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Proof (Theorem 1) Assume that, for some t0 ≥ 0, sup f ∈F −Eξ(Ft0 (X),Y ) f (X) = 0.
Then, by the symmetry of the class F , for all f ∈ F , Eξ(Ft0 (X),Y ) f (X) = 0. We
conclude by technical Lemma 2 that

C(Ft ) = inf
F ∈lin(F )

C(F) for all t ≥ t0,

and the result is proved. Thus, in the following, it is assumed that

sup
f ∈F
−Eξ(Ft (X),Y ) f (X) > 0 for all t ≥ 0.

Consequently, −Eξ(Ft (X),Y ) ft+1(X) > 0 and wt > 0 for all t. Since wt → 0 (by
Lemma 1 of the Main Document), there exists a subsequence (wt′)t′ such that

wt′+1 = −(2L)−1Eξ(Ft′(X),Y ) ft′+1(X)

= (2L)−1 sup
f ∈F
−Eξ(Ft′(X),Y ) f (X). (1)

Let ε > 0. For all t ′ large enough and all f ∈ F , by the symmetry of F ,

−Eξ(Ft′(X),Y ) f (X) ≤ ε and Eξ(Ft′(X),Y ) f (X) ≤ ε,

and thus limt′→∞Eξ(Ft′(X),Y ) f (X) = 0 for all f ∈ F . We conclude that, for all
G ∈ lin(F ),

lim
t′→∞

Eξ(Ft′(X),Y )G(X) = 0. (2)
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Assume, without loss of generality, that F0 = 0, and observe that Ft =
∑t

k=1 wk fk .
Thus, we may write

Eξ(Ft′(X),Y )Ft′(X) =
t′∑

k=1
wkEξ(Ft′(X),Y ) fk(X)

≤ sup
f ∈F

Eξ(Ft′(X),Y ) f (X)
t′∑

k=1
wk

= sup
f ∈F
−Eξ(Ft′(X),Y ) f (X)

t′∑
k=1

wk

(by the symmetry of F )

= 2Lwt′+1

t′∑
k=1

wk,

by definition of wt′+1—see (1). So,

Eξ(Ft′(X),Y )Ft′(X) ≤ 2Lwt′

t′∑
k=1

wk = 2Lwt′

t′∑
k=1

w−1
k w2

k

(because wt′+1 ≤ wt′).

Since
∑

k≥1 w
2
k
< ∞, and since the sequence (wt )t is nonincreasing, positive, and

tends to 0 as t → ∞, Kronecker’s lemma reveals that wt′
∑t′

k=1 w
−1
k
w2
k
→ 0 as

t ′→∞. Therefore,
lim sup
t′→∞

Eξ(Ft′(X),Y )Ft′(X) ≤ 0. (3)

Let ε > 0 and let F?ε ∈ lin(F ) be such that

inf
F ∈lin(F )

C(F) ≥ C(F?ε ) − ε.

By the convexity of C, we have, for all t ′,

inf
F ∈lin(F )

C(F) ≥ C(F?ε ) − ε

≥ C(Ft′) + Eξ(Ft′(X),Y )(F?ε (X) − Ft′(X)) − ε

≥ inf
k

C(Fk) + Eξ(Ft′(X),Y )F?ε (X) − Eξ(Ft′(X),Y )Ft′(X) − ε.

Combining (2) and (3), we conclude that infF ∈lin(F ) C(F) ≥ infk C(Fk) − ε for all
ε > 0, so that

lim
t→∞

C(Ft ) = inf
k

C(Fk) = inf
F ∈lin(F )

C(F),

which is the desired result. �
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Proof (Theorem 2) The first step is to establish that there exists a subsequence
(Ft′′)t′′ such that limt′′→∞Eξ(Ft′′(X),Y )G(X) → 0 for all G ∈ lin(P). We start
by observing that, by Lemma 2 of the Main Document, C(Ft ) ≤ C(F0). Thus, by
technical Lemma 3, supt ‖Ft ‖µX ≤ B for some positive constant B. Now,

|Eξ(Ft (X),Y ) ft+1(X)|

= |EE(ξ(Ft (X),Y ) | X) ft+1(X)|

≤ E
��E(ξ(Ft (X),Y ) − ξ(0,Y ) | X)

�� · | ft+1(X)| + E|ξ(0,Y ) ft+1(X)|

≤ LE|Ft (X) ft+1(X)| + E|ξ(0,Y ) ft+1(X)|

(by Assumption A3).

So,

|Eξ(Ft (X),Y ) ft+1(X)| ≤ L‖Ft ‖µX ‖ ft+1‖µX +
(
Eξ(0,Y )2

)1/2
‖ ft+1‖µX

(by the Cauchy-Schwarz inequality)

≤
(
LB +

(
Eξ(0,Y )2

)1/2)
‖ ft+1‖µX .

Consequently, since limt→∞ ‖ ft+1‖µX = 0 (by Lemma 2 of the Main Document),

inf
f ∈P

(
2Eξ(Ft (X),Y ) f (X) + ‖ f ‖2µX

)
= 2Eξ(Ft (X),Y ) ft+1(X) + ‖ ft+1‖

2
µX

→ 0 as t →∞.

Accordingly, by the symmetry of P , for all ε > 0 and all t large enough, we have,
for all f ∈P ,

2Eξ(Ft (X),Y ) f (X) + ‖ f ‖2µX ≥ −ε and − 2Eξ(Ft (X),Y ) f (X) + ‖ f ‖2µX ≥ −ε.

So, for all t large enough and all f ∈P ,

|2Eξ(Ft (X),Y ) f (X)| ≤ ε + ‖ f ‖2µX .

Since ε was arbitrary, we conclude that, for all f ∈P ,

2lim supt→∞ |Eξ(Ft (X),Y ) f (X)| ≤ ‖ f ‖2µX . (4)

On the other hand, by Assumption A3,

|E(ξ(Ft (X),Y ) | X)| ≤ E(|ξ(0,Y )|
�� X) + L |Ft (X)|.

Since supt ‖Ft ‖µX < ∞, we deduce that

sup
t
‖E(ξ(Ft (X),Y ) | X = ·)‖µX < ∞.
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Next, since
∑

k≥1 ‖ fk ‖2µX < ∞, there exists a subsequence ( ft′)t′ satisfying
t ′‖ ft′+1‖

2
µX
→ 0. Besides, recalling that the unit ball of L2(µX ) is weakly com-

pact, there exists a subsequence (Ft′′)t′′ of (Ft′)t′ and F̃ ∈ L2(µX ) such that, for all
G ∈ lin(P),

Eξ(Ft′′(X),Y )G(X) = EE(ξ(Ft′′(X),Y ) | X)G(X) → EF̃(X)G(X).

Combining this identity with (4) reveals that 2|EF̃(X) f (X)| ≤ ‖ f ‖2µX for all f ∈P .
In particular, for all ε > 0 and all f ∈ P , 2|EF̃(X)ε f (X)| ≤ ε2‖ f ‖2µX , and thus,
letting ε ↓ 0, we find that EF̃(X) f (X) = 0 for all f ∈ P . By a linearity argument,
we conclude thatEF̃(X)G(X) = 0 for all G ∈ lin(P). Therefore, for all G ∈ lin(P),

lim
t′′→∞

Eξ(Ft′′(X),Y )G(X) = 0, (5)

which was our first objective.
The next step is to prove that lim supt′′→∞Eξ(Ft′′(X),Y )Ft′′(X) ≤ 0. To simplify

the notation, we assume, without loss of generality, that F0 = 0. Fix ε > 0. Since∑
k≥1 ‖ fk ‖2µX < ∞, there exists T ≥ 0 such that

∑
k≥T+1 ‖ fk ‖2µX ≤ ε. In addition, for

all t > T , Ft = FT + ν
∑t

k=T+1 fk , so that

Eξ(Ft (X),Y )Ft (X) = Eξ(Ft (X),Y )FT (X) + ν
t∑

k=T+1
Eξ(Ft (X),Y ) fk(X). (6)

Also, by the very definition of ft+1 and the symmetry of P , we have, for all f ∈P ,

2Eξ(Ft (X),Y ) ft+1(X) + ‖ ft+1‖
2
µX
≤ −2Eξ(Ft (X),Y ) f (X) + ‖ f ‖2µX , (7)

i.e., for all f ∈P ,

2Eξ(Ft (X),Y ) f (X) ≤ −2Eξ(Ft (X),Y ) ft+1(X) − ‖ ft+1‖
2
µX
+ ‖ f ‖2µX .

Using (6), this leads to

Eξ(Ft (X),Y )Ft (X)

≤ Eξ(Ft (X),Y )FT (X)

+
ν

2

(
t
(
− 2Eξ(Ft (X),Y ) ft+1(X) − ‖ ft+1‖

2
µX

)
+

∑
k≥T+1

‖ fk ‖2µX
)

≤
εν

2
+ Eξ(Ft (X),Y )FT (X) +

νt
2

(
− 2Eξ(Ft (X),Y ) ft+1(X) − ‖ ft+1‖

2
µX

)
. (8)

But, according to inequality (7) applied with f = −2 ft+1 (which belongs to P by
assumption),

2Eξ(Ft (X),Y ) ft+1(X) + ‖ ft+1‖
2
µX
≤ 4Eξ(Ft (X),Y ) ft+1(X) + 4‖ ft+1‖

2
µX
,
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i.e.,
−2Eξ(Ft (X),Y ) ft+1(X) ≤ 3‖ ft+1‖

2
µX
.

Combining this inequality with (8) shows that

Eξ(Ft (X),Y )Ft (X) ≤
εν

2
+ Eξ(Ft (X),Y )FT (X) + νt‖ ft+1‖

2
µX
.

Since FT ∈ lin(P), we know from (5) that Eξ(Ft′′(X),Y )FT (X) → 0. Therefore,
recalling that t ′′‖ ft′′+1‖

2
µX
→ 0, for all ε > 0,

lim supt′′→∞Eξ(Ft′′(X),Y )Ft′′(X) ≤
εν

2
.

Since ε is arbitrary, we have just shown that

lim supt′′→∞Eξ(Ft′′(X),Y )Ft′′(X) ≤ 0, (9)

as desired.
Let ε > 0 and let F?ε ∈ lin(P) be such that

inf
F ∈lin(P)

C(F) ≥ C(F?ε ) − ε.

By the convexity of C, along t ′′,

inf
F ∈lin(P)

C(F) ≥ C(F?ε ) − ε

≥ inf
k

C(Fk) + Eξ(Ft′′(X),Y )F?ε (X) − Eξ(Ft′′(X),Y )Ft′′(X) − ε.

Putting (5) and (9) together, we conclude that

lim
t→∞

C(Ft ) = inf
k

C(Fk) = inf
F ∈lin(P)

C(F).

�

Proof (Theorem 3) For β ∈ RN , we let Fβ =
∑N

j=1 βj1An
j
and notice that F̄n = Fα

for some (data-dependent) α ∈ RN . Let the event S be defined by

S =
{
∀ j = 1, . . . ,N : Pn(An

j ) ≥ P(An
j )/2

}
.

Observe that

‖F̄n‖
2
Pn
≤

1
n

∑n
i=1 φ(0,Yi)
γn

≤
φ̄

γn
,

and, similarly, that

‖F̄n‖
2
Pn
=

N∑
j=1

α2
j Pn(An

j ).

Therefore, on S,
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1
2

N∑
j=1

α2
j P(An

j ) ≤
φ̄

γn
,

and so
infX g

2
· vn

N∑
j=1

α2
j ≤

φ̄

γn
.

We have just shown that, on the event S, α ∈ T , where

T =
{
β ∈ RN :

N∑
j=1

β2
j ≤

2φ̄
infX g

·
1

vnγn

}
.

Now, observe that

ECn(F̄n) = E inf
F ∈lin(Fn)

Cn(F)

= E inf
F ∈lin(Fn)

Cn(F)1S + E inf
F ∈lin(Fn)

Cn(F)1Sc

≤ E inf
F ∈lin(Fn)

Cn(F)1S + ECn(0)1Sc

= E inf
β∈T

Cn(Fβ)1S + EAn(0)1Sc

≤ E inf
β∈T

Cn(Fβ) + φ̄P(Sc).

Define
Dn(F) = A(F) + γn‖F‖2Pn

.

Since Cn(F)−Dn(F) = An(F)− A(F), we deduce from Lemma 4 and Lemma 6 that
whenever

log N
nvn

→ 0 and
1

√
nvnγn

ζ

(√
2φ̄

vnγn infX g

)
→ 0,

we have

lim sup
n→∞

ECn(F̄n) ≤ lim sup
n→∞

E inf
β∈T

Cn(Fβ)

≤ lim sup
n→∞

E inf
β∈T

Dn(Fβ) + lim sup
n→∞

(
E sup
β∈T
|An(Fβ) − A(Fβ)|

)
= lim sup

n→∞
E inf
β∈T

Dn(Fβ). (10)

Let ε > 0. By Lemma 5, there exists (βε1 , . . . , β
ε
N ) ∈ T such that

F? −
N∑
j=1

βεj 1An
j


P
≤ ε.

Define F?ε =
∑N

j=1 β
ε
j 1An

j
. Then, according to (10),
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lim sup
n→∞

ECn(F̄n) ≤ lim sup
n→∞

(
A(F?ε ) + γnE‖F

?
ε ‖

2
Pn

)
= lim sup

n→∞

(
A(F?ε ) + γn‖F

?
ε ‖

2
P

)
≤ A(F?ε ). (11)

Since A is continuous, we conclude that lim supn→∞ECn(F̄n) ≤ A(F?).
On the other hand, Cn(F̄n) ≥ An(F̄n), and, by Lemma 4 and Lemma 6,

E|An(F̄n) − A(F̄n)| ≤ E sup
β∈T
|An(Fβ) − A(Fβ)| + φ̄P(Sc)

→ 0 as n→∞.

Therefore,
lim sup
n→∞

EA(F̄n) ≤ lim sup
n→∞

Cn(F̄n).

So, with (11),
lim sup
n→∞

EA(F̄n) ≤ A(F?),

which is the desired result. �

Some technical lemmas

Lemma 1 Assume that Assumptions A1 and A3 are satisfied. Then, for all a > 0 and
all F,G ∈ L2(µX ),

C(F) − C(F + aG) ≥ −a2L‖G‖2µX − aEξ(F(X),Y )G(X).

Proof By inequality (1) of the Main Document,

C(F) ≥ C(F + aG) − aEξ(F(X) + aG(X),Y )G(X)

= C(F + aG) − aE(ξ(F(X) + aG(X),Y ) − ξ(F(X),Y ))G(X)

− aEξ(F(X),Y )G(X)

= C(F + aG) − aEE(ξ(F(X) + aG(X),Y ) − ξ(F(X),Y ) | X)G(X)

− aEξ(F(X),Y )G(X)

≥ C(F + aG) − a
(
EE2(ξ(F(X) + aG(X),Y ) − ξ(F(X),Y ) | X)

)1/2
‖G‖µX

− aEξ(F(X),Y )G(X)

(by the Cauchy-Schwarz inequality).

Thus, by Assumption A3,
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C(F) ≥ C(F + aG) − a2L‖G‖2µX − aEξ(F(X),Y )G(X).

�

Lemma 2 Assume that Assumption A1 is satisfied, and let (Ft )t be defined by Algo-
rithm 1 with (wt )t as in (8) of the Main Document. If, for some t0 ≥ 0,

Eξ(Ft0 (X),Y ) f (X) = 0 for all f ∈ F ,

then C(Ft0 ) = infF ∈lin(F ) C(F).

Proof Fix t0 ≥ 0 and assume thatEξ(Ft0 (X),Y ) f (X) = 0 for all f ∈ F . By linearity,
Eξ(Ft0 (X),Y )G(X) = 0 for all G ∈ lin(F ). Let ε > 0 and let F?ε ∈ lin(F ) be such
that

inf
F ∈lin(F )

C(F) ≥ C(F?ε ) − ε.

By the convexity inequality (1) of the Main Document,

C(F?ε ) ≥ C(F0) + Eξ(Ft0 (X),Y )(F
?
ε (X) − Ft0 (X)) = C(Ft0 ).

Thus,
inf

F ∈lin(F )
C(F) ≥ C(Ft0 ) − ε.

Since ε is arbitrary, the result follows. �

Lemma 3 Assume that Assumptions A1 and A2 are satisfied. Then, for all F ∈
L2(µX ),

‖F‖µX ≤
2
α

(
Eξ(0,Y )2

)1/2
+

√
2C(F)
α

.

Proof By inequality (2) of the Main Document and the Cauchy-Schwarz inequality,

C(F) ≥ C(0) + Eξ(0,Y )F(X) +
α

2
‖F‖2µX

≥ C(0) −
(
Eξ(0,Y )2

)1/2
‖F‖µX +

α

2
‖F‖2µX .

Let κ = (Eξ(0,Y )2)1/2. Since C(0) ≥ 0,

C(F) + κ‖F‖µX −
α

2
‖F‖2µX ≥ 0.

Therefore,

‖F‖µX ≤
κ +

√
κ2 + 2αC(F)
α

≤
2κ
α
+

√
2C(F)
α

.

�

Lemma 4 Let the event S be defined by

S =
{
∀ j = 1, . . . ,N : Pn(An

j ) ≥ P(An
j )/2

}
.
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If log N
nvn
→ 0, then limn→∞P(Sc) = 0.

Proof We have

P(Sc) = P
(
∃ j ≤ N : Pn(An

j ) < P(An
j )/2

)
= P

(
∃ j ≤ N : Pn(An

j ) − P(An
j ) < −P(An

j )/2
)

= P
(
∃ j ≤ N :

P(An
j ) − Pn(An

j )√
P(An

j )
>

√
P(An

j )/2
)

≤ P
(

max
1≤ j≤N

P(An
j ) − Pn(An

j )√
P(An

j )
>

√
vn inf

X
g/2

)
≤ c1Ne−nvn infX g/c2,

where c1 and c2 are positive constants. In the last inequality, we used a Vapnik-Cher-
vonenkis inequality [Vapnik, 1988] for relative deviations. �

In the sequel, we let

T =
{
β ∈ RN :

N∑
j=1

β2
j ≤

2φ̄
infX g

·
1

vnγn

}
,

where φ̄ = supY φ(0, y) < ∞. We recall that An(x) := An
j whenever x ∈ An

j .
Lemma 5 Assume that diam(An(X)) → 0 in probability and that γn → 0 as n→∞.
For all ε > 0 and all n large enough, there exists (βε1 , . . . , β

ε
N ) ∈ T such that

F? −
N∑
j=1

βεj 1An
j


P
≤ ε.

Proof Let K be a bounded and uniformly continuous function onRd , with
∫

Kdλ =
1. Let, for p > 0,

Kp(x) = pdK
( x

p

)
, x ∈ Rd .

With a slight abuse of notation, we consider F? as a function defined on the whole
spaceRd (instead of X ) by implicitly assuming that F? = 0 onX c . We also define
F?p = F? ?Kp , i.e.,

F?p (x) =
∫
Rd

Kp(z)F?(x − z)dz, x ∈ Rd .

Let (L2(λ), ‖ · ‖λ) be the vector space of all real-valued square integrable functions
on Rd . For all p large enough, we have

‖F?p − F?‖λ ≤
ε

2√supX g
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[see, e.g., Wheeden and Zygmund, 1977, Theorem 9.6]. Therefore, for all p large
enough,

‖F?p − F?‖P ≤ ε/2. (12)

In addition, F?p is uniformly continuous on X [Wheeden and Zygmund, 1977,
Theorem 9.4]. Thus, there exists η = η(ε, p) > 0 such that, for all (x, x ′) ∈ X 2 with
‖x − x ′‖ ≤ η,

|F?p (x) − F?p (x
′)| ≤ ε/

√
8.

For each j ∈ {1, . . . ,N}, choose an arbitrary an
j ∈ An

j and setG?
p =

∑N
j=1 F?p (a

n
j )1An

j
.

Then

‖G?
p − F?p ‖

2
P =

N∑
j=1
E(G?

p(X) − F?p (X))
21[X∈An

j ,diam(An(X))≤η]

+

N∑
j=1
E(G?

p(X) − F?p (X))
21[X∈An

j ,diam(An(X))>η]

=

N∑
j=1
E(F?p (a

n
j ) − F?p (X))

21[X∈An
j ,diam(An(X))≤η]

+

N∑
j=1
E(G?

p(X) − F?p (X))
21[X∈An

j ,diam(An(X))>η]

≤
ε2

8

N∑
j=1
P(X ∈ An

j ) + 4 sup
X
(F?)2

N∑
j=1
P(X ∈ An

j ,diam(A
n(X)) > η)

(since supX |F
?
p | ≤ supX |F

? | < ∞ and supX |G
?
p | ≤ supX |G

? | < ∞)

≤
ε2

8
+ 4 sup

X
(F?)2P(diam(An(X)) > η),

because the (An
j )1≤ j≤N form a partition of X . Since diam(An(X)) → 0 in probabil-

ity, we see that for all n large enough (depending on ε and p),

‖G?
p − F?p ‖P ≤ ε/2.

Letting βεj = F?p (a
n
j ), 1 ≤ j ≤ N , and combining this inequality and (12), we

conclude that for every fixed ε > 0 and all n large enough, there exists (βε1 , . . . , β
ε
N ) ∈

RN such that F? −
N∑
j=1

βεj 1An
j


P
≤ ε.

To complete the proof, it remains to show that (βε1 , . . . , β
ε
N ) ∈ T . Observe that
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N∑
j=1
(βεj )

2 ≤ sup
X
(F?)2N .

The right-hand side is bounded by 2φ̄
infX g ·

1
vnγn

for all n large enough. To see this,
just note that

Nvn ≤

N∑
j=1

λ(An
j ) = λ(X ) < ∞.

Therefore, Nvnγn ≤ λ(X )γn → 0 as n → ∞. This concludes the proof of the
lemma. �

Lemma 6 For β ∈ RN , let Fβ =
∑N

j=1 βj1An
j
. Assume that Assumption A4 is

satisfied. If
1

√
nvnγn

ζ

(√
2φ̄

vnγn infX g

)
→ 0,

then
lim
n→∞

E sup
β∈T
|An(Fβ) − A(Fβ)| = 0.

Proof Let

sn =

√
2φ̄

vnγn infX g
,

and let ‖β‖∞ = max1≤ j≤N |βj | be the supremum norm of β = (β1, . . . , βN ) ∈ R
N .

By definition of T , we have, for all β ∈ T ,

sup
X
|Fβ | = sup

X

�� N∑
j=1

βj1An
j

�� ≤ ‖β‖∞ ≤ sn.

In addition, according to Assumption A4, we may write, for β1 and β2 ∈ T ,

|φ(Fβ1 (x), y) − φ(Fβ2 (x), y)| ≤ ζ(sn)|Fβ1 (x) − Fβ2 (x)| ≤ ζ(sn)‖β1 − β2‖∞.

This shows that the process ( An(Fβ) − A(Fβ)
ζ(sn)

)
β∈T

is subgaussian [e.g., van Handel, 2016, Chapter 5] for the distance d(β1, β2) =
1√
n
‖β1−β2‖∞. Now, let N(T, d, ε) denote the ε-covering number ofT for the distance

d. Then, by Dudley’s inequality [van Handel, 2016, Corollary 5.25], one has
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E sup
β∈T
(An(Fβ) − A(Fβ)) ≤ 12ζ(sn)

∫ ∞

0

√
log

(
N(T,

1
√

n
‖ · ‖∞, ε)

)
dε

= 12ζ(sn) ·
1
√

n

∫ ∞

0

√
log(N(T, ‖ · ‖∞, ε))dε.

Let B2(0,1) denote the unit Euclidean ball in (RN , ‖ · ‖2). Since T = snB2(0,1), we
see that

E sup
β∈T
(An(Fβ) − A(Fβ)) ≤ 12ζ(sn) ·

sn
√

n

∫ ∞

0

√
log(B2(0,1), ‖ · ‖∞, ε)dε.

But ‖ · ‖2 ≤
√

N ‖ · ‖∞, and so

E sup
β∈T
(An(Fβ) − A(Fβ)) ≤ 12ζ(sn) ·

sn
√

n

∫ ∞

0

√
log

(
B2(0,1),

1
√

N
‖ · ‖2, ε

)
dε

= 12ζ(sn) ·
sn
√

n
·

1
√

N

∫ ∞

0

√
log(3/ε)Ndε

= 12
snζ(sn)
√

n

∫ ∞

0

√
log(3/ε)dε.

In the last equality, we used the fact that N(B2(0,1), ‖ · ‖2, ε) equals 1 for ε ≥ 1 and
is not larger than (3/ε)N for ε < 1 [e.g., van Handel, 2016, Chapter 5]. The same
conclusion holds for E supβ∈T (A(Fβ) − An(Fβ)), and this proves the result. �
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