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Abstract

Let X1, . . . ,Xn be identically distributed random vectors in R
d, in-

dependently drawn according to some probability density. An obser-
vation Xi is said to be a layered nearest neighbour (LNN) of a point
x if the hyperrectangle defined by x and Xi contains no other data
points. We first establish consistency results on Ln(x), the number
of LNN of x. Then, given a sample (X, Y ), (X1, Y1), . . . , (Xn, Yn) of
independent identically distributed random vectors from R

d × R, one
may estimate the regression function r(x) = E[Y |X = x] by the LNN
estimate rn(x), defined as an average over the Yi’s corresponding to
those Xi which are LNN of x. Under mild conditions on r, we establish
consistency of E|rn(x) − r(x)|p towards 0 as n → ∞, for almost all x

and all p ≥ 1, and discuss the links between rn and the random forest
estimates of Breiman [8]. We finally show the universal consistency
of the bagged (bootstrap-aggregated) nearest neighbour method for
regression and classification.

1 Introduction

Let Dn = {X1, . . . ,Xn} be a sample of independent and identically dis-
tributed (i.i.d.) random vectors in R

d, d ≥ 2. An observation Xi is said to
be a layered nearest neighbour (LNN) of a target point x if the hyperrectangle
defined by x and Xi contains no other data points. As illustrated in Figure
1 below, the number of LNN of x is typically larger than one and depends
on the number and configuration of the sample points.

The LNN concept, which is briefly discussed in the monograph [13, Chapter
11, Problem 11.6], has strong connections with the notions of dominance and
maxima in random vectors. Recall that a point Xi = (Xi1, . . . , Xid) is said to
be dominated by Xj if Xik ≤ Xjk for all k = 1, . . . , d, and a point Xi is called
a maximum of Dn if none of the other points dominates. One can distinguish
between dominance (Xik ≤ Xjk for all k), strong dominance (at least one
inequality is strict) and strict dominance (all inequalities are strict). The
actual kind of dominance will not matter in this paper because we will as-
sume throughout that the common distribution of the data has a density, so
that equality of coordinates happens with zero probability. The study of the
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Figure 1: The layered nearest neighbours (LNN) of a point x.

maxima of a set of points was initiated by Barndorff-Nielsen and Sobel [4] as
an attempt to describe the boundary of a set of random points in R

d. Dom-
inance deals with the natural order relations for multivariate observations.
Due to its close relationship with the convex hull, dominance is important
in computational geometry, pattern classification, graphics, economics and
data analysis. The reader is referred to Bai et al. [2] for more information
and references.

Denote by Ln the number of maxima in the set Dn. Under the assump-
tion that the observations are independently and uniformly distributed over
(0, 1)d, a lot is known about the statistical properties of Ln (Barndorff-Nielsen
and Sobel [4], Bai et al. [3, 2]). For example, it can be shown that

ELn =
(log n)d−1

(d − 1)!
+ O

(

(log n)d−2
)

,

and
(d − 1)! Ln

(log n)d−1
→ 1 in probability,
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as n → ∞ and d ≥ 2 is fixed. From this, one deduces that when the random
vectors X1, . . . ,Xn are independently and uniformly distributed over (0, 1)d,
then the number of LNN of any point x in (0, 1)d, denoted hereafter by Ln(x),
satisfies

ELn(x) =
2d(log n)d−1

(d − 1)!
+ O

(

(log n)d−2
)

and
(d − 1)! Ln(x)

2d(log n)d−1
→ 1 in probability as n → ∞.

Here, the extra factor represents the contribution of the 2d quadrants sur-
rounding the point x.

On the other hand, to the best of our knowledge, little if nothing is known
about the behavior of Ln(x) under the much more general assumption that
the sample points are distributed according to some arbitrary (i.e., non-
necessarily uniform) density. A quick inspection reveals that the analysis of
this important case is non-trivial and that it may not be readily deduced
from the above-mentioned results. Thus, the first objective of this paper is
to fill the gap and to offer consistency results about Ln(x) when X1, . . . ,Xn

are independently drawn according to some arbitrary density f . This will be
the topic of section 2.

Next, we wish to emphasize that the LNN concept has also important sta-
tistical consequences. To formalize this idea, assume that we are given a
sequence (X, Y ), (X1, Y1), . . . , (Xn, Yn) of i.i.d. R

d × R-valued random vari-
ables with E|Y | < ∞. Then, denoting by Ln(x) the set of LNN of x ∈ R

d,
the regression function r(x) = E[Y |X = x] may be estimated by

rn(x) =
1

Ln(x)

n
∑

i=1

Yi1[Xi∈Ln(x)].

(Note that Ln(x) ≥ 1, so that the division makes sense). In other words, the
estimate rn(x) just outputs the average of the Yi’s associated with the LNN
of the target point x.

The interest of studying the LNN regression estimate rn, which was first
mentioned in [13], is threefold. Firstly, we observe that this estimate has no
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smoothing parameter, a somewhat unusual situation in nonparametric esti-
mation. Secondly, it is scale-invariant, which is clearly a desirable feature
when the components of the vector represent physically different quantities.
And thirdly, it turns out that rn is intimately related to the random forests
classification and regression estimates, which were defined by Breiman in [8].

Breiman [8] takes data (X1, Y1), . . . , (Xn, Yn) and partitions R
d randomly

into “pure” rectangles, i.e., rectangles that each contain one data point. If
A(X) is the rectangle to which X belongs, then X votes “Yi”, where Xi is
the unique data point in A(X). Breiman repeats such voting and call the
principle “random forests”. Classification is done by a majority vote. Re-
gression is done by averaging all Yi’s. Observe that each voting Xi is a LNN
of X, so that random forests lead to a weighted LNN estimate. In contrast,
the estimate rn above assigns uniform weights. Biau et al. [5] point out that
the random forest method is not universally consistent, but the question of
consistency remains open when X is assumed to have a density.

This paper is indeed concerned with minimal conditions of convergence.
We say that a regression function estimate rn is Lp-consistent (p > 0) if
E|rn(X) − r(X)|p → 0, as n → ∞. It is universally Lp-consistent if this
property is true for all distributions of (X, Y ) with E|Y |p < ∞. Universal
consistency was the driving theme of the monograph [12], and we try as much
as possible to adhere to the style and notation of that text.

In classification, we have Y ∈ {0, 1}, and construct a {0, 1}-valued estimate
gn(x) of Y . This is related to regression function estimation since one could
use a regression function estimate rn(x) of r(x) = E[Y |X = x], and set

gn(x) = 1[rn(x)≥1/2]. (1)

That estimate has the property that if E|rn(X)− r(X)| → 0 as n → ∞, then

P(gn(X) 6= Y ) → inf
g:Rd→{0,1}

P(g(X) 6= Y ),

a property which is called Bayes risk consistency (see [13]). It is universally
Bayes risk consistent if this property is true for all distributions of (X, Y ).

Random forests are some of the most successful ensemble methods that ex-
hibit performance on the level of boosting and support vector machines.
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Fast and robust to noise, random forests do not overfit and offer possibili-
ties for explanation and visualization of the input, such as variable selection.
Moreover, random forests have been shown to give excellent performance on
a number of practical problems and are among the most accurate general-
purpose regression methods available.

An important attempt to investigate the driving forces behind consistency
of random forests is due to Lin and Jeon [18], who show that a forest can
be seen as a weighted LNN regression estimate and argue that the LNN ap-
proach provides an interesting data-dependent way of measuring proximities
between observations.

As a new step towards understanding random forests, we study the consis-
tency of the (uniformly weighted) LNN regression estimate rn and thoroughly
discuss the links between rn and the random forest estimates of Breiman [8]
(section 3). We finally show in section 4 the universal consistency of the
bagged (bootstrap-aggregated) nearest neighbour method for regression and
classification. Proofs of the most technical results are gathered in section 5.

2 Some consistency properties of the LNN

Throughout this section, we let Dn = {X1, . . . ,Xn} be R
d-valued (d ≥ 2)

independent random variables, identically distributed according to some den-
sity f with respect to the Lebesgue measure λ. For any x ∈ R

d, we denote
by Ln(x) the set of layered nearest neighbours (LNN) of x in Dn, and we let
Ln(x) be the cardinality of Ln(x) (i.e., Ln(x) = |Ln(x)|). Finally, we denote
the probability measure associated to f by µ.

The following two basic consistency theorems are proved in section 5:

Theorem 2.1 Assume that X1 has a density with respect to the Lebesgue
measure on R

d. Then, for µ-almost all x ∈ R
d, one has

Ln(x) → ∞ in probability as n → ∞.

Theorem 2.2 Assume that X1 has a density f with respect to the Lebesgue
measure on R

d and that f is λ-almost everywhere continuous. Then

(d − 1)! ELn(x)

2d(log n)d−1
→ 1 as n → ∞,
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at µ-almost all x ∈ R
d.

The two theorems above are not universal, since we assume that X has a
density. In fact, no universal consistency result is possible. To see this, let X
be R

2-valued uniformly distributed on the diagonal D = {x = (x1, x2) : 0 ≤
x1 ≤ 1, x2 = x1}. Then each x on the diagonal has almost surely at most 2
LNN and Ln(x) does not converge to infinity.

Finally, the question can be asked what happens when the dimension depends
upon n. In this case, for each n, one has in fact another data distribution—
statisticians call this a triangular situation. Negative minimax style results
imply that for any sequence of estimates, there exists a sequence of distri-
butions such that the error (measured in some sense) does not tend to zero,
even under restrictive assumptions on the smoothness of the distribution.
Devroye et al. [13] have some theorems like this for discrimination. One is
thus forced to make assumptions on the sequence of distributions, e.g., by
only considering extensions of distributions of smaller dimensions, i.e., by
nesting. For nested sequences, the convergence theorems should be looked at
again in general—indeed, there are virtually no universal consistency results
on this topic available today.

3 LNN regression estimation

3.1 Consistency

Denote by (X, Y ), (X1, Y1), . . . , (Xn, Yn) i.i.d. random vectors of R
d×R, and

let Dn be the set of data defined by

Dn = {(X1, Y1), . . . , (Xn, Yn)} .

In this section we will assume that |Y | ≤ γ < ∞ and that X has a density.
We consider the general regression function estimation problem, where one
wants to use the data Dn in order to construct an estimate rn : R

d → R

of the regression function r(x) = E[Y |X = x]. Here rn(x) = rn(x,Dn) is a
measurable function of x and the data. For simplicity, we will omit Dn in
the notation and write rn(x) instead of rn(x,Dn).

As in section 2, for fixed x ∈ R
d, we denote by Ln(x) the LNN of x in

the sample {X1, . . . ,Xn} and let Ln(x) be the cardinality of Ln(x) (i.e.,
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Ln(x) = |Ln(x)|—note that Ln(x) ≥ 1). As stated in the introduction, we
will be concerned in this section with the consistency properties of the LNN
regression estimate, which is defined by

rn(x) =
1

Ln(x)

n
∑

i=1

Yi1[Xi∈Ln(x)].

Our main result is the following theorem:

Theorem 3.1 (Pointwise Lp-consistency) Assume that X has a density
with respect to the Lebesgue measure on R

d, that Y is bounded and that the
regression function r is λ-almost everywhere continuous. Then, for µ-almost
all x ∈ R

d and all p ≥ 1,

E |rn(x) − r(x)|p → 0 as n → ∞.

The following corollary is a consequence of Theorem 3.1 and the dominated
convergence theorem.

Theorem 3.2 (Gobal Lp-consistency) Assume that X has a density with
respect to the Lebesgue measure on R

d, that Y is bounded and that the re-
gression function r is λ-almost everywhere continuous. Then, for all p ≥ 1,

E |rn(X) − r(X)|p → 0 as n → ∞.

The theorems above are not universal—indeed, we assume that r is λ-almost
everywhere continuous and that X has a density. It is noteworthy that no
universal consistency result is possible and that the condition that a density
exists, while light, cannot be omitted. Indeed, the LNN estimate is not con-
vergent in general without it. For d = 2, consider a distribution that puts
all its mass smoothly on the diagonal x2 = x1, let r(x1, x2) = 0 and let Y be
independent of X taking values +1 and −1 with equal probability. Then the
LNN estimate averages over its two nearest neighbours on the diagonal, and
thus at almost all x between the extremes of the support, the LNN estimate
is distributed as Z where Z ∈ {−1, 0, 1} and the probabilities of the atoms
of Z are 1/4, 1/2 and 1/4. Convergence to zero is not possible.

In a second, even more striking example for d = 2, let X1 be uniform on
[−1, 1], let X2 = 1/X1, let r(x1, x2) = sign(x1), and let Y = r(X) with
probability one. Then at almost all points (with respect to the distribution
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of X), the LNN estimate averages over about half the points in the oppo-
site quadrant, so for x in quadrant 1, the estimate converges to −1 almost
surely, and for x in quadrant 3, it converges to +1 almost surely. The error
thus converges to 2 almost surely at almost all x. In other words, singular
continuity of the measure of X causes havoc.

On the positive side, the results do not impose any condition on the den-
sity. They are also scale-free, i.e., the estimate does not change when all
coordinates of X are transformed in a strictly monotone manner. In partic-
ular, one can without loss of generality assume that X is supported on [0, 1]d.

Thus, in particular, since (1) is equivalent to taking a majority vote over
LNN, we have Bayes risk consistency whenever r is λ-almost everywhere
continuous and X has a density. This partially solves an exercise in [13].

In view of Theorem 2.2, averaging in the LNN is never over more than
O((log n)d−1) elements. One cannot expect a great rate of convergence for
these estimates. The same is true, mutatis mutandis, for Breiman’s random
forests because averaging is over a subset of size O((log n)d−1). However,
one can hope to improve the averaging rate by the judicious use of subsam-
pling in bagging (bootstrap-aggregating). Bagging, which was suggested by
Breiman in [6], is a simple way of randomizing and averaging predictors in
order to improve their performance. In bagging, randomization is achieved
by generating many bootstrap samples from the original data set. This is
illustrated in the next section on 1-nearest neighbour bagging.

3.2 Random forests and LNN

As stated in the introduction, a random forest is a tree-ensemble learning
algorithm, where each tree depends on the values of a random vector sam-
pled independently and with the same distribution for all trees. Thus, a
random forest consists of many decision trees and outputs the average of the
decisions provided by individual trees. Random forests have been shown to
give excellent performance on a number of practical problems. They work
fast, generally exhibit a substantial performance improvement over single
tree algorithms such as cart, and yield generalization error rates that com-
pare favorably to traditional statistical methods. In fact, random forests
are among the most accurate general-purpose learning algorithms available
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(Breiman [8]).

Algorithms for inducing a random forest were first developed by Breiman
and Cutler, and “Random Forests” is their trademark. The web page

http://www.stat.berkeley.edu/users/breiman/RandomForests

provides a collection of downloadable technical reports, and gives an overview
of random forests as well as comments on the features of the method.

Following Biau et al. [5], who study consistency of various versions of random
forests and other randomized ensemble classifiers, a regression forest may be
modelled as follows. Assume that Θ1, . . . , Θm are i.i.d. draws of some ran-
domizing variable Θ, independent of the sample. Then, a random forest is a
collection of m randomized regression trees t1(x, Θ1,Dn), . . . , tm(x, Θm,Dn),
which are finally combined to form the aggregated regression estimate

rn(x) =
1

m

m
∑

j=1

tj(x, Θj ,Dn).

The randomizing variable Θ is used to determine how the successive cuts
are performed when building the tree, such as selection of the coordinate to
split and position of the split. In the model we have in mind, each individ-
ual randomized tree tj(x, Θj,Dn) is typically constructed without pruning,
that is, the tree building process continues until each terminal node contains
no more than k data points, where k is some prespecified positive integer.
Different random forests differ in how randomness is introduced in the tree
building process, ranging from extreme random splitting strategies (Breiman
[7], Cutler and Zhao [11]) to more involved data-dependent strategies (Amit
and Geman [1], Breiman [8], Dietterich [14]). However, as pointed out by
Lin and Jeon [18], no matter what splitting strategy is used, if the nodes of
the individual trees define rectangular cells, then a random forest with k = 1
can be viewed as a weighted LNN regression estimate (see also Breiman [9]).
Besides, if the randomized splitting scheme is independent of the responses
Y1, . . . , Yn—such a scheme is called non-adaptive in [18]—then so are the
weights. One example of such a scheme is the purely random splitting where,
for each internal node, we randomly choose a variable to split on, and the
split point is chosen uniformly at random over all possible split points on
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that variable. Thus, for such non-adaptive strategies,

rn(x) =
n
∑

i=1

YiWni(x),

where the weights (Wn1(x), . . . , Wnn(x)) are nonnegative Borel measurable
functions of x, X1, . . . ,Xn, Θ1, . . . , Θm, and such that Wni(x) = 0 if Xi /∈
Ln(x) and

n
∑

i=1

Wni(x) =
n
∑

i=1

Wni(x)1[Xi∈Ln(x)] = 1.

The next proposition states a lower bound on the rate of convergence of the
mean squared error of a random forest with non-adaptive splitting scheme.
In this proposition, the symbol V denotes variance and E denotes expectation
with respect to X1, . . . ,Xn and Θ1, . . . , Θm. Proof of the result is due to Lin
and Jeon (see [18, Theorem 3, page 581]) and is given here for completeness.

Proposition 3.1 For any x ∈ R
d, assume that σ2 = V[Y |X = x] does not

depend upon x. Then

E [rn(x) − r(x)]2 ≥ σ2

ELn(x)
.

Proof of Proposition 3.1 We may write, using the independence of Dn

and Θ1, . . . , Θm,

E [rn(x) − r(x)]2 ≥ E [V[rn(x)|X1, . . . ,Xn, Θ1, . . . , Θm]]

= E

[

n
∑

i=1

W 2
ni(x)V[Yi|X1, . . . ,Xn, Θ1, . . . , Θm]

]

= E

[

n
∑

i=1

W 2
ni(x)V[Yi|Xi]

]

= σ2
E

[

n
∑

i=1

W 2
ni(x)

]

≥ σ2
E





1

Ln(x)

(

n
∑

i=1

Wni(x)

)2
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(by the Cauchy-Schwarz inequality)

= σ2
E

[

1

Ln(x)

]

,

where, in the last equality, we used the fact that
∑n

i=1 Wni(x) = 1. The
conclusion follows from Jensen’s inequality. �

Proposition 3.1 is thrown in here because we know that

ELn(x) ∼ 2d(log n)d−1

(d − 1)!

at µ-almost all x, when f is λ-almost everywhere continuous (Theorem 2.2).
Thus, under this additional condition on f , at an x for which Theorem 2.2
is valid, we have

E [rn(x) − r(x)]2 ≥ σ2

ELn(x)

∼ σ2(d − 1)!

2d(log n)d−1
,

which is rather slow as a function of n.

As mentioned above, there are two related methods to possibly get a better
rate of convergence:

(i) One can modify the splitting method and stop as soon as a future rect-
angle split would cause a sub-rectangle to have fewer than k points. In
this manner, if k → ∞, k/n → 0, one can obtain consistent regression
function estimates and classifiers with variances of errors that are of
the order 1/[k(log n)d−1]. This approach has been thoroughly explored
in the uniform case by Lin and Jeon [18], who call it k-potential nearest
neighbours (k-PNN, see also Breiman [9]). In a sense, this generalizes
the classical k-nearest neighbour (k-NN) approach (Györfi et al. [17,
Chapter 6]).

(ii) As suggested by Breiman [6], one could resort to bagging and randomize
using small random subsamples. In the next section, we illustrate how
this can be done for the 1-NN rule of Fix and Hodges [16] (see also
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Cover and Hart [10]), thereby extending previous results of [5]. A
random subsample of size k is drawn, and the method is repeated m
times. The regression estimate takes the average over the m Y -values
corresponding to the nearest neighbours. In classification, a majority
vote is taken. It is shown that for appropriate k and m, this 1-NN
bagging is universally consistent, and indeed, that it corresponds to
a weighted NN rule, roughly speaking, with geometrically decreasing
weights (fore more on weighted NN rules, see Stone [23], Devroye [12]
or Györfi et al. [17]). Because of this equivalence, one can optimize
using standard bias/variance trade-off methods, such as used, e.g., in
[17].

4 The bagged 1-NN rule

Breiman’s bagging principle has a simple application in the context of nearest
neighbour methods. We proceed as follows, via a randomized basic regres-
sion estimate rn,k in which 1 ≤ k ≤ n is a parameter. The predictor rn,k

is the 1-NN rule for a random sample Sn drawn with (without) replacement
from {X1, . . . ,Xn}, with |Sn| = k. Clearly, rn,k is not generally universally
consistent.

We apply bagging, that is, we repeat the random sampling m times, and
take the average of the individual outcomes. Formally, if Zj = rn,k(x) is the
prediction in the j-th round of bagging, we let the bagged regression estimate
r⋆
n be defined as

r⋆
n(x) =

1

m

m
∑

j=1

Zj ,

where Z1, . . . , Zm are the outcomes in the individual rounds. In the context of
classification, Zj ∈ {0, 1}, and we classify x as being in class 1 if r⋆

n(x) ≥ 1/2,
that is

m
∑

j=1

1[Zj=1] ≥
m
∑

j=1

1[Zj=0].

The corresponding bagged classifier is denoted by g⋆
n.

Theorem 4.1 If m → ∞ (or m = ∞), k → ∞ and k/n → 0, then r⋆
n is

universally Lp-consistent for all p ≥ 1.
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Corollary 4.1 If m → ∞ (or m = ∞), k → ∞ and k/n → 0, then g⋆
n is

universally Bayes risk consistent.

Remark In the theorem, the fact that sampling was done with/without
replacement is irrelevant.

Before proving Theorem 4.1, recall that if we let Vn1 ≥ Vn2 ≥ . . . ≥ Vnn ≥ 0
denote weights that sum to one, and Vn1 → 0,

∑

i>εn Vni → 0 for all ε > 0
as n → ∞, then the regression estimate

n
∑

i=1

VniY(i)(x),

with (X(1)(x), Y(1)(x)), . . . , (X(n)(x), Y(n)(x)) the reordering of the data such
that

‖x − X(1)(x)‖ ≤ . . . ≤ ‖x − X(n)(x)‖
is called the weighted nearest neighbour regression estimate. It is universally
Lp-consistent for all p ≥ 1 (Stone [23], and Problems 11.7, 11.8 of Devroye
et al. [13]). In the sequel, to shorten notation, we omit the index n in the
weights and write, for instance, V1 instead of Vn1.

Proof of Theorem 4.1 We first observe that if m = ∞, r⋆
n is in fact a

weighted nearest neighbour estimate with

Vi = P(i-th nearest neighbour of x is chosen in a random selection).

To avoid trouble, we have a unique way of breaking distance ties, that is, any
tie is broken by using indices to declare a winner. Then, a moment’s thought
shows that for the “without replacement” sampling, Vi is hypergeometric:

Vi =























(

n − i

k − 1

)

(

n

k

) , i ≤ n − k + 1

0, i > n − k + 1.

We have

Vi =
k

n − k + 1
.
n − i

n
.
n − i − 1

n − 1
. . .

n − i − k + 2

n − k + 2

14



=
k

n − k + 1

k−2
∏

j=0

(

1 − i

n − j

)

∈
[

k

n − k + 1
exp

( −i(k − 1)

n − k − i + 2

)

,
k

n − k + 1
exp

(−i(k − 1)

n

)]

,

where we used exp(−u/(1 − u)) ≤ 1 − u ≤ exp(−u), 0 ≤ u < 1. Clearly, Vi

is nonincreasing, with

V1 =
k

n
→ 0.

Also,

∑

i>εn

Vi ≤
k

n − k + 1

∑

i>εn

e−i(k−1)/n

≤ k

n − k + 1
.

e−ε(k−1)

(1 − e−(k−1)/n)

∼ e−ε(k−1) → 0 as k → ∞.

For sampling with replacement,

Vi =

(

1 − i − 1

n

)k

−
(

1 − i

n

)k

=

(

1 − i − 1

n

)k
[

1 −
(

1 − 1

n − i + 1

)k
]

∈
[

e−(i−1)k/(n−i+1)

[

k

n − i + 1
− k(k − 1)

2

(

1

n − i + 1

)2
]

,

e−(i−1)k/n .
k

n − i + 1

]

,

where we used 1−αu ≤ (1− u)α ≤ 1−αu + α(α− 1)u2/2 for integer α ≥ 1,
0 ≤ u ≤ 1. Again, Vi is nonincreasing, and

V1 = 1 −
(

1 − 1

n

)k

≤ k

n
→ 0.

Also
∑

i>εn

Vi =

(

1 − ⌊εn⌋
n

)k

→ 0
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since ε > 0 is fixed and k → ∞.

For m < ∞, m → ∞, the weights of the neighbours are random variables
(W1, . . . , Wn), with

∑n
i=1 Wi = 1, and, in fact,

(W1, . . . , Wn)
L
=

Multinomial (m ; V1, . . . , Vn)

m
.

We note that this random vector is independent of the data!

In the proof of the consistency result below, we use Stone’s [23] general consis-
tency theorem for locally weighted average estimates, see also [13, Theorem
6.3]. According to Stone’s theorem, consistency holds if the following three
conditions are satisfied:

(i)

E

[

max
i=1,...,n

Wi

]

→ 0 as n → ∞.

(ii) For all ε > 0,

E

[

∑

i>εn

Wi

]

→ 0 as n → ∞.

(iii) There is a constant C such that, for every nonnegative measurable
function f satisfying Ef(X) < ∞,

E

[

n
∑

i=1

Wif(X(i))

]

≤ C Ef(X).

Checking Stone’s conditions of convergence requires only minor work. To
show (i), note that

P

(

max
i=1,...,n

Wi ≥ ε

)

≤
n
∑

i=1

P(Wi ≥ ε)

=

n
∑

i=1

P (Bin (m, Vi) ≥ mε)

16



=
n
∑

i=1

P (Bin (m, Vi) ≥ mVi + m(ε − Vi))

≤
n
∑

i=1

V [Bin (m, Vi)]

(m(ε − Vi))
2

(by Chebyshev’s inequality, for all n large enough)

≤
∑n

i=1 mVi

m2(ε − V1)2
=

1

m(ε − V1)2
→ 0.

Secondly, for (ii), we set p =
∑

i>εn Vi, and need only show that

E[Bin (m, p)/m] → 0.

But this follows from p → 0. Condition (iii) reduces to

E

[

n
∑

i=1

Vif(X(i))

]

,

which we know is bounded by a constant times Ef(X) for any sequence of
nonincreasing nonnegative weights Vi that sum to one (Stone [23], and [13,
Chapter 11, Problems 11.7 and 11.8].

Remark The bagging weights for m = ∞ have been independently exhib-
ited by Steele [22], who also shows on practical examples that substantial
reductions in prediction error are possible by bagging the 1-NN estimate.

This concludes the proof. �

5 Proofs

5.1 Proof of Theorem 2.1

In the sequel, for x = (x1, . . . , xd) and ε > 0, we let the hyperrectangle Rε(x)
be defined as Rε(x) = [x1, x1 + ε]× . . .× [xd, xd + ε]. The crucial result from
real analysis that is needed in the proof of Theorem 2.1 and Theorem 2.2 is
the following (see for instance Wheeden and Zygmund [24]):
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Lemma 5.1 Let g be locally integrable in R
d. Then, for λ-almost all x,

1

εd

∫

Rε(x)

|g(y) − g(x)| dy → 0 as ε → 0. (2)

Thus also, at λ-almost all x,

1

εd

∫

Rε(x)

g(y)dy → f(x) as ε → 0. (3)

The following useful corollary may be easily deduced from Lemma 5.1 and
the fact that f(x) > 0 for µ-almost all x:

Corollary 5.1 Assume that X1 has a density with respect to the Lebesgue
measure on R

d. Let (εn) be a sequence of positive real numbers such that
εn → 0 and nεd

n → ∞ as n → ∞. Then, for µ-almost all x ∈ R
d, one has

nµ (Rεn(x)) → ∞ as n → ∞.

Remark Lemma 5.1 only describes what happens if Rε(x) is in the pos-
itive quadrant of x. Trivially, it also holds for the 2d − 1 other quadrants
centered at x.

The proof of Theorem 2.1 uses a coupling argument. Roughly, the idea is
to replace the sample X1, . . . ,Xn by a sample Z1, . . . ,Zn which is (i) locally
uniform around the point x and (ii) such that the probability of the event
[Xi = Zi, i = 1, . . . , n]c stays under control. This can be achieved via the
following optimal coupling lemma (see for example Doeblin [15] or Rachev
and Rüschendorf [21]):

Lemma 5.2 Let f and g be probability densities on R
d. Then there exist

random variables W and Z with density f and g, respectively, such that

P(W 6= Z) =
1

2

∫

Rd

|f(y) − g(y)| dy.

We are now in a position to prove Theorem 2.1.

18



Proof of Theorem 2.1 Fix x for which (2) is true, and define the function
gε as

gε(y) =

{

µ (Rε(x))

εd
if y ∈ Rε(x)

f(y) otherwise.

Clearly, gε is a probability density on R
d. Moreover,

∫

Rd

|f(y) − gε(y)| dy

=

∫

Rε(x)

∣

∣

∣

∣

f(y) − 1

εd

∫

Rε(x)

f(z)dz

∣

∣

∣

∣

dy

≤
∫

Rε(x)

|f(y) − f(x)| dy + εd

∣

∣

∣

∣

f(x) − 1

εd

∫

Rε(x)

f(z)dz

∣

∣

∣

∣

≤ 2

∫

Rε(x)

|f(y) − f(x)| dy

≤ 2εdΦ(ε), (4)

where Φ(ε) is some nonnegative, nondecreasing function which has limit 0 as
ε approaches 0.

According to Lemma 5.2 and inequality (4), there exist random variables W
and Z with density f and gε, respectively, such that

P(W 6= Z) ≤ εdΦ(ε).

Define W and Z samples by creating n independent (W1,Z1), . . . , (Wn,Zn)
pairs and assume, without loss of generality, that

(X1, . . . ,Xn) = (W1, . . . ,Wn).

Thus, denoting by En the event

[Xi = Zi, i = 1, . . . , n],

we obtain, by construction of the optimal coupling,

P(E c
n) ≤ nεdΦ(ε). (5)

According to technical Lemma 5.4, there exists a sequence (εn) of positive
real numbers such that εn → 0, nεd

n → ∞ and nεd
nΦ(εn) → 0 as n → ∞.
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Thus, by choosing such a sequence, according to (5), the probability P(E c
n)

can be made as small as desired for all n large enough.

To finish the proof of Theorem 2.1, denote by Lεn(x) (respectively L′
εn

(x))
the number of LNN of x in the sample {X1, . . . ,Xn} (respectively in the
sample {Z1, . . . ,Zn}) falling in Rεn(x). Clearly,

Ln(x) ≥ Lεn(x), (6)

and, on the event En,
Lεn(x) = L′

εn
(x). (7)

By Lemma 5.5, since nεd
n → ∞,

L′
εn

(x) → ∞ in probability as n → ∞,

at µ-almost all x. This, together with (5)-(7) concludes the proof of the
theorem. �

5.2 Proof of Theorem 2.2

For x = (x1, . . . , xd) and ε > 0, let Cε(x) be the hypercube [x1 − ε, x1 + ε] ×
. . . × [xd − ε, xd + ε]. Choose x in a set of µ-measure 1 such that f(x) > 0,
f is continuous at x and µ(Cε(x)) > 0 for all ε > 0.

Fix δ ∈ (0, f(x)). Since f is continuous at x, there exists ε > 0 such that
y ∈ Cε(x) implies |f(x) − f(y)| < δ.

Let the hyperrectangle R(x,y) be defined by x and y. We note that

ELn(x) = n

∫

Rd

(

1 − µ(R(x,y))
)n−1

f(y)dy

= n

∫

Rd

(

1 −
∫

R(x,y)

f(z)dz

)n−1

f(y)dy.

Thus, using the continuity of f at x, we obtain

ELn(x) ≥ n(f(x) − δ)

∫

Cε(x)

(1 − (f(x) + δ)Π|yi − xi|)n−1 dy
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= n(f(x) − δ)

∫

Cε(0)

(1 − (f(x) + δ)Π|yi|)n−1 dy

= n
f(x) − δ

f(x) + δ

∫

C∆ε(0)

(1 − Π|yi|)n−1 dy

(with ∆ = (f(x) + δ)1/d)

= n 2d f(x) − δ

f(x) + δ

∫

R∆ε(0)

(1 − Πyi)
n−1 dy,

where the last equality follows from a symmetry argument. Thus, using
technical Lemma 5.6, we conclude that

ELn(x) ≥ 2d f(x) − δ

f(x) + δ

[

(log n)d−1

(d − 1)!
+ O∆ε(log n)d−2

]

,

where the notation O∆ε means that the constant in the O term depends on
∆ε. Letting δ → 0 shows that

lim inf
n→∞

(d − 1)! ELn(x)

2d(log n)d−1
≥ 1.

To show the opposite inequality, we write, using the continuity of f at x,

ELn(x) = n

∫

Cε(x)

(

1 − µ(R(x,y))
)n−1

f(y)dy

+ n

∫

Rd\Cε(x)

(

1 − µ(R(x,y))
)n−1

f(y)dy

≤ n 2d f(x) + δ

f(x) − δ

∫

R∆ε(0)

(1 − Πyi)
n−1dy

(with ∆ = (f(x) − δ)1/d)

+ n

∫

Rd\Cε(x)

(

1 − µ(R(x,y))
)n−1

f(y)dy. (8)

By technical Lemma 5.6, we have

n 2d f(x) + δ

f(x) − δ

∫

R∆ε(0)

(1 − Πyi)
n−1dy

= 2d f(x) + δ

f(x) − δ

[

(log n)d−1

(d − 1)!
+ O∆ε(log n)d−2

]

. (9)
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Then, with respect to the second term in (8), we note that

R
d \ Cε(x) =

d−1
⋃

j=0

Cj ,

where, by definition, Cj denotes the collection of all y in R
d\Cε(x) which have

exactly j coordinates smaller than ε. Observe that, for each j ∈ {0, . . . , d−1},

Cj =
⋃

j

Cj ,

where the index j runs over the
(

d
j

)

possible j-uples coordinate choices smaller
than ε. Associated to each of these choices is a marginal density of f , that
we denote by fj . For j ≥ 1, with a slight abuse of notation, we let Cε(xj) be
the j-dimensional hypercube with center at the coordinates of x matching
with j and side length 2ε. Finally, we choose ε small enough and x in a set
of µ-measure 1 such that each marginal fj is bounded over Cε(xj) by, say,
Λ(ε).

Clearly, for j = 0,

n

∫

C0

(

1 − µ(R(x,y))
)n−1

f(y)dy

= n

∫

C0

(

1 −
∫

R(x,y)

f(z)dz

)n−1

f(y)dy

≤ n(1 − (f(x) − δ)εd)n−1

∫

C0

f(y)dy

≤ n(1 − (f(x) − δ)εd)n−1

(since f is a density)

≤ 1/
[

(f(x) − δ)εd
]

,

where, in the last inequality, we used the fact that supx∈[0,1] x(1−x)n−1 ≤ 1/n.
Similarly, for j ∈ {1, . . . , d − 1}, we may write

n

∫

Cj

(

1 − µ(R(x,y))
)n−1

f(y)dy
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= n
∑

j

∫

Cj

(

1 − µ(R(x,y))
)n−1

f(y)dy

= n
∑

j

∫

Cj

(

1 −
∫

R(x,y)

f(z)dz

)n−1

f(y)dy

≤ n
∑

j

∫

Cj

(

1 − (f(x) − δ)εd−jΠℓ|yℓ − xℓ|
)n−1

f(y)dy,

where the notation Πℓ means the product over the j coordinates which are
smaller than ε. Thus, integrating the density f over those coordinates which
are larger than ε, we obtain

∫

Cj

(

1 − (f(x) − δ)εd−jΠℓ|yℓ − xℓ|
)n−1

f(y)dy

≤
∫

Cε(xj)

(

1 − (f(x) − δ)εd−jΠℓ|yℓ − xℓ|
)n−1

fj(yj)dyj.

Using finally the fact that each marginal fj is bounded by Λ(ε) in the neigh-
bourhood of x, we obtain

∫

Cj

(

1 − (f(x) − δ)εd−jΠℓ|yℓ − xℓ|
)n−1

f(y)dy

≤ Λ(ε)

∫

[0,ε]j

(

1 − (f(x) − δ)εd−jy1 . . . yj

)n−1
dy1 . . . dyj

=
Λ(ε)

(f(x) − δ)εd−j

∫

[0,∆εd−j/j ]j
(1 − y1 . . . yj)

n−1dy1 . . . dyj

(with ∆ = (f(x) − δ)1/j).

Therefore, by Lemma 5.6, for j ∈ {2, . . . , d − 1},

n

∫

Cj

(

1 − µ(R(x,y))
)n−1

f(y)dy

≤
(

d
j

)

Λ(ε)

(f(x) − δ)εd−j

[

(log n)j−1

(j − 1)!
+ O∆εd−j/j(log n)j−2

]

,

and clearly, for j = 1,

n

∫

C1

(

1 − µ(R(x,y))
)n−1

f(y)dy ≤ Λ(ε)

(f(x) − δ)εd−1
.
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Putting all pieces together, we conclude that, for all j ∈ {0, . . . , d − 1},

lim sup
n→∞

n

(log n)d−1

∫

Cj

(

1 − µ(R(x,y))
)n−1

f(y)dy = 0,

and, consequently,

lim sup
n→∞

n

(log n)d−1

∫

Rd\Cε(x)

(

1 − µ(R(x,y))
)n−1

f(y)dy = 0.

This, together with inequalities (8)-(9) and letting δ → 0 leads to

lim sup
n→∞

(d − 1)! ELn(x)

2d(log n)d−1
≤ 1.

5.3 Proof of Theorem 3.1

The elementary result needed to prove Theorem 3.1 is:

Lemma 5.3 Assume that X has a density with respect to the Lebesgue mea-
sure on R

d, that Y is bounded and that the regression function r is λ-almost
everywhere continuous. Then, for fixed p ≥ 1,

E

[

1

Ln(x)

n
∑

i=1

1[Xi∈Ln(x)] |r(Xi) − r(x)|p
]

→ 0 as n → ∞,

at µ-almost all x ∈ R
d.

Proof of Lemma 5.3 Recall that Rε(x) = [x1, x1 + ε]× . . .× [xd, xd + ε].
We can define Rε(x, ℓ), ℓ = 1, . . . , 2d, as Rε(x) for the 2d quadrants centered
at x. We then have Ln(x, ℓ) and Ln(x, ℓ) = |Ln(x, ℓ)|. Also, on the ℓ-th
quadrant, we have the sums

Sn(x, ℓ) =

n
∑

i=1

1[Xi∈Ln(x,ℓ)] |r(Xi) − r(x)|p .

If

E

[

Sn(x, ℓ)

Ln(x, ℓ)

]

→ 0 as n → ∞ for all ℓ,
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(with the convention 0 ×∞ = 0 when Ln(x, ℓ) = 0), then

E

[

∑2d

ℓ=1 Sn(x, ℓ)
∑2d

ℓ=1 Ln(x, ℓ)

]

→ 0 as n → ∞,

so that

E

[

1

Ln(x)

n
∑

i=1

1[Xi∈Ln(x)] |r(Xi) − r(x)|p
]

→ 0 as n → ∞.

This follows from the fact that

E

[

A1 + . . . + Ak

B1 + . . . + Bk

]

→ 0

if E[Ai/Bi] → 0 for all i, where the random variables Ai and Bi are non-
negative and satisfy Ai ≤ cBi for some nonnegative c (again, we use the
convention 0 ×∞ = 0). So, we need only concentrate on the first quadrant.

For arbitrary ε > 0, we have

E

[

1

Ln(x)

n
∑

i=1

1[Xi∈Ln(x)] |r(Xi) − r(x)|p
]

= E

[

1

Ln(x)

n
∑

i=1

1[Xi∈Ln(x)] |r(Xi) − r(x)|p 1[Xi∈Rc
ε(x)]

]

+ E

[

1

Ln(x)

n
∑

i=1

1[Xi∈Ln(x)] |r(Xi) − r(x)|p 1[Xi∈Rε(x)]

]

≤ 2pγp
E

[

1

Ln(x)

n
∑

i=1

1[Xi∈Ln(x)]1[Xi∈Rc
ε(x)]

]

+

[

sup
z∈Rd:‖z−x‖∞≤ε

|r(z) − r(x)|
]p

(since |Y | ≤ γ).

The rightmost term of the latter inequality tends to 0 as ε → 0 at points x
at which r is continuous. Thus, the lemma will be proven if we show that,
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for fixed ε > 0,

E

[

1

Ln(x)

n
∑

i=1

1[Xi∈Ln(x)]1[Xi∈Rc
ε(x)]

]

→ 0 as n → ∞.

To this aim, denote by Nn the (random) number of sample points falling in

Rε(x). For Nn ≥ 1 and each r = 1, . . . , d, let X
⋆(r)
n = (X

⋆(r)
n,1 , . . . , X

⋆(r)
n,d ) be

the observation in Rε(x) whose r-coordinate is the closest to xr (note that

X
⋆(r)
n is almost surely unique), and consider the set

P(r)
ε = [x1 + ε, +∞[× . . . × [xr−1 + ε, +∞[

× [xr, X
⋆(r)
n,r ]

× [xr+1 + ε, +∞[× . . .× [xd + ε, +∞[

(see Figure 2 for an illustration in dimension 2).

Rε(x)

x

X
⋆(2)
n

X
⋆(1)
n

x1 + ε

x2 + ε

P(1)
ε

P(2)
ε

Pε = P(1)
ε ∪ P(2)

ε

Figure 2: Notation in dimension d = 2. Here Nn = 8 and Qn,ε = 7. Note that
none of the points in the framed area can be a LNN of x.
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Take finally

Pε =
d
⋃

r=1

P(r)
ε ,

and define the random variable

Qn,ε =

{

+∞ if Nn = 0

the number of sample points falling in Pε if Nn ≥ 1.

It is shown in Lemma 5.8 that, for µ-almost all x,

Qn,ε = OP(1),

i.e., for any α > 0, there exists A > 0 such that, for all n large enough,

P(Qn,ε ≥ A) ≤ α. (10)

Now, by definition of the LNN, on the event [Nn ≥ 1], we have

1[Xi∈Ln(x)]1[Xi∈Rc
ε(x)] ≤ 1[Xi∈Pε],

and consequently,
n
∑

i=1

1[Xi∈Ln(x)]1[Xi∈Rc
ε(x)] ≤ Qn,ε. (11)

Thus, for any α > 0 and all n large enough, by (10) and (11),

E

[

1

Ln(x)

n
∑

i=1

1[Xi∈Ln(x)]1[Xi∈Rc
ε(x)]

]

≤ E

[

Qn,ε

Ln(x)
1[Qn,ε<A]

]

+ E1[Qn,ε≥A]

= E

[

Qn,ε

Ln(x)
1[Qn,ε<A,Ln(x)≥1]

]

+ P(Qn,ε ≥ A)

≤ E

[

A

Ln(x)
1[Ln(x)≥1]

]

+ α.

By Theorem 2.1,

Ln(x) → ∞ in probability as n → ∞,

at µ-almost all x. This implies

E

[

1

Ln(x)
1[Ln(x)≥1]

]

→ 0 as n → ∞,

which concludes the proof of Lemma 5.3. �
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Proof of Theorem 3.1 Because |a + b|p ≤ 2p−1 (|a|p + |b|p) for p ≥ 1, we
see that

E |rn(x) − r(x)|p

≤ 2p−1
E

∣

∣

∣

∣

∣

1

Ln(x)

n
∑

i=1

1[Xi∈Ln(x)] (Yi − r(Xi))

∣

∣

∣

∣

∣

p

+ 2p−1
E

∣

∣

∣

∣

∣

1

Ln(x)

n
∑

i=1

1[Xi∈Ln(x)] (r(Xi) − r(x))

∣

∣

∣

∣

∣

p

.

Thus, by Jensen’s inequality,

E |rn(x) − r(x)|p

≤ 2p−1
E

∣

∣

∣

∣

∣

1

Ln(x)

n
∑

i=1

1[Xi∈Ln(x)] (Yi − r(Xi))

∣

∣

∣

∣

∣

p

+ 2p−1
E

[

1

Ln(x)

n
∑

i=1

1[Xi∈Ln(x)] |r(Xi) − r(x)|p
]

. (12)

The rightmost term in (12) tends to 0 for µ-almost all x by Lemma 5.3.
Thus, it remains to show that the first term tends to 0 at µ-almost all x. By
successive applications of inequalities of Marcinkiewicz and Zygmund [19]
(see also Petrov [20, pages 59-60]), we have for some positive constant Cp

depending only on p,

E

∣

∣

∣

∣

∣

1

Ln(x)

n
∑

i=1

1[Xi∈Ln(x)] (Yi − r(Xi))

∣

∣

∣

∣

∣

p

≤ Cp E

[

1

L2
n(x)

n
∑

i=1

1[Xi∈Ln(x)] (Yi − r(Xi))
2

]p/2

≤ (2γ)pCp E

[

1

L2
n(x)

n
∑

i=1

1[Xi∈Ln(x)]

]p/2

(since |Y | ≤ γ)

= (2γ)pCp E

[

1

Ln(x)

n
∑

i=1

1

Ln(x)
1[Xi∈Ln(x)]

]p/2
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= (2γ)pCp E

[

1

L
p/2
n (x)

]

.

By Theorem 2.1,

Ln(x) → ∞ in probability as n → ∞,

at µ-almost all x. Since Ln(x) ≥ 1, this implies

E

[

1

L
p/2
n (x)

]

→ 0 as n → ∞,

and the proof is complete. �

5.4 Some technical lemmas

Throughout this section, for x = (x1, . . . , xd) and ε > 0, Rε(x) refers to the
hyperrectangle

Rε(x) = [x1, x1 + ε] × . . . × [xd, xd + ε].

Lemma 5.4 Let Φ : (0,∞) → [0,∞) be a nondecreasing function with limit
0 at 0. Then there exists a sequence (εn) of positive real numbers such that
nεd

n → ∞ and nεd
nΦ(εn) → 0 as n → ∞.

Proof of Lemma 5.4 Note first that if such a sequence (εn) exists, then
εn → 0 as n → ∞. Indeed, if this is not the case, then εn ≥ C for some
positive C and infinitely many n. Consequently, using the fact that Φ is
nondecreasing, one obtains nεd

nΦ(εn) ≥ nεd
nΦ(C) for infinitely many n, and

this is impossible.

For any integer ℓ ≥ 1, set eℓ = Φ(1/ℓ) and observe that the sequence (eℓ) is
nonincreasing and tends to 0 as ℓ → ∞. Let ϕℓ = ℓd/

√
eℓ. Clearly, the se-

quence (ϕℓ) is nondecreasing and satisfies ϕℓ/ℓ
d → ∞ and [ϕℓ/ℓ

d]×Φ(1/ℓ) =√
eℓ → 0 as ℓ → ∞.

For each n ≥ 1, let ℓn be the largest positive integer ℓ such that ϕℓ ≤ n, and
let εn = 1/ℓn. Then the sequence (εn) satisfies

nεd
n ≥ ϕℓn/ℓd

n → ∞
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and
nεd

nΦ(εn) ≥ [ϕℓn/ℓd
n] × Φ(1/ℓn) → 0

as n → ∞. �

Lemma 5.5 Assume that µ has a density f with respect to the Lebesgue
measure on R

d. For x ∈ R
d, let gε be the density defined by

gε(y) =

{

µ (Rε(x))

εd
if y ∈ Rε(x)

f(y) otherwise,

and let Z1, . . . ,Zn be independent random vectors distributed according to
gε. Let (εn) be a sequence of positive real numbers such that εn → 0 and
nεd

n → ∞ as n → ∞. Then, denoting by L′
εn

(x) the number of LNN of x in
the sample {Z1, . . . ,Zn} falling in Rεn(x), one has

L′
εn

(x) → ∞ in probability as n → ∞,

at µ-almost all x.

Proof of Lemma 5.5 To lighten notation a bit, we set pε(x) = µ(Rε(x)).
Choose x in a set of µ-measure 1 such that µ(Rε(x)) > 0 for all ε > 0 and
npεn(x) → ∞ as n → ∞ (by Corollary 5.1 this is possible).

The number of sample points falling in Rεn(x) is distributed according to
some binomial random variable Nn with parameters n and pεn(x). Thus, we
may write, for all A > 0,

P(Nn < A) ≤ P(Nn < npεn(x)/2)

(for all n large enough)

= P(Nn − npεn(x) < −npεn(x)/2)

≤ 4/ (npεn(x))

(by Chebyshev’s inequality),

from which we deduce that Nn → ∞ in probability as n → ∞. This implies
that

E

[

1

(log Nn)d−1
1[Nn≥2]

]

→ 0 as n → ∞. (13)
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Now, denote by Km the number of maxima in a sequence of m i.i.d. points
chosen uniformly at random from (0, 1)d. Using the fact that the Zi’s which
fall in Rεn(x) are uniformly distributed on Rεn(x), we note that L′

εn
(x) and

KNn have the same distribution. Therefore, the theorem will be proven if we
show that KNn → ∞ in probability as n → ∞.

A straightforward adaptation of the arguments in Barndorff-Nielsen and So-
bel [4] and Bai et al. [3, 2] shows that there exist two positive constants ∆1

and ∆2 such that, on the event [Nn ≥ 2],

E[KNn |Nn] ≥ ∆1(log Nn)d−1 (14)

and
V[KNn |Nn] ≤ ∆2(log Nn)d−1. (15)

Fix A > 0 and α > 0, and let the event En be defined as

En =
[

Nn < e(2A/∆1)1/(d−1) ∨ 2
]

.

Since Nn → ∞ in probability, one has P(En) ≤ α for all n large enough.
Using (14), we may write, conditionally on Nn,

P(KNn < A|Nn) ≤ P (KNn < E[KNn |Nn]/2 |Nn) 1Ec
n

+ 1En .

Thus, by Chebyshev’s inequality and inequalities (14)-(15),

P(KNn < A|Nn) ≤ ∆

(log Nn)d−1
1Ec

n
+ 1En

for some positive constant ∆. Taking expectations on both sides, we finally
obtain, for all n large enough,

P(KNn < A) ≤ E

[

∆

(log Nn)d−1
1[Nn≥2]

]

+ α,

which, together with (13), completes the proof of the lemma. �

Lemma 5.6 Let ∆ ∈ (0, 1). Then, for all n ≥ 1,

n

∫

[0,∆]d
(1 − Πyi)

n−1dy =
(log n)d−1

(d − 1)!
+ O∆

(

(log n)d−2
)

,

where the notation O∆ means that the constant in the O term depends on ∆.
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Proof of Lemma 5.6 The proof starts with the observation (see for ex-
ample Bai et al. [3]) that

n

∫

[0,1]d
(1 − Πyi)

n−1dy =
(log n)d−1

(d − 1)!
+ O

(

(log n)d−2
)

. (16)

To show the result, we proceed by induction on d ≥ 2. For d = 2, we may
write

n

∫

[0,∆]2
(1 − y1y2)

n−1dy1dy2

= n

∫

[0,1]2
(1 − y1y2)

n−1dy1dy2 − n

∫

[0,1]2\[0,∆]2
(1 − y1y2)

n−1dy1dy2

= log n + O(1) − n

∫

[0,1]2\[0,∆]2
(1 − y1y2)

n−1dy1dy2

(by identity (16)).

Observing that

n

∫

[0,1]2\[0,∆]2
(1 − y1y2)

n−1dy1dy2

≤ 2n

∫

[0,1]

(1 − ∆y)n−1dy

≤ 2/∆

yields

n

∫

[0,∆]2
(1 − y1y2)

n−1dy1dy2 = log n + O∆(1),

as desired. Having disposed of this preliminary step, assume that, for all
positive ∆ ∈ (0, 1),

n

∫

[0,∆]d
(1 − Πyi)

n−1dy =
(log n)d−1

(d − 1)!
+ O∆

(

(log n)d−2
)

. (17)

Then, for d + 1,

n

∫

[0,∆]d+1

(1 − Πyi)
n−1dy
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= n

∫

[0,1]d+1

(1 − Πyi)
n−1dy − n

∫

[0,1]d+1\[0,∆]d+1

(1 − Πyi)
n−1dy

=
(log n)d

d!
+ O

(

(log n)d−1
)

− n

∫

[0,1]d+1\[0,∆]d+1

(1 − Πyi)
n−1dy

(by identity (16)).

With respect to the rightmost term, we note that

n

∫

[0,1]d+1\[0,∆]d+1

(1 − Πyi)
n−1dy

≤ nd

∫

[0,1]d
(1 − ∆Πyi)

n−1dy

= n(d/∆)

∫

[0,∆1/d]d
(1 − Πyi)

n−1dy

=
d(log n)d−1

∆(d − 1)!
+ O∆

(

(log n)d−2
)

(by induction hypothesis (17))

= O∆

(

(log n)d−1
)

.

Putting all pieces together, we obtain

n

∫

[0,∆]d+1

(1 − Πyi)
n−1dy =

(log n)d

d!
+ O∆

(

(log n)d−1
)

,

as desired. �

For a better understanding of the next two lemmas, the reader should refer
to Figure 2.

Lemma 5.7 Assume that µ has a density f with respect to the Lebesgue
measure on R

d. Fix x = (x1, . . . , xd), ε > 0, and denote by Nn the (random)
number of sample points falling in Rε(x). For Nn ≥ 1 and each r = 1, . . . , d,

let X
⋆(r)
n = (X

⋆(r)
n,1 , . . . , X

⋆(r)
n,d ) be the observation in Rε(x) whose r-coordinate

is the closest to xr. Define the random variables

Mn,r =

{

+∞ if Nn = 0

X⋆(r)
n,r − xr if Nn ≥ 1.
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Then, for µ-almost all x,

Mn,r = OP

(

1

n

)

,

i.e., for any α > 0, there exists A > 0 such that, for all n large enough,

P

(

Mn,r ≥
A

n

)

≤ α.

Proof of Lemma 5.7 Note first that X
⋆(r)
n is almost surely uniquely de-

fined. Choose x in a set of µ-measure 1 such that µ (Rε(x)) > 0 and set
pε(x) = µ(Rε(x)). For any r = 1, . . . , d, let T r

ε (x) be the d − 1-dimensional
rectangle defined by

T (r)
ε (x) = {y = (y1, . . . , yr−1, yr+1, . . . , yd) ∈ R

d−1 : xj ≤ yj ≤ xj + ε, j 6= r},

and let

f (r)
ε,x(z)

=
1[0≤z≤ε]

µ (Rε(x))

∫

T
(r)
ε (x)

f(y1, . . . , yr−1, z, yr+1, . . . , yd)dy1 . . . dyr−1dyr+1 . . . dyd

be the marginal density of the distribution µ conditioned by the event [X ∈
Rε(x)]. Note that we can still choose x in a set of µ-measure 1 such that,

for any r = 1, . . . , d, f
(r)
ε,x(xr) > 0 and f

(r)
ε,x(z) satisfies (3) at xr, i.e.,

∫ xr+t

xr

f (r)
ε,x(z)dz = tf (r)

ε,x(xr) + tζr(t), with lim
t→0+

ζr(t) = 0.

Since Nn is binomial with parameters n and pεn(x), we have for any r =
1, . . . , d and t > 0,

P(Mn,r ≥ t)

= E [P(Mn,r > t|Nn)]

≤ E
[

1[Nn>0]P(Mn,r > t|Nn)
]

+ P(Nn = 0)

≤ E

[

(

1 −
∫ xr+t

xr

f (r)
ε,x(z)dz

)Nn
]

+ (1 − pε(x))n
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=

[(

1 −
∫ xr+t

xr

f (r)
ε,x(z)dz

)

pε(x) + 1 − pε(x)

]n

+ (1 − pε(x))n

=

(

1 − pε(x)

∫ xr+t

xr

f (r)
ε,x(z)dz

)n

+ (1 − pε(x))n

≤ exp

(

−npε(x)

∫ xr+t

xr

f (r)
ε,x(z)dz

)

+ exp (−npε(x))

= exp
(

−ntpε(x)
(

f (r)
ε,x(xr) + ζr(t)

))

+ exp (−npε(x)) .

This shows that

Mn,r = OP

(

1

n

)

,

as desired. �

With the notation of Lemma 5.7, we define the random variable

Qn,ε =

{

+∞ if Nn = 0

the number of sample points falling in Pε if Nn ≥ 1,

where, in the second statement,

Pε =

d
⋃

r=1

P(r)
ε

and

P(r)
ε = [x1 + ε, +∞[× . . .× [xr−1 + ε, +∞[

× [xr, X
⋆(r)
n,r ]

× [xr+1 + ε, +∞[× . . . × [xd + ε, +∞[.

Lemma 5.8 Assume that µ has a density f with respect to the Lebesgue
measure on R

d. For µ-almost all x,

Qn,ε = OP(1).
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Proof of Lemma 5.8 For Nn ≥ 1, denote by Q
(r)
n,ε the number of sample

points falling in P(r)
ε , and set Q

(r)
n,ε = +∞ otherwise. Then, clearly,

Qn,ε =
d
∑

r=1

Q(r)
n,ε.

Therefore, the result will be proven if we show that, for µ-almost all x and
all r = 1, . . . , d,

Q(r)
n,ε = OP(1).

We fix x for which Lemma 5.7 is satisfied and fix r ∈ {1, . . . , d}.

Let α > 0. According to Lemma 5.7, there exists A > 0 such that, for all n
large enough,

P

(

Mn,r ≥
A

n

)

≤ α.

Denoting by En the event
[

Mn,r <
A

n

]

,

we obtain, for all t > 0,

P
(

Q(r)
n,ε ≥ t

)

= E
[

P
(

Q(r)
n,ε ≥ t|Mn,r

)]

≤ E
[

1EnP
(

Q(r)
n,ε ≥ t|Mn,r

)]

+ P(E c
n)

≤ E
[

1EnP
(

Q(r)
n,ε ≥ t|Mn,r

)]

+ α

(for all n large enough)

≤
E

[

1EnE[Q
(r)
n,ε|Mn,r]

]

t
+ α

(by Markov’s inequality).

With respect to the first term in the last inequality we may write, using the
definition of En,

1EnE[Q(r)
n,ε|Mn,r]

= n1En

∫ ∞

x1+ε

. . .

∫ ∞

xr−1+ε

∫ xr+Mn,r

xr

∫ ∞

xr+1+ε

. . .

∫ ∞

xd+ε

f(y)dy
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≤ n

∫ ∞

x1+ε

. . .

∫ ∞

xr−1+ε

∫ xr+A/n

xr

∫ ∞

xr+1+ε

. . .

∫ ∞

xd+ε

f(y)dy.

Let

g(r)
ε,x(z)

=

∫ ∞

x1+ε

. . .

∫ ∞

xr−1+ε

×
∫ ∞

xr+1+ε

. . .

∫ ∞

xd+ε

f(y1, . . . , yr−1, z, yr+1, . . . , yd)dy1 . . . dyr−1dyr+1 . . . dyd,

and observe that we can still choose x in a set of µ-measure 1 such that
g

(r)
ε,x(z) satisfies (3), i.e.,

∫ xr+t

xr

g(r)
ε,x(z)dz = tg(r)

ε,x(xr) + tζr(t), with lim
t→0+

ζr(t) = 0.

Thus, for δ > 0, we can take n large enough to ensure

n

∫ xr+A/n

xr

g(r)
ε,x(z)dz ≤ A(1 + δ)g(r)

ε,x(xr).

Putting all pieces together, we obtain, for any t > 0, δ > 0, α > 0, and all n
large enough,

P
(

Q(r)
n,ε ≥ t

)

≤ 1

t
A(1 + δ)g(r)

ε,x(xr) + α.

This shows that
Q(r)

n,ε = OP(1).

�
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Interbalkanique, 2, 77-105.

[16] Fix, E. and Hodges, J. (1951). Discriminatory analysis. Nonparamet-
ric discrimination: Consistency properties, Technical Report 4, Project
Number 21-49-004, USAF School of Aviation Medicine, Randolph Field,
Texas.
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