Supplementary Material for: Optimization by Gradient Boosting

Gérard Biau and Benoît Cadre

Proof (Theorem 1) Assume that, for some $t_{0} \geq 0, \sup _{f \in \mathscr{F}}-\mathbb{E} \xi\left(F_{t_{0}}(X), Y\right) f(X)=0$. Then, by the symmetry of the class \mathscr{F}, for all $f \in \mathscr{F}, \mathbb{E} \xi\left(F_{t_{0}}(X), Y\right) f(X)=0$. We conclude by technical Lemma 2 that

$$
C\left(F_{t}\right)=\inf _{F \in \operatorname{lin}(\mathscr{F})} C(F) \quad \text { for all } t \geq t_{0},
$$

and the result is proved. Thus, in the following, it is assumed that

$$
\sup _{f \in \mathscr{F}}-\mathbb{E} \xi\left(F_{t}(X), Y\right) f(X)>0 \quad \text { for all } t \geq 0
$$

Consequently, $-\mathbb{E} \xi\left(F_{t}(X), Y\right) f_{t+1}(X)>0$ and $w_{t}>0$ for all t. Since $w_{t} \rightarrow 0$ (by Lemma 1 of the Main Document), there exists a subsequence $\left(w_{t^{\prime}}\right)_{t^{\prime}}$ such that

$$
\begin{align*}
w_{t^{\prime}+1} & =-(2 L)^{-1} \mathbb{E} \xi\left(F_{t^{\prime}}(X), Y\right) f_{t^{\prime}+1}(X) \\
& =(2 L)^{-1} \sup _{f \in \mathscr{F}}-\mathbb{E} \xi\left(F_{t^{\prime}}(X), Y\right) f(X) . \tag{1}
\end{align*}
$$

Let $\varepsilon>0$. For all t^{\prime} large enough and all $f \in \mathscr{F}$, by the symmetry of \mathscr{F},

$$
-\mathbb{E} \xi\left(F_{t^{\prime}}(X), Y\right) f(X) \leq \varepsilon \quad \text { and } \quad \mathbb{E} \xi\left(F_{t^{\prime}}(X), Y\right) f(X) \leq \varepsilon,
$$

and thus $\lim _{t^{\prime} \rightarrow \infty} \mathbb{E} \xi\left(F_{t^{\prime}}(X), Y\right) f(X)=0$ for all $f \in \mathscr{F}$. We conclude that, for all $G \in \operatorname{lin}(\mathscr{F})$,

$$
\begin{equation*}
\lim _{t^{\prime} \rightarrow \infty} \mathbb{E} \xi\left(F_{t^{\prime}}(X), Y\right) G(X)=0 \tag{2}
\end{equation*}
$$

Gérard Biau
Sorbonne Université, CNRS, LPSM, 4 place Jussieu, 75005 Paris, France e-mail: gerard.biau@ sorbonne-universite.fr

Benoît Cadre
Univ Rennes, CNRS, IRMAR - UMR 6625, F-35000 Rennes, France e-mail: benoit.cadre@ univ-rennes2.fr

Assume, without loss of generality, that $F_{0}=0$, and observe that $F_{t}=\sum_{k=1}^{t} w_{k} f_{k}$. Thus, we may write

$$
\begin{aligned}
\mathbb{E} \xi\left(F_{t^{\prime}}(X), Y\right) F_{t^{\prime}}(X)= & \sum_{k=1}^{t^{\prime}} w_{k} \mathbb{E} \xi\left(F_{t^{\prime}}(X), Y\right) f_{k}(X) \\
\leq & \sup _{f \in \mathscr{F}} \mathbb{E} \xi\left(F_{t^{\prime}}(X), Y\right) f(X) \sum_{k=1}^{t^{\prime}} w_{k} \\
= & \sup _{f \in \mathscr{F}}-\mathbb{E} \xi\left(F_{t^{\prime}}(X), Y\right) f(X) \sum_{k=1}^{t^{\prime}} w_{k} \\
& (\text { by the symmetry of } \mathscr{F}) \\
= & 2 L w_{t^{\prime}+1} \sum_{k=1}^{t^{\prime}} w_{k},
\end{aligned}
$$

by definition of $w_{t^{\prime}+1}-$ see (1). So,

$$
\begin{array}{r}
\mathbb{E} \xi\left(F_{t^{\prime}}(X), Y\right) F_{t^{\prime}}(X) \leq 2 L w_{t^{\prime}} \sum_{k=1}^{t^{\prime}} w_{k}=2 L w_{t^{\prime}} \sum_{k=1}^{t^{\prime}} w_{k}^{-1} w_{k}^{2} \\
\quad \text { (because } w_{t^{\prime}+1} \leq w_{t^{\prime}} \text {). }
\end{array}
$$

Since $\sum_{k \geq 1} w_{k}^{2}<\infty$, and since the sequence $\left(w_{t}\right)_{t}$ is nonincreasing, positive, and tends to 0 as $t \rightarrow \infty$, Kronecker's lemma reveals that $w_{t^{\prime}} \sum_{k=1}^{t^{\prime}} w_{k}^{-1} w_{k}^{2} \rightarrow 0$ as $t^{\prime} \rightarrow \infty$. Therefore,

$$
\begin{equation*}
\limsup _{t^{\prime} \rightarrow \infty} \mathbb{E} \xi\left(F_{t^{\prime}}(X), Y\right) F_{t^{\prime}}(X) \leq 0 \tag{3}
\end{equation*}
$$

Let $\varepsilon>0$ and let $F_{\varepsilon}^{\star} \in \operatorname{lin}(\mathscr{F})$ be such that

$$
\inf _{F \in \operatorname{lin}(\mathscr{F})} C(F) \geq C\left(F_{\varepsilon}^{\star}\right)-\varepsilon .
$$

By the convexity of C, we have, for all t^{\prime},

$$
\begin{aligned}
\inf _{F \in \operatorname{lin}(\mathscr{F})} C(F) & \geq C\left(F_{\varepsilon}^{\star}\right)-\varepsilon \\
& \geq C\left(F_{t^{\prime}}\right)+\mathbb{E} \xi\left(F_{t^{\prime}}(X), Y\right)\left(F_{\varepsilon}^{\star}(X)-F_{t^{\prime}}(X)\right)-\varepsilon \\
& \geq \inf _{k} C\left(F_{k}\right)+\mathbb{E} \xi\left(F_{t^{\prime}}(X), Y\right) F_{\varepsilon}^{\star}(X)-\mathbb{E} \xi\left(F_{t^{\prime}}(X), Y\right) F_{t^{\prime}}(X)-\varepsilon .
\end{aligned}
$$

Combining (2) and (3), we conclude that $\inf _{F \in \operatorname{lin}(\mathscr{F})} C(F) \geq \inf _{k} C\left(F_{k}\right)-\varepsilon$ for all $\varepsilon>0$, so that

$$
\lim _{t \rightarrow \infty} C\left(F_{t}\right)=\inf _{k} C\left(F_{k}\right)=\inf _{F \in \operatorname{lin}(\mathscr{F})} C(F),
$$

which is the desired result.

Proof (Theorem 2) The first step is to establish that there exists a subsequence $\left(F_{t^{\prime \prime}}\right)_{t^{\prime \prime}}$ such that $\lim _{t^{\prime \prime} \rightarrow \infty} \mathbb{E} \xi\left(F_{t^{\prime \prime}}(X), Y\right) G(X) \rightarrow 0$ for all $G \in \operatorname{lin}(\mathscr{P})$. We start by observing that, by Lemma 2 of the Main Document, $C\left(F_{t}\right) \leq C\left(F_{0}\right)$. Thus, by technical Lemma 3, $\sup _{t}\left\|F_{t}\right\|_{\mu_{X}} \leq B$ for some positive constant B. Now,

$$
\begin{aligned}
& \left|\mathbb{E} \xi\left(F_{t}(X), Y\right) f_{t+1}(X)\right| \\
& \quad=\left|\mathbb{E E}\left(\xi\left(F_{t}(X), Y\right) \mid X\right) f_{t+1}(X)\right| \\
& \quad \leq \mathbb{E}\left|\mathbb{E}\left(\xi\left(F_{t}(X), Y\right)-\xi(0, Y) \mid X\right)\right| \cdot\left|f_{t+1}(X)\right|+\mathbb{E}\left|\xi(0, Y) f_{t+1}(X)\right| \\
& \quad \leq L \mathbb{E}\left|F_{t}(X) f_{t+1}(X)\right|+\mathbb{E}\left|\xi(0, Y) f_{t+1}(X)\right|
\end{aligned}
$$

(by Assumption $\mathbf{A}_{\mathbf{3}}$).
So,

$$
\begin{aligned}
\left|\mathbb{E} \xi\left(F_{t}(X), Y\right) f_{t+1}(X)\right| \leq & L\left\|F_{t}\right\|_{\mu_{X}}\left\|f_{t+1}\right\|_{\mu_{X}}+\left(\mathbb{E} \xi(0, Y)^{2}\right)^{1 / 2}\left\|f_{t+1}\right\|_{\mu_{X}} \\
& \text { (by the Cauchy-Schwarz inequality) } \\
\leq & \left(L B+\left(\mathbb{E} \xi(0, Y)^{2}\right)^{1 / 2}\right)\left\|f_{t+1}\right\|_{\mu_{X}}
\end{aligned}
$$

Consequently, since $\lim _{t \rightarrow \infty}\left\|f_{t+1}\right\|_{\mu_{X}}=0$ (by Lemma 2 of the Main Document),

$$
\begin{aligned}
\inf _{f \in \mathscr{P}}\left(2 \mathbb{E} \xi\left(F_{t}(X), Y\right) f(X)+\|f\|_{\mu_{X}}^{2}\right) & =2 \mathrm{E} \xi\left(F_{t}(X), Y\right) f_{t+1}(X)+\left\|f_{t+1}\right\|_{\mu_{X}}^{2} \\
& \rightarrow 0 \text { as } t \rightarrow \infty .
\end{aligned}
$$

Accordingly, by the symmetry of \mathscr{P}, for all $\varepsilon>0$ and all t large enough, we have, for all $f \in \mathscr{P}$,

$$
2 \mathbb{E} \xi\left(F_{t}(X), Y\right) f(X)+\|f\|_{\mu_{X}}^{2} \geq-\varepsilon \quad \text { and }-2 \mathbb{E} \xi\left(F_{t}(X), Y\right) f(X)+\|f\|_{\mu_{X}}^{2} \geq-\varepsilon
$$

So, for all t large enough and all $f \in \mathscr{P}$,

$$
\left|2 \mathbb{E} \xi\left(F_{t}(X), Y\right) f(X)\right| \leq \varepsilon+\|f\|_{\mu_{X}}^{2}
$$

Since ε was arbitrary, we conclude that, for all $f \in \mathscr{P}$,

$$
\begin{equation*}
2 \lim \sup _{t \rightarrow \infty}\left|\mathbb{E} \xi\left(F_{t}(X), Y\right) f(X)\right| \leq\|f\|_{\mu_{X}}^{2} \tag{4}
\end{equation*}
$$

On the other hand, by Assumption \mathbf{A}_{3},

$$
\left|\mathbb{E}\left(\xi\left(F_{t}(X), Y\right) \mid X\right)\right| \leq \mathbb{E}(|\xi(0, Y)| \mid X)+L\left|F_{t}(X)\right| .
$$

Since $\sup _{t}\left\|F_{t}\right\|_{\mu_{X}}<\infty$, we deduce that

$$
\sup _{t}\left\|\mathbb{E}\left(\xi\left(F_{t}(X), Y\right) \mid X=\cdot\right)\right\|_{\mu_{X}}<\infty
$$

Next, since $\sum_{k \geq 1}\left\|f_{k}\right\|_{\mu_{X}}^{2}<\infty$, there exists a subsequence $\left(f_{t^{\prime}}\right)_{t^{\prime}}$ satisfying $t^{\prime}\left\|f_{t^{\prime}+1}\right\|_{\mu_{X}}^{2} \rightarrow 0$. Besides, recalling that the unit ball of $L^{2}\left(\mu_{X}\right)$ is weakly compact, there exists a subsequence $\left(F_{t^{\prime \prime}}\right)_{t^{\prime \prime}}$ of $\left(F_{t^{\prime}}\right)_{t^{\prime}}$ and $\tilde{F} \in L^{2}\left(\mu_{X}\right)$ such that, for all $G \in \operatorname{lin}(\mathscr{P})$,

$$
\mathbb{E} \xi\left(F_{t^{\prime \prime}}(X), Y\right) G(X)=\mathbb{E} \mathbb{E}\left(\xi\left(F_{t^{\prime \prime}}(X), Y\right) \mid X\right) G(X) \rightarrow \mathbb{E} \tilde{F}(X) G(X)
$$

Combining this identity with (4) reveals that $2|\mathbb{E} \tilde{F}(X) f(X)| \leq\|f\|_{\mu_{X}}^{2}$ for all $f \in \mathscr{P}$. In particular, for all $\varepsilon>0$ and all $f \in \mathscr{P}, 2|\mathbb{E} \tilde{F}(X) \varepsilon f(X)| \leq \varepsilon^{2}\|f\|_{\mu_{X}}^{2}$, and thus, letting $\varepsilon \downarrow 0$, we find that $\mathbb{E} \tilde{F}(X) f(X)=0$ for all $f \in \mathscr{P}$. By a linearity argument, we conclude that $\mathbb{E} \tilde{F}(X) G(X)=0$ for all $G \in \operatorname{lin}(\mathscr{P})$. Therefore, for all $G \in \operatorname{lin}(\mathscr{P})$,

$$
\begin{equation*}
\lim _{t^{\prime \prime} \rightarrow \infty} \mathbb{E} \xi\left(F_{t^{\prime \prime}}(X), Y\right) G(X)=0 \tag{5}
\end{equation*}
$$

which was our first objective.
 the notation, we assume, without loss of generality, that $F_{0}=0$. Fix $\varepsilon>0$. Since $\sum_{k \geq 1}\left\|f_{k}\right\|_{\mu_{X}}^{2}<\infty$, there exists $T \geq 0$ such that $\sum_{k \geq T+1}\left\|f_{k}\right\|_{\mu_{X}}^{2} \leq \varepsilon$. In addition, for all $t>T, F_{t}=F_{T}+v \sum_{k=T+1}^{t} f_{k}$, so that

$$
\begin{equation*}
\mathbb{E} \xi\left(F_{t}(X), Y\right) F_{t}(X)=\mathbb{E} \xi\left(F_{t}(X), Y\right) F_{T}(X)+v \sum_{k=T+1}^{t} \mathbb{E} \xi\left(F_{t}(X), Y\right) f_{k}(X) \tag{6}
\end{equation*}
$$

Also, by the very definition of f_{t+1} and the symmetry of \mathscr{P}, we have, for all $f \in \mathscr{P}$,

$$
\begin{equation*}
2 \mathbb{E} \xi\left(F_{t}(X), Y\right) f_{t+1}(X)+\left\|f_{t+1}\right\|_{\mu_{X}}^{2} \leq-2 \mathbb{E} \xi\left(F_{t}(X), Y\right) f(X)+\|f\|_{\mu_{X}}^{2} \tag{7}
\end{equation*}
$$

i.e., for all $f \in \mathscr{P}$,

$$
2 \mathbb{E} \xi\left(F_{t}(X), Y\right) f(X) \leq-2 \mathbb{E} \xi\left(F_{t}(X), Y\right) f_{t+1}(X)-\left\|f_{t+1}\right\|_{\mu_{X}}^{2}+\|f\|_{\mu_{X}}^{2}
$$

Using (6), this leads to

$$
\begin{align*}
\mathbb{E} \xi & \left(F_{t}(X), Y\right) F_{t}(X) \\
\leq & \mathbb{E} \xi\left(F_{t}(X), Y\right) F_{T}(X) \\
& +\frac{v}{2}\left(t\left(-2 \mathbb{E} \xi\left(F_{t}(X), Y\right) f_{t+1}(X)-\left\|f_{t+1}\right\|_{\mu_{X}}^{2}\right)+\sum_{k \geq T+1}\left\|f_{k}\right\|_{\mu_{X}}^{2}\right) \\
\leq & \frac{\varepsilon v}{2}+\mathbb{E} \xi\left(F_{t}(X), Y\right) F_{T}(X)+\frac{v t}{2}\left(-2 \mathbb{E} \xi\left(F_{t}(X), Y\right) f_{t+1}(X)-\left\|f_{t+1}\right\|_{\mu_{X}}^{2}\right) . \tag{8}
\end{align*}
$$

But, according to inequality (7) applied with $f=-2 f_{t+1}$ (which belongs to \mathscr{P} by assumption),

$$
2 \mathbb{E} \xi\left(F_{t}(X), Y\right) f_{t+1}(X)+\left\|f_{t+1}\right\|_{\mu_{X}}^{2} \leq 4 \mathbb{E} \xi\left(F_{t}(X), Y\right) f_{t+1}(X)+4\left\|f_{t+1}\right\|_{\mu_{X}}^{2}
$$

i.e.,

$$
-2 \mathbb{E} \xi\left(F_{t}(X), Y\right) f_{t+1}(X) \leq 3\left\|f_{t+1}\right\|_{\mu_{X}}^{2}
$$

Combining this inequality with (8) shows that

$$
\mathrm{E} \xi\left(F_{t}(X), Y\right) F_{t}(X) \leq \frac{\varepsilon v}{2}+\mathbb{E} \xi\left(F_{t}(X), Y\right) F_{T}(X)+v t\left\|f_{t+1}\right\|_{\mu_{X}}^{2}
$$

Since $F_{T} \in \operatorname{lin}(\mathscr{P})$, we know from (5) that $\mathbb{E} \xi\left(F_{t^{\prime \prime}}(X), Y\right) F_{T}(X) \rightarrow 0$. Therefore, recalling that $t^{\prime \prime}\left\|f_{t^{\prime \prime}+1}\right\|_{\mu_{X}}^{2} \rightarrow 0$, for all $\varepsilon>0$,

$$
\lim \sup _{t^{\prime \prime} \rightarrow \infty} \mathbb{E} \xi\left(F_{t^{\prime \prime}}(X), Y\right) F_{t^{\prime \prime}}(X) \leq \frac{\varepsilon v}{2}
$$

Since ε is arbitrary, we have just shown that

$$
\begin{equation*}
\limsup _{t^{\prime \prime} \rightarrow \infty} \mathbb{E} \xi\left(F_{t^{\prime \prime}}(X), Y\right) F_{t^{\prime \prime}}(X) \leq 0, \tag{9}
\end{equation*}
$$

as desired.
Let $\varepsilon>0$ and let $F_{\varepsilon}^{\star} \in \operatorname{lin}(\mathscr{P})$ be such that

$$
\inf _{F \in \operatorname{lin}(\mathscr{P})} C(F) \geq C\left(F_{\varepsilon}^{\star}\right)-\varepsilon .
$$

By the convexity of C, along $t^{\prime \prime}$,

$$
\begin{aligned}
\inf _{F \in \operatorname{lin}(\mathscr{P})} C(F) & \geq C\left(F_{\varepsilon}^{\star}\right)-\varepsilon \\
& \geq \inf _{k} C\left(F_{k}\right)+\mathbb{E} \xi\left(F_{t^{\prime \prime}}(X), Y\right) F_{\varepsilon}^{\star}(X)-\mathbb{E} \xi\left(F_{t^{\prime \prime}}(X), Y\right) F_{t^{\prime \prime}}(X)-\varepsilon .
\end{aligned}
$$

Putting (5) and (9) together, we conclude that

$$
\lim _{t \rightarrow \infty} C\left(F_{t}\right)=\inf _{k} C\left(F_{k}\right)=\inf _{F \in \operatorname{lin}(\mathscr{P})} C(F) .
$$

Proof (Theorem 3) For $\beta \in \mathbb{R}^{N}$, we let $F_{\beta}=\sum_{j=1}^{N} \beta_{j} \mathbb{1}_{A_{j}^{n}}$ and notice that $\bar{F}_{n}=F_{\alpha}$ for some (data-dependent) $\alpha \in \mathbb{R}^{N}$. Let the event S be defined by

$$
S=\left\{\forall j=1, \ldots, N: P_{n}\left(A_{j}^{n}\right) \geq P\left(A_{j}^{n}\right) / 2\right\} .
$$

Observe that

$$
\left\|\bar{F}_{n}\right\|_{P_{n}}^{2} \leq \frac{\frac{1}{n} \sum_{i=1}^{n} \phi\left(0, Y_{i}\right)}{\gamma_{n}} \leq \frac{\bar{\phi}}{\gamma_{n}}
$$

and, similarly, that

$$
\left\|\bar{F}_{n}\right\|_{P_{n}}^{2}=\sum_{j=1}^{N} \alpha_{j}^{2} P_{n}\left(A_{j}^{n}\right)
$$

Therefore, on S,

$$
\frac{1}{2} \sum_{j=1}^{N} \alpha_{j}^{2} P\left(A_{j}^{n}\right) \leq \frac{\bar{\phi}}{\gamma_{n}}
$$

and so

$$
\frac{\inf _{\mathscr{X} g}}{2} \cdot v_{n} \sum_{j=1}^{N} \alpha_{j}^{2} \leq \frac{\bar{\phi}}{\gamma_{n}}
$$

We have just shown that, on the event $S, \alpha \in T$, where

$$
T=\left\{\beta \in \mathbb{R}^{N}: \sum_{j=1}^{N} \beta_{j}^{2} \leq \frac{2 \bar{\phi}}{\inf _{\mathscr{X}} g} \cdot \frac{1}{v_{n} \gamma_{n}}\right\}
$$

Now, observe that

$$
\begin{aligned}
\mathbb{E} C_{n}\left(\bar{F}_{n}\right) & =\mathbb{E} \inf _{F \in \operatorname{lin}\left(\mathscr{F}_{n}\right)} C_{n}(F) \\
& =\mathbb{E} \inf _{F \in \operatorname{lin}\left(\mathscr{F}_{n}\right)} C_{n}(F) \mathbb{1}_{S}+\mathbb{E} \inf _{F \in \operatorname{lin}\left(\mathscr{F}_{n}\right)} C_{n}(F) \mathbb{1}_{S^{c}} \\
& \leq \mathbb{E} \inf _{F \in \operatorname{lin}\left(\mathscr{F}_{n}\right)} C_{n}(F) \mathbb{1}_{S}+\mathbb{E} C_{n}(0) \mathbb{1}_{S^{c}} \\
& =\mathbb{E} \inf _{\beta \in T} C_{n}\left(F_{\beta}\right) \mathbb{1}_{S}+\mathbb{E} A_{n}(0) \mathbb{1}_{S^{c}} \\
& \leq \mathbb{E} \inf _{\beta \in T} C_{n}\left(F_{\beta}\right)+\bar{\phi} \mathbb{P}\left(S^{c}\right) .
\end{aligned}
$$

Define

$$
D_{n}(F)=A(F)+\gamma_{n}\|F\|_{P_{n}}^{2}
$$

Since $C_{n}(F)-D_{n}(F)=A_{n}(F)-A(F)$, we deduce from Lemma 4 and Lemma 6 that whenever

$$
\frac{\log N}{n v_{n}} \rightarrow 0 \quad \text { and } \quad \frac{1}{\sqrt{n v_{n} \gamma_{n}}} \zeta\left(\sqrt{\frac{2 \bar{\phi}}{v_{n} \gamma_{n} \inf \mathscr{X} g}}\right) \rightarrow 0
$$

we have

$$
\begin{align*}
\limsup _{n \rightarrow \infty} \mathbb{E} C_{n}\left(\bar{F}_{n}\right) & \leq \limsup _{n \rightarrow \infty} \mathbb{E} \inf _{\beta \in T} C_{n}\left(F_{\beta}\right) \\
& \leq \limsup _{n \rightarrow \infty} \mathbb{E} \inf _{\beta \in T} D_{n}\left(F_{\beta}\right)+\limsup \left(\mathbb{E} \sup _{\beta \in T}\left|A_{n}\left(F_{\beta}\right)-A\left(F_{\beta}\right)\right|\right) \\
& =\limsup _{n \rightarrow \infty} \mathbb{E} \inf _{\beta \in T} D_{n}\left(F_{\beta}\right) \tag{10}
\end{align*}
$$

Let $\varepsilon>0$. By Lemma 5 , there exists $\left(\beta_{1}^{\varepsilon}, \ldots, \beta_{N}^{\varepsilon}\right) \in T$ such that

$$
\left\|F^{\star}-\sum_{j=1}^{N} \beta_{j}^{\varepsilon} \mathbb{1}_{A_{j}^{n}}\right\|_{P} \leq \varepsilon .
$$

Define $F_{\varepsilon}^{\star}=\sum_{j=1}^{N} \beta_{j}^{\varepsilon} \mathbb{1}_{A_{j}^{n}}$. Then, according to (10),

$$
\begin{align*}
\limsup _{n \rightarrow \infty} \mathbb{E} C_{n}\left(\bar{F}_{n}\right) & \leq \limsup _{n \rightarrow \infty}\left(A\left(F_{\varepsilon}^{\star}\right)+\gamma_{n} \mathbb{E}\left\|F_{\varepsilon}^{\star}\right\|_{P_{n}}^{2}\right) \\
& =\limsup _{n \rightarrow \infty}\left(A\left(F_{\varepsilon}^{\star}\right)+\gamma_{n}\left\|F_{\varepsilon}^{\star}\right\|_{P}^{2}\right) \\
& \leq A\left(F_{\varepsilon}^{\star}\right) . \tag{11}
\end{align*}
$$

Since A is continuous, we conclude that $\limsup _{n \rightarrow \infty} \mathbb{E} C_{n}\left(\bar{F}_{n}\right) \leq A\left(F^{\star}\right)$.
On the other hand, $C_{n}\left(\bar{F}_{n}\right) \geq A_{n}\left(\bar{F}_{n}\right)$, and, by Lemma 4 and Lemma 6,

$$
\begin{aligned}
\mathbb{E}\left|A_{n}\left(\bar{F}_{n}\right)-A\left(\bar{F}_{n}\right)\right| & \leq \mathbb{E} \sup _{\beta \in T}\left|A_{n}\left(F_{\beta}\right)-A\left(F_{\beta}\right)\right|+\bar{\phi} \mathbb{P}\left(S^{c}\right) \\
& \rightarrow 0 \quad \text { as } n \rightarrow \infty .
\end{aligned}
$$

Therefore,

$$
\limsup _{n \rightarrow \infty} \mathbb{E} A\left(\bar{F}_{n}\right) \leq \limsup _{n \rightarrow \infty} C_{n}\left(\bar{F}_{n}\right) .
$$

So, with (11),

$$
\limsup _{n \rightarrow \infty} \mathbb{E} A\left(\bar{F}_{n}\right) \leq A\left(F^{\star}\right)
$$

which is the desired result.

Some technical lemmas

Lemma 1 Assume that Assumptions \mathbf{A}_{1} and \mathbf{A}_{3} are satisfied. Then, for all $a>0$ and all $F, G \in L^{2}\left(\mu_{X}\right)$,

$$
C(F)-C(F+a G) \geq-a^{2} L\|G\|_{\mu_{X}}^{2}-a \mathbb{E} \xi(F(X), Y) G(X) .
$$

Proof By inequality (1) of the Main Document,

$$
\begin{aligned}
C(F) \geq & C(F+a G)-a \mathbb{E} \xi(F(X)+a G(X), Y) G(X) \\
= & C(F+a G)-a \mathbb{E}(\xi(F(X)+a G(X), Y)-\xi(F(X), Y)) G(X) \\
& -a \mathbb{E} \xi(F(X), Y) G(X) \\
= & C(F+a G)-a \mathbb{E} \mathbb{E}(\xi(F(X)+a G(X), Y)-\xi(F(X), Y) \mid X) G(X) \\
& -a \mathbb{E} \xi(F(X), Y) G(X) \\
\geq & C(F+a G)-a\left(\mathbb{E}^{2}(\xi(F(X)+a G(X), Y)-\xi(F(X), Y) \mid X)\right)^{1 / 2}\|G\|_{\mu_{X}} \\
& -a \mathbb{E} \xi(F(X), Y) G(X)
\end{aligned}
$$

(by the Cauchy-Schwarz inequality).
Thus, by Assumption \mathbf{A}_{3},

$$
C(F) \geq C(F+a G)-a^{2} L\|G\|_{\mu_{X}}^{2}-a \mathbb{E} \xi(F(X), Y) G(X)
$$

Lemma 2 Assume that Assumption \mathbf{A}_{1} is satisfied, and let $\left(F_{t}\right)_{t}$ be defined by Algorithm 1 with $\left(w_{t}\right)_{t}$ as in (8) of the Main Document. If, for some $t_{0} \geq 0$,

$$
\mathbb{E} \xi\left(F_{t_{0}}(X), Y\right) f(X)=0 \quad \text { for all } f \in \mathscr{F},
$$

then $C\left(F_{t_{0}}\right)=\inf _{F \in \operatorname{lin}(\mathscr{F})} C(F)$.
Proof Fix $t_{0} \geq 0$ and assume that $\mathbb{E} \xi\left(F_{t_{0}}(X), Y\right) f(X)=0$ for all $f \in \mathscr{F}$. By linearity, $\mathrm{E} \xi\left(F_{t_{0}}(X), Y\right) G(X)=0$ for all $G \in \operatorname{lin}(\mathscr{F})$. Let $\varepsilon>0$ and let $F_{\varepsilon}^{\star} \in \operatorname{lin}(\mathscr{F})$ be such that

$$
\inf _{F \in \operatorname{lin}(\mathscr{F})} C(F) \geq C\left(F_{\varepsilon}^{\star}\right)-\varepsilon
$$

By the convexity inequality (1) of the Main Document,

$$
C\left(F_{\varepsilon}^{\star}\right) \geq C\left(F_{0}\right)+\mathbb{E} \xi\left(F_{t_{0}}(X), Y\right)\left(F_{\varepsilon}^{\star}(X)-F_{t_{0}}(X)\right)=C\left(F_{t_{0}}\right) .
$$

Thus,

$$
\inf _{F \in \operatorname{lin}(\mathscr{F})} C(F) \geq C\left(F_{t_{0}}\right)-\varepsilon .
$$

Since ε is arbitrary, the result follows.
Lemma 3 Assume that Assumptions \mathbf{A}_{1} and $\mathbf{A}_{\mathbf{2}}$ are satisfied. Then, for all $F \in$ $L^{2}\left(\mu_{X}\right)$,

$$
\|F\|_{\mu_{X}} \leq \frac{2}{\alpha}\left(\mathbb{E} \xi(0, Y)^{2}\right)^{1 / 2}+\sqrt{\frac{2 C(F)}{\alpha}}
$$

Proof By inequality (2) of the Main Document and the Cauchy-Schwarz inequality,

$$
\begin{aligned}
C(F) & \geq C(0)+\mathbb{E} \xi(0, Y) F(X)+\frac{\alpha}{2}\|F\|_{\mu_{X}}^{2} \\
& \geq C(0)-\left(\mathbb{E} \xi(0, Y)^{2}\right)^{1 / 2}\|F\|_{\mu_{X}}+\frac{\alpha}{2}\|F\|_{\mu_{X}}^{2}
\end{aligned}
$$

Let $\kappa=\left(\mathbb{E} \xi(0, Y)^{2}\right)^{1 / 2}$. Since $C(0) \geq 0$,

$$
C(F)+\kappa\|F\|_{\mu_{X}}-\frac{\alpha}{2}\|F\|_{\mu_{X}}^{2} \geq 0
$$

Therefore,

$$
\|F\|_{\mu_{X}} \leq \frac{\kappa+\sqrt{\kappa^{2}+2 \alpha C(F)}}{\alpha} \leq \frac{2 \kappa}{\alpha}+\sqrt{\frac{2 C(F)}{\alpha}}
$$

Lemma 4 Let the event S be defined by

$$
S=\left\{\forall j=1, \ldots, N: P_{n}\left(A_{j}^{n}\right) \geq P\left(A_{j}^{n}\right) / 2\right\} .
$$

If $\frac{\log N}{n v_{n}} \rightarrow 0$, then $\lim _{n \rightarrow \infty} \mathbb{P}\left(S^{c}\right)=0$.
Proof We have

$$
\begin{aligned}
\mathbb{P}\left(S^{c}\right) & =\mathbb{P}\left(\exists j \leq N: P_{n}\left(A_{j}^{n}\right)<P\left(A_{j}^{n}\right) / 2\right) \\
& =\mathbb{P}\left(\exists j \leq N: P_{n}\left(A_{j}^{n}\right)-P\left(A_{j}^{n}\right)<-P\left(A_{j}^{n}\right) / 2\right) \\
& =\mathbb{P}\left(\exists j \leq N: \frac{P\left(A_{j}^{n}\right)-P_{n}\left(A_{j}^{n}\right)}{\sqrt{P\left(A_{j}^{n}\right)}}>\sqrt{P\left(A_{j}^{n}\right)} / 2\right) \\
& \leq \mathbb{P}\left(\max _{1 \leq j \leq N} \frac{P\left(A_{j}^{n}\right)-P_{n}\left(A_{j}^{n}\right)}{\sqrt{P\left(A_{j}^{n}\right)}}>\sqrt{v_{n} \inf _{\mathscr{X}} g / 2}\right) \\
& \leq c_{1} N e^{-n v_{n} \inf _{\mathscr{X}} g / c_{2}},
\end{aligned}
$$

where c_{1} and c_{2} are positive constants. In the last inequality, we used a Vapnik-Chervonenkis inequality [Vapnik, 1988] for relative deviations.

In the sequel, we let

$$
T=\left\{\beta \in \mathbb{R}^{N}: \sum_{j=1}^{N} \beta_{j}^{2} \leq \frac{2 \bar{\phi}}{\inf _{\mathscr{X}} g} \cdot \frac{1}{v_{n} \gamma_{n}}\right\}
$$

where $\bar{\phi}=\sup _{\mathscr{Y}} \phi(0, y)<\infty$. We recall that $A^{n}(x):=A_{j}^{n}$ whenever $x \in A_{j}^{n}$.
Lemma 5 Assume that diam $\left(A^{n}(X)\right) \rightarrow 0$ in probability and that $\gamma_{n} \rightarrow 0$ as $n \rightarrow \infty$. For all $\varepsilon>0$ and all n large enough, there exists $\left(\beta_{1}^{\varepsilon}, \ldots, \beta_{N}^{\varepsilon}\right) \in T$ such that

$$
\left\|F^{\star}-\sum_{j=1}^{N} \beta_{j}^{\varepsilon} \mathbb{1}_{A_{j}^{n}}\right\|_{P} \leq \varepsilon
$$

Proof Let K be a bounded and uniformly continuous function on \mathbb{R}^{d}, with $\int K \mathrm{~d} \lambda=$ 1. Let, for $p>0$,

$$
K_{p}(x)=p^{d} K\left(\frac{x}{p}\right), \quad x \in \mathbb{R}^{d}
$$

With a slight abuse of notation, we consider F^{\star} as a function defined on the whole space \mathbb{R}^{d} (instead of \mathscr{X}) by implicitly assuming that $F^{\star}=0$ on \mathscr{X}^{c}. We also define $F_{p}^{\star}=F^{\star} \star K_{p}$, i.e.,

$$
F_{p}^{\star}(x)=\int_{\mathbb{R}^{d}} K_{p}(z) F^{\star}(x-z) \mathrm{d} z, \quad x \in \mathbb{R}^{d}
$$

Let $\left(L^{2}(\lambda),\|\cdot\|_{\lambda}\right)$ be the vector space of all real-valued square integrable functions on \mathbb{R}^{d}. For all p large enough, we have

$$
\left\|F_{p}^{\star}-F^{\star}\right\|_{\lambda} \leq \frac{\varepsilon}{2 \sqrt{\sup _{\mathscr{X}} g}}
$$

[see, e.g., Wheeden and Zygmund, 1977, Theorem 9.6]. Therefore, for all p large enough,

$$
\begin{equation*}
\left\|F_{p}^{\star}-F^{\star}\right\|_{P} \leq \varepsilon / 2 \tag{12}
\end{equation*}
$$

In addition, F_{p}^{\star} is uniformly continuous on \mathscr{X} [Wheeden and Zygmund, 1977, Theorem 9.4]. Thus, there exists $\eta=\eta(\varepsilon, p)>0$ such that, for all $\left(x, x^{\prime}\right) \in \mathscr{X}^{2}$ with $\left\|x-x^{\prime}\right\| \leq \eta$,

$$
\left|F_{p}^{\star}(x)-F_{p}^{\star}\left(x^{\prime}\right)\right| \leq \varepsilon / \sqrt{8}
$$

For each $j \in\{1, \ldots, N\}$, choose an arbitrary $a_{j}^{n} \in A_{j}^{n}$ and $\operatorname{set} G_{p}^{\star}=\sum_{j=1}^{N} F_{p}^{\star}\left(a_{j}^{n}\right) \mathbb{1}_{A_{j}^{n}}$. Then

$$
\begin{aligned}
\left\|G_{p}^{\star}-F_{p}^{\star}\right\|_{P}^{2}= & \sum_{j=1}^{N} \mathbb{E}\left(G_{p}^{\star}(X)-F_{p}^{\star}(X)\right)^{2} \mathbb{1}_{\left[X \in A_{j}^{n}, \operatorname{diam}\left(A^{n}(X)\right) \leq \eta\right]} \\
& +\sum_{j=1}^{N} \mathbb{E}\left(G_{p}^{\star}(X)-F_{p}^{\star}(X)\right)^{2} \mathbb{1}_{\left[X \in A_{j}^{n}, \operatorname{diam}\left(A^{n}(X)\right)>\eta\right]} \\
= & \sum_{j=1}^{N} \mathbb{E}\left(F_{p}^{\star}\left(a_{j}^{n}\right)-F_{p}^{\star}(X)\right)^{2} \mathbb{1}_{\left[X \in A_{j}^{n}, \operatorname{diam}\left(A^{n}(X)\right) \leq \eta\right]} \\
& +\sum_{j=1}^{N} \mathbb{E}\left(G_{p}^{\star}(X)-F_{p}^{\star}(X)\right)^{2} \mathbb{1}_{\left[X \in A_{j}^{n}, \operatorname{diam}\left(A^{n}(X)\right)>\eta\right]} \\
\leq & \frac{\varepsilon^{2}}{8} \sum_{j=1}^{N} \mathbb{P}\left(X \in A_{j}^{n}\right)+4 \sup _{\mathscr{X}}\left(F^{\star}\right)^{2} \sum_{j=1}^{N} \mathbb{P}\left(X \in A_{j}^{n}, \operatorname{diam}\left(A^{n}(X)\right)>\eta\right)
\end{aligned}
$$

$$
\left(\text { since } \sup _{\mathscr{X}}\left|F_{p}^{\star}\right| \leq \sup _{\mathscr{X}}\left|F^{\star}\right|<\infty \text { and } \sup _{\mathscr{X}}\left|G_{p}^{\star}\right| \leq \sup _{\mathscr{X}}\left|G^{\star}\right|<\infty\right)
$$

$$
\leq \frac{\varepsilon^{2}}{8}+4 \sup _{\mathscr{X}}\left(F^{\star}\right)^{2} \mathbb{P}\left(\operatorname{diam}\left(A^{n}(X)\right)>\eta\right)
$$

because the $\left(A_{j}^{n}\right)_{1 \leq j \leq N}$ form a partition of \mathscr{X}. Since $\operatorname{diam}\left(A^{n}(X)\right) \rightarrow 0$ in probability, we see that for all n large enough (depending on ε and p),

$$
\left\|G_{p}^{\star}-F_{p}^{\star}\right\|_{P} \leq \varepsilon / 2
$$

Letting $\beta_{j}^{\varepsilon}=F_{p}^{\star}\left(a_{j}^{n}\right), 1 \leq j \leq N$, and combining this inequality and (12), we conclude that for every fixed $\varepsilon>0$ and all n large enough, there exists $\left(\beta_{1}^{\varepsilon}, \ldots, \beta_{N}^{\varepsilon}\right) \in$ \mathbb{R}^{N} such that

$$
\left\|F^{\star}-\sum_{j=1}^{N} \beta_{j}^{\varepsilon} \mathbb{1}_{A_{j}^{n}}\right\|_{P} \leq \varepsilon
$$

To complete the proof, it remains to show that $\left(\beta_{1}^{\varepsilon}, \ldots, \beta_{N}^{\varepsilon}\right) \in T$. Observe that

$$
\sum_{j=1}^{N}\left(\beta_{j}^{\varepsilon}\right)^{2} \leq \sup _{\mathscr{X}}\left(F^{\star}\right)^{2} N
$$

The right-hand side is bounded by $\frac{2 \bar{\phi}}{\inf \mathscr{X} g} \cdot \frac{1}{v_{n} \gamma_{n}}$ for all n large enough. To see this, just note that

$$
N v_{n} \leq \sum_{j=1}^{N} \lambda\left(A_{j}^{n}\right)=\lambda(\mathscr{X})<\infty
$$

Therefore, $N v_{n} \gamma_{n} \leq \lambda(\mathscr{X}) \gamma_{n} \rightarrow 0$ as $n \rightarrow \infty$. This concludes the proof of the lemma.

Lemma 6 For $\beta \in \mathbb{R}^{N}$, let $F_{\beta}=\sum_{j=1}^{N} \beta_{j} \mathbb{1}_{A_{j}^{n}}$. Assume that Assumption \mathbf{A}_{4} is satisfied. If

$$
\frac{1}{\sqrt{n v_{n} \gamma_{n}}} \zeta\left(\sqrt{\frac{2 \bar{\phi}}{v_{n} \gamma_{n} \inf _{\mathscr{X}} g}}\right) \rightarrow 0
$$

then

$$
\lim _{n \rightarrow \infty} \mathbb{E} \sup _{\beta \in T}\left|A_{n}\left(F_{\beta}\right)-A\left(F_{\beta}\right)\right|=0
$$

Proof Let

$$
s_{n}=\sqrt{\frac{2 \bar{\phi}}{v_{n} \gamma_{n} \inf \mathscr{X} g}},
$$

and let $\|\beta\|_{\infty}=\max _{1 \leq j \leq N}\left|\beta_{j}\right|$ be the supremum norm of $\beta=\left(\beta_{1}, \ldots, \beta_{N}\right) \in \mathbb{R}^{N}$. By definition of T, we have, for all $\beta \in T$,

$$
\sup _{\mathscr{X}}\left|F_{\beta}\right|=\sup _{\mathscr{X}}\left|\sum_{j=1}^{N} \beta_{j} \mathbb{1}_{A_{j}^{n}}\right| \leq\|\beta\|_{\infty} \leq s_{n} .
$$

In addition, according to Assumption \mathbf{A}_{4}, we may write, for β_{1} and $\beta_{2} \in T$,

$$
\left|\phi\left(F_{\beta_{1}}(x), y\right)-\phi\left(F_{\beta_{2}}(x), y\right)\right| \leq \zeta\left(s_{n}\right)\left|F_{\beta_{1}}(x)-F_{\beta_{2}}(x)\right| \leq \zeta\left(s_{n}\right)\left\|\beta_{1}-\beta_{2}\right\|_{\infty} .
$$

This shows that the process

$$
\left(\frac{A_{n}\left(F_{\beta}\right)-A\left(F_{\beta}\right)}{\zeta\left(s_{n}\right)}\right)_{\beta \in T}
$$

is subgaussian [e.g., van Handel, 2016, Chapter 5] for the distance $d\left(\beta_{1}, \beta_{2}\right)=$ $\frac{1}{\sqrt{n}}\left\|\beta_{1}-\beta_{2}\right\|_{\infty}$. Now, let $N(T, d, \varepsilon)$ denote the ε-covering number of T for the distance d. Then, by Dudley's inequality [van Handel, 2016, Corollary 5.25], one has

$$
\begin{aligned}
\mathbb{E} \sup _{\beta \in T}\left(A_{n}\left(F_{\beta}\right)-A\left(F_{\beta}\right)\right) & \leq 12 \zeta\left(s_{n}\right) \int_{0}^{\infty} \sqrt{\log \left(N\left(T, \frac{1}{\sqrt{n}}\|\cdot\|_{\infty}, \varepsilon\right)\right)} \mathrm{d} \varepsilon \\
& =12 \zeta\left(s_{n}\right) \cdot \frac{1}{\sqrt{n}} \int_{0}^{\infty} \sqrt{\log \left(N\left(T,\|\cdot\|_{\infty}, \varepsilon\right)\right)} \mathrm{d} \varepsilon
\end{aligned}
$$

Let $B_{2}(0,1)$ denote the unit Euclidean ball in $\left(\mathbb{R}^{N},\|\cdot\|_{2}\right)$. Since $T=s_{n} B_{2}(0,1)$, we see that

$$
\mathbb{E} \sup _{\beta \in T}\left(A_{n}\left(F_{\beta}\right)-A\left(F_{\beta}\right)\right) \leq 12 \zeta\left(s_{n}\right) \cdot \frac{s_{n}}{\sqrt{n}} \int_{0}^{\infty} \sqrt{\log \left(B_{2}(0,1),\|\cdot\|_{\infty}, \varepsilon\right)} \mathrm{d} \varepsilon .
$$

But $\|\cdot\|_{2} \leq \sqrt{N}\|\cdot\|_{\infty}$, and so

$$
\begin{aligned}
\mathbb{E} \sup _{\beta \in T}\left(A_{n}\left(F_{\beta}\right)-A\left(F_{\beta}\right)\right) & \leq 12 \zeta\left(s_{n}\right) \cdot \frac{s_{n}}{\sqrt{n}} \int_{0}^{\infty} \sqrt{\log \left(B_{2}(0,1), \frac{1}{\sqrt{N}}\|\cdot\|_{2}, \varepsilon\right)} \mathrm{d} \varepsilon \\
& =12 \zeta\left(s_{n}\right) \cdot \frac{s_{n}}{\sqrt{n}} \cdot \frac{1}{\sqrt{N}} \int_{0}^{\infty} \sqrt{\log (3 / \varepsilon)^{N}} \mathrm{~d} \varepsilon \\
& =12 \frac{s_{n} \zeta\left(s_{n}\right)}{\sqrt{n}} \int_{0}^{\infty} \sqrt{\log (3 / \varepsilon)} \mathrm{d} \varepsilon
\end{aligned}
$$

In the last equality, we used the fact that $N\left(B_{2}(0,1),\|\cdot\|_{2}, \varepsilon\right)$ equals 1 for $\varepsilon \geq 1$ and is not larger than $(3 / \varepsilon)^{N}$ for $\varepsilon<1$ [e.g., van Handel, 2016, Chapter 5]. The same conclusion holds for $\mathbb{E} \sup _{\beta \in T}\left(A\left(F_{\beta}\right)-A_{n}\left(F_{\beta}\right)\right)$, and this proves the result.

References

R. van Handel. Probability in High Dimension. APC 550 Lecture Notes, Princeton University, 2016.
V.N. Vapnik. Statistical Learning Theory. John Wiley \& Sons, New York, 1988.
R.L. Wheeden and A. Zygmund. Measure and Integral. Marcel Dekker, New York, 1977.

