
Optimization by Gradient Boosting

Gérard Biau and Benoît Cadre

AbstractGradient boosting is a state-of-the-art prediction technique that sequentially
produces a model in the form of linear combinations of elementary predictors—
typically decision trees—by solving an infinite-dimensional convex optimization
problem. We provide in the present paper a thorough analysis of two widespread
versions of gradient boosting, and introduce a general framework for studying these
algorithms from the point of view of functional optimization. We prove their conver-
gence as the number of iterations tends to infinity and highlight the importance of
having a strongly convex risk functional to minimize. We also present a reasonable
statistical context ensuring consistency properties of the boosting predictors as the
sample size grows. In our approach, the optimization procedures are run forever (that
is, without resorting to an early stopping strategy), and statistical regularization is
basically achieved via an appropriate L2 penalization of the loss and strong convexity
arguments.

1 Introduction

More than twenty years after the pioneering articles of Freund and Schapire [Scha-
pire, 1990, Freund, 1995, Freund and Schapire, 1996, 1997], boosting is still one
of the most powerful ideas introduced in statistics and machine learning. Freund
and Schapire’s AdaBoost algorithm and its numerous descendants have proven to
be competitive in a variety of applications, and are still able to provide state-of-
the-art decisions in difficult real-life problems. In addition, boosting procedures

Gérard Biau
Sorbonne Université, CNRS, LPSM, 4 place Jussieu, 75005 Paris, France e-mail: gerard.biau@
sorbonne-universite.fr

Benoît Cadre
Univ Rennes, CNRS, IRMAR - UMR 6625, F-35000 Rennes, France e-mail: benoit.cadre@
univ-rennes2.fr

1

gerard.biau@sorbonne-universite.fr
gerard.biau@sorbonne-universite.fr
benoit.cadre@univ-rennes2.fr
benoit.cadre@univ-rennes2.fr

2 Gérard Biau and Benoît Cadre

are computationally fast and comfortable with both regression and classification
problems. For surveys of various aspects of boosting algorithms, we refer to Meir
and Rätsch [2003], Bühlmann and Hothorn [2007], and to the monographs by Hastie
et al. [2009] and Bühlmann and van de Geer [2011]. These references point in
particular to approaches related to boosting, for example Frank and Wolfe [1956]
algorithm, Mallat and Zhang [1993] matching pursuit algorithm, and weak greedy
algorithms of Temlyakov [2000].

In a nutshell, the basic idea of boosting is to combine the outputs of many
“simple” predictors, in order to produce a powerful committee with performances
improved over the single members. Historically, the first formulations of Freund
and Schapire considered boosting as an iterative classification algorithm that is
run for a fixed number of iterations, and, at each iteration, selects one of the base
classifiers, assigns aweight to it, and outputs theweightedmajority vote of the chosen
classifiers. Later on, Breiman [1997, 1998, 1999, 2000, 2004] made in a series of
papers and technical reports the breakthrough observation that AdaBoost is in fact
a gradient-descent-type algorithm in a function space, thereby identifying boosting
at the frontier of numerical optimization and statistical estimation. This connection
was further emphasized by Friedman et al. [2000], who rederived AdaBoost as a
method for fitting an additive model in a forward stagewise manner. Following this,
Friedman [2001, 2002] developed a general statistical framework (both for regression
and classification) that (i) yields a direct interpretation of boosting methods from
the perspective of numerical optimization in a function space, and (ii) generalizes
them by allowing optimization of an arbitrary loss function. The term “gradient
boosting” was coined by the author, who paid a special attention to the case where
the individual additive components are decision trees. At the same time, Mason
et al. [1999, 2000] embraced a more mathematical approach, revealing boosting as
a principle to optimize a convex risk in a function space, by iteratively choosing a
weak learner that approximately points in the negative gradient direction.

This functional view of boosting has led to the development of algorithms in
many areas of machine learning and computational statistics, beyond regression
and classification. The history of boosting goes on today with algorithms such as
XGBoost [Extreme Gradient Boosting, Chen and Guestrin, 2016], a tree boosting
system widely recognized for its outstanding results in numerous data challenges.
[An overview of its successes is given in the introductive section of the paper
by Chen and Guestrin, 2016.] From a general point of view, XGBoost is but a
scalable implementation of gradient boosting that contains various systems and
algorithmic optimizations. Its mathematical principle is to perform a functional
gradient-type descent in a space of decision trees, while regularizing the objective
to avoid overfitting.

However, despite a long list of successes, much work remains to be done to
clarify the mathematical forces driving gradient boosting algorithms. Many influen-
tial articles regard boosting with a statistical eye and study the somewhat idealized
problem of empirical risk minimization with a convex loss [e.g., Blanchard et al.,
2003, Lugosi and Vayatis, 2004]. These papers essentially concentrate on the sta-
tistical properties of the approach (that is, consistency and rates of convergence as

Optimization by Gradient Boosting 3

the sample size grows) and often ignore the underlying optimization aspects. Other
important articles, such as Bühlmann and Yu [2003], Mannor et al. [2003], Zhang
and Yu [2005], Bickel et al. [2006], Bartlett and Traskin [2007] take advantage of the
iterative principle of boosting, but mainly focus on regularization via early stopping
(that is, stopping the boosting iterations at some point), without paying too much
attention to the optimization side. Notable exceptions are the pioneering notes of
Breiman cited above, and the original paper by Mason et al. [2000], who envision
gradient boosting as an infinite-dimensional numerical optimization problem and
pave the way for a more abstract analysis. All in all, there is to date no sound the-
ory of gradient boosting in terms of numerical optimization. This state of affairs
is a bit paradoxical, since optimization is certainly the most natural mathematical
environment for gradient-descent-type algorithms.

In line with the above, our main objective in this article is to provide a thorough
analysis of two widespread models of gradient boosting, due to Friedman [2001] and
Mason et al. [2000]. We introduce in Section 2 a general framework for studying the
algorithms from the point of viewof functional optimization in an L2 space, and prove
in Section 3 their convergence as the number of iterations tends to infinity. Our results
allow for a large choice of convex losses in the optimization problem (differentiable
or not), while highlighting the importance of having a strongly convex risk functional
to minimize. This point is interesting, since it provides some theoretical justification
for adding a penalty term to the objective, as advocated for example in the XGBoost
system of Chen and Guestrin [2016]. Thus, the main message of Section 3 is that,
under appropriate conditions, the sequence of boosted iterates converges towards
the minimizer of the empirical risk functional over the set of linear combinations of
weak learners. However, this does not guarantee that the output of the algorithms
(i.e., the boosting predictor) enjoys good statistical properties, as overfitting may
kick in. For this reason, we present in Section 4 a reasonable framework ensuring
consistency properties of the boosting predictors as the sample size grows. In our
approach, the optimization procedures are run forever (that is, without resorting to
an early stopping strategy), and statistical regularization is basically achieved via an
appropriate L2 penalization of the loss and strong convexity arguments. For clarity,
most proofs are gathered in the Supplementary Material Document.

Before embarking on the analysis, we would like to stress that the present paper
is theoretical in nature and that its main goal is to clarify/solidify some of the
optimization ideas that are behind gradient boosting. In particular, we do not report
experimental results, and refer to the specialized literature on (extreme) gradient
boosting for discussions on the computational aspects and experiments with real-
world data.

2 Gradient boosting

The purpose of this section is to describe the gradient boosting procedures that we
analyze in the paper.

4 Gérard Biau and Benoît Cadre

2.1 Mathematical context

We assume to be given a sample Dn = {(X1,Y1), . . . , (Xn,Yn)} of i.i.d. observations,
where each pair (Xi,Yi) takes values in X × Y . Throughout, X is a Borel subset
of Rd , and Y ⊂ R is either a finite set of labels (for classification) or a subset of R
(for regression). The vector space Rd is endowed with the Euclidean norm ‖ · ‖.

Our goal is to construct a predictor F : X → R that assigns a response to each
possible value of an independent random observation distributed as X1. In the context
of gradient boosting, this general problem is addressed by considering a class F
of functions f : X → R (called the weak or base learners) and minimizing some
empirical risk functional

Cn(F) =
1
n

n∑
i=1

ψ(F(Xi),Yi)

over the linear combinations of functions in F . The function ψ : R × Y → R+,
called the loss, is convex in its first argument and measures the cost incurred by
predicting F(Xi) when the answer is Yi . For example, in the least squares regression
problem, ψ(x, y) = (y − x)2 and

Cn(F) =
1
n

n∑
i=1
(Yi − F(Xi))

2.

However, many other examples are possible, as we will see below. Let δz denote
the Dirac measure at z, and let µn = (1/n)

∑n
i=1 δ(Xi ,Yi) be the empirical measure

associated with the sample Dn. Clearly,

Cn(F) = Eψ(F(X),Y),

where (X,Y) denotes a random pair with distribution µn and the symbol E denotes
the expectation with respect to µn. Naturally, the theoretical (i.e., population) version
of Cn is

C(F) = Eψ(F(X1),Y1),

where now the expectation is taken with respect to the distribution of (X1,Y1). It
turns out that most of our subsequent developments are independent of the context,
whether empirical or theoretical. Therefore, to unify the notation, we let throughout
(X,Y) be a generic pair of random variables with distribution µX ,Y , keeping in mind
that µX ,Y may be the distribution of (X1,Y1) (theoretical risk), the standard empirical
measure µn (empirical risk), or any smoothed version of µn.

We let µX be the distribution of X , L2(µX) the vector space of all measurable
functions f : X → R such that

∫
| f |2dµX < ∞, and denote by 〈·, ·〉µX and ‖ ·‖µX the

corresponding norm and scalar product. Thus, for now, our problem is to minimize
the quantity

C(F) = Eψ(F(X),Y)

Optimization by Gradient Boosting 5

over the linear combinations of functions in a given subset F of L2(µX). A typical
example for F is the collection of all binary decision trees inRd using axis parallel
cuts with k terminal nodes. In this case, each f ∈ F takes the form f =

∑k
j=1 βj1A j ,

where (β1, . . . , βk) ∈ R
k and A1, . . . , Ak is a tree-structured partition ofRd [Devroye

et al., 1996, Chapter 20].
As noted earlier, we assume that, for each y ∈ Y , the function ψ(·, y) is convex.

In the framework we have in mind, the function ψ may take a variety of different
forms, ranging from standard (regression or classification) losses to more involved
penalized objectives. It may also be differentiable or not. Before discussing some
examples in detail, we list assumptions thatwill be needed at some point. Throughout,
we let ξ(·, y) = ∂−x ψ(·, y) (left derivative) be a subgradient of the convex function
ψ(·, y) (the choice of a specific subgradient ξ(·, y) has no impact on the results). In
particular, for all (x1, x2) ∈ R

2,

ψ(x1, y) ≥ ψ(x2, y) + ξ(x2, y)(x1 − x2). (1)

Assumption A1

A1 One has Eψ(0,Y) < ∞. In addition, for all F ∈ L2(µX), there exists δ > 0 such
that

sup
G∈L2(µX):‖G−F ‖µX ≤δ

E|∂−x ψ(G(X),Y)|
2 < ∞.

This assumption ensures that the convex functional C is locally bounded (in
particular,C(F) < ∞ for all F ∈ L2(µX), andC is continuous). Indeed, by inequality
(1), for all G ∈ L2(µX),

ψ(G(x), y) ≤ ψ(0, y) + ξ(G(x), y)G(x).

Therefore, by Assumption A1 and the Cauchy-Schwarz inequality,

Eψ(G(X),Y) ≤ Eψ(0,Y) +
(
Eξ(G(X),Y)2EG(X)2

)1/2
,

so that C is locally bounded. Naturally, Assumption A1 is automatically satisfied for
the choice µX ,Y = µn.
Assumption A2

A2 There exists α > 0 such that, for all y ∈ Y , the function ψ(·, y) is α-strongly
convex, i.e., for all (x1, x2) ∈ R

2 and t ∈ [0,1],

ψ(t x1 + (1 − t)x2, y) ≤ tψ(x1, y) + (1 − t)ψ(x2, y) −
α

2
t(1 − t)(x1 − x2)

2.

This assumption will be used in most, but not all, results. Strong convexity will
play an essential role in the statistical Section 4. We note that, under Assumption
A2, for all (x1, x2) ∈ R

2,

ψ(x1, y) ≥ ψ(x2, y) + ξ(x2, y)(x1 − x2) +
α

2
(x1 − x2)

2, (2)

6 Gérard Biau and Benoît Cadre

which is of course an inequality tighter than (1). Furthermore, the α-strong convexity
of ψ(·, y) implies the α-strong convexity of the risk functional C over L2(µX).

In addition to Assumptions A1 and A2, we require the following:

A3 There exists a positive constant L such that, almost surely, for all (x1, x2) ∈ R
2,

|E(ξ(x1,Y) − ξ(x2,Y) | X)| ≤ L |x1 − x2 |.

(In the sequel, in order to lighten the text, we drop the “almost sure” wording
wherever conditional expectations are involved.) However esoteric this assumption
may seem, it is in fact mild and provide a framework that encompasses a large variety
of familiar situations. In particular, Assumption A3 admits a stronger version A′3,
which is useful as soon as the function ψ is continuously differentiable with respect
to its first variable:

A′3 For all y ∈ Y , the function ψ(·, y) is continuously differentiable, and there exists
a positive constant L such that, for all (x1, x2, y) ∈ R

2 × Y ,

|∂xψ(x1, y) − ∂xψ(x2, y)| ≤ L |x1 − x2 |.

Assumption A′3 implies A3, but the converse is not true. To see this, just note that,
in the smooth situation A′3, we have ξ(x, y) = ∂xψ(x, y). Therefore,

E(ξ(x1,Y) | X) =
∫

∂xψ(x1,Y)µY |X (dy),

where µY |X is the conditional distribution of Y given X . Assumption A3 (or A′3)
plays a key role in controlling the decrease of the risk functional along the boosting
iterations, as can be seen very clearly in Lemma 1 and Lemma 2. This type of
Lipschitz hypotheses is classical in the optimization literature [e.g., Bubeck, 2015].
We also note that, in the context of A′3 , the functional C is differentiable at any
F ∈ L2(µX) in the direction G ∈ L2(µX), with differential

dC(F; G) = 〈∇C(F),G〉µX ,

where ∇C(F)(x) :=
∫
∂xψ(F(x), y)µY |X=x(dy) is the gradient of C at F. How-

ever, Assumption A3 allows to deal with a larger variety of losses, including non-
differentiable ones, as shown in the examples below.

2.2 Some examples

Each of the loss functions that we discuss in this subsection corresponds to a ma-
chine learning algorithm, as thoroughly explained in Bühlmann and Hothorn [2007,
Section 3]. We refer to this article for more properties of these losses and for issues
regarding their practical implementation.

Optimization by Gradient Boosting 7

• A first canonical example, in the regression setting, is to let ψ(x, y) = (y − x)2

(squared error loss), which is 2-strongly convex in its first argument (Assumption
A2) and satisfies Assumption A1 as soon as EY2 < ∞. It also satisfies A′3, with
∂xψ(x, y) = 2(x − y) and L = 2.

• Another example in regression is the loss ψ(x, y) = |y − x | (absolute error loss),
which is convex but not strongly convex in its first argument. Whenever strong
convexity of the loss is required, a possible strategy is to regularize the objective
via an L2-type penalty, and take

ψ(x, y) = |y − x | + γx2,

where γ is a positive parameter (possibly function of the sample size n in the
empirical setting). This loss is (2γ)-strongly convex in x and satisfies A1 and A2
wheneverE|Y | < ∞, with ξ(x, y) = sgn(x−y)+2γx (with sgn(u) = 21[u>0]−1 for
u , 0 and sgn(0) = 0). On the other hand, the function ψ(·, y) is not differentiable
at y, so that the smoothness Assumption A′3 is not satisfied. However,

E(ξ(x1,Y) − ξ(x2,Y) | X) =
∫
(sgn(x1 − y) − sgn(x2 − y))µY |X (dy) + 2γ(x1 − x2)

= µY |X ((−∞, x1)) − µY |X ((−∞, x2)) + 2γ(x1 − x2)

− µY |X ((x1,∞)) + µY |X ((x2,∞)).

Thus, if we assume for example that µY |X has a density (with respect to the
Lebesgue measure) bounded by B, then

|E(ξ(x1,Y) − ξ(x2,Y) | X)| ≤ 2(B + γ)|x1 − x2 |,

and Assumption A3 is therefore satisfied. Of course, in the empirical setting,
assuming that µY |X has a density precludes the use of the empirical measure µn
for µX ,Y . A safe and simple alternative is to consider a smoothed version µ̃n of
µn [based, for example, on a kernel estimate; see Devroye and Györfi, 1985], and
to minimize the functional

Cn(F) =
∫
|y − F(x)| µ̃n(dx,dy) + γ

∫
F(x)2 µ̃n(dx)

over the linear combinations of functions in F .
• In the ±1-classification problem, the final classification rule is +1 if F(x) > 0 and
−1 otherwise. Often, the function ψ(x, y) has the form φ(yx), where φ : R→ R+
is convex. Classical losses include the choices φ(u) = ln2(1 + e−u) (logit loss),
φ(u) = e−u (exponential loss), and φ(u) = max(1 − u,0) (hinge loss). None of
these losses is strongly convex, but here again, this can be repaired whenever
needed by regularizing the problem via

ψ(x, y) = φ(yx) + γx2, (3)

8 Gérard Biau and Benoît Cadre

where γ > 0. It is for example easy to see that ψ(x, y) = ln2(1 + e−yx) + γx2

satisfies Assumptions A1, A2, and A′3. This is also true for the penalized sigmoid
loss ψ(x, y) = (1 − tanh(βyx)) + γx2, where β is a positive parameter. In this
case, ψ(·, y) is 2(γ − β2)-strongly convex as soon as β < √γ. Another interesting
example in the classification setting is the loss ψ(x, y) = φ(yx) + γx2, where

φ(u) =
{
−u + 1 if u ≤ 0
e−u if u > 0.

We leave it as an easy exercise to prove that Assumptions A1, A2, and A′3 are
satisfied. Examples could be multiplied endlessly, but the point we wish to make
is that our assumptions are mild and allow to consider a large variety of learning
problems. We also emphasize that regularized objectives of the form (3) are
typically in action in the Extreme Gradient Boosting system of Chen and Guestrin
[2016].

2.3 Two algorithms

Let lin(F) be the set of all linear combinations of functions in F , our collection of
base predictors in L2(µX). So, each F ∈ lin(F) has the form F =

∑J
j=1 βj fj , where

(β1, . . . , βJ) ∈ R
J and f1, . . . , fJ are elements of F . Finding the infimum of the

functional C over lin(F) is a challenging infinite-dimensional optimization prob-
lem, which requires an algorithm. The core idea of the gradient boosting approach
is to greedily locate the infimum by producing a combination of base predictors
via a gradient-descent-type algorithm in L2(µX). Focusing on the basics, this can
be achieved by two related yet different strategies, which we examine in greater
mathematical details below. Algorithm 1 appears in Mason et al. [2000], whereas
Algorithm 2 is essentially due to Friedman [2001].

It is implicitly assumed throughout this paragraph that AssumptionA1 is satisfied.
We recall that under this assumption, the convex functional C is locally bounded and
therefore continuous. Thus, in particular,

inf
F ∈lin(F)

C(F) = inf
F ∈lin(F)

C(F),

where lin(F) is the closure of lin(F) in L2(µX). Loosely speaking, looking for the
infimum ofC over lin(F) is the same as looking for the infimum ofC over all (finite)
linear combinations of base functions in F . We note in addition that if Assumption
A2 is satisfied, then there exists a unique function F̄ ∈ lin(F) (which we call the
boosting predictor) such that

C(F̄) = inf
F ∈lin(F)

C(F). (4)

Optimization by Gradient Boosting 9

Algorithm 1. In this approach, we consider a class F of functions f : X → R

such that 0 ∈ F , f ∈ F ⇔ − f ∈ F , and ‖ f ‖µX = 1 for f , 0. An example is the
collection F of all ±1-binary trees in Rd using axis parallel cuts with k terminal
nodes (plus zero). Each nonzero f ∈ F takes the form f =

∑k
j=1 βj1A j , where

|βj | = 1 and A1, . . . , Ak is a tree-structured partition of Rd [Devroye et al., 1996,
Chapter 20]. The parameter k is a measure of the tree complexity. For example, trees
with k = d + 1 are such that lin(F) = L2(µX) [Breiman, 2000]. Thus, in this case,

inf
F ∈lin(F)

C(F) = inf
F ∈L2(µX)

C(F).

Although interesting from the point of view of numerical optimization, this situation
is however of little interest for statistical learning, as we will see in Section 4.

Suppose now that we have a function F ∈ lin(F) and wish to find a new f ∈ F
to add to F so that the risk C(F + w f) decreases at most, for some small value of
w. Viewed in function space terms, we are looking for the direction f ∈ F such
that C(F + w f) most rapidly decreases. Assume for the moment, to simplify, that ψ
is continuously differentiable in its first argument. Then the knee-jerk reaction is to
take the opposite of the gradient of C at F, but since we are restricted to choosing
our new function in F , this will in general not be a possible choice. Thus, instead,
we start from the approximate identity

C(F) − C(F + w f) ≈ −w〈∇C(F), f 〉µX (5)

and choose f ∈ F that maximizes −〈∇C(F), f 〉µX . For an arbitrary (i.e., not neces-
sarily differentiable) ψ, we simply replace the gradient by a subgradient and choose
f ∈ F that maximizes −Eξ(F(X),Y) f (X). This motivates the following iterative
algorithm:

Gradient Boosting Algorithm 1
1: Require (wt)t a sequence of positive real numbers.
2: Set t = 0 and start with F0 ∈ F .
3: Compute

ft+1 ∈ arg max f ∈F −Eξ(Ft (X),Y) f (X) (6)
and let Ft+1 = Ft + wt+1 ft+1.

4: Take t ← t + 1 and go to step 3.

(Throughout the article, it is assumed to simplify that maximizers as in (6)
exist. This requirement can be avoided, for example, by working with approximate
εt -maximizers, as long as the quality of the approximation εt is controlled. This
essentially adds technical terms to the equations, without adding much to the general
picture.) We emphasize that the method performs a gradient-type descent in the
function space L2(µX). At each iteration, it chooses a base predictor to include in
the combination. This predictor is chosen so as to maximally reduce the value of
the risk functional. However, the main difference with a standard gradient descent

10 Gérard Biau and Benoît Cadre

is that Algorithm 1 forces the descent direction to belong to F . To understand the
rationale behind this principle, assume that ψ is continuously differentiable in its
first argument. As we have seen earlier, in this case,

−Eξ(Ft (X),Y) f (X) = −〈∇C(Ft), f 〉µX ,

and, for ∇C(Ft) , 0,

−∇C(Ft)

‖∇C(Ft)‖µX
= arg maxF ∈L2(µX):‖F ‖µX =1 − 〈∇C(Ft),F〉µX .

Thus, at each step, Algorithm 1 mimics the computation of the negative gradient by
restricting the search of the supremum to the class F , i.e., by taking

ft+1 ∈ arg max f ∈F − 〈∇C(Ft), f 〉µX ,

which is exactly (6). In the empirical case (i.e., µX ,Y = µn) this descent step takes
the form

ft+1 ∈ arg max f ∈F −
1
n

n∑
i=1
∇C(Ft)(Xi) · f (Xi).

Finding this optimum is a non-trivial computational problem, which necessitates a
strategy. For example, in the spirit of the CART algorithm of Breiman et al. [1984],
Chen and Guestrin [2016] use in the XGBoost package a greedy approach that starts
from a single leaf and iteratively adds branches to the tree.

The sequence (wt)t is the sequence of step sizes, which are allowed to change
at every iteration and should be carefully chosen for convergence guarantees. It is
also stressed that the algorithm is assumed to be run forever, i.e., stopping or not
the iterations is not an issue at this stage of the analysis. As we will see in the next
section, the algorithm is convergent under our assumptions (with an appropriate
choice of the sequence (wt)t), in the sense that

lim
t→∞

C(Ft) = inf
F ∈lin(F)

C(F).

Of course, in the empirical case, the statistical properties as n→ ∞ of the limit de-
serve a special treatment, connected with possible overfitting issues. This important
discussion is postponed to Section 4.

Algorithm 2. The principle we used so far rests upon the simple Taylor-like identity
(5), which encourages us to imitate the definition of the negative gradient in the class
F . Still starting from (5), there is however another strategy, maybe more natural,
which consists in choosing ft+1 by a least squares approximation of −ξ(Ft (X),Y).
To follow this route, we modify a bit the collection of weak learners, and consider
a class P ⊂ L2(µX) of functions f : X → R such that f ∈ P ⇔ − f ∈ P ,
and a f ∈ P for all (a, f) ∈ R ×P (in particular, 0 ∈ P , which is thus a cone of
L2(µX)). Binary trees inRd using axis parallel cuts with k terminal nodes are a good

Optimization by Gradient Boosting 11

example of a possible class P . These base learners are of the form f =
∑k

j=1 βj1A j ,
where this time (β1, . . . , βk) ∈ R

k , without any normative constraint.
Given Ft , the idea of Algorithm 2 is to choose ft+1 ∈ P that minimizes the

squared norm between −ξ(Ft (X),Y) and ft+1(X), i.e., to let

ft+1 ∈ arg min f ∈PE(−ξ(Ft (X),Y) − f (X))2,

or, equivalently,

ft+1 ∈ arg min f ∈P

(
2Eξ(Ft (X),Y) f (X) + ‖ f ‖2µX

)
.

A more algorithmic format is shown below.

Gradient Boosting Algorithm 2
1: Require ν a positive real number.
2: Set t = 0 and start with F0 ∈ P .
3: Compute

ft+1 ∈ arg min f ∈P

(
2Eξ(Ft (X),Y) f (X) + ‖ f ‖

2
µX

)
(7)

and let Ft+1 = Ft + ν ft+1.
4: Take t ← t + 1 and go to step 3.

We note that, contrary to Algorithm 1, the step size ν is kept fixed during the iter-
ations. We will see in the next section that choosing a small enough ν (depending in
particular on the Lipschitz constant of AssumptionA3) is sufficient to ensure the con-
vergence of the algorithm. In the empirical setting, assuming that ψ is continuously
differentiable in its first argument, the optimization step (7) reads

ft+1 ∈ arg min f ∈P

1
n

n∑
i=1
(−∇C(Ft)(Xi) − f (Xi))

2.

Therefore, in this context, the gradient boosting algorithm fits ft+1 to the negative
gradient instances −∇C(Ft)(Xi) via a least squares minimization. When ψ(x, y) =
(y − x)2/2, then −∇C(Ft)(Xi) = Yi − Ft (Xi), and the algorithm simply fits ft+1 to
the residuals Yi − Ft (Xi) at step t, in the spirit of original boosting procedures. This
observation is at the source of gradient boosting, which Algorithm 2 generalizes to
a much larger variety of loss functions and to more abstract measures.

3 Convergence of the algorithms

This section is devoted to analyzing the convergence of the gradient boosting Algo-
rithm 1 and Algorithm 2 as the number of iterations t tends to infinity. Despite its
importance, no results (or only partial answers) have been reported so far on this
question.

12 Gérard Biau and Benoît Cadre

3.1 Algorithm 1

The convergence of this algorithm rests upon the choice of the step size sequence
(wt)t , which needs to be carefully specified. We take w0 > 0 arbitrarily and set

wt+1 = min
(
wt,−(2L)−1Eξ(Ft (X),Y) ft+1(X)

)
, t ≥ 0, (8)

where L is the Lipschitz constant of Assumption A3. Clearly, the sequence (wt)t is
nonincreasing. It is also nonnegative. To see this, just note that, by definition,

ft+1 ∈ arg max f ∈F − Eξ(Ft (X),Y) f (X),

and thus, since 0 ∈ F , −Eξ(Ft (X),Y) ft+1(X) ≥ 0. The main result of this section is
encapsulated in the following theorem.
Theorem 1 Assume that Assumptions A1 and A3 are satisfied, and let (Ft)t be
defined by Algorithm 1 with (wt)t as in (8). Then

lim
t→∞

C(Ft) = inf
F ∈lin(F)

C(F).

Proof See Supplementary Material Document. �

Observe that Theorem 1 holds without Assumption A2, i.e., there is no need
here to assume that the function ψ(x, y) is strongly convex in x. However, when-
ever Assumption A2 is satisfied, there exists as in (4) a unique boosting predictor
F̄ ∈ lin(F) such that C(F̄) = infF ∈lin(F) C(F), and the theorem guarantees that
limt→∞ C(Ft) = C(F̄).

The proof of the theorem relies on the following lemma, which states that the
sequence (C(Ft))t is nonincreasing. SinceC(F) is nonnegative for all F, we conclude
that C(Ft) ↓ infk C(Fk) as t →∞. This is the key argument to prove the convergence
of C(Ft) towards infF ∈lin(F) C(F).
Lemma 1 Assume that Assumptions A1 and A3 are satisfied. Then, for each t ≥ 0,

C(Ft) − C(Ft+1) ≥ Lw2
t+1.

In particular, C(Ft) ↓ infk C(Fk) as t →∞,
∑

t≥1 w
2
t < ∞, and limt→∞ wt = 0.

Proof Let t ≥ 0. Recall that Ft+1 = Ft + wt+1 ft+1. If ft+1 = 0, then wt+1 = 0 and
Ft+1 = Ft , so that there is nothing to prove. Thus, in the remainder of the proof, it
is assumed that ft+1 is different from zero and, in turn, that ‖ ft+1‖µX = 1. Applying
technical Lemma 1 of the Supplementary Material Document, we may write

C(Ft) ≥ C(Ft+1) − w
2
t+1L − wt+1Eξ(Ft (X),Y) ft+1(X)

≥ C(Ft+1) − w
2
t+1L + 2Lwt+1 min

(
wt,−(2L)−1Eξ(Ft (X),Y) ft+1(X)

)
= C(Ft+1) + Lw2

t+1,

by definition (8) of the sequence (wt)t . �

Optimization by Gradient Boosting 13

Theorem 1 ensures that the risk of the boosting iterates gets closer and closer
to the minimal risk as the number of iterations grows. It turns out that, whenever
lin(F) = L2(µX), under Assumption A2 and the smooth framework of Assumption
A′3, the sequence (Ft)t itself approaches F̄ = arg minF ∈L2(µX)C(F), as shown in
Corollary 1 below. This corollary is an easy consequence of Theorem 1 and the
strong convexity of C.

Corollary 1 Assume that lin(F) = L2(µX). Assume, in addition, that Assumptions
A1, A2, and A′3 are satisfied, and let (Ft)t be defined by Algorithm 1 with (wt)t as in
(8). Then

lim
t→∞
‖Ft − F̄‖µX = 0,

where
F̄ = arg minF ∈L2(µX)C(F).

Proof By the α-strong convexity of C,

C(Ft) ≥ C(F̄) + Eξ(F̄,Y)(Ft − F̄) +
α

2
‖Ft − F̄‖2µX ,

which, under A′3, takes the more familiar form

C(Ft) ≥ C(F̄) + 〈∇C(F̄),Ft − F̄〉µX +
α

2
‖Ft − F̄‖2µX .

But, since F̄ = arg minF ∈L2(µX)C(F), we know that 〈∇C(F̄),Ft − F̄〉µX = 0. Thus,

C(Ft) − C(F̄) ≥
α

2
‖Ft − F̄‖2µX ,

and the conclusion follows from Theorem 1. �

We would like to close this subsection by stressing that Theorem 1 is not quan-
titative, in the sense that nothing is known about the speed of convergence when
increasing the number of iterations of the algorithm. This is an open question, which
unfortunately cannot be dealt with in the present article. In line with the remarks of a
referee, we believe that the existing analyses for L2Boosting [e.g., Bühlmann, 2006]
and weak greedy algorithms [e.g., Temlyakov, 2000, Champion et al., 2014] could
be a promising route to follow.

3.2 Algorithm 2

Recall that, in this context, each iteration picks an ft+1 ∈P that satisfies

2Eξ(Ft (X),Y) ft+1(X) + ‖ ft+1‖
2
µX
≤ 2Eξ(Ft (X),Y) f (X) + ‖ f ‖2µX for all f ∈P .

14 Gérard Biau and Benoît Cadre

Theorem 2 Assume that Assumptions A1-A3 are satisfied, and let (Ft)t be defined
by Algorithm 2 with 0 < ν < 1/(2L). Then

lim
t→∞

C(Ft) = inf
F ∈lin(P)

C(F).

Proof See Supplementary Material Document. �

The architecture of the proof is similar to that of Theorem 1. (Note however that
this theorem requires the strong convexity Assumption A2). In particular, we need
the following important lemma, which states that the risk of the iterates decreases at
each step of the algorithm.

Lemma 2 Assume that AssumptionsA1 andA3 are satisfied, and let 0 < ν < 1/(2L).
Then, for each t ≥ 0,

C(Ft) − C(Ft+1) ≥
ν

2
(1 − 2νL)‖ ft+1‖

2
µX
.

In particular,C(Ft) ↓ infk Ck as t →∞,
∑

t≥1 ‖ ft ‖2µX < ∞, and limt→∞ ‖ ft ‖µX = 0.

Proof Let t ≥ 0. Applying technical Lemma 1 of the Supplementary Material
Document, we may write

C(Ft)

≥ C(Ft+1) − ν
2L‖ ft+1‖

2
µX
− νEξ(Ft (X),Y) ft+1(X)

= C(Ft+1) − ν
2L‖ ft+1‖

2
µX
−
ν

2
(
2Eξ(Ft (X),Y) ft+1(X) + ‖ ft+1‖

2
µX

)
+
ν

2
‖ ft+1‖

2
µX
.

Upon noting that 2Eξ(Ft (X),Y) ft+1(X)+ ‖ ft+1‖
2
µX
≤ 0 (since 0 ∈P), we conclude

that
C(Ft) ≥ C(Ft+1) +

ν

2
(1 − 2νL)‖ ft+1‖

2
µX
.

�

Remark 1 The parameter ν can be regarded as controlling the learning rate of the
boosting procedure. The lower bound of Lemma 2 suggests the optimal value ν? =
1/(4L). In practice, ν is often chosen “small enough”, which leads to a larger number
of iterations (and thus more computing time) for the same training risk. All in all,
both ν and the number of iterations control prediction risk and these parameters do
not operate independently.

As in Algorithm 1, the sequence (Ft)t approaches F̄ = arg minF ∈L2(µX)C(F),
provided lin(P) = L2(µX) and A′3 is satisfied in place of A3. This is summarized
in the following Corollary. Its proof is similar to the proof of Corollary 1 and is
therefore omitted.

Corollary 2 Assume that lin(P) = L2(µX). Assume, in addition, that Assumptions
A1, A2, and A′3 are satisfied, and let (Ft)t be defined by Algorithm 2 with 0 < ν <
1/(2L). Then

Optimization by Gradient Boosting 15

lim
t→∞
‖Ft − F̄‖µX = 0,

where
F̄ = arg minF ∈L2(µX)C(F).

Theorem 1/Corollary 1 and Theorem 2/Corollary 2 guarantee that, under appro-
priate assumptions, Algorithm 1 and Algorithm 2 converge towards the infimum
of the risk functional. Given the unusual form of these algorithms, which have the
flavor of gradient descents while being different, these results are all but obvious
and cannot be deduced from general optimization principles. As far as we know,
they are novel in the gradient boosting literature and extend our understanding of the
approach.

Perhaps the most natural framework of Algorithm 1 and Algorithm 2 is when
µX ,Y = µn, the empirical measure. In this statistical context, both algorithms track
the infimum of the empirical risk functional Cn(F) = 1

n

∑n
i=1 ψ(F(Xi),Yi) over the

linear combinations of weak learners in F (Algorithm 1) or in P (Algorithm
2). This task is achieved by sequentially constructing linear combinations of base
learners, of the form Ft = F0 +

∑t
k=1 wk fk with fk ∈ F for Algorithm 1, and

Ft = F0 + ν
∑t

k=1 fk with fk ∈ P for Algorithm 2. We stress that, in the empirical
case, the boosted iterates Ft and their eventual limit F̄n are measurable functions of
the data set Dn. That being said, Theorem 1 and Theorem 2 are numerical-analysis-
type results, which do not provide information on the statistical properties of the
boosting predictor F̄n. From this point of view, more or less catastrophic situations
can happen, depending on the “size” of lin(F) (Algorithm 1) or lin(P) (Algorithm
2), which should not be neither too small (to catch complex decisions) nor excessively
large (to avoid overfitting).

To be convinced of this, consider for example Algorithm 1 with ψ(x, y) = (y− x)2

(least squares regression problem) andF = all binary trees with d+1 leaves. Denote
by Pn the empirical measure based on the Xi only, 1 ≤ i ≤ n. Then, by Theorem 1,
limt→∞ Cn(Ft) = Cn(F̄n), where

F̄n = arg minF ∈L2(Pn)
Cn(F).

Assume, to simplify, that all Xi are different. It is then easy to see that the boosting
predictor F̄n takes the value Yi at each Xi and is arbitrarily defined elsewhere. Of
course, in general, such a function F̄n does not converge as n → ∞ towards the
regression function F?(x) = E(Y |X = x), and this is a typical situation where the
gradient boosting algorithms overfit. The overfitting issue of boosting procedures
has been recognized for a long time, and various approaches have been proposed
to combat it, in particular via early stopping [that is, stopping the iterations before
convergence; see, e.g., Bühlmann and Yu, 2003, Mannor et al., 2003, Zhang and Yu,
2005, Bickel et al., 2006, Bartlett and Traskin, 2007].

Nevertheless, the natural question we would like to answer is whether there
exists a reasonable context in which the boosting predictors enjoy good statistical
properties as the sample size grows, without resorting to any stopping strategy. The
next section provides a positive response. The major constraint we face, imposed by

16 Gérard Biau and Benoît Cadre

the gradient-descent nature of the algorithms, is that we are required to perform a
minimization over a vector space (lin(F) for Algorithm 1 and lin(P) for Algorithm
2). In particular, there is no question of imposing constraints on the coefficients of
the linear combinations, which, for example, cannot reasonably be assumed to be
bounded. As we will see, the trick is to carefully constrain the “complexity” of the
vector spaces lin(F) or lin(P) in a manner compatible with the algorithms. The
second message is the importance of having a strongly convex risk functional to
minimize, which, in some way, restrict the norm of the sequence (Ft)t≥0 of boosted
iterates. As we have pointed out several times, if the loss function is not natively
strongly convex in its first argument, then this type of regularization can be achieved
by resorting to an L2-type penalty.

4 Large sample properties

We consider in this section a functional minimization problem whose solution can
be computed by gradient boosting and enjoys non-trivial statistical properties. The
context and notation are similar to that of the previous sections, but must be slightly
adapted to fit this new framework.

For simplicity, it will be assumed throughout that X is a compact subset of Rd .
We consider i.i.d. data Dn = {(X1,Y1), . . . , (Xn,Yn)} taking values in X × Y , and
let Pn be the empirical measure based on the Xi only, 1 ≤ i ≤ n. We denote by P the
common distribution of the Xi and assume that P has a density g with respect to the
Lebesgue measure λ on Rd , with

0 < inf
X

g ≤ sup
X

g < ∞.

We concentrate on Algorithm 1 and take as weak learners a finite class Fn of simple
functions on X with ±1 values, which may possibly vary with the sample size n.
It is actually easy to verify that all subsequent results are valid for Algorithm 2 by
letting Pn = {λ f : f ∈ Fn, λ ∈ R}.

The typical example we have in mind for Fn is a finite class of binary trees using
axis parallel cuts with k leaves. Of course, the parameter k has to be carefully chosen
as a function of the sample size to guarantee consistency, as we will see below.
The fact that the class Fn is supposed to be finite should not be too disturbing,
since in practice the optimization step (6) is typically performed over a finite family
of functions. This is for example the case when a CART-style top-down recursive
partitioning is used to compute the minimum at each iteration of the algorithm. In
this approach, the optimal tree in (6) is greedily searched for by passing from one
level of node to the next one with cuts that are located between two data points. So,
even though the collection Fn may be very large, it is nevertheless fair to assume
that its cardinal is finite.

As before, it is assumed that the identically zero function belongs toFn. So, in this
framework, we see that there exists a (large) integer N = N(n) ≥ 1 and a partition of

Optimization by Gradient Boosting 17

X into measurable subsets An
j , 1 ≤ j ≤ N , such that any F ∈ lin(Fn) takes the form

F =
∑N

j=1 αj1An
j
, where (α1, . . . , αN) ∈ R

N . To avoid pathological situations, we
assume that there exists a positive sequence (vn)n such that min1≤ j≤N λ(An

j) ≥ vn.
Of course, it is supposed that N →∞ as n tends to infinity.

We let φ : R × Y → R+ be a loss function, assumed to be convex in its first
argument and to satisfy φ̄ := supy∈Y φ(0, y) < ∞. In line with the previous sections,
we are interested in minimizing over lin(Fn) the empirical risk functional Cn(F)
defined by

Cn(F) =
1
n

n∑
i=1

ψ(F(Xi),Yi),

where ψ(x, y) = φ(x, y) + γnx2 and (γn)n is a sequence of positive parameters such
that limn→∞ γn = 0. (Note that γn depends only on n and is therefore kept fixed
during the iterations of the algorithm.) Put differently,

Cn(F) = An(F) + γn‖F‖2Pn
, (9)

where

An(F) =
1
n

n∑
i=1

φ(F(Xi),Yi).

Assumption A1 is obviously satisfied (with µX ,Y = µn, in the notation of Section 3),
and the same is true for Assumption A2 by the α-strong convexity of the function
ψ(·, y) for each fixed y, with α independent of y.

Remark 2 If the function φ(·, y) is natively α-strongly convex with a parameter α
independent of y, then we may consider the simplest problem of minimizing the
functional An(F). Indeed, in this case there is no need to resort to the γn‖F‖2Pn

penalty term since Lemma 3 of the Supplementary Material Document allows to
bound ‖F‖2Pn

. As we have seen in Section 2, this is for example the case in the least
squares problem, when φ(x, y) = (y − x)2. However, to keep a sufficient degree of
generality, we will consider in the following the more general optimization problem
(9).

Now, let
F̄n = arg minF ∈lin(Fn)

Cn(F).

We have learned in Theorem 1 that whenever AssumptionA3 is satisfied, the boosted
iterates (Ft)t of Algorithm 1 satisfy limt→∞ Cn(Ft) = Cn(F̄n), i.e.,

lim
t→∞

(
An(Ft) + γn‖Ft ‖

2
Pn

)
= An(F̄n) + γn‖F̄n‖

2
Pn
.

For F ∈ L2(P), the population counterpart of An(F) is the convex functional
A(F) := Eφ(F(X1),Y1), which is assumed to be locally bounded, and thus con-
tinuous. Throughout, we denote by F? a minimizer of A(F) over L2(P), i.e.,

F? ∈ arg minF ∈L2(P)A(F).

18 Gérard Biau and Benoît Cadre

We have for example F?(x) = E(Y |X = x) in the regression problem with φ(x, y) =
(y − x)2 and F?(x) = log(η(x)1−η(x)) in the classification problem with φ(x, y) =
log2(1 + e−yx), where η(x) = P(Y = 1|X = x).

Our goal in this section is to investigate the large sample properties of F̄n, i.e., to
analyze the statistical behavior of the boosting predictor F̄n as n→∞. In particular,
a sensible objective is to show that A(F̄n) gets asymptotically close to the minimal
risk A(F?) as the sample size grows. This necessitates a proof, since all we know for
now is that

An(F̄n) + γn‖F̄n‖
2
Pn
− A(F?) = inf

F ∈lin(Fn)

(
An(F) + γn‖F‖2Pn

− A(F?)
)
,

which is our starting point. The following assumption on φ will be needed in the
analysis:

A4 For all p ≥ 0, there exists a constant ζ(p) > 0 such that, for all (x1, x2, y) ∈ R
2×Y

with max(|x1 |, |x2 |) ≤ p,

|φ(x1, y) − φ(x2, y)| ≤ ζ(p)|x1 − x2 |.

It is readily seen that all classical convex losses in regression and classification
satisfy this local Lipschitz assumption. Finally, we let An(x) = An

j whenever x ∈ An
j ,

and, for E ⊂ Rd ,
diam(E) = sup

x,x′∈E
‖x − x ′‖.

Recall that φ̄ := supy∈Y φ(0, y) < ∞.

Theorem 3 Assume that Assumptions A3 (with ψ(x, y) = φ(x, y)+ γnx2) and A4 are
satisfied, and that F? is bounded. Assume, in addition, that diam(An(X)) → 0 in
probability as n→∞. Then, provided γn → 0, N →∞, log N

nvn
→ 0, and

1
√

nvnγn
ζ

(√
2φ̄

vnγn infX g

)
→ 0,

we have limn→∞EA(F̄n) = A(F?).

Proof See Supplementary Material Document. �

Themain message of this theorem is that, under appropriate conditions on the loss
and provided the size of the weak learner classes are judiciously increased, gradient
boosting does not overfit. In other words, in this framework, stopping the iterations
is not necessary and the algorithms may be run indefinitely, without worrying about
early stopping issues.

In line with Remark 2, we leave it as an exercise to prove that if the function φ(·, y)
is already α-strongly convex with a parameter α independent of y, then a similar
result holds with the conditions N →∞, log N

nvn
→ 0, and

Optimization by Gradient Boosting 19

1
√

nvn
ζ

(√
a

vn infX g

)
→ 0,

where a = 2
α supy∈Y |ξ(0, y)| +

√
2φ̄/α. In this case, we can take γn = 0 (i.e., no

penalty) and resort to Lemma 3 of the Supplementary Material Document to bound
the quantity ‖F‖2Pn

.
Next, we point out that the conditions of Theorem 3 are mild and cover a wide

variety of losses and possible classes of weak learners. As an example, let X =

[0,1]d and take for Fn the set of all binary trees on [0,1]d with kn leaves, where
cuts are perpendicular to the axes and located at the middle of the cells. Although
combinatorially rich, this family of trees is finite (see Figure 1 for an illustration in
dimension d = 2).

−1

1

1

0

+1

+1

−1

−1

1

1

0

+1

+1

+1

−1

1

1

0

+1

+1

−1

−1

1

1

0

−1+1+1

Fig. 1 Four examples of trees in the class Fn , in dimension d = 2, with kn = 4.

It is easy to verify that any F ∈ lin(Fn) takes the form F =
∑N

j=1 αj1An
j
, where

N ≤ 2dkn and the An
j , 1 ≤ j ≤ N , form a regular grid over [0,1]d . Thus, clearly,

vn ≥ 2−dkn . In addition, considering for example the loss φ(x, y) = (y − x)2, we see
that the conditions of Theorem 3 take the simple form

20 Gérard Biau and Benoît Cadre

kn →∞,
kn2dkn

n
→ 0, and

2dkn

√
n
→ 0.

Let us finally note that in the ±1-classification setting, each F defines a classifier gF
in a natural way, by

gF (x) =
{
+1 if F(x) > 0
−1 otherwise,

and the main concern is not the behavior of the theoretical risk A(F) with respect to
A(F?), but rather the proximity between the probability of error L(gF) := P(gF (X) ,
Y) and the Bayes risk L? := infg:X→{−1,1} P(g(X) , Y). For most classification
losses [Zhang, 2004, Bartlett et al., 2006], the difference L(gF) − L? is small as
long as A(F) − A(F?) is. In our framework, we conclude that for such well-behaved
losses, under the assumptions of Theorem 3,

lim
n→∞

EL(gF̄n
) = L?.

Acknowledgements We greatly thank the Editors and two referees for valuable comments and
insightful suggestions, which led to a substantial improvement of the paper.

References

P.L. Bartlett and M. Traskin. AdaBoost is consistent. Journal of Machine Learning
Research, 8:2347–2368, 2007.

P.L. Bartlett, M.I. Jordan, and J.D. McAuliffe. Convexity, classification, and risk
bounds. Journal of the American Statistical Association, 101:138–156, 2006.

P.J. Bickel, Y. Ritov, and A. Zakai. Some theory for generalized boosting algorithms.
Journal of Machine Learning Research, 7:705–732, 2006.

G. Blanchard, G. Lugosi, and N. Vayatis. On the rate of convergence of regularized
boosting classifiers. Journal of Machine Learning Research, 4:861–894, 2003.

L. Breiman. Arcing the edge. Technical Report 486, StatisticsDepartment, University
of California, Berkeley, 1997.

L. Breiman. Arcing classifiers (with discussion). The Annals of Statistics, 26:
801–849, 1998.

L. Breiman. Prediction games and arcing algorithms. Neural Computation, 11:
1493–1517, 1999.

L. Breiman. Some infinite theory for predictor ensembles. Technical Report 577,
Statistics Department, University of California, Berkeley, 2000.

L. Breiman. Population theory for boosting ensembles. The Annals of Statistics, 32:
1–11, 2004.

L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone. Classification and Regres-
sion Trees. Chapman & Hall/CRC Press, Boca Raton, 1984.

Optimization by Gradient Boosting 21

S. Bubeck. Convex optimization: Algorithms and complexity. Foundations and
Trends in Machine Learning, 8:231–357, 2015.

P. Bühlmann. Boosting for high-dimensional linear models. The Annals of Statistics,
34:559–583, 2006.

P. Bühlmann and T. Hothorn. Boosting algorithms: Regularization, prediction and
model fitting. Statistical Science, 22:477–505, 2007.

P. Bühlmann and S. van de Geer. Statistics for High-Dimensional Data: Methods,
Theory and Applications. Springer, Berlin, 2011.

P. Bühlmann and B. Yu. Boosting with the L2 loss: Regression and classification.
Journal of the American Statistical Association, 98:324–339, 2003.

M. Champion, C. Cierco-Ayrolles, S. Gadat, and M. Vignes. Sparse regression and
support recovery with L2-boosting algorithms. Journal of Statistical Planning
and Inference, 155:19–41, 2014.

T. Chen and C. Guestrin. XGBoost: A scalable tree boosting system. In Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 785–794. ACM, New York, 2016.

L. Devroye and L. Györfi. Nonparametric Density Estimation: The L1 View. Wiley,
New York, 1985.

L. Devroye, L. Györfi, and G. Lugosi. AProbabilistic Theory of Pattern Recognition.
Springer, New York, 1996.

M. Frank and P. Wolfe. An algorithm for quadratic programming. Naval Research
Logistics Quarterly, 3:95–110, 1956.

Y. Freund. Boosting a weak learning algorithm by majority. Information and
Computation, 121:256–285, 1995.

Y. Freund and R.E. Schapire. Experiments with a new boosting algorithm. In
S. Lorenza, editor,Machine Learning: Proceedings of the Thirteenth International
Conference onMachine Learning, pages 148–156. Morgan Kaufmann Publishers,
San Francisco, 1996.

Y. Freund and R.E. Schapire. A decision-theoretic generalization of on-line learning
and an application to boosting. Journal of Computer and System Sciences, 55:
119–139, 1997.

J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: A statistical
view of boosting (with discussion). The Annals of Statistics, 28:337–407, 2000.

J.H. Friedman. Greedy function approximation: A gradient boosting machine. The
Annals of Statistics, 29:1189–1232, 2001.

J.H. Friedman. Stochastic gradient boosting. Computational Statistics & Data
Analysis, 38:367–378, 2002.

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning: Data
Mining, Inference, and Prediction. Second Edition. Springer, New York, 2009.

G. Lugosi and N. Vayatis. On the Bayes-risk consistency of regularized boosting
methods. The Annals of Statistics, 32:30–55, 2004.

S.G. Mallat and Z. Zhang. Matching pursuits with time-frequency dictionaries.
IEEE Transactions on Signal Processing, 41:3397–3415, 1993.

22 Gérard Biau and Benoît Cadre

S. Mannor, R. Meir, and T. Zhang. Greedy algorithms for classification — consis-
tency, convergence rates, and adaptivity. Journal of Machine Learning Research,
4:713–742, 2003.

L. Mason, J. Baxter, P. Bartlett, and M. Frean. Boosting algorithms as gradient
descent. In S.A. Solla, T.K. Leen, and K. Müller, editors, Proceedings of the
12th International Conference on Neural Information Processing Systems, pages
512–518. The MIT Press, Cambridge, MA, 1999.

L. Mason, J. Baxter, P. Bartlett, and M. Frean. Functional gradient techniques for
combining hypotheses. In A.J. Smola, P.L. Bartlett, B. Schölkopf, and D. Schu-
urmans, editors, Advances in Large Margin Classifiers, pages 221–246. The MIT
Press, Cambridge, MA, 2000.

R. Meir and G. Rätsch. An introduction to boosting and leveraging. In S. Mendel-
son and A.J. Smola, editors, Advanced Lectures on Machine Learning: Machine
Learning Summer School 2002, pages 118–183. Springer, Berlin, 2003.

R.E. Schapire. The strength of weak learnability. Machine Learning, 5:197–227,
1990.

V.N. Temlyakov. Weak greedy algorithms. Advances in ComputationalMathematics,
12:213–227, 2000.

T. Zhang. Statistical behavior and consistency of classification methods based on
convex risk minimization. The Annals of Statistics, 32:56–85, 2004.

T. Zhang and B. Yu. Boosting with early stopping: Convergence and consistency.
The Annals of Statistics, 33:1538–1579, 2005.

	Optimization by Gradient Boosting
	Gérard Biau and Benoît Cadre
	Introduction
	Gradient boosting
	Mathematical context
	Some examples
	Two algorithms

	Convergence of the algorithms
	[algorithm1]Algorithm 1
	[algorithm2]Algorithm 2

	Large sample properties
	References
	References

