20 0.25 0.17
Vote 0.04 0.05 0.05 0.02
Wilt 0.15 0.17 0.46 0.11

Table 9: Model error (1-AUC) over a 10-fold cross-validation for UCI datasets (averaged over
10 repetitions). Values within 10% of the minimum are displayed in bold.

38

Figure 9: For the UCI dataset “Credit German”, 1-AUC versus the number of rules when p0 varies,
estimated via 10-fold cross-validation (repeated 30 times) for two different methods of rule aggregation:
the rule average (A.1) in red and a logistic regression (A.2) in blue.

To tackle our binary classification problem, a natural approach would be to use a logistic
regression and define

ln
(η̂M,n,p0(x)

1− η̂M,n,p0(x)

)
=

∑
P∈P̂M,n,p0

βP ĝn,P(x), (A.2)

where the coefficients βP have to be estimated. To illustrate the performance of the logistic
regression (A.2), we consider again the UCI dataset, “Credit German”. We augment the
previous results from Figure 4 (in Section 5 of the article) with the logistic regression error in
Figure 9. One can observe that the predictive accuracy is slightly improved but it comes at the
price of an additional set of coefficients that can be hard to interpret (some can be negative),
and an increased computational cost. Notice that categorical variables are one-hot-encoded in
this example.

B Stopping Criterion for the Number of Trees M

We recall that the definition of the stopping criterion (5.1) of the forest growing is provided
in Section 5 of the main article. First, we provide three groups of experiments to show its
good empirical efficiency. In the second subsection, we provide theoretical properties of the
stopping criterion.

B.1 Experiments

The following experiments on the UCI datasets show the good empirical performance of the
stopping criterion (5.1). Recall that the goal of this criterion is to determine the minimum
number of trees M ensuring that two independent fits of SIRUS on the same dataset result

39

Dataset Mean stability
Haberman 0.950 (0.01)
Diabetes 0.950 (0.007)

Heart Statlog 0.954 (0.007)
Liver Disorders 0.951 (0.006)

Heart C2 0.955 (0.009)
Heart H2 0.952 (0.009)

Credit German 0.950 (0.008)
Credit Approval 0.941 (0.02)

Ionosphere 0.950 (0.009)

Table 10: Values of ŜM,n,p0
averaged over p0 ∈ V̂M,n when the stopping criterion (5.1) is used to set

M , for UCI datasets. Results are averaged over 10 repetitions and standard deviations are displayed
in parentheses.

in two lists of rules with an overlap of 95% in average. This is checked with a first batch of
experiments—see next paragraph. Secondly, the stopping criterion (5.1) does not consider the
optimal p0, unknown when trees are grown in the first step of SIRUS. Then, another batch of
experiments is run to show that the stability approximation 1− εM,n,p0 is quite insensitive to
p0. Finally, a last batch of experiments provides examples of the number of trees grown when
SIRUS is fit. Notice that for these experiments, categorical variables are one-hot-encoded.

Experiments 1. For each dataset, the following procedure is applied. SIRUS is run a
first time using criterion (5.1) to stop the number of trees. This initial run provides the
optimal number of trees M as well as the set V̂M,n of possible p0. Then, SIRUS is fit twice
independently using the precomputed number of trees M . For each p0 ∈ V̂M,n, the stability
metric ŜM,n,p0 (with D ′n = Dn) is computed over the two resulting lists of rules. Finally
ŜM,n,p0 is averaged across all p0 values in V̂M,n. This procedure is repeated 10 times: results
are averaged and presented in Table 10, with standard deviations in parentheses. Across the
considered datasets, resulting values range from 0.941 to 0.955, and are thus close to 0.95 as
expected by construction of criterion (5.1).

Experiments 2. The second type of experiments illustrates that εM,n,p0 is quite insensitive
to p0 when M is set with criterion (5.1). For the “Credit German” dataset, we fit SIRUS and
then compute 1− εM,n,p0 for each p0 ∈ V̂M,n. Results are displayed in Figure 10. 1− εM,n,p0

ranges from 0.90 to 1, where the extreme values are reached for p0 corresponding to very small
number of rules, which are not of interest when p0 is selected to maximize predictive accuracy.
Thus, 1− εM,n,p0 is quite concentrated around 0.95 when p0 varies.

Experiments 3. Finally, we display in Table 11 the optimal number of trees when the grow-
ing of SIRUS is stopped using criterion (5.1). It ranges from 4220 to 20 650 trees. In Breiman’s
forests, the number of trees above which the accuracy cannot be significantly improved is typ-
ically 10 times lower. However SIRUS grows shallow trees, and is thus not computationally

40

Figure 10: For the UCI dataset “Credit German”, 1−εM,n,p0
for a sequence of p0 ∈ V̂M,p0

corresponding
to final models ranging from 1 to about 25 rules.

more demanding than random forests overall.

B.2 Theoretical Properties

We emphasize that growing more trees does not improve predictive accuracy or stability with
respect to data perturbation for a fixed sample size n. Indeed, the instability of the rule
selection is generated by the variance of the estimates p̂M,n(P),P ∈ Π. Upon noting that we
have two sources of randomness—Θ and Dn—, the law of total variance shows that V[p̂M,n(P)]
can be broken down into two terms: the variance generated by the Monte Carlo randomness
Θ on the one hand, and the sampling variance on the other hand. In fact, equation (C.3) in
the proof of Theorem 1 below reveals that

V[p̂M,n(P)] =
1

M
E[pn(P)](1− E[pn(P)]) + (1− 1

M
)V[pn(P)].

The stopping criterion (5.1) ensures that the first term becomes negligible as M → ∞, so
that V[p̂M,n(P)] reduces to the sampling variance V[pn(P)], which is independent of M .
Therefore, stability with respect to data perturbation cannot be further improved by increasing
the number of trees. Additionally, the trees are only involved in the selection of the paths.
For a given set of paths P̂M,n,p0 , the construction of the final aggregated estimate η̂M,n,p0 (see
Section 3 of the article) is independent of the forest. Thus, if further increasing the number
of trees does not impact the path selection, neither it improves the predictive accuracy.

Next, Theorem 2 states that conditionally on Dn and with D ′n = Dn, ŜM,n,p0 should be
close to 1, and also provides an asymptotic approximation of E[ŜM,n,p0 |Dn] for large values of

41

Dataset Nb of trees (sd)
Haberman 10 920 (877)
Diabetes 18 830 (1538)

Heart Statlog 7840 (994)
Liver Disorders 14 650 (1242)

Heart C2 6840 (1270)
Heart H2 4220 (529)

Credit German 7940 (672)
Credit Approval 20 650 (8460)

Ionosphere 7320 (487)

Table 11: Number of trees M determined by the stopping criterion (5.1) for UCI datasets. Results
are averaged over 10 repetitions and standard deviations are displayed in parentheses.

the number of trees M , which quantifies the influence of M on the mean stability, conditional
on Dn. We let Un

def
= {pn(P) : P ∈ Π} be the empirical counterpart of U?.

Theorem 2. If p0 ∈ [0, 1] \ Un and D ′n = Dn, then, conditional on Dn, we have

lim
M→∞

ŜM,n,p0 = 1 in probability. (B.1)

In addition, for all p0 < max Un,

1−E[ŜM,n,p0 |Dn]

∼
M→∞

∑
P∈Π

Φ(Mp0,M, pn(P))(1− Φ
(
Mp0,M, pn(P)))

1
2

∑
P′∈Π 1pn(P′)>p0 + 1

pn(P′)>p0−ρn(P,P′)σn(P′)
σn(P)

(p0−pn(P))

,

where Φ(Mp0,M, pn(P)) is the cdf of a binomial distribution with parameter pn(P), M trials,
evaluated at Mp0, and, for all P,P ′ ∈ Π,

σn(P) =
√
pn(P)(1− pn(P)),

and

ρn(P,P ′) =
Cov(1P∈T (Θ,Dn),1P′∈T (Θ,Dn)|Dn)

σn(P)σn(P ′)
.

The proof of Theorem 2 is to be found in Section D. The equivalent provided in Theorem 2
is defined when the sets of rules P̂M,n,p0 and P̂ ′

M,n,p0
are not post-treated. It considerably

simplifies the analysis of the asymptotic behavior of E[ŜM,n,p0 |Dn]. Since the post-treatment is
deterministic, this operation is not an additional source of instability. Then, if the estimation
of the rule set without post-treatment is stable, it is also the case when the post-treatment
is added. Finally, despite its apparent complexity, the asymptotic approximation of 1 −
E[ŜM,n,p0 |Dn] can be easily estimated, and an efficient stopping criterion for the number of
trees is therefore derived in (5.1).

42

C Proof of Theorem 1

We recall Assumptions (A1)-(A3) and Theorem 1 for the sake of clarity.

(A1) The subsampling rate an satisfies lim
n→∞

an =∞ and lim
n→∞

an
n = 0.

(A2) The number of trees Mn satisfies lim
n→∞

Mn =∞.

(A3) X has a strictly positive density f with respect to the Lebesgue measure. Furthermore,
for all j ∈ {1, . . . , p}, the marginal density f (j) of X(j) is continuous, bounded, and
strictly positive.

Theorem 1. If Assumptions (A1)-(A3) are satisfied, then, for all P ∈ Π, we have

lim
n→∞

p̂Mn,n(P) = p?(P) in probability.

First, we prove Theorem 1 for a path of one split. The proof is extended for a path of
two splits in the next subsection and follows the same steps. Finally, the proof can be easily
extended to a path of any depth d ∈ N? by recursion.

C.1 Proof of Theorem 1 for a path of one split

We consider P1 = {(j1, r1, s1)} a path of one split, where j1 ∈ {1, . . . , p}, r1 ∈ {1, . . . , q − 1},
and s1 ∈ {L,R}. We assume throughout that Assumptions (A1)-(A3) are satisfied.

Before proving Theorem 1, we state five lemmas (Lemma 1 to Lemma 5). Their proof can
be found in the Subsection C.3. Lemma 1 is a preliminary technical result used to state both
Lemmas 2 and 4 - case (b).

Lemma 1. Let X be a random variable distributed on Rp such that Assumptions (A1) and
(A3) are satisfied. Then, for all j ∈ {1, . . . , p} and all r ∈ {1, . . . , q − 1}, we have

lim
n→∞

√
an P

(
q?(j)r ≤ X(j) < q̂(j)

n,r

)
= 0

and
lim
n→∞

√
an P

(
q̂(j)
n,r ≤ X(j) < q?(j)r

)
= 0.

Lemma 2 is used to prove both consistency (Lemma 3) and convergence rate (Lemma 4)
of the CART-splitting criterion when the root node of the tree is cut at an empirical quantile.
Lemma 5 is an intermediate result to prove Theorem 1.

Lemma 2. If Assumptions (A1) and (A3) are satisfied, then for all j ∈ {1, . . . , p}, all r ∈
{1, . . . , q − 1}, and all H ⊆ Rp such that P(X ∈ H,X(j) < q

?(j)
r) > 0 and P(X ∈ H,X(j) ≥

q
?(j)
r) > 0, we have

lim
n→∞

√
an
(
Lan

(
H, q̂(j)

n,r

)
− Lan

(
H, q?(j)r

))
= 0 in probability.

43

Lemma 3. If Assumptions (A1) and (A3) are satisfied, then for all j ∈ {1, . . . , p}, all r ∈
{1, . . . , q − 1}, and all H ⊆ Rp such that P(X ∈ H,X(j) < q

?(j)
r) > 0 and P(X ∈ H,X(j) ≥

q
?(j)
r) > 0, we have

lim
n→∞

Lan
(
H, q̂(j)

n,r

)
= L?

(
H, q?(j)r

)
in probability.

When splitting a node, if the theoretical CART-splitting criterion has multiple maxima,
one is randomly selected. This random selection follows a discrete probability law, which is not
necessarily uniform and is based on PX,Y as specified in Definition 1. In order to derive the
limit of the probability that a given split occurs in a Θ-random tree in the empirical algorithm,
one needs to assess the convergence rate of the empirical CART-splitting criterion when it has
multiple maxima.

Lemma 4. Consider that Assumptions (A1) and (A3) are satisfied. Let C1 ⊂ {1, . . . , p} ×
{1, . . . , q − 1} be a set of splits of cardinality c1 ≥ 2, such that, for all (j, r) ∈ C1,
L?(Rp, q

?(j)
r)

def
= L?C1, i.e., the theoretical CART-splitting criterion is constant for all splits in

C1. Let (j1, r1) ∈ C1 and let L(C1)
n,P1

be a random vector where each component is the difference
between the empirical CART-splitting criterion for the splits (j, r) ∈ C1 \ (j1, r1) and (j1, r1),
that is

L(C1)
n,P1

=
(
Lan

(
Rp, q̂(j)

n,r

)
− Lan

(
Rp, q̂(j1)

n,r1

))
(j,r)∈C1\(j1,r1)

.

(a) If L?C1 > 0, then we have

√
an L(C1)

n,P1

D−→
n→∞

N (0,Σ),

where, for all (j, r), (j′, r′) ∈ C1 \ (j1, r1), each element of the covariance matrix Σ is defined
by Σ(j,r),(j′,r′) = Cov[Zj,r, Zj′,r′], with

Zj,r =
(
Y−E[Y |X(j1) < q?(j1)

r1]1
X(j1)<q

?(j1)
r1

− E[Y |X(j1) ≥ q?(j1)
r1]1

X(j1)≥q?(j1)r1

)2
−
(
Y − E[Y |X(j) < q?(j)r]1

X(j)<q
?(j)
r
− E[Y |X(j) ≥ q?(j)r]1

X(j)≥q?(j)r

)2
.

Besides, for all (j, r) ∈ C1, V[Zj,r] > 0.

(b) If L?C1 = 0, then we have

anL
(C1)
n,P1

D−→
n→∞

hP1(V),

where V is a Gaussian vector of covariance matrix Cov[Z]. If C1 is explicitly written C1 =
{(jk, rk)}k=1,...,c1, Z is defined, for k ∈ {1, . . . , c1}, by

Z2k−1 =
1

√
pL,k

(Y − E[Y])1
X(jk)<q

?(jk)
rk

Z2k =
1

√
pR,k

(Y − E[Y])1
X(jk)≥q?(jk)rk

,

44

where pL,k = P(X(jk) < q
?(jk)
rk), pR,k = P(X(jk) ≥ q?(jk)

rk), and hP1 is a multivariate quadratic
form defined as

hP1 :

 x1
...

x2c1

→

x2
3 + x2

4 − x2
1 − x2

2
...

x2
2k−1 + x2

2k − x2
1 − x2

2
...

x2
2c1−1 + x2

2c1
− x2

1 − x2
2

 .

Besides, the variance of each component of hP1(V) is strictly positive.

Definition 1 (Theoretical splitting procedure). Let θ(V)
1 be the set of eligible variables to split

the root node of a theoretical random tree. The set of best theoretical cuts at the root node is
defined as

C?1
(
θ

(V)
1

)
= argmax

(j,r)∈θ(V)
1 ×{1,...,q−1}

L?
(
Rp, q?(j)r

)
.

If C?1(θ
(V)
1) has multiple elements, then (j1, r1) is randomly drawn with probability

P
(
P1 ∈ T ?(Θ)|Θ(V) = θ(V)

)
= Φ

θ
(V)
1 ,(j1,r1)

(0), (C.1)

where Φ
θ
(V)
1 ,(j1,r1)

is the cdf of the limit law defined in Lemma 4 for C1 = C?1(θ
(V)
1). This

definition is extended for the second split in Definition 2.

Recall that the randomness in a tree can be decomposed as Θ = (Θ(S),Θ(V)), where Θ(S)

corresponds to the subsampling and Θ(V) is related to the variable selection. Θ(V) takes values
in the finite set Ω(V) = {1, . . . , p}3×mtry.

Lemma 5. If Assumptions (A1)-(A3) are satisfied, then for all θ(V) ∈ Ω(V), we have

lim
n→∞

P
(
P1 ∈ T (Θ,Dn)|Θ(V) = θ(V)

)
= P

(
P1 ∈ T ?(Θ)|Θ(V) = θ(V)

)
.

We are now equipped to prove Theorem 1 in the case of one single split. Recall that

E[p̂Mn,n(P1)] = P(P1 ∈ T (Θ,Dn)). (C.2)

Since Θ(V) takes values in the finite set Ω(V), according to Lemma 5, we have

lim
n→∞

P(P1 ∈ T (Θ,Dn))

= lim
n→∞

∑
θ(V)∈Ω(V)

P
(
P1 ∈ T (Θ,Dn)|Θ(V) = θ(V)

)
PΘ(V)

(
Θ(V) = θ(V)

)
=

∑
θ(V)∈Ω(V)

P
(
P1 ∈ T ?(Θ)|Θ(V) = θ(V)

)
PΘ(V)

(
Θ(V) = θ(V)

)
= P(P1 ∈ T ?(Θ)).

45

Therefore,
lim
n→∞

E[p̂Mn,n(P1)] = p?(P1).

To finish the proof, we just have to show that lim
n→∞

V[p̂Mn,n(P1)] = 0.

The law of total variance gives

V[p̂Mn,n(P1)] = E
[
V[p̂Mn,n(P1)|Dn]

]
+ V

[
E[p̂Mn,n(P1)|Dn]

]
= E

[
V
[1

Mn

Mn∑
`=1

1P1∈T (Θ`,Dn)|Dn

]]
+ V[pn(P1)]

=
1

Mn
E
[
V[1P1∈T (Θ1,Dn)|Dn]

]
+ V[pn(P1)]

=
1

Mn
E
[
pn(P1)− pn(P1)2

]
+ V[pn(P1)],

=
1

Mn
E[pn(P1)](1− E[pn(P1)]) +

(
1− 1

Mn

)
V[pn(P1)]. (C.3)

Following the approach of Mentch and Hooker (2016), pn(P1) is a complete infinite order
U-statistic with the kernel E[1P1∈T (Θ,Dn)|Θ(S),Dn]. From Hoeffding (1948),

V[pn(P1)] ≤ an
n
ξan,an ,

where ξan,an = V[E[1P1∈T (Θ,Dn)|Θ(S),Dn]|Θ(S)]. Since ξan,an is bounded and lim
n→∞

an
n = 0,

lim
n→∞

V[pn(P1)] = 0.

Using equality (C.3), since pn(P1) is bounded and lim
n→∞

Mn =∞,

lim
n→∞

V[pMn,n(P1)] = 0.

Finally,

lim
n→∞

E
[
(p̂Mn,n(P1)− p?(P1))2

]
= lim

n→∞
V[p̂Mn,n(P1)] +

(
E[p̂Mn,n(P1)]− p?(P1)

)2
= 0,

which concludes the proof.

C.2 Proof of Theorem 1 for a path of two split

The proof of Theorem 1 is extended for a path of two splits. We consider P1 = {(j1, r1, s1)} a
path of one split and P2 = {(jk, rk, sk), k = 1, 2} a path of two splits, where j1, j2 ∈ {1, ..., p},
r1, r2 ∈ {1, ..., q − 1} and s1, s2 ∈ {L,R}. We assume assumptions (A1)-(A3) are satisfied.

The path P2 = {(j1, r1, s1), (j2, r2, s2)} can occur in trees where the split at the root node
is (j1, r1) and the split of one of the child node is (j2, r2), and in trees where the splits are

46

made in the reversed order, (j2, r2) at the root node and (j1, r1) at one of the child node.
Since these two events are disjoint, P

(
P2 ∈ T (Θ,Dn)

)
is the sum of the probability of these

two events. Without loss of generality, we will consider in the entire proof that the split at
the root node is (j1, r1). Lemmas 6 - 9 below extend Lemmas 2 - 5 to the case where the tree
path contains two splits.

We need to introduce additional notations, first, the theoretical hyperrectangle based on
a path P by

H?(P) =

{
x ∈ Rp :

{
x(jk) < q

?(jk)
rk if sk = L

x(jk) ≥ q?(jk)
rk if sk = R

, k ∈ 1, . . . , d

}
,

with d ∈ {1, 2}, the empirical counterpart of Ĥn(P) defined in (2.3). Furthermore, since
from assumption (A3), X has a strictly positive density, then for j ∈ {1, ..., p} \ j1, and
r ∈ {1, ..., q − 1}, P

(
X ∈ H?(P1), X(j) < q

?(j)
r

)
> 0 and P

(
X ∈ H?(P1), X(j) ≥ q

?(j)
r

)
> 0.

When j = j1, the second cut is performed along the same direction as the first one. In that
case, depending on the side s1 of the first cut and the cut positions r1 and r, one of the two
child node can be empty with probability one. For example, the hyperrectangle associated to
the path {(1, 2, L), (1, 3, R)} is empty. In SIRUS, such splits are not considered to find the
best cut for a node at the second level of the tree. Thus we define CP1 the set of possible splits
for the second cut

CP1 = {(j, r), j ∈ {1, ..., p} \ j1, r ∈ {1, ..., q − 1}}
∪ {(j1, r), s.t. r < r1 if s1 = L, and r > r1 if s1 = R},

and CP1

(
θ

(V)
2

)
=
{

(j, r) ∈ CP1 s.t. j ∈ θ
(V)
2

}
when the split directions are restricted to

θ
(V)
2 ⊂ {1, ..., p}.

Lemma 6. If Assumptions (A1) and (A3) are satisfied, then for all (j, r) ∈ CP1 , we have

lim
n→∞

√
an
(
Lan

(
Ĥn(P1), q̂(j)

n,r

)
− Lan

(
H?(P1), q?(j)r

))
= 0 in probability.

Lemma 7. If Assumptions (A1) and (A3) are satisfied, then for all (j, r) ∈ CP1, we have

lim
n→∞

Lan
(
Ĥn(P1), q̂(j)

n,r

)
= L?

(
H?(P1), q?(j)r

)
in probability.

Lemma 8. Consider that Assumptions (A1) and (A3) are satisfied. Let C1 ⊂ {1, ..., p} ×
{1, ..., q− 1} and C2 ⊂ CP1 be two sets of splits of cardinality c1 ≥ 1 and c2 ≥ 2, such that the
theoretical CART-splitting criterion is constant for all splits in C1 on one hand, and in C2 on
the other hand, i.e.,

∀l ∈ {1, 2}, ∀(j, r) ∈ Cl, L?
(
Hl, q

?(j)
r

) def
= L?Cl ,

where H1 = Rp and H2 = H?(P1). Let (j1, r1) ∈ C1, (j2, r2) ∈ C2, and let L(C1,C2)
n,P2

a the
random vector where each component is the difference between the empirical CART-splitting
criterion for the splits (j, r) ∈ C1 \ (j1, r1) and (j1, r1) for the first c1 − 1 components, and for
the splits (j, r) ∈ C2 \ (j2, r2) and (j2, r2) for the remaining c2 − 1 components, that is

L(C1,C2)
n,P2

=

([
Lan

(
Rp, q̂(j)

n,r

)
− Lan

(
Rp, q̂(j1)

n,r1

)]
(j,r)∈C1\(j1,r1)[

Lan
(
Ĥn(P1), q̂

(j)
n,r

)
− Lan

(
Ĥn(P1), q̂

(j2)
n,r2

)]
(j,r)∈C2\(j2,r2)

)
.

47

(a) If L?C1 > 0 and L?C2 > 0, then we have

√
anL

(C1,C2)
n,P2

D−→
n→∞

N (0,Σ)

where for l, l′ ∈ {1, 2}, for all (j, r) ∈ Cl \ (jl, rl), (j′, r′) ∈ Cl′ \ (jl′ , rl′), each element of the
covariance matrix Σ is defined by Σ(j,r,l),(j′,r′,l′) = Cov[Zj,r,l, Zj′,r′,l′], with

Zj,r,l =
1

P(X ∈ Hl)

(
Y − µ(jl)

L,rl
1
X(jl)<q

?(jl)
rl

− µ(jl)
R,rl
1
X(jl)≥q?(jl)rl

)2
1X∈Hl

− 1

P(X ∈ Hl)

(
Y − µ(j)

L,r1X(j)<q
?(j)
r
− µ(j)

R,r1X(j)≥q?(j)r

)2
1X∈Hl ,

µ
(j)
L,r = E

[
Y |X(j) < q

?(j)
r ,X ∈ Hl

]
, µ(j)

R,r = E
[
Y |X(j) ≥ q

?(j)
r ,X ∈ Hl

]
. Besides, for all

l ∈ {1, 2} and for all (j, r) ∈ Cl, V[Zj,r,l] > 0.

(b) If L?C1 = L?C2 = 0, then we have

anL
(C1,C2)
n,P2

D−→
n→∞

hP2(V),

where V is a gaussian vector of covariance matrix Cov[Z]. If C1 and C2 are explicitly written
C1 = {(jk, rk)}k∈J1, and C2 = {(jk, rk)}k∈J2, with J1 = {1, ..., c1 + 1} \ 2 and J2 = {2} ∪ {c1 +
2, ..., c1 + c2}, Z is defined, for l ∈ {1, 2} and k ∈ Jl, by

Z2k−1 =
1√

pL,kP(X ∈ Hl)
(Y − E[Y |X ∈ Hl])1X(jk)<q

?(jk)
rk

1X∈Hl

Z2k =
1√

pR,kP(X ∈ Hl)
(Y − E[Y |X ∈ Hl])1X(jk)≥q?(jk)rk

1X∈Hl ,

where pL,k = P
(
X(jk) < q

?(jk)
rk ,X ∈ Hl

)
, pR,k = P

(
X(jk) ≥ q

?(jk)
rk ,X ∈ Hl

)
, and hP2 is a

multivariate quadratic form defined as

hP2 :

 x1
...

x2(c1+c2)

→

x2
5 + x2

6 − x2
1 − x2

2
...

x2
2c1+1 + x2

2c1+2 − x2
1 − x2

2

x2
2c1+3 + x2

2c1+4 − x2
3 − x2

4
...

x2
2(c1+c2)−1 + x2

2(c1+c2) − x
2
3 − x2

4

.

Besides, the variance of each component of hP2(V) is strictly positive.

(c) If L?C1 > 0 and L?C2 = 0, then we have

anL
(C1,C2)
n,P2

D−→
n→∞

h′P2
(V),

48

where V is a gaussian vector of covariance matrix Cov[Z], and Z is defined as, for k ∈ J1,

Z2k−1 =
(
Y − E

[
Y |X(jk) < q?(jk)

rk

])2
1
X(jk)<q

?(jk)
rk

Z2k =
(
Y − E

[
Y |X(jk) ≥ q?(jk)

rk

])2
1
X(jk)≥q?(jk)rk

,

for k ∈ J2,

Z2k−1 =
Y − E[Y |X ∈ H?(P1)]√
pL,kP(X ∈ H?(P1))

1
X(jk)<q

?(jk)
rk

,X∈H?(P1)

Z2k =
Y − E[Y |X ∈ H?(P1)]√
pR,kP(X ∈ H?(P1))

1
X(jk)≥q?(jk)rk

,X∈H?(P1)
,

and h′P2
is a multivariate quadratic form defined as

h′P2
:

 x1
...

x2(c1+c2)

→

x1 + x2 − x5 − x6
...

x1 + x2 − x2c1+1 − x2c1+2

x2
2c1+3 + x2

2c1+4 − x2
3 − x2

4
...

x2
2(c1+c2)−1 + x2

2(c1+c2) − x
2
3 − x2

4

.

Besides, the variance of each component of h′P2
(V) is strictly positive.

(d) L?C1 = 0 and L?C2 > 0. Symmetric to case (c).

Definition 2 (Theoretical splitting procedure at children nodes). Let θ(V) = (θ
(V)
1 , θ

(V)
2 , ·) ∈

Ω(V) be the sets of eligible variables to split the nodes of a theoretical random tree. The set of
best theoretical cuts at the left children node along the variables in θ(V)

2 is defined as

C?2
(
θ

(V)
2

)
= argmax

(j,r)∈CP1

(
θ
(V)
2

)L?(H?(P1), q?(j)r

)
.

If C?2
(
θ

(V)
2

)
has multiple elements, then (j2, r2) is randomly drawn with probability

P
(
P2 ∈ T ?(Θ)|Θ(V) = θ(V)

)
=

ΦP1,θ(V),(j2,r2)(0)

P
(
P1 ∈ T ?(Θ)|Θ(V) = θ(V)

) , (C.4)

where P
(
P1 ∈ T ?(Θ)|Θ(V) = θ(V)

)
is defined from Definition 1, and ΦP1,θ(V),(j2,r2) is the cdf

of the limit law defined in Lemma 8 for C1 = C?1
(
θ

(V)
1

)
and C2 = C?2

(
θ

(V)
2

)
.

Lemma 9. If Assumptions (A1)-(A3) are satisfied, then for all θ(V) ∈ Ω(V), we have

lim
n→∞

P
(
P2 ∈ T (Θ,Dn)|Θ(V) = θ(V)

)
= P

(
P2 ∈ T ?(Θ)|Θ(V) = θ(V)

)
Finally, the proof of Theorem 1 in the two-splits scenario is the same as in the single-split

scenario.

49

C.3 Proofs of intermediate lemmas

Proof of Lemma 1. Set j ∈ {1, ..., p}, and r ∈ {1, ..., q−1}. We define the marginal cumulative
distribution function F (j) of X(j), F (j)(x) = P

(
X(j) < x

)
, and F (j)

n the empirical c.d.f.

F (j)
n (x) =

1

n

n∑
i=1

1
X

(j)
i ≤x

.

We adapt an inequality from Serfling (2009) (section 2.3.2 page 75) to bound the following
conditional probability for all ε > 0

P
(
q?(j)r ≤ X(j)

1 < q̂(j)
n,r|X

(j)
1 = q?(j)r + ε

)
= P

(
q?(j)r + ε < q̂(j)

n,r|X
(j)
1 = q?(j)r + ε

)
≤ P

(
F (j)
n

(
q?(j)r + ε

)
≤ F (j)

n

(
q̂(j)
n,r

)
|X(j)

1 = q?(j)r + ε
)

≤ P
(

1 +
n∑
i=2

1
X

(j)
i ≤q

?(j)
r +ε

≤
⌈
n.r

q

⌉)
≤ P

(n∑
i=2

1
X

(j)
i ≤q

?(j)
r +ε

− (n− 1)F (j)
(
q?(j)r + ε

)
(C.5)

≤
⌈
n.r

q

⌉
− 1− (n− 1)F (j)

(
q?(j)r + ε

))
(C.6)

Since f is continuous and strictly positive, there exists three constants c1, c2, η > 0 such
that for all x ∈ [q

?(j)
r , q

?(j)
r + η], c1 ≤ f (j)(x) ≤ c2. Thus, for all ε < η, we have

F (j)
(
q?(j)r + ε

)
− F (j)

(
q?(j)r

)
=

∫ q
?(j)
r +ε

q
?(j)
r

f (j)(x)dx,

which leads to

c1ε ≤ F (j)
(
q?(j)r + ε

)
− F (j)

(
q?(j)r

)
≤ c2ε.

Consequently, ⌈
n.r

q

⌉
− 1−(n− 1)F (j)

(
q?(j)r + ε

)
≤
⌈
n.r

q

⌉
− 1− (n− 1)

(
c1ε+ F (j)

(
q?(j)r

))
≤
⌈
n.r

q

⌉
− 1− (n− 1)c1ε−

(n− 1).r

q

≤ 1− (n− 1)c1ε.

50

For n > 1 + 1
c1ε

, we can apply Hoeffding inequality to C.6,

P
(
q?(j)r ≤ X(j)

1 < q̂(j)
n,r|X

(j)
1 = q?(j)r + ε

)
≤ P

(n∑
i=2

1
X

(j)
i ≤q

?(j)
r +ε

− (n− 1)F (j)
(
q?(j)r + ε

)
≤ 1− (n− 1)c1ε

)
≤ e−

2
n

(
1−(n−1)c1ε

)2
≤ Ce−2nc21ε

2
, (C.7)

where C = e2c1η(1+2c1η). By definition, we have

P
(
q?(j)r ≤ X(j)

1 < q̂(j)
n,r) =

∫
]0,∞[

P
(
q?(j)r ≤ X(j)

1 < q̂(j)
n,r|X

(j)
1 = q?(j)r + ε

)
× f (j)

(
q?(j)r + ε

)
dε.

To bound the previous integral, we break it down in three parts. Since f (j) is bounded by c2

on [q
?(j)
r , q

?(j)
r + η], for n > 1 + 1

c1η
we use inequality C.7 to get

P
(
q?(j)r ≤ X(j)

1 < q̂(j)
n,r

)
≤
∫

]0, 1
(n−1)c1

]
c2dε

+

∫
] 1
(n−1)c1

,η[
c2Ce

−2nc21ε
2
dε

+

∫
[η,∞[

Ce−2nc21η
2
f (j)

(
q?(j)r + ε

)
dε.

In the second integral, we introduce the following change of variable u =
√

2nc1ε∫
] 1
(n−1)c1

,η[
c2Ce

−2nc21ε
2
dε =

c2C

c1

√
2n

∫
]
√
2n

(n−1)
,
√

2nc1η[
e−u

2
du

≤ c2C

c1

√
2n

∫
]0,∞[

e−u
2
du ≤

√
πc2C

2c1

√
2n
,

and therefore we can write

√
anP

(
q?(j)r ≤ X(j)

1 < q̂(j)
n,r

)
≤

c2
√
an

(n− 1)c1
+

√
πanc2C

2c1

√
2n

+ C
√
ane
−2nc21η

2

From Assumption (A1), lim
n→∞

an
n = 0, and then

lim
n→∞

√
an P

(
q?(j)r ≤ X(j)

1 < q̂(j)
n,r

)
= 0.

The case lim
n→∞

√
anP

(
q̂

(j)
n,r ≤ X(j)

1 < q
?(j)
r

)
= 0 is similar.

51

C.3.1 Case 1: P1

Proof of Lemma 2. Let j ∈ {1, ..., p}, r ∈ {1, ..., q − 1}, and H ⊆ Rp such that P
(
X ∈

H,X(j) < q
?(j)
r

)
> 0 and P

(
X ∈ H,X(j) ≥ q?(j)r

)
> 0. Let

∆(j)
n,r =

√
an
(
Lan

(
H, q̂(j)

n,r

)
− Lan

(
H, q?(j)r

))
that is

∆(j)
n,r = −

√
an

Nn(H)

[an∑
i=1

(
Yi − Y HL1X(j)

i <q̂
(j)
n,r
− Y HR1X(j)

i ≥q̂
(j)
n,r

)2
1Xi∈H

−
an∑
i=1

(
Yi − Y H?

L
1
X

(j)
i <q

?(j)
r
− Y H?

R
1
X

(j)
i ≥q

?(j)
r

)2
1Xi∈H

]
where, for a generic hyperrectangle H, we define Nn(H) =

∑an
i=1 1Xi∈H , and

HL =
{
x ∈ H : x(j) < q̂(j)

n,r

}
and Y HL =

1

Nn(HL)

an∑
i=1

Yi1X(j)
i <q̂

(j)
n,r
1Xi∈H ,

with the convention Y HL = 0 if HL is empty. The theoretical quantities H?
L and Y H?

L
are

defined similarly by replacing the empirical quantile by its population version. We define
symmetrically HR, H?

R, Y HR , Y H?
R
.

Simple calculations show that

∆(j)
n,r =

√
an

Nn(H)

(
Y

2
HL
Nn(HL)− Y 2

H?
L
Nn(H?

L)
)

+

√
an

Nn(H)

(
Y

2
HR
Nn(HR)− Y 2

H?
R
Nn(H?

R)
)

(C.8)

The first term in equation (C.8) can be rewritten as
√
an

Nn(H
)(Y

2
HL
Nn(HL)− Y 2

H?
L
Nn(H?

L)
)

=

√
an

Nn(H)Nn(HL)Nn(H?
L)

an∑
i,k,l=1

YiYk1Xi∈H,Xk∈H

×
(
1
X

(j)
l <q

?(j)
r
1
X

(j)
i <q̂

(j)
n,r
1
X

(j)
k <q̂

(j)
n,r
− 1

X
(j)
l <q̂

(j)
n,r
1
X

(j)
i <q

?(j)
r
1
X

(j)
k <q

?(j)
r

)
.

Since Yi ∈ {0, 1}, we have the following bound

√
an

Nn(H)

∣∣Y 2
HL
Nn(HL)− Y 2

H?
L
Nn(H?

L)
∣∣

≤
√
an

Nn(H)Nn(HL)Nn(H?
L)

an∑
i,k,l=1

∣∣1
X

(j)
l <q

?(j)
r
1
X

(j)
i <q̂

(j)
n,r
1
X

(j)
k <q̂

(j)
n,r

− 1
X

(j)
l <q̂

(j)
n,r
1
X

(j)
i <q

?(j)
r
1
X

(j)
k <q

?(j)
r

∣∣,
52

and finally
√
an

Nn(H)

∣∣Y 2
HL
Nn(HL)− Y 2

H?
L
Nn(H?

L)
∣∣ ≤ a3

n

Nn(H)Nn(HL)Nn(H?
L)
W (j)
n,r , (C.9)

where

W (j)
n,r =

√
an
a3
n

an∑
i,k,l=1

∣∣1
X

(j)
l <q

?(j)
r
1
X

(j)
i <q̂

(j)
n,r
1
X

(j)
k <q̂

(j)
n,r

(C.10)

− 1
X

(j)
l <q̂

(j)
n,r
1
X

(j)
i <q

?(j)
r
1
X

(j)
k <q

?(j)
r

∣∣.
A close inspection of the terms inside the sum of (C.10) reveals that

E
[
W (j)
n,r

]
≤
√
an
a3
n

an∑
i,k,l=1

P
(
q̂(j)
n,r ≤ X

(j)
i < q?(j)r

)
+ P

(
q̂(j)
n,r ≤ X

(j)
k < q?(j)r

)
+ P

(
q?(j)r ≤ X(j)

l < q̂(j)
n,r

)
+ P

(
q?(j)r ≤ X(j)

i < q̂(j)
n,r

)
+ P

(
q?(j)r ≤ X(j)

k < q̂(j)
n,r

)
+ P

(
q̂(j)
n,r ≤ X

(j)
l < q?(j)r

)
≤ 3
√
an P

(
q̂(j)
n,r ≤ X

(j)
1 < q?(j)r

)
+ 3
√
an P

(
q?(j)r ≤ X(j)

1 < q̂(j)
n,r

)
,

which tends to zero, according to Lemma 1. Thus, in probability,

lim
n→∞

W (j)
n,r = 0. (C.11)

Regarding the remaining terms in inequality (C.9), by the law of large numbers, in probability,

lim
n→∞

Nn(H)

an
= P

(
X ∈ H

)
, lim

n→∞

Nn(H?
L)

an
= P

(
X ∈ H?

L

)
. (C.12)

Additionally,

E
[∣∣Nn(HL)

an
−
Nn(H?

L)

an

∣∣] ≤ E
[1

an

an∑
i=1

1
X

(j)
i ∈H

∣∣1
X

(j)
i ≤q̂

(j)
n,r
− 1

X
(j)
i ≤q

?(j)
r

∣∣]
≤ P

(
q̂(j)
n,r ≤ X

(j)
1 < q?(j)r

)
+ P

(
q?(j)r ≤ X(j)

1 < q̂(j)
n,r

)
,

which tends to zero, according to Lemma 1. Therefore, in probability,

lim
n→∞

Nn(HL)

an
−
Nn(H?

L)

an
= 0. (C.13)

Since P(X ∈ H) > 0 and P(X ∈ H?
L) > 0 by assumption, we can combine (C.11)-(C.13) to

obtain, in probability,

lim
n→∞

a3
n

Nn(H)Nn(HL)Nn(H?
L)

=
1

P(X ∈ H)P(X ∈ H?
L)2

. (C.14)

Using (C.11) and (C.14) and inequality (C.9), we obtain, in probability,

lim
n→∞

√
an

Nn(H)

∣∣Y 2
HL
Nn(HL)− Y 2

H?
L
Nn(H?

L)
∣∣ = 0.

53

Similar results can be derived for the other term in equation (C.8), which allows us to conclude
that, in probability,

lim
n→∞

√
an
(
Lan

(
H, q̂(j)

n,r

)
− Lan

(
H, q?(j)r

))
= 0.

Proof of Lemma 3. Let j ∈ {1, ..., p}, r ∈ {1, ..., q−1} andH ⊆ Rp such that P
(
X ∈ H,X(j) <

q
?(j)
r

)
> 0 and P

(
X ∈ H,X(j) ≥ q?(j)r

)
> 0.

Lan
(
H, q̂(j)

n,r

)
= Lan

(
H, q?(j)r

)
+
(
Lan

(
H, q̂(j)

n,r

)
− Lan

(
H, q?(j)r

))
From the law of large number, in probability,

lim
n→∞

Lan
(
H, q?(j)r

)
= L?

(
H, q?(j)r

)
.

Thus, according to Lemma 2, in probability,

lim
n→∞

Lan
(
H, q̂(j)

n,r

)
= L?

(
H, q?(j)r

)
.

Proof of Lemma 4. We consider C1, a set of splits of cardinality c1 ≥ 2 satisfying, for all
(j, r) ∈ C1, L?

(
Rp, q

?(j)
r

) def
= L?C1 . Fix (j1, r1) ∈ C1, we recall that

L(C1)
n,P1

=
(
Lan

(
Rp, q̂(j)

n,r

)
− Lan

(
Rp, q̂(j1)

n,r1

))
(j,r)∈C1\(j1,r1)

.

Case (a): L?C1 > 0 We first consider the following decomposition for (j, r) ∈ C1,

Lan
(
Rp, q̂(j)

n,r

)
= Lan

(
Rp, q?(j)r

)
+
(
Lan

(
Rp, q̂(j)

n,r

)
− Lan

(
Rp, q?(j)r

))
=

1

an

an∑
i=1

(Yi − Y)2 − 1

an

an∑
i=1

(
Yi − Y

?
L1X(j)

i <q
?(j)
r
− Y ?

R1X(j)
i ≥q

?(j)
r

)2
+ Lan

(
Rp, q̂(j)

n,r

)
− Lan

(
Rp, q?(j)r

)
,

where

N?
n,L =

an∑
i=1

1
X

(j)
i <q

?(j)
r

and Y
?
L =

1

N?
n,L

an∑
i=1

Yi1X(j)
i <q

?(j)
r

(Y ?
R, N?

n,R are defined symmetrically). Letting µ(j)
L,r = E

[
Y |X(j) < q

?(j)
r

]
(and µ(j)

R,r symmet-
rically), the first two terms of the last decomposition are standard variance estimates and we
can write

Lan
(
Rp, q̂(j)

n,r

)
=

1

an

an∑
i=1

(Yi − Y)2 (C.15)

− 1

an

an∑
i=1

(
Yi − µ(j)

L,r1X(j)
i <q

?(j)
r
− µ(j)

R,r1X(j)
i ≥q

?(j)
r

)2
+R(j)

n,r, (C.16)

54

where

R
(j)
n,L =

N?
n,L

an

(
Y
?
L − µ

(j)
L,r

)2
+
N?
n,R

an

(
Y
?
R − µ

(j)
L,r

)2 (C.17)

+ Lan
(
Rp, q̂(j)

n,r

)
− Lan

(
Rp, q?(j)r

)
.

Using the Central limit theorem, in probability,

lim
n→∞

√
an

N?
L,r

an

(
Y
?
L,r − µ

(j)
L,r

)2
= 0. (C.18)

The same result holds for the second term of (C.17), and using Lemma 2 for the third term
of (C.17), we get that, in probability,

lim
n→∞

√
an
(
Lan

(
Rp, q̂(j)

n,r

)
− Lan

(
Rp, q?(j)r

))
= 0.

Finally,

lim
n→∞

√
anR

(j)
n,r = 0, in probability.

Using Equation (C.16), each component of L(C1)
n,P1

writes, with (j, r) ∈ C1 \ (j1, r1),

Lan
(
Rp, q̂(j)

n,r

)
− Lan

(
Rp, q̂(j1)

n,r1

)
=

1

an

an∑
i=1

(
Yi − µ(j1)

L,r1
1
X

(j1)
i <q

?(j1)
r1

− µ(j1)
R,r1

1
X

(j1)
i ≥q?(j1)r1

)2
−
(
Yi − µ(j)

L,r1X(j)
i <q

?(j)
r
− µ(j)

R,r1X(j)
i ≥q

?(j)
r

)2
+R(j)

n,r −R(j1)
n,r1

We can apply the multivariate Central limit theorem and Slutsky’s theorem to obtain,

√
an L(C1)

n,P1

D−→
n→∞

N
(
0,Σ

)
where for all (j, r), (j′, r′) ∈ C1 \ (j1, r1), each element of the covariance matrix Σ is defined by
Σ(j,r),(j′,r′) = Cov[Zj,r, Zj′,r′], with

Zj,r =
(
Y − µ(j1)

L,r1
1
X(j1)<q

?(j1)
r1

− µ(j1)
R,r1

1
X(j1)≥q?(j1)r1

)2
−
(
Y − µ(j)

L,r1X(j)<q
?(j)
r
− µ(j)

R,r1X(j)≥q?(j)r

)2
.

Since L?C1 > 0, we have for all (j, r) ∈ C1, µ
(j)
L,r 6= µ

(j)
R,r. Besides, according to assumption (A3),

X has a strictly positive density. Consequently, the variance of Zj,r is strictly positive. This
concludes the first case.

55

Case (b): L?C1 = 0 Fix (j, r) ∈ C1. Since L?
(
Rp, q

?(j)
r

)
= 0, we have

E[Y] = E
[
Y |X(j) < q?(j)r

]
= E

[
Y |X(j) ≥ q?(j)r

] def
= µ.

Then, simple calculations show that Lan
(
Rp, q̂(j)

n,r

)
writes

Lan
(
Rp, q̂(j)

n,r

)
= −(Y − µ)2 +

Nn,L

an
(Y L − µ)2︸ ︷︷ ︸
δL

+
Nn,R

an
(Y R − µ)2︸ ︷︷ ︸
δR

,

where

Nn,L =

an∑
i=1

1
X

(j)
i <q̂

(j)
n,r

and Y L =
1

Nn,L

an∑
i=1

Yi1X(j)
i <q̂

(j)
n,r

(Nn,R, Y R are defined similarly for the other cell). Letting p
(j)
L,r = P

(
X(j) < q

?(j)
r

)
and

p
(j)
R,r = P

(
X(j) ≥ q?(j)r

)
with p(j)

L,r, p
(j)
R,r > 0, we have

δL =
Nn,L

an
(Y L − µ)2

=
Nn,L

an
(Y

?
L − µ)2 − 2

Nn,L

an
(Y

?
L − Y L)(Y

?
L − µ) +

Nn,L

an
(Y

?
L − Y L)2

=
1

p
(j)
L,r

(1

an

an∑
i=1

(Yi − µ)1
X

(j)
i <q

?(j)
r

)2
+R

(j)
L,r,

where

R
(j)
L,r =

(anNn,L

N?2
n,L

− 1

pn,L

)(1

an

an∑
i=1

(Yi − µ)1
X

(j)
i <q

?(j)
r

)2
− 2

Nn,L

an
(Y

?
L − Y L)(Y

?
L − µ) +

Nn,L

an
(Y

?
L − Y L)2

By the law of large numbers, lim
n→∞

N?
n,L

an
= p

(j)
L,r in probability. Using Equation (C.13) in

the proof of Lemma 2, it comes that, in probability, lim
n→∞

Nn,L
an

= p
(j)
L,r, and consequently

lim
n→∞

anNn,L
N?2
n,L

= 1

p
(j)
L,r

. Since
√
an

1
an

∑an
i=1(Yi−µ)1

X
(j)
i <q

?(j)
r

converges in distribution to a normal

distribution by the Central limit theorem,

lim
n→∞

an
(anNn,L

N?2
n,L

− 1

p
(j)
L,r

)(1

an

an∑
i=1

(Yi − µ)1
X

(j)
i <q

?(j)
r

)2
= 0, in probability.

Furthermore, as for Equation (C.10) in the proof of Lemma 2,
√
an|Y

?
L − Y L|

≤ a2
n

Nn,LN?
n,L

√
an
a2
n

an∑
i=1,l=1

Yi
∣∣1
X

(j)
i <q

?(j)
r
1
X

(j)
l <q̂

(j)
r
− 1

X
(j)
i <q̂

(j)
r
1
X

(j)
l <q

?(j)
r

∣∣
︸ ︷︷ ︸

εL

,

56

and

E[εL] ≤ 2
√
anP

(
q̂(j)
r ≤ X(j) < q?(j)r

)
+ 2
√
anP

(
q?(j)r ≤ X(j) < q̂(j)

r

)
.

According to Lemma 1, the right hand side term converges to 0. Then, in probability, lim
n→∞

εL =

0. Additionally, lim
n→∞

a2n
Nn,LN

?
n,L

= 1

p
(j)2
L,r

, and then, in probability,

lim
n→∞

√
an(Y

?
L − Y L) = 0. (C.19)

The second term of anR
(j)
L,r writes

−an × 2
Nn,L

an
(Y

?
L − Y L)(Y

?
L − µ)

= −2
Nn,L

an
×
√
an(Y

?
L − Y L)×

√
an(Y

?
L − µ),

where in probability, lim
n→∞

2
Nn,L
an

= p
(j)
L,r, lim

n→∞
√
an(Y

?
L − Y L) = 0 according to equation C.19,

and
√
an(Y

?
L − µ) converges to a normal random variable from the central limit theorem. By

Slutsky theorem, in probability, lim
n→∞

−an × 2
Nn,L
an

(Y
?
L − Y L)(Y

?
L − µ) = 0. Finally for the

third term of anR
(j)
L,r we also use equation C.19 to conclude that in probability

lim
n→∞

an ×
Nn,L

an
(Y

?
L − Y L)2 = lim

n→∞

Nn,L

an
[
√
an(Y

?
L − Y L)]2 = 0

Consequently,

lim
n→∞

anR
(j)
L,r = 0.

Symmetrically, we also have

δR =
1

pR

(1

an

an∑
i=1

(Yi − µ)1
X

(j)
i ≥q

?(j)
r

)2
+R

(j)
R,r,

with lim
n→∞

anR
(j)
R,r = 0, in probability.

Each component of L(C1)
n,P1

writes, with (j, r) ∈ C1 \ (j1, r1),

Lan
(
Rp, q̂(j)

n,r

)
− Lan

(
Rp, q̂(j1)

n,r1

)
=

1

p
(j)
L,r

(1

an

an∑
i=1

(Yi − µ)1
X

(j)
i <q

?(j)
r

)2
+

1

p
(j)
R,r

(1

an

an∑
i=1

(Yi − µ)1
X

(j)
i ≥q

?(j)
r

)2 − 1

p
(j1)
L,r1

(1

an

an∑
i=1

(Yi − µ)1
X

(j1)
i <q

?(j1)
r1

)2
− 1

p
(j1)
R,r1

(1

an

an∑
i=1

(Yi − µ)1
X

(j1)
i ≥q?(j1)r1

)2
+R

(j)
L,r +R

(j)
R,r −R

(j1)
L,r1
−R(j1)

R,r1
.

57

We explicitly write C1 = {(jk, rk)}k=1,...,c1 . Then L(C1)
n,P1

can be decomposed as

anL
(C1)
n,P1

= hP1(Vn) + Rn,P1 ,

where for k ∈ {1, ..., c1},

Vn,2k−1 =

√
an

p
(jk)
L,rk

1

an

an∑
i=1

(Yi − µ)1
X

(jk)

i <q
?(jk)
rk

,

Vn,2k =

√
an

p
(jk)
R,rk

1

an

an∑
i=1

(Yi − µ)1
X

(jk)

i ≥q?(jk)rk

.

hP1 is a multivariate quadratic form defined as

hP1 :

 x1
...

x2c1

→

x2
3 + x2

4 − x2
1 − x2

2
...

x2
2k−1 + x2

2k − x2
1 − x2

2
...

x2
2c1−1 + x2

2c1
− x2

1 − x2
2

 .

and Rn,P1,k = R
(jk)
L,rk

+R
(jk)
R,rk
−R(j1)

L,r1
−R(j1)

R,r1
.

From the multivariate central limit theorem, Vn
D−→

n→∞
V, where V is a gaussian vector of

covariance matrix Cov[Z], and Z is defined as, for k ∈ {1, ..., c1},

Z2k−1 =
1

√
pL,k

(Y − E[Y])1
X(jk)<q

?(jk)
rk

, Z2k =
1

√
pR,k

(Y − E[Y])1
X(jk)≥q?(jk)rk

,

with the simplified notations pL,k = p
(jk)
L,rk

and pR,k = p
(jk)
R,rk

.

Finally, since lim
n→∞

Rn,P1 = 0 in probability, from Slutsky’s theorem and the continuous

mapping theorem, anL
(C1)
n,P1

D−→
n→∞

hP1(V). Note that, since X has a strictly positive density,
each component of hP1(V) has a strictly positive variance.

Proof of Lemma 5. Consider a path P = (j1, r1, ·). Set θ(V) = (θ
(V)
1 , ·, ·) ∈ Ω(V), a realization

of the randomization of the split direction. Recalling that the best split in a random tree is
the one maximizing the CART-splitting criterion, condition on Θ(V) = θ(V),

{P1 ∈ T (Θ,Dn)} =
⋂

(j,r)∈θ(V)
1 ×{1,...,q−1}

\(j1,r1)

{
Lan

(
Rp, q̂(j1)

n,r1

)
> Lan

(
Rp, q̂(j)

n,r

)}
. (C.20)

We recall that, given θ(V), we define the set of best theoretical cuts along the variables in θ(V)
1

as
C?1
(
θ

(V)
1

)
= argmax

(j,r)∈θ(V)
1 ×{1,...,q−1}

L?
(
Rp, q?(j)r

)
.

58

Obviously if (j1, r1) /∈ θ(V)
1 × {1, ..., q − 1}, the probability to select P1 in the empirical and

theoretical tree is null. In the sequel, we assume that (j1, r1) ∈ θ
(V)
1 × {1, ..., q − 1} and

distinguish between four cases: (j1, r1) is not among the best theoretical cuts C?1
(
θ

(V)
1

)
, is the

only element in C?1
(
θ

(V)
1

)
, is one element of C?1

(
θ

(V)
1

)
with a positive value of the theoretical

CART-splitting criterion, or finally, is one element of C?1
(
θ

(V)
1

)
that all have a null value of the

theoretical CART-splitting criterion.

Case 1 We assume that (j1, r1) /∈ C?1
(
θ

(V)
1

)
. By definition of the theoretical random forest,

P
(
P1 ∈ T ?(Θ)|Θ(V) = θ(V)

)
= 0 (C.21)

Let
(
j?, r?

)
∈ C?1

(
θ

(V)
1

)
, thus

ε = L?
(
Rp, q

?(j?)
r?

)
− L?

(
Rp, q?(j1)

r1

)
> 0.

Using equation (C.20), we have:

P
(
P1 ∈ T

(
Θ,Dn

)
|Θ(V) = θ(V)

)
≤ P

(
Lan

(
Rp, q̂(j1)

n,r1

)
> Lan

(
Rp, q̂

(j?)
n,r?
))

≤ P
(
Lan

(
Rp, q̂(j1)

n,r1

)
− L?

(
Rp, q?(j1)

r1

)
− ε > Lan

(
Rp, q̂

(j?)
n,r?
)
− L?

(
Rp, q

?(j?)
r?

))
≤ P

(
Lan

(
Rp, q̂(j1)

n,r1

)
− L?

(
Rp, q?(j1)

r1

)
−
(
Lan

(
Rp, q̂

(j?)
n,r?
)
− L?

(
Rp, q

?(j?)
r?

))
> ε
)

Therefore, according to Lemma 3,

lim
n→∞

P
(
P1 ∈ T (Θ,Dn)|Θ(V) = θ(V)

)
= 0 = P

(
P1 ∈ T ?(Θ)|Θ(V) = θ(V)

)
Case 2 We assume that C?1

(
θ

(V)
1

)
=
{

(j1, r1)
}
. By definition of the theoretical random

forest,

P
(
P1 ∈ T ?(Θ)|Θ(V) = θ(V)

)
= 1. (C.22)

Conditional on Θ(V) = θ(V),

{P1 ∈ T (Θ,Dn)}c =
⋃

(j,r)∈θ(V)
1 ×{1,...,q−1}

\(j1,r1)

{
Lan

(
Rp, q̂(j1)

n,r1

)
≤ Lan

(
Rp, q̂(j)

n,r

)}
,

which leads to

1−P
(
P1 ∈ T (Θ,Dn)|Θ(V) = θ(V)

)
≤

∑
(j,r)∈θ(V)

1 ×{1,...,q−1}\(j1,r1)

P
(
Lan

(
Rp, q̂(j1)

n,r1

)
≤ Lan

(
Rp, q̂(j)

n,r

))
. (C.23)

59

From Lemma 3, for all j ∈ θ(V)
0 , r ∈ {1, ..., q − 1} such that (j, r) 6= (j1, r1), in probability,

lim
n→∞

Lan
(
Rp, q̂(j1)

n,r1

)
− Lan

(
Rp, q̂(j)

n,r

)
= L?

(
Rp, q?(j1)

r1

)
− L?

(
Rp, q?(j)r

)
> 0. (C.24)

Using inequality (C.23) and equation (C.24), we finally obtain,

lim
n→∞

P
(
P1 ∈ T (Θ,Dn)|Θ(V) = θ(V)

)
= 1 = P

(
P1 ∈ T ?(Θ)|Θ(V) = θ(V)

)
.

Case 3 We assume that (j1, r1) ∈ C?1
(
θ

(V)
1

)
,
∣∣C?1(θ(V)

1

)∣∣ > 1, and L?
(
Rp, q?(j1)

r1

)
> 0. On one

hand, conditional on Θ(V) = θ(V),

{P1 ∈ T (Θ,Dn)} ⊂
⋂

(j,r)∈C?1 (θ
(V)
1)\(j1,r1)

{
Lan

(
Rp, q̂(j1)

n,r1

)
> Lan

(
Rp, q̂(j)

n,r

)}
.

On the other hand, conditional on Θ(V) = θ(V),

{P1 ∈ T (Θ,Dn)}c =
⋃

(j,r)∈C?1 (θ
(V)
1)\(j1,r1)

{
Lan

(
Rp, q̂(j1)

n,r1

)
≤ Lan

(
Rp, q̂(j)

n,r

)}
⋃

(j,r)∈θ(V)
1 ×{1,...,q−1}\C?1 (θ

(V)
1)

{
Lan

(
Rp, q̂(j1)

n,r1

)
≤ Lan

(
Rp, q̂(j)

n,r

)}
.

Combining the two previous inclusions,

0 ≤ P
(⋂

(j,r)∈C?1 (θ
(V)
1)\(j1,r1)

{
Lan

(
Rp, q̂(j1)

n,r1

)
> Lan

(
Rp, q̂(j)

n,r

)})
− P

(
P1 ∈ T (Θ,Dn)|Θ(V) = θ(V)

)
≤

∑
(j,r)∈θ(V)

1 ×{1,...,q−1}\C?1 (θ
(V)
1)

P
(
Lan

(
Rp, q̂(j1)

n,r1

)
≤ Lan

(
Rp, q̂(j)

n,r

))
.

Using the same reasoning as in Case 2, we get

lim
n→∞

P
(⋂

(j,r)∈C?1 (θ
(V)
1)\(j1,r1)

{
Lan

(
Rp, q̂(j1)

n,r1

)
> Lan

(
Rp, q̂(j)

n,r

)})
− P

(
P1 ∈ T (Θ,Dn)|Θ(V) = θ(V)

)
= 0.

We define the random vector L(C?1)
n,P1

where each component is the difference between the
empirical CART-splitting criterion for the splits (j, r) ∈ C?1 \ (j1, r1) and (j1, r1),

L(C?1)
n,P1

=
(
Lan

(
Rp, q̂(j)

n,r

)
− Lan

(
Rp, q̂(j1)

n,r1

))
(j,r)∈C?1\(j1,r1)

,

then

P
(⋂

(j,r)∈C?1 (θ
(V)
1)\(j1,r1)

{
Lan

(
Rp, q̂(j1)

n,r1

)
> Lan

(
Rp, q̂(j)

n,r

)})
= P

(
L(C?1)
n,P1

< 0
)

60

From Lemma 4 (case (a)),

√
anL

(C?1)
n,P1

D−→
n→∞

N
(
0,Σ

)
.

where for all (j, r), (j′, r′) ∈ C?1 \ (j1, r1), each element of the covariance matrix Σ is defined by

Σ(j,r),(j′,r′) = Cov[Zj,r, Zj′,r′],

with

Zj,r =
(
Y − µ(j1)

L,r1
1
X(j1)<q

?(j1)
r1

− µ(j1)
R,r1

1
X(j1)≥q?(j1)r1

)2
−
(
Y − µ(j)

L,r1X(j)<q
?(j)
r
− µ(j)

R,r1X(j)≥q?(j)r

)2
,

µ
(j)
L,r = E

[
Y |X(j) < q

?(j)
r

]
, µ(j)

R,r = E
[
Y |X(j) ≥ q

?(j)
r

]
, and the variance of Zj,r is strictly

positive. If Φ
θ
(V)
1 ,(j1,r1)

is the c.d.f. of the multivariate normal distribution of covariance
matrix Σ, we can conclude

lim
n→∞

P
(
P1 ∈ T (Θ,Dn)|Θ(V) = θ(V)

)
= lim

n→∞
P
(√
anL

(C?1)
n,P1

< 0
)

= Φ
θ
(V)
1 ,(j1,r1)

(0),

where ∑
(j,r)∈C?1 (θ

(V)
1)

Φ
θ
(V)
1 ,(j,r)

(0) = 1.

According to Definition 1, in the theoretical random forest, if C?1
(
θ

(V)
1

)
has multiple elements,

(j1, r1) is randomly drawn with probability

P
(
P1 ∈ T ?(Θ)|Θ(V) = θ(V)

)
= Φ

θ
(V)
1 ,(j1,r1)

(0),

that is

lim
n→∞

P
(
P1 ∈ T (Θ,Dn)|Θ(V) = θ(V)

)
= P

(
P1 ∈ T ?(Θ)|Θ(V) = θ(V)

)
= Φ

θ
(V)
1 ,(j1,r1)

(0).

We can notice that, in the specific case where C?1
(
θ

(V)
1

)
has two elements, they are both selected

with equal probability 1
2 . For more than two elements, the weights are not necessary equal, it

depends on the covariance matrix Σ.

Case 4 We assume that all candidate splits have a null value for the theoretical CART-
splitting criterion, i.e. for (j, r) ∈ θ

(V)
1 × {1, ..., q − 1}, L?

(
Rp, q?(j)r

)
= 0. Consequently

C?1(θ
(V)
1) = θ

(V)
1 × {1, ..., q − 1}. By definition

P
(
P1 ∈ T (Θ,Dn)|Θ(V) = θ(V)

)
= P

(
L(C?1)
n,P1

< 0
)
.

61

According to Lemma 4 (case (b)),

anL
(C1)
n,P1

D−→
n→∞

hP1(V),

where V is a gaussian vector of covariance matrix Cov[Z]. If C?1
(
θ

(V)
1

)
is explicitly written

C?1
(
θ

(V)
1

)
= {(jk, rk)}k=1,...,c1 , Z is defined as, for k ∈ {1, ..., c1},

Z2k−1 =
1

√
pL,k

(Y − E[Y])1
X(jk)<q

?(jk)
rk

Z2k =
1

√
pR,k

(Y − E[Y])1
X(jk)≥q?(jk)rk

,

pL,k = P
(
X(jk) < q

?(jk)
rk

)
, pR,k = P

(
X(jk) ≥ q

?(jk)
rk

)
, and hP1 is a multivariate quadratic form

defined as

hP1 :

 x1
...

x2c1

→

x2
3 + x2

4 − x2
1 − x2

2
...

x2
2k−1 + x2

2k − x2
1 − x2

2
...

x2
2c1−1 + x2

2c1
− x2

1 − x2
2

 .

and the variance of each component of hP1(V) is strictly positive. If Φ
θ
(V)
1 ,(j1,r1)

is the cdf of
hP1(V), then as in Case 3,

lim
n→∞

P
(
P1 ∈ T (Θ,Dn)|Θ(V) = θ(V)

)
= Φ

θ
(V)
1 ,(j1,r1)

(0)

= P
(
P1 ∈ T ?(Θ)|Θ(V) = θ(V)

)
.

C.3.2 Case 2: P2

Proof of Lemma 6. Let (j, r) ∈ CP1 .
√
an
(
Lan

(
Ĥn(P1), q̂(j)

n,r

)
− Lan

(
H?(P1), q?(j)r

))
=
√
an
[
Lan

(
H?(P1), q̂(j)

n,r

)
− Lan

(
H?(P1), q?(j)r

)]
+
√
an
[
Lan

(
Ĥn(P1), q̂(j)

n,r

)
− Lan

(
H?(P1), q̂(j)

n,r

)]
.

Since (j, r) ∈ CP1 , P
(
X ∈ H?(P1)|X(j) < q

?(j)
r

)
> 0 and P

(
X ∈ H?(P1)|X(j) ≥ q

?(j)
r

)
> 0.

Then, we can directly apply Lemma 2 to the first term of this decomposition, which shows
that, in probability

lim
n→∞

√
an
(
Lan

(
H?(P1), q̂(j)

n,r

)
− Lan

(
H?(P1), q?(j)r

))
= 0.

62

We expand the second term
√
an
(
Lan

(
Ĥn(P1), q̂(j)

n,r

)
− Lan

(
H?(P1), q̂(j)

n,r

))
=

√
an

Nn(Ĥn(P1))

an∑
i=1

(
Yi − Y Ĥn(P1)

)2
1Xi∈Ĥn(P1)

−
√
an

Nn(H?(P1))

an∑
i=1

(
Yi − Y H?(P1)

)2
1Xi∈H?(P1)

−
√
an

Nn(Ĥn(P1))

an∑
i=1

(
Yi − Y ĤL

1
X

(j)
i <q̂

(j)
n,r
− Y ĤR

1
X

(j)
i ≥q̂

(j)
n,r

)2
1Xi∈Ĥn(P1)

+

√
an

Nn(H?(P1))

an∑
i=1

(
Yi − Y H?

L
1
X

(j)
i <q̂

(j)
n,r
− Y H?

R
1
X

(j)
i ≥q̂

(j)
n,r

)2
1Xi∈H?(P1)

with ĤL =
{
x ∈ Ĥn(P1) : x(j) < q̂

(j)
n,r

}
, H?

L =
{
x ∈ H?(P1) : x(j) < q̂

(j)
n,r

}
, and for all

H ⊆ Rp

Nn(H) =
1

an

an∑
i=1

1Xi∈H , Y H =
1

Nn(H)

an∑
i=1

Yi1Xi∈H .

We define symmetrically ĤR and H?
R. We obtain

√
an
(
Lan

(
Ĥn(P1), q̂(j)

n,r

)
− Lan

(
H?(P1), q̂(j)

n,r

))
= ∆n,1 + ∆n,2 + ∆n,3,

where

∆n,1 =
√
an
(
Y

2
H?(P1) − Y

2
Ĥn(P1)

)
,

∆n,2 =
√
an
Y

2
ĤL
Nn(ĤL)Nn(H?(P1))− Y 2

H?
L
Nn(H?

L)Nn(Ĥn(P1))

Nn(Ĥn(P1))Nn(H?(P1))
,

and

∆n,3 =
√
an
Y

2
ĤR
Nn(ĤR)Nn(H?(P1))− Y 2

H?
R
Nn(H?

R)Nn(Ĥn(P1))

Nn(Ĥn(P1))Nn(H?(P1))
.

We first consider ∆n,1. Simple calculations show that

∆n,1 =

√
an

Nn(H?(P1))2Nn(Ĥn(P1))2

×
∑
i,k,l,m

YiYk
[
1Xi∈H?(P1),Xk∈H?(P1),Xl∈Ĥn(P1),Xm∈Ĥn(P1)

− 1Xi∈Ĥn(P1),Xk∈Ĥn(P1),Xl∈H?(P1),Xm∈H?(P1)

]

63

We consider the case s1 = L, (s1 = R is similar). Since Yi ∈
{

0, 1
}
,

|∆n,1| ≤
√
an

Nn(H?(P1))2Nn(Ĥn(P1))2

×
∑
i,k,l,m

∣∣1
X

(j1)
i <q

?(j1)
r1

,X
(j1)
k <q

?(j1)
r1

,X
(j1)
l <q̂

(j1)
n,r1

,X
(j1)
m <q̂

(j1)
n,r1

− 1
X

(j1)
i <q̂

(j1)
n,r1

,X
(j1)
k <q̂

(j1)
n,r1

,X
(j1)
l <q

?(j1)
r1

,X
(j1)
m <q

?(j1)
r1

∣∣
As in the proof of Lemma 2, according to Lemma 1, lim

n→∞
∆n,1 = 0, in probability. Since

∆n,2 and ∆n,3 are the same quantities computed on each of the two daughter nodes, we study
∆n,2 only.

∆n,2 =

√
an(Nn(ĤL)Nn(H?

L))−1

Nn(Ĥn(P1))Nn(H?(P1))

×
∑
i,k,l,m

YiYk
[
1Xi∈ĤL,Xk∈ĤL,Xl∈H?

L,Xm∈H?(P1)

− 1Xi∈H?
L,Xk∈H?

L,Xl∈ĤL,Xm∈Ĥn(P1)

]
=

√
an(Nn(ĤL)Nn(H?

L))−1

Nn(Ĥn(P1))Nn(H?(P1))

∑
i,k,l,m

YiYk1X(j)
i <q̂

(j)
n,r,X

(j)
k <q̂

(j)
n,r,X

(j)
l <q̂

(j)
n,r

×
[
1
X

(j1)
i <q̂

(j1)
n,r1

,X
(j1)
k <q̂

(j1)
n,r1

,X
(j1)
l <q

?(j1)
r1

,X
(j1)
m <q

?(j1)
r1

− 1
X

(j1)
i <q

?(j1)
r1

,X
(j1)
k <q

?(j1)
r1

,X
(j1)
l <q̂

(j1)
n,r1

,X
(j1)
m <q̂

(j1)
n,r1

]
.

Therefore

|∆n,2| ≤
√
an(Nn(ĤL)Nn(H?

L))−1

Nn(Ĥn(P1))Nn(H?(P1))

×
∑
i,k,l,m

∣∣1
X

(j1)
i <q̂

(j1)
n,r1

,X
(j1)
k <q̂

(j1)
n,r1

,X
(j1)
l <q

?(j1)
r1

,X
(j1)
m <q

?(j1)
r1

− 1
X

(j1)
i <q

?(j1)
r1

,X
(j1)
k <q

?(j1)
r1

,X
(j1)
l <q̂

(j1)
n,r1

,X
(j1)
m <q̂

(j1)
n,r1

∣∣.
As in the proof of Lemma 2, according to Lemma 1, lim

n→∞
∆n,2 = 0, in probability, which

concludes the proof, since ∆n,3 can be studied in the same manner.

Proof of Lemma 7. Let (j, r) ∈ CP1 .

Lan
(
Ĥn(P1), q̂(j)

n,r

)
=Lan

(
H?(P1), q?(j)r

)
+
[
Lan

(
Ĥn(P1), q̂(j)

n,r

)
− Lan

(
H?(P1), q?(j)r

)]
(C.25)

According to Lemma 6, the second term in equation (C.25) converges to 0 in probability. From
the law of large numbers, in probability,

lim
n→∞

Lan
(
H?(P1), q?(j)r

)
= L?

(
H?(P1), q?(j)r

)
,

which concludes the proof.

64

Proof of Lemma 8. Similar to the case with P1 (Lemma 3), where Lemma 6 is used instead
of Lemma 2.

Proof of Lemma 9. Consider a path P2 = {(j1, r1, L), (j2, r2, ·)}. Set θ(V) =
(
θ

(V)
1 , θ

(V)
2

)
, a

realization of the randomization of the split directions at the root node and its left child node.
Then, θ(V)

1 and θ
(V)
2 denote the set of eligible variables for respectively the first and second

split. We also consider CP1

(
θ

(V)
2

)
⊂ CP1 the set of eligible second splits.

Recalling that the best split in a random tree is the one maximizing the CART-splitting
criterion, conditional on Θ(V) = θ(V),

{P2 ∈ T (Θ,Dn)} =
⋂

(j,r)∈θ(V)
1 ×{1,...,q−1}

\(j1,r1)

{
Lan

(
Rp, q̂(j1)

n,r1

)
> Lan

(
Rp, q̂(j)

n,r

)}
⋂

(j,r)∈CP1
(θ

(V)
2)\(j2,r2)

{
Lan

(
Ĥn(P1), q̂(j2)

n,r2

)
> Lan

(
Ĥn(P1), q̂(j)

n,r

)}

Recall that C?1
(
θ

(V)
1

)
= argmax

(j,r)∈θ(V)
1 ×{1,...,q−1}

L?
(
Rp, q?(j)r

)
, and similarly

C?2
(
θ

(V)
2

)
= argmax

(j,r)∈CP1
(θ

(V)
2)

L?
(
H?(P1), q?(j)r

)
.

Obviously if (j1, r1) /∈ θ(V)
1 × {1, ..., q − 1} or (j2, r2) /∈ CP1(θ

(V)
2), the probability to select

P2 in the empirical and theoretical tree is null. In the sequel, we assume that (j1, r1) ∈
θ

(V)
0 × {1, ..., q − 1} and (j2, r2) ∈ CP1

(
θ

(V)
2

)
and distinguish between cases, depending on

whether (j1, r1) ∈ C?1
(
θ

(V)
1

)
or not and (j2, r2) ∈ C?2

(
θ

(V)
2

)
or not, as well as the cardinality of

C?1
(
θ

(V)
1

)
and C?2

(
θ

(V)
2

)
, and whether the maximum of the theoretical CART-splitting criterion

is null or not.

Case 1 We assume that (j1, r1) /∈ C?1
(
θ

(V)
1

)
. Hence, the theoretical decision tree satisfies

P
(
P2 ∈ T ?(Θ)|Θ(V) = θ(V)

)
= P

(
P1 ∈ T ?(Θ)|Θ(V) = θ(V)

)
= 0.

According to Lemma 5, we have

lim
n→∞

P
(
P2 ∈ T (Θ,Dn)|Θ(V) = θ(V)

)
≤ lim

n→∞
P
(
P1 ∈ T (Θ,Dn)|Θ(V) = θ(V)

)
= 0

= P
(
P2 ∈ T ?(Θ)|Θ(V) = θ(V)

)
.

65

Case 2 We assume that
(
j2, r2

)
/∈ C?2

(
θ

(V)
2

)
. Again, for the theoretical decision tree,

P
(
P2 ∈ T ?(Θ)|Θ(V) = θ(V)

)
= 0.

Letting
(
j?, r?

)
∈ C?2

(
θ

(V)
2

)
,

ε = L?
(
H?(P1), q

?(j?)
r?

)
− L?

(
H?(P1), q?(j2)

r2

)
.

Therefore,

P
(
P2 ∈ T (Θ,Dn)|Θ(V) = θ(V)

)
≤ P

(
Lan

(
Ĥn(P1), q̂(j2)

n,r2

)
> Lan

(
H?(P1), q̂

(j?)
n,r?
))

≤ P
(
Lan

(
Ĥn(P1), q̂(j2)

n,r2

)
− L?

(
H?(P1), q?(j2)

r2

)
− ε

> Lan
(
Ĥn(P1), q̂

(j?)
n,r?
)
− L?

(
H?(P1), q

?(j?)
r?

))
≤ P

(
Lan

(
Ĥn(P1), q̂(j2)

n,r2

)
− L?

(
H?(P1), q?(j2)

r2

)
−
(
Lan

(
Ĥn(P1), q̂

(j?)
n,r?
)
− L?

(
H?(P1), q

?(j?)
r?

))
> ε
)
.

Consequently, according to Lemma 7,

lim
n→∞

P
(
P2 ∈ T (Θ,Dn)|Θ(V) = θ(V)

)
= 0 = P

(
P2 ∈ T ?(Θ)|Θ(V) = θ(V)

)
.

Case 3 We assume that (j1, r1) ∈ C?1
(
θ

(V)
1

)
and C?2

(
θ

(V)
2

)
= {(j2, r2)}, i.e. (j2, r2) is the

unique maximum of the theoretical CART-splitting criterion for the cellH?(P1). By definition
of the theoretical decision tree,

P
(
P2 ∈ T ?(Θ)|Θ(V) = θ(V)

)
= P

(
P1 ∈ T ?(Θ)|Θ(V) = θ(V)

)
Conditional on {Θ(V) = θ(V)},

{P2 ∈ T (Θ,Dn)} =
{
P1 ∈ T (Θ,Dn)

}⋂
(j,r)∈CP1

(θ
(V)
2)\(j2,r2)

{
Lan

(
Ĥn(P1), q̂(j2)

n,r2

)
> Lan

(
Ĥn(P1), q̂(j)

n,r

)}
. (C.26)

Consequently,

P
(
P2 ∈ T (Θ,Dn)|Θ(V) = θ(V)

)
≥ P

(
P1 ∈ T (Θ,Dn)

∣∣Θ(V) = θ(V)
)

−
∑

(j,r)∈CP1
(θ

(V)
2)\(j2,r2)

P
(
Lan

(
Ĥn(P1), q̂(j2)

n,r2

)
≤ Lan

(
Ĥn(P1), q̂(j)

n,r

))
. (C.27)

For (j, r) ∈ CP1

(
θ

(V)
2

)
\ (j2, r2),

L?
(
H?(P1), q?(j2)

r2

)
− L?

(
H?(P1), q?(j)r

)
> 0. (C.28)

66

Thus, using inequalities (C.27) and (C.28), and according to Lemma 7,

lim
n→∞

P
(
Lan

(
Ĥn(P1), q̂(j2)

n,r2

)
≤ Lan

(
Ĥn(P1), q̂(j)

n,r

))
= 0,

and thus, using (C.26) and (C.27),

lim
n→∞

P
(
P2 ∈ T (Θ,Dn)|Θ(V) = θ(V)

)
= lim

n→∞
P
(
P1 ∈ T (Θ,Dn)|Θ(V) = θ(V)

)
= P

(
P1 ∈ T ?(Θ)|Θ(V) = θ(V)

)
= P

(
P2 ∈ T ?(Θ)|Θ(V) = θ(V)

)
,

where the second inequality is a direct consequence of Lemma 5.

Case 4 For the first split, we assume (j1, r1) ∈ C?1
(
θ

(V)
1

)
with L?

(
Rp, q

?(j1)
r1

)
> 0, and for the

second split,
(
j2, r2

)
∈ C?2

(
θ

(V)
2

)
with |C?2

(
θ

(V)
2

)∣∣ > 1 and L?
(
H?(P1), q

?(j2)
r2

)
> 0.

On one hand, conditional on the event {Θ(V) = θ(V)},

{P2 ∈ T (Θ,Dn)} =
⋂

(j,r)∈θ(V)
1 ×{1,...,q−1}

\(j1,r1)

{
Lan

(
Rp, q̂(j1)

n,r1

)
> Lan

(
Rp, q̂(j)

n,r

)}
⋂

(j,r)∈CP1
(θ

(V)
2)\(j2,r2)

{
Lan

(
Ĥn(P1), q̂(j2)

n,r2

)
> Lan

(
Ĥn(P1), q̂(j)

n,r

)}
. (C.29)

Using equation (C.29) to find a subset and a superset of {P2 ∈ T (Θ,Dn)}, we obtain

0 ≥ P
(
P2 ∈ T (Θ,Dn)|Θ(V) = θ(V)

)
− P

(⋂
(j,r)∈C?1 (θ

(V)
1)\(j1,r1)

{
Lan

(
Rp, q̂(j1)

n,r1

)
> Lan

(
Rp, q̂(j)

n,r

)}
⋂

(j,r)∈C?2 (θ
(V)
2)\(j2,r2)

{
Lan

(
Ĥn(P1), q̂(j2)

n,r2

)
> Lan

(
Ĥn(P1), q̂(j)

n,r

)})

≥
∑

(j,r)∈θ(V)
1 ×{1,...,q−1}\C?1 (θ

(V)
1)

P
(
Lan

(
Rp, q̂(j1)

n,r1

)
≤ Lan

(
Rp, q̂(j)

n,r

))
+

∑
(j,r)∈θ(V)

2 ×{1,...,q−1}\C?2 (θ
(V)
2)

P
(
Lan

(
Ĥn(P1), q̂(j2)

n,r2

)
≤ Lan

(
Ĥn(P1), q̂(j)

n,r

))
We proved in Case 3 that the limit of the last two terms of the previous inequality is zero, in

67

probability. Therefore,

lim
n→∞

P
(
P2 ∈ T (Θ,Dn)|Θ(V) = θ(V)

)
= lim

n→∞
P

(⋂
(j,r)∈C?1 (θ

(V)
1)\(j1,r1)

{
Lan

(
Rp, q̂(j1)

n,r1

)
> Lan

(
Rp, q̂(j)

n,r

)}
⋂

(j,r)∈C?2 (θ
(V)
2)\(j2,r2)

{
Lan

(
Ĥn(P1), q̂(j2)

n,r2

)
> Lan

(
Ĥn(P1), q̂(j)

n,r

)})
. (C.30)

We define the random vector L(C?1 ,C?2)
n,P2

(we drop θ(V) to lighten notations) where each com-
ponent is the difference between the empirical CART-splitting criterion for the splits (j, r) ∈
C?1 \ (j1, r1) and (j1, r1) for the first |C?1 | − 1 components, and for the splits (j, r) ∈ C?2 \ (j2, r2)
and (j2, r2) for the remaining |C?2 | − 1 components, i.e.,

L(C?1 ,C?2)
n,P2

=

 [
Lan

(
Rp, q̂(j)

n,r

)
− Lan

(
Rp, q̂(j1)

n,r1

)]
(j,r)∈C?1\(j1,r1)[

Lan
(
Ĥn(P1), q̂

(j)
n,r

)
− Lan

(
Ĥn(P1), q̂

(j2)
n,r2

)]
(j,r)∈C?2\(j2,r2)

 .

Then, we can write

P

(⋂
(j,r)∈C?1 (θ

(V)
1)\(j1,r1)

{
Lan

(
Rp, q̂(j1)

n,r1

)
> Lan

(
Rp, q̂(j)

n,r

)}
⋂

(j,r)∈C?2 (θ
(V)
2)\(j2,r2)

{
Lan

(
Ĥn(P1), q̂(j2)

n,r2

)
> Lan

(
Ĥn(P1), q̂(j)

n,r

)})

= P
(
L(C?1 ,C?2)
n,2 < 0

)
(C.31)

According to Lemma 8,
√
anL

(C?1 ,C?2)
n,P2

D−→
n→∞

N (0,Σ)

where for l, l′ ∈ {1, 2}, for all (j, r) ∈ C?l \ (jl, rl), (j′, r′) ∈ C?l′ \ (jl′ , rl′), each element of the
covariance matrix Σ is defined by Σ(j,r,l),(j′,r′,l′) = Cov[Zj,r,l, Zj′,r′,l′], with

Zj,r,l =
1

P(X ∈ Hl)

(
Y − µ(jl)

L,rl
1
X(jl)<q

?(jl)
rl

− µ(jl)
R,rl
1
X(jl)≥q?(jl)rl

)2
1X∈Hl

− 1

P(X ∈ Hl)

(
Y − µ(j)

L,r1X(j)<q
?(j)
r
− µ(j)

R,r1X(j)≥q?(j)r

)2
1X∈Hl ,

µ
(j)
L,r = E

[
Y |X(j) < q

?(j)
r ,X ∈ Hl

]
, µ(j)

R,r = E
[
Y |X(j) ≥ q

?(j)
r ,X ∈ Hl

]
, and the variance of

Zj,r,l is strictly positive.

Letting ΦP1,θ(V),(j2,r2) be the c.d.f. of the multivariate normal distribution with covariance
matrix Σ, and using equalities (C.30) and (C.31),

lim
n→∞

P
(
P2 ∈ T (Θ,Dn)|Θ(V) = θ(V)

)
= ΦP1,θ(V),(j2,r2)(0).

68

We can check that ∑
(j,r)∈C?2 (θ(V))

ΦP1,θ(V),(j,r)(0) = P
(
P1 ∈ T ?(Θ)|Θ(V) = θ(V)

)
.

In the theoretical random forest, the first cut (j1, r1) is randomly selected with probability
P
(
P1 ∈ T ?(Θ)|Θ(V) = θ(V)

)
(see the proof of Lemma 5). For the second cut, according to

Definition 2, if C?2
(
θ

(V)
2

)
has multiple elements, (j2, r2) is randomly drawn with probability

ΦP1,θ(V),(j2,r2)(0)

P
(
P1 ∈ T ?(Θ)|Θ(V) = θ(V)

)
Since the random selection at the root node of the tree and its children nodes are independent
in the theoretical algorithm, P2 is selected with probability

P
(
P1 ∈ T ?(Θ)|Θ(V) = θ(V)

)
×

ΦP1,θ(V),(j2,r2)(0)

P
(
P1 ∈ T ?(Θ)|Θ(V) = θ(V)

)
= ΦP1,θ(V),(j2,r2)(0).

Ultimately,

lim
n→∞

P
(
P2 ∈ T (Θ,Dn)|Θ(V) = θ(V)

)
= P

(
P2 ∈ T ?(Θ)|Θ(V) = θ(V)

)
= ΦP1,θ(V),(j2,r2)

(
0
)
.

Case 5 We assume that (j1, r1) ∈ C?1
(
θ

(V)
1

)
and (j2, r2) ∈ C?2

(
θ

(V)
2

)
, and that the theoretical

CART-splitting criterion is null for both splits: L?
(
Rp, q

?(j1)
r1

)
= 0 and L?

(
H?(P1), q

?(j2)
r2

)
= 0.

Consequently C?1
(
θ

(V)
1

)
= θ

(V)
1 × {1, ..., q − 1}, and C?2

(
θ

(V)
2

)
= CP1

(
θ

(V)
2

)
. Using the same

notations defined in Case 4, we have by definition

P
(
P1 ∈ T (Θ,Dn)|Θ(V) = θ(V)

)
= P

(
L(C?1 ,C?2)
n,P2

< 0
)
.

According to Lemma 8 (case (b)),

anL
(C?1 ,C?2)
n,P2

D−→
n→∞

hP2(V),

where V is a gaussian vector of covariance matrix Cov[Z]. If C?1 and C?2 are explicitly written
C?1 = {(jk, rk)}k∈J1 , and C?2 = {(jk, rk)}k∈J2 , with J1 = {1, ..., c1 + 1} \ 2 and J2 = {2} ∪ {c1 +
2, ..., c1 + c2}, Z is defined as, for l ∈ {1, 2} and k ∈ Jl,

Z2k−1 =
1√

pL,kP(X ∈ Hl)
(Y − E[Y |X ∈ Hl])1X(jk)<q

?(jk)
rk

1X∈Hl ,

Z2k =
1√

pR,kP(X ∈ Hl)
(Y − E[Y |X ∈ Hl])1X(jk)≥q?(jk)rk

1X∈Hl ,

69

pL,k = P
(
X(jk) < q

?(jk)
rk ,X ∈ Hl

)
, pR,k = P

(
X(jk) ≥ q

?(jk)
rk ,X ∈ Hl

)
. hP2 is a multivariate

quadratic form defined as

hP2 :

 x1
...

x2(c1+c2)

→

x2
5 + x2

6 − x2
1 − x2

2
...

x2
2c1+1 + x2

2c1+2 − x2
1 − x2

2

x2
2c1+3 + x2

2c1+4 − x2
3 − x2

4
...

x2
2(c1+c2)−1 + x2

2(c1+c2) − x
2
3 − x2

4

,

and the variance of each component of hP2(V) is strictly positive.

ΦP1,θ(V),(j2,r2) is now defined as the cdf of hP2(V), and the end of the proof is identical to
Case 4. We conclude

lim
n→∞

P
(
P2 ∈ T (Θ,Dn)|Θ(V) = θ(V)

)
= P

(
P2 ∈ T ?(Θ)|Θ(V) = θ(V)

)
= ΦP1,θ(V),(j2,r2)(0).

Case 6 We assume (j1, r1) ∈ C?1
(
θ

(V)
1

)
, (j2, r2) ∈ C?2

(
θ

(V)
2

)
and

∣∣C?2(θ(V)
2

)∣∣ > 1 as in Case
4, but either L?

(
Rp, q

?(j1)
r1

)
= 0 and L?

(
H?(P1), q

?(j2)
r2

)
> 0, or L?

(
Rp, q

?(j1)
r1

)
> 0 and

L?
(
H?(P1), q

?(j2)
r2

)
= 0.

The same reasoning than for Cases 4 and 5 applies where the limit law of L(C?1 ,C?2)
n,P2

has
both gaussian and χ-square components and is given by case (c) or case (d) of Lemma 8.

D Proof of Theorem 2

We recall Theorem 2 for the sake of clarity.

Theorem 2. If p0 ∈ [0, 1] \ Un and D ′n = Dn, then, conditional on Dn, we have

lim
M→∞

ŜM,n,p0 = 1 in probability. (D.1)

In addition for p0 < maxUn,

1−E[ŜM,n,p0 |Dn]

∼
M→∞

∑
P∈Π

Φ(Mp0,M, pn(P))(1− Φ
(
Mp0,M, pn(P)))

1
2

∑
P′∈Π 1pn(P′)>p0 + 1

pn(P′)>p0−ρn(P,P′)σn(P′)
σn(P)

(p0−pn(P))

,

where Φ(Mp0,M, pn(P)) is the cdf of a binomial distribution with parameter pn(P), M trials,
evaluated at Mp0, and, for all P,P ′ ∈ Π,

σn(P) =
√
pn(P)(1− pn(P)),

70

and

ρn(P,P ′) =
Cov(1P∈T (Θ,Dn),1P′∈T (Θ,Dn)|Dn)

σn(P)σn(P ′)
.

Let p0 ∈ [0,max Un) \Un and D ′n = Dn. Before proving Theorem 2, we need the following
two lemmas.

Lemma 10. Let F be the hypergeometric function. Then, for (a, c) ∈ Z2 and P ∈ Π such
that pn(P) > p0, we have

lim
M→∞

F (M + a, 1,M(1− p0) + c, 1− pn(P))

F (M + 1, 1,M(1− p0) + 1, 1− pn(P))
= 1.

Lemma 11. Let P ′ ∈ Π. For all P ∈ Π such that pn(P) > p0, we have

lim
M→∞

P
(
p̂M,n(P ′) > p0

∣∣p̂M,n(P) > p0,Dn

)
= 1pn(P′)>p0

and
lim
M→∞

P
(
p̂M,n(P ′) > p0

∣∣p̂M,n(P) ≤ p0,Dn

)
= 1

pn(P′)>p0−ρn(P,P′)σn(P′)
σn(P)

×(p0−pn(P))

.

Symmetrically, for all P ∈ Π such that pn(P) ≤ p0, we have

lim
M→∞

P
(
p̂M,n(P ′) > p0

∣∣p̂M,n(P) ≤ p0,Dn

)
= 1pn(P′)>p0 ,

lim
M→∞

P
(
p̂M,n(P ′) > p0

∣∣p̂M,n(P) > p0,Dn

)
= 1

pn(P′)>p0−ρn(P,P′)σn(P′)
σn(P)

×(p0−pn(P))

.

We are now in a position to prove Theorem 2.

Proof of Theorem 2. The first statement, identity (D.1), is proved similarly to Corollary 2,
using the law of large numbers instead of Theorem 1. For the second statement, we first recall
that, by definition,

ŜMn,n,p0 =

2
∑

P∈Π

1p̂Mn,n(P)>p0∩p̂′Mn,n(P)>p0∑
P∈Π

1p̂Mn,n(P)>p0 + 1p̂′Mn,n(P)>p0

= 1−

∑
P∈Π

1p̂M,n(P)>p0∩p̂′M,n(P)≤p0 + 1p̂M,n(P)≤p0∩p̂′M,n(P)>p0∑
P∈Π

1p̂M,n(P)>p0 + 1p̂′M,n(P)>p0

.

Taking the expectation conditional on Dn gives

E
[
ŜM,n,p0

∣∣Dn

]
= 1− 2 E

[∑
P∈Π

1p̂M,n(P)>p0∩p̂′M,n(P)≤p0∑
P∈Π

1p̂M,n(P)>p0 + 1p̂′M,n(P)>p0

∣∣∣∣∣Dn

]

= 1− 2 E
[UM
VM + V ′M

∣∣Dn

]
,

71

where UM =
∑

P∈Π

1p̂M,n(P)>p0∩p̂′M,n(P)≤p0 , VM =
∑

P∈Π

1p̂M,n(P)>p0 , and V
′
M =

∑
P∈Π

1p̂′M,n(P)>p0 .

Note that

E[VM |Dn] =
∑
P∈Π

P(p̂M,n(P) > p0|Dn) −→
M→∞

∑
P∈Π

1pn(P)>p0 ,

E[UM |Dn] =
∑
P∈Π

P(p̂M,n(P) > p0|Dn)P(p̂M,n(P) ≤ p0|Dn) −→
M→∞

0.

Also,

E
[UM
VM + V ′M

∣∣Dn

]
=
∑
m,m′

1

m+m′
E[UM |VM = m,V ′M = m′,Dn]

× P(VM = m|Dn)P(V ′M = m′|Dn)

=
∑
m,m′

1

m+m′
E
[∑
P∈Π

1p̂M,n(P)>p0∩p̂′M,n(P)≤p0
∣∣VM = m,V ′M = m′,Dn

]
× P(VM = m|Dn)P(V ′M = m′|Dn)

=
∑
m,m′

1

m+m′

∑
P∈Π

P(p̂M,n(P) > p0|VM = m,Dn)

×P(p̂′M,n(P) ≤ p0|V ′M = m′,Dn)P(VM = m|Dn)P(V ′M = m′|Dn)

=
∑
m,m′

1

m+m′

∑
P∈Π

P(p̂M,n(P) > p0, VM = m|Dn)

× P(p̂M,n(P) ≤ p0, V
′
M = m′|Dn)

=
∑
P∈Π

P(p̂M,n(P) > p0|Dn)P(p̂M,n(P) ≤ p0|Dn)

×
[∑
m,m′

1

m+m′
P(VM = m|p̂M,n(P) > p0,Dn)

× P(V ′M = m′|p̂M,n(P) ≤ p0,Dn)
]
.

For all P ∈ Π,

P(p̂M,n(P) > p0|Dn)P(p̂M,n(P) ≤ p0|Dn

)
= Φ(Mp0,M, pn(P))(1− Φ(Mp0,M, pn(P))),

where Φ is the cdf of the binomial distribution. As a direct consequence of Lemma 11,

lim
M→∞

∑
m,m′

1

m+m′
P(VM = m|p̂M,n(P) > p0,Dn)

× P(VM = m′|p̂M,n(P) ≤ p0,Dn)

=
1∑

P′∈Π

1pn(P′)>p0 + 1
pn(P′)+ρn(P,P′)σn(P′)

σn(P)
(p0−pn(P))>p0

,

72

which yields

1− E[ŜM,n,p0 |Dn]

∼
M→∞

∑
P∈Π

2Φ(Mp0,M, pn(P))(1− Φ(Mp0,M, pn(P)))∑
P′∈Π

1p̂n(P′)>p0 + 1
pn(P′)+ρn(P,P′)σn(P′)

σn(P)
(p0−pn(P))>p0

.

This is the desired result.

D.1 Proof of intermediate lemmas

Proof of lemma 10. Cvitković et al. (2017) provides an asymptotic expansion of the hyperge-
ometric function F in the case where the first and third parameters goes to infinity with a
constant ratio. For a, c, z, ε ∈ R, b /∈ Z \ N, such that ε > 1, and zε < 1, Cvitković et al.
(2017) gives in the section 2.2.2 (end of page 10)

F (a+ ελ, b, c+ λ, z) ∼
|λ|→∞

1

(1− εz)b
. (D.2)

We can then derive the limit of the following ratio

lim
|λ|→∞

F (a+ ελ, b, c+ λ, z)

F (1 + ελ, b, 1 + λ, z)
= 1 (D.3)

We use D.3 in the specific case where b = 1, a, c ∈ Z, ε = 1
1−p0 > 1, z = 1− pn(P) for P ∈ Π

such that pn(P) > p0 (and then zε < 1), and λ = M(1− p0), if follows that

lim
M→∞

F (M + a, 1,M(1− p0) + c, 1− pn(P))

F (M + 1, 1,M(1− p0) + 1, 1− pn(P))
= 1 (D.4)

Proof of lemma 11. Fix Dn. Let P ′,P ∈ Π. In what follows, when there is no ambiguity, we
will replace T (Θ,Dn) by Tn(Θ) to lighten notations.

Case 1: pn(P) > p0

E
[
p̂M,n

(
P
′)|p̂M,n(P) ≤ p0,Dn

]
=E
[1

M

M∑
l=1

1P′∈Tn(Θl)

∣∣ p̂M,n(P) ≤ p0,Dn

]
=P
(
P
′ ∈ Tn(Θ1)|P ∈ Tn(Θ1), p̂M,n(P) ≤ p0,Dn

)
× P

(
P ∈ Tn(Θ1)|p̂M,n(P) ≤ p0,Dn

)
+ P

(
P
′ ∈ Tn(Θ1)|P /∈ Tn(Θ1), p̂M,n(P) ≤ p0,Dn

)
×
(
1− P

(
P ∈ Tn(Θ1)|p̂M,n(P) ≤ p0,Dn

))
=P
(
P
′ ∈ Tn(Θ1)|P ∈ Tn(Θ1),Dn

)
P
(
P ∈ Tn(Θ1)|p̂M,n(P) ≤ p0,Dn

)
+ P

(
P
′ ∈ Tn(Θ1)|P /∈ Tn(Θ1),Dn

)
×
(
1− P

(
P ∈ Tn(Θ1)|p̂M,n(P) ≤ p0,Dn

))
. (D.5)

73

since

P
(
P
′ ∈ Tn(Θ1)|P ∈ Tn(Θ1), p̂M,n(P) ≤ p0,Dn

)
= P

(
P
′ ∈ Tn(Θ1)|P ∈ Tn(Θ1),Dn

)
. (D.6)

because, conditional on Dn, the events P
′ ∈ Tn(Θ1), . . . ,P

′ ∈ Tn(ΘM) are independent. We
can rewrite,

P
(
P
′ ∈ Tn(Θ1)|P /∈ Tn(Θ1),Dn

)
=
P
(
P
′ ∈ Tn(Θ1),P /∈ Tn(Θ1)|Dn

)
1− pn(P)

=

(
1− P

(
P ∈ Tn(Θ1)|P ′ ∈ Tn(Θ1),Dn

))
pn
(
P
′)

1− pn(P)

=
pn
(
P
′)

1− pn(P)
− pn(P)

1− pn(P)
P
(
P
′ ∈ Tn(Θ1)|P ∈ Tn(Θ1),Dn

)
, (D.7)

yielding, using equation (D.5),

E
[
p̂M,n

(
P
′)|p̂M,n(P) ≤ p0,Dn

]
(D.8)

=P
(
P
′ ∈ Tn(Θ1)|P ∈ Tn(Θ1),Dn

)(P(P ∈ Tn(Θ1)|p̂M,n(P) ≤ p0,Dn

)
1− pn(P)

− pn(P)

1− pn(P)

)
+

pn
(
P
′)

1− pn(P)

(
1− P

(
P ∈ Tn(Θ1)|p̂M,n(P) ≤ p0,Dn

))
.

Besides, by definition of the correlation

ρn
(
P,P

′)
=

Cov
(
1P∈Tn(Θ),1P′∈Tn(Θ)|Dn

)
σn(P)σn

(
P ′) ,

simple calculations show that

P
(
P
′ ∈ Tn(Θ1)|P ∈ Tn(Θ1),Dn

)
= pn

(
P
′)

+ ρn
(
P,P

′)√pn
(
P ′)

pn(P)

(
1− pn(P)

)(
1− pn

(
P ′)), (D.9)

which, together with equation (D.8) leads to,

E
[
p̂M,n

(
P
′)|p̂M,n(P) ≤ p0,Dn

]
(D.10)

= pn(P
′
) + ρn

(
P,P

′)σn(P ′)
σn(P)

(
P
(
P ∈ Tn(Θ1)|p̂M,n(P) ≤ p0,Dn

)
− pn(P)

)
.

74

Regarding the probability in the right-hand side of equation (D.10), we have

P
(
P ∈ Tn(Θ1)|p̂M,n(P) ≤ p0,Dn

)
= pn

(
P
)P(p̂M,n(P) ≤ p0|P ∈ Tn(Θ1),Dn

)
P
(
p̂M,n(P) ≤ p0|Dn

)
= pn

(
P
)P((M − 1)p̂M−1,n(P) ≤Mp0 − 1|Dn

)
P
(
Mp̂M,n(P) ≤Mp0|Dn

)
= pn(P)

Φ
(
Mp0 − 1,M − 1, pn(P)

)
Φ
(
Mp0,M, pn(P)

) .

Using standard formulas, Φ can be expressed with the incomplete beta function,

Φ(k,M, p) = I1−p(M − k, k + 1) =
B1−p(M − k, k + 1)

B(M − k, k + 1)
,

and the regularized beta function is related to the hypergeometric function F , for a > 0, b > 0,
and p ∈ [0, 1] (Olver et al., 2010),

B1−p(a, b) =
(1− p)apb

a
F (a+ b, 1, a+ 1, 1− p).

Then, we can express the cdf of the binomial distribution using the hypergeometric function,
and it follows

P
(
P ∈ Tn(Θ1)|p̂M,n(P) ≤ p0,Dn

)
(D.11)

= p0
F (M, 1,M(1− p0) + 1, 1− p̂n

(
P
)
)

F (M + 1, 1,M(1− p0) + 1, 1− p̂n
(
P
)
)

According to Lemma 10,

lim
M→∞

F (M, 1,M(1− p0) + 1, 1− pn(P))

F (M + 1, 1,M(1− p0) + 1, 1− pn(P))
= 1. (D.12)

Consequently,

lim
M→∞

P
(
P ∈ T (Θ1,Dn)|p̂M,n(P) ≤ p0,Dn

)
= p0, (D.13)

and using this limiting result with equation (D.10) yields,

lim
M→∞

E
[
p̂M,n

(
P
′)|p̂M,n(P) ≤ p0,Dn

]
= pn(P

′
)+ρn

(
P,P

′)σn(P ′)
σn(P)

(D.14)

×
(
p0 − pn(P)

)
.

Regarding the conditional variance,

V
[
p̂M,n

(
P
′)|p̂M,n(P) ≤ p0,Dn

]
= V

[1

M

M∑
l=1

1P′∈Tn(Θl)

∣∣p̂M,n(P) ≤ p0,Dn

]

75

V
[
p̂M,n

(
P
′)|p̂M,n(P) ≤ p0,Dn

]
=

1

M
V
[
1P′∈T (Θ1,Dn)|p̂M,n(P) ≤ p0,Dn

]
+ (1− 1

M
)Cov(1P′∈Tn(Θ1),1P′∈Tn(Θ2)|p̂M,n(P) ≤ p0,Dn)

≤ 1

M
+ CM

where

CM = Cov(1P′∈Tn(Θ1),1P′∈Tn(Θ2)|p̂M,n(P) ≤ p0,Dn)

= P(P
′ ∈ Tn(Θ1),P

′ ∈ Tn(Θ2)|p̂M,n(P) ≤ p0,Dn)

− P(P
′ ∈ Tn(Θ1)|p̂M,n(P) ≤ p0,Dn)

× P(P
′ ∈ Tn(Θ2)|p̂M,n(P) ≤ p0,Dn)

Then, we follow the same reasoning that leads to equation (D.13). We can fully expand
CM using Bayes formula, depending whether P ∈ Tn(Θ1) or P ∈ Tn(Θ2). Note that,
since all the trees are independent conditional on Dn, we can reduce the conditioning event{
P ∈ Tn(Θ1),P ∈ Tn(Θ2), p̂M,n(P) ≤ p0,Dn

}
to
{
P ∈ Tn(Θ1),P ∈ Tn(Θ2),Dn

}
, then

CM = P(P
′ ∈ Tn(Θ1),P

′ ∈ Tn(Θ2)|P ∈ Tn(Θ1),P ∈ Tn(Θ2),Dn)

× P(P ∈ Tn(Θ1),P ∈ Tn(Θ2)|p̂M,n(P) ≤ p0,Dn)

− (P(P
′ ∈ Tn(Θ1)|P ∈ Tn(Θ1),Dn)

× P(P ∈ Tn(Θ1)|p̂M,n(P) ≤ p0,Dn))2

+2[P(P
′ ∈ Tn(Θ1),P

′ ∈ Tn(Θ2)|P ∈ Tn(Θ1),P /∈ Tn(Θ2),Dn)

× P(P ∈ Tn(Θ1),P /∈ Tn(Θ2)|p̂M,n(P) ≤ p0,Dn)

− P(P
′ ∈ Tn(Θ1)|P ∈ Tn(Θ1),Dn)

× P(P ∈ Tn(Θ1)|p̂M,n(P) ≤ p0,Dn)

× P(P
′ ∈ Tn(Θ1)|P /∈ Tn(Θ1),Dn)

× P(P /∈ Tn(Θ1)|p̂M,n(P) ≤ p0,Dn)]

+P(P
′ ∈ Tn(Θ1),P

′ ∈ Tn(Θ2)|P /∈ Tn(Θ1),P /∈ Tn(Θ2),Dn)

× P(P /∈ Tn(Θ1),P /∈ Tn(Θ2)|p̂M,n(P) ≤ p0,Dn)

− (P(P
′ ∈ Tn(Θ1)|P /∈ Tn(Θ1),Dn)

× P(P /∈ Tn(Θ1)|p̂M,n(P) ≤ p0,Dn))2

76

Conditional on Dn, Tn(Θ1) and Tn(Θ2) are independent, then

P(P
′ ∈ Tn(Θ1),P

′ ∈ Tn(Θ2)|P ∈ Tn(Θ1),P ∈ Tn(Θ2),Dn)

=
P(P

′ ∈ Tn(Θ1),P
′ ∈ Tn(Θ2),P ∈ Tn(Θ1),P ∈ Tn(Θ2)|Dn)

P(P ∈ Tn(Θ1),P ∈ Tn(Θ2)|Dn)

=
P(P

′ ∈ Tn(Θ1),P ∈ Tn(Θ1)|Dn)P(P
′ ∈ Tn(Θ2),P ∈ Tn(Θ2)|Dn)

P(P ∈ Tn(Θ1)|Dn)P(P ∈ Tn(Θ2)|Dn)

= P(P
′ ∈ Tn(Θ1)|P ∈ Tn(Θ1),Dn)P(P

′ ∈ Tn(Θ2)|P ∈ Tn(Θ2),Dn)

= P(P
′ ∈ Tn(Θ1)|P ∈ Tn(Θ1),Dn)2

we can rewrite CM

CM = P(P
′ ∈ Tn(Θ1)|P ∈ Tn(Θ1),Dn)2 ×∆M,1

+ 2P(P
′ ∈ Tn(Θ1)|P ∈ Tn(Θ1),Dn)

× P(P
′ ∈ Tn(Θ1)|P /∈ Tn(Θ1),Dn)×∆M,2

+ P(P
′ ∈ Tn(Θ1)|P /∈ Tn(Θ1),Dn)2 ×∆M,3,

where

∆M,1 = P(P ∈ Tn(Θ1),P ∈ Tn(Θ2)|p̂M,n(P) ≤ p0,Dn)

− P(P ∈ Tn(Θ1)|p̂M,n(P) ≤ p0,Dn)2,

∆M,2 = P(P ∈ Tn(Θ1),P /∈ Tn(Θ2)|p̂M,n(P) ≤ p0,Dn)

− P(P ∈ Tn(Θ1)|p̂M,n(P) ≤ p0,Dn)

(1− P(P ∈ Tn(Θ1)|p̂M,n(P) ≤ p0,Dn)),

∆M,3 = P(P /∈ Tn(Θ1),P /∈ Tn(Θ2)|p̂M,n(P) ≤ p0,Dn)

− P(P /∈ Tn(Θ1)|p̂M,n(P) ≤ p0,Dn)2.

We first consider the term

∆M,1 = P(P ∈ Tn(Θ1),P ∈ Tn(Θ2)|p̂M,n(P) ≤ p0,Dn)

− P(P ∈ Tn(Θ1)|p̂M,n(P) ≤ p0,Dn)2

Equation (D.13) directly gives,

lim
M→∞

P(P ∈ Tn(Θ1)|p̂M,n(P) ≤ p0,Dn)2 = p2
0. (D.15)

On the other hand

P(P ∈ Tn(Θ1),P ∈ Tn(Θ2)|p̂M,n(P) ≤ p0,Dn)

= pn(P)2P(p̂M,n(P) ≤ p0|P ∈ Tn(Θ1),P ∈ Tn(Θ2),Dn)

P(p̂M,n(P) ≤ p0|Dn)

= pn(P)2 Φ
(
Mp0 − 2,M − 2, pn(P)

)
Φ
(
Mp0,M, pn(P)

) .

77

Again, as for equation (D.11), we can express the cdf of the binomial distribution using the
hypergeometric function F

P(P ∈ Tn(Θ1),P ∈ Tn(Θ2)|p̂M,n(P) ≤ p0,Dn)

= p2
0

(
1 +

p0 − 1

p0(M − 1)

)F (M − 1, 1,M(1− p0) + 1, 1− pn(P))

F (M + 1, 1,M(1− p0) + 1, 1− pn(P))
, (D.16)

and from Lemma 10,

lim
M→∞

F (M − 1, 1,M(1− p0) + 1, 1− pn(P))

F (M + 1, 1,M(1− p0) + 1, 1− pn(P))
= 1,

that is

lim
M→∞

P(P ∈ Tn(Θ1),P ∈ Tn(Θ2)|p̂M,n(P) ≤ p0,Dn) = p2
0. (D.17)

Using equations (D.15) and (D.17), we conclude

lim
M→∞

∆M,1 = 0.

We follow the same reasoning for ∆M,3, equation (D.13) gives

lim
M→∞

P(P /∈ Tn(Θ1)|p̂M,n(P) ≤ p0,Dn)2 = (1− p0)2. (D.18)

On the other hand,

P(P /∈ Tn(Θ1),P /∈ Tn(Θ2)|p̂M,n(P) ≤ p0,Dn)

= (1− p0)2
(

1− p0

M − 1

)F (M − 1, 1,M(1− p0)− 11, 1− pn(P))

F (M + 1, 1,M(1− p0) + 1, 1− pn(P))

From Lemma 10,

lim
M→∞

P(P /∈ Tn(Θ1),P /∈ Tn(Θ2)|p̂M,n(P) ≤ p0,Dn) = (1− p0)2 (D.19)

And finally lim
M→∞

∆M,3 = 0. The term ∆M,2 can be treated in a similar way, since equation

(D.13) gives

lim
M→∞

P(P ∈ Tn(Θ1)|p̂M,n(P) ≤ p0,Dn)P(P /∈ Tn(Θ1)|p̂M,n(P) ≤ p0,Dn)

= p0(1− p0).

Simple identity shows

P(P ∈ Tn(Θ1),P /∈ Tn(Θ2)|p̂M,n(P) ≤ p0,Dn)

=
1

2

(
1− P(P /∈ Tn(Θ1),P /∈ Tn(Θ2)|p̂M,n(P) ≤ p0,Dn)

− P(P ∈ Tn(Θ1),P ∈ Tn(Θ2)|p̂M,n(P) ≤ p0,Dn)
)
.

78

Taking the limit of the previous equation and using equations (D.17) and (D.19), we get

lim
M→∞

P(P ∈ Tn(Θ1),P /∈ Tn(Θ2)|p̂M,n(P) ≤ p0,Dn)

= p0(1− p0). (D.20)

Using (D.13) and (D.20), lim
M→∞

∆M,2 = 0. Since ∆M,1,∆M,2,∆M,3 → 0, we obtain lim
M→∞

CM =

0, that is,

lim
M→∞

V
[
p̂M,n

(
P
′)|p̂M,n(P) ≤ p0,Dn

]
= 0. (D.21)

Finally combining equations (D.14) and (D.21),

lim
M→∞

P
(
p̂M,n

(
P
′)
> p0|p̂M,n(P) ≤ p0,Dn

)
= 1

pn(P′)+ρn(P,P′)σn(P
′
)

σn(P)
(p0−pn(P))>p0

Case 2: pn(P) ≤ p0 By the law of large numbers, lim
M→∞

p̂M,n

(
P
)

= pn(P) in probability,

and consequently lim
M→∞

P
(
p̂M,n

(
P
)
≤ p0

)
= 1. Additionally, we can simply write

P
(
p̂M,n

(
P
′)
> p0|p̂M,n(P) ≤ p0,Dn

)
=
P
(
p̂M,n

(
P
′)
> p0, p̂M,n(P) ≤ p0|Dn

)
P
(
p̂M,n(P) ≤ p0,Dn

)
Again, by the law of large numbers, lim

M→∞
p̂M,n

(
P ′) = pn(P ′) in probability. Then, if

pn(P ′) > p0, lim
M→∞

P
(
p̂M,n

(
P ′) > p0

)
= 1, and it follows that lim

M→∞
P
(
p̂M,n(P ′) >

p0, p̂M,n(P) ≤ p0|Dn

)
= 1. If pn(P ′) ≤ p0, lim

M→∞
P
(
p̂M,n

(
P ′) > p0

)
= 0, and consequently

lim
M→∞

P
(
p̂M,n

(
P
′)
> p0, p̂M,n(P) ≤ p0|Dn

)
= 0. This can be compacted under the form

lim
M→∞

P
(
p̂M,n

(
P
′)
> p0|p̂M,n(P) ≤ p0,Dn

)
= 1pn(P′)>p0 .

The proof for the case P
[
p̂M,n

(
P
′)
> p0|p̂M,n(P) > p0,Dn

]
is similar.

79

	Introduction
	Related Work
	SIRUS Algorithm
	Theoretical Analysis of Stability
	Experiments
	Experiment Description
	Case Study: Manufacturing Process Data
	Improvement over Competitors
	SIRUS Parameters

	Conclusion
	Additional Experiments
	Robustness Illustration
	Additional Competitors
	Rule Aggregation

	Stopping Criterion for the Number of Trees M
	Experiments
	Theoretical Properties

	Proof of Theorem 1
	Proof of Theorem 1 for a path of one split
	Proof of Theorem 1 for a path of two split
	Proofs of intermediate lemmas
	Case 1: P1
	Case 2: P2

	Proof of Theorem 2
	Proof of intermediate lemmas

