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1. Some reminders of functional analysis on Lipschitz domains

Extension theorems Let Q C R?! be an open set and let K € N be an order of differentiation. It is not
straightforward to extend a function u € HX (Q,R%) to a function ii € HX (R%,R%) such that

ilo=ule and ||i|lyx gay < Caollullgx )

for some constant Cg independent of u. This result is known as the extension theorem in Evans (2010,
Chapter 5.4) when Q is a manifold with C! boundary. However, the simplest domains in PDEs take
the form |0, L [3><]0, T, the boundary of which is not cl. Fortunately, Stein (1970, Theorem 5 Chapter
VI.3.3) provides an extension theorem for bounded Lipschitz domains. We refer the reader to Shvartz-
man (2010) for a survey on extension theorems.

Example of a non-extendable domain Let the domain Q =] — 1, 1[2\({0} x [0, 1[) be the square
] = 1, 1[? from which the segment {0} x [0, 1[ has been removed. Then the function

B 0 ifx<Oorify<O0
ulx,y) = exp(—%) ifx,y >0,
belongs to C*(€,R) but cannot be extended to R?, since it cannot be continuously extended to the
segment {0} X [0, 1[. Notice that Q is not a Lipschitz domain because it lies on both sides of the
segment {0} x [0, 1[, which belongs to its boundary 9Q.

Theorem 1.1 (Sobolev inequalities). Ler Q C R%! be a bounded Lipschitz domain and let m € N.
If m > dy/2, then there exists an operator T1 : H™(Q,R%) — C%(Q,R%) such that, for any u €
H™(Q,R%), T1(u) = u almost everywhere. Moreover, there exists a constant Cq > 0, depending only
on Q, such that, |[11(u)]|c0.0 < Collullgm (@) -

Proof. Since Q is a bounded Lipschitz domain, there exists a radius r > 0 such that Q € B(0,r). Ac-
cording to the extension theorem (Stein, 1970, Theorem 5, Chapter VI.3.3), there exists a constant
Cgq > 0, depending only on Q, such that any u € H™(Q, Rdz) can be extended to i € H™(B(0,r), RdZ),
with ||| gm (B (0,r)) < Callullgm(q)- Since m > dy /2, the Sobolev inequalities (e.g., Evans, 2010,
Chapter 5.6, Theorem 6) state that there exists a constant Cq > 0, depending only on Q, and a lin-
ear embedding IT: H™(B(0,r),R%) — C%(B(0,r),R%) such that [|I1(i0) [l < Calli|lzm (5(0.r)) and
1(ii) = i in H™(B(0,r),R%). Therefore, IT(«) = I1(ii)|q and (1) || oo < CQC'QHuHHm(Q). O

Definition 1.2 (Weak convergence in L?(Q)). A sequence (u p)peN € L*(Q)Y weakly converges to
Ueo € L2(Q) if, for any ¢ € L*(Q), lim 0 [, pup = [, $ttco. This convergence is denoted by u,, —
Uoco
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The Cauchy-Schwarz inequality shows that the convergence with respect to the L?(Q) norm im-
plies the weak convergence. However, the converse is not true. For example, the sequence of functions
up (x) = cos(px) weakly converges to 0 in L*([-n,x]), whereas Nuplli2(i-rz, 1) = 1/2

Definition 1.3 (Weak convergence in A (Q)). A sequence (u,)pen € H™ ()Y weakly converges to
Ueo € H™(Q) in H™(Q) if, for all |a| <m, 0%up — 0%uc.

Theorem 1.4 (Rellich-Kondrachov). Ler Q C RY be a bounded Lipschitz domain and let m € N.
Let (up)pen € H™1(Q,R%) be a sequence such that (N p || gms (Q))peN is bounded. There exists

a function ue € H™(Q,R%) and a subsequence of (u p)peN that converges to us both weakly in
H™1(Q,R%) and with respect to the H™(Q) norm.

Proof. Let r > 0 be such that Q C B(0,r). According to the extension theorem of Stein (1970,
Theorem 5, Chapter VI.3.3), there exists a constant C, > 0 such that each u, can be extended to
i, € H™(B(0,r),R%), with Nap | ggmet B(0.ry) < Crlltp | ggm+i (). Observing that, for all |a| < m,
0%ii), belongs to H 1 (B(0,r), RdZ), the Rellich-Kondrachov compactness theorem (Evans, 2010, Theo-
rem 1, Chapter 5.7) ensures that there exists a subsequence of (i, )pen that converges to an extension
of us with respect to the H™(B(0,r)) norm. Since the subsequence is also bounded, upon passing to
another subsequence, it also weakly converges in H"*! (B(0, ), R%) to us € H™*(B(0,r),R%) (e.g.,
Evans, 2010, Chapter D.4). Therefore, by considering the restrictions of all the previous functions to €2,
we deduce that there exists a subsequence of (u)pen that converges to ue both weakly in H m+l(Q)
and with respect to the H" () norm. O

2. Some useful lemmas

The nth Bell number B,, (Hardy, 2006) corresponds to the number of partitions of the set {1,...,n}.
Bell numbers satisfy the relationship By =1 and

Bt = (1] B 1)
k=0

For K > 1 and u € CK (R4 ,R%), the Kth derivative of u is denoted by uX).

Lemma 2.1 (Bounding the partial derivatives of a composition of functions). Letd;,d, > 1, K >0,
f e CK(R,R), and g € CK(R,R%). Then

llg o f”cK(Rdl) < BK“g”CK(R)(l + ”f”cK(Rdl))K-

Proof. Let K| < K and let IT(K) be the set of all partitions of {1,. .., Kj}. According to Hardy (2006,
Proposition 1), one has, for all 1 € CK1 (RK1+d1 R),

08 eem =Y M onx[]|([Tan]

Pell(Ky) SeP jeS
Let @ = (1, ...,aq,) be a multi-index such that |a| = K. Setting a9 =0, y; =xg,+j + (xalJr...J,ajf1 +
“t+Xg+ra;-1), and letting h(xy, ... XK +a;) = F (V15 Ya,), we are led to
9*(gof)= Y, gPorx]]o*9y, )
Pell(K)) SeP
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where a(S) = ([{b €S, a1+ ---+ar_1 <b<a+---+ar}])igegd, - Moreover, by definition of the
Bell number, |I1(K1)| = Bk,, and, by definition of a partition, |P| < K. So,

K,

d%(go <B max 1_[ i
16% (g © F)lleo < Kl”g”CKl(Rdl)i1+2i2+~-+K|iK1:K1 =1 Wl g

< BK] ”g”CKl (R91) (I+ ||f||cK1 (R4 ))Kl .

Since this inequality is true for all K; < K and for all |a| = K|, the lemma is proved. O

Lemma 2.2 (Bounding the partial derivatives of a changing of coordinates f). Let di,d, >
I, K>0 feCKRR), and g € CK(R?,R%). Let v € CK(R4,RY) be defined by v(x) =
(f(x1),.... f(xa,)). Then

llg o VHCK(Rdl) < Bg X ”g”cK(Rdl) x(1+ ||f||CK(R))K~

Proof. Let a = (a,...,@q,) be a multi-index such that |a| = K. For x = (x{,...,x4,) and a fixed

i € {1’ . '7d1}7 we let h(t) = g(f(xl)" . '7f(xi—1)’t7f(xi+l)" . "f(xdl))' Clea-ﬂY7 (h o f)(al)(xl) =
(0;)% (g ov)(x). Thus, according to Lemma 2.1,

(hof)(ai)= Z h(lpil)ofx l_l f(|Si|).

P;ell(a;) SieP;

Therefore,

@) (o= >, (@)'Mlgove [ ] rBPx).

P;ell(a;) S;eP;

Letting i = 1 and observing that ij(|sl D(x1) =0 for j # 1, we see that

0% (gon@= 3 | [] £ 0n]x @)% ... @a) @ 1@)g o vi(x).

Piell(a;) Si€P;

Repeating the same procedure for (8;)/Ftlg o v, ..., (8)!P1.. . (84,)!P1lg o v, we obtain

9% (gov)(x)= Z [1—[ f(|51|)(x1)]]x...

P EH(Q|) S1eP;

xS T S a1 x @017 (g P g o v ().

Pq, El_l(a/d] ) Sa,€Pq,
Since Y5, p, |Si] = @; and Z?:ll a; = K, we conclude that

109 (8 0 V)llco < Bay X -+ X Bay, X 107 glleo(1+ | fll cx )<

Using the injective map M : II(a;) X --- X [I(@q,) — I1(K) such that M(Py,...,Pg,) = UflzllP[, we
have Bg, X -+ X Bq, < Bx. This concludes the proof. E——
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Lemma 2.3 (Bounding hyperbolic tangent and its derivatives). For all K € N, one has
| tanh®) ||oo <251 (K +2)!

Proof. The tanh function is a solution of the equation y’ = 1 — y?. An elementary induction shows
that there exists a sequence of polynomials (Pg )k en such that tanh(K) = Py (tanh), with Po(X) = X
and Pg,1(X) = (1 - X?) x P (X). Clearly, Pk is a real polynomial of degree K + 1, of the form

Pr(X)=al® +al® X+ +a) XK+ One verifies that '™ = (i + 1)a'X) — (i — Da'X), with
a(_lf) = ag(li)z = 0. The largest coefficient M (Pg) = maxXog; <K+ |a§K)| of Pk satisfies M(Pgy1) <

2(K +1)x M(Pg). Thus, since M (P;) = 1, we see that M (Pg) < 2K~1K! . Recalling that 0 < tanh <
1, we conclude that

| tanh®) || = || Pk (tanh)||e < (K +2)M(Pg) < 25K (K +2)!
O

In the sequel, for all 8 € R, we write tanhg(x) = tanh(6x). We define the sign function such that
Sgn(x) = 1x>0 - 1x<O~

Lemma 2.4 (Characterizing the limit of hyperbolic tangent in Holder norm). Let K e N and H €
N*. Then, for all € > 0, limg_,c || tanh‘;H —sgn||C,<(R\]_€,£[) =0.

Proof. Fix £ > 0. We prove the stronger statement that, for all m € N, one has

gli_r)lgoﬁmﬂtanhZH =sgnllck r\]-e,ep) =0-

We start with the case H =1 and then prove the result by induction on H. Observe first, since
tanh‘gH —sgn is an odd function, that
I| tanh‘;H =sgn|lck (r\]-¢,2[) = ||tanh‘;H =sgnllck ([ 4,000 -
The case H = 1 Assume, to start with, that K = 0. For all x > &, one has
20™ 20™

™| tanhg (x) — 1| = < '
|tanhg (x) — 1] 1+exp(—20x)  1+exp(—20¢)

Therefore, for all m € N,

20™m 6— 00
1 +exp(—20¢)

6™ tanhg —sgn|lco k|- £, 5[ = 0™ || tanhg —sgn|co, [ 4,00 <

Next, to prove that the result if true for all K > 1, it is enough to show that, for all m,

K g—c0
6" || tanh ) [l ] 6. o] —— 0.

According to the proof of Lemma 2.3, there exists a sequence of polynomials (Pg)gen such that
tanh®) = Pg (tanh) and Pk (X) = (1 — X2) x P (X). Since tanhg (x) = tanh(6x), one has

tanth) (x) =6% tanhX) (6x)

= 6% (1 - tanh?(6x)) x P} _, (tanh(6x))

= 6K (1 - tanh(6x)) (1 + tanh(6x)) x P} _,(tanh(6x)).
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Fix x > &. Then, letting Mk = ||P} _llco,[~1,1], We are led to

K
K
tanh®) (x)| < 2Mx 6K (1 — tanh(6x)) < 4AMg X ——————
|tanh," " (x)| k6 (1 —tanh(6x)) le+exp(29x)
K

<AMg X —————.
K 1 +exp(260¢)

K+m

This shows that 6| tanh () ||, [ o.co] < 4MK X 172

Trexp(202) - One proves with similar arguments that
the same result holds for all x < —&. Thus,

9K+m

X
1 +exp(20¢)

O—c0

9m||tanh(9K) lloo,R\]-&,5] < 4MK 0,

and the lemma is proved for H = 1. Induction Assume that that, for all K and all m,

0—c0

Hmlltanh;’)H =sgnllck r\j—g,e[) — 0. 3)
Our objective is to prove that, for all K, and all m5,
o(H+1 66— 0
om|| tanhg( D —sgnlICKZ(R\]_&gD — 0.

If K, = 0, since, for all (x, y) € R?, [tanhg (x) —tanhg (y)| < 6|x — y| x || tanh’ ||eo < 6]x — y|. We deduce
that

o(H+1 o
9m2||tanhg( " )_tanhf)(sgn)”oo,R\]—s,s[ < 0™ tanhg? —sgnl|eo p\j-e, e[ -
Therefore, according to (3), we have that limg_,, 62| tanhZ(HH) —tanhg (sgn)||co r\]-s,s[ = 0. Since

tanhg (sgn) — sgn = (tanh(6) — 1)1,-¢ — (tanh(0) — 1)1, we see that, for all m,,
glim 6" || tanhg (sgn) — sgn|leo r\]- £, 5[ = O-

Using the triangle inequality, we conclude as desired that, for all m;,

0" | tanh ") —sgnlloo 2] 5, 6] ~—2 0. @
Assume now that K, > 1. Since tanhi,;(h“r1> = tanh®H (tanh), the Faa di Bruno formula (e.g., Comtet,

1974, Chapter 3.4) states that

(tanh FHD) (K2) = > k!

K, S\
m1+2m2+-~+K2mK2:K2 Hi:l ml! Xl

K, _
x (tanh$fT) ™14 (tanh ) x n(tanh(gj))mf.
j=1

Notice that if |x| < arctanh(1/V?2), |tanh(x)| > % because by calling f(x) = tanh(x) - 5, f(0) =0
and f’(x) = (1 — tanh(x)?) — 1 > 0. Therefore, if |x| > &, | tanh(6x)| > min( VLE 9¢) > ¢if § >2and




> L
\/i This is why for 8 >2 and e < 1,

|| (tanh$f?) ™41 (tanh g) || oo gy - o, e < Nl (tanh ) UH MR || oy L

Therefore, from the triangular inequality on || - ||eo,R\]- 5, £[ -

o K>!
[ (tanhfy DY KD g o < >

K;
| mi
my+2my+---+Kami, =K “l L mi X

[ (tanhgf?) g l_[ntanh(“n
j=1

oo, R\]-&,&["

According to the induction hypothesis (3), one has, forall K > 1 and all m € N,

Jim 6| (tanh3") oo gy -, o1 =0.

We deduce from the above that for all K, > 1 and all m,,

60— 0

6" || (tanh g Y KDY e o s 0. 5)

o(H+1)

Combining (4) and (5), it comes that limg—,« 6" || tanh,, —sgn|| -k, ®R\]-&,8[) = 0. O]

Corollary 2.5 (Bounding hyperbolic tangent compositions and their derivatives). Ler K € N and
H € N*. Then, fororall 0 €R, || (tanh‘t’gH)(K) oo < 0.

Proof. An induction as the one of Lemma 2.4 shows that || (tanh‘;H )(K) lloo,\]- £, [ < o0. In addition,
since tanh}? € C*(R,R), ||(tanh3) K|, |_ . o] < 0. O

When d; = d5 = 1, the observations (X;,Y)), ..., (X, Y,) € R? can be reordered as X1y Y(1))s-- -

(X(n)»Y(n)) according to increasing values of the X;, that is, X(1) < -+ < X(,). Moreover, we let
G(n,n,.) ={(X;,Y;),1 <i<n}U {X(r) 1 < j < n,}, and denote by &(n,n,) the minimum distance
between two distinct points in G(n, n,) ie.,
o(n,ny)=  min |71 - 22]. (6)
z1,22€G (n,ny,
2122

Lemma 2.6 (Exact estimation with hyperbolic tangent). Assume that d| = d> = 1, and let H > 1.
Let the neural network ug € NNy (n — 1) be defined by

—-Y S
wo(x) = Y1) + Zw[tanhgf(x_x(,.)_ <";r>)+1}.
i=1

Then, forall 1 <i <n,
Hlim ug(X;) =Y;.

Moreover, for all order K € N* of differentiation and all 1 < j < n,,

lim u“”(xf.’)) =0.
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Proof. Applying Lemma 2.4 with & = 6(n.n,)/4 and letting
n 1 3
G=R\UL, X + 25(’1,nr),X(i) + 15(71,1%)[,

one has, for all K, limg—w [|ue — el ok () =0, Where

n-1

Uso(x) =Y(1) + Z [Yiien) — Yoy | % 1x>X( St -
i=1

Clearly, for all 1 <i < n, us(X;) =Y;. Since ul,(x) =0 for all x € G, and since X;.r) € G for all
1 < j < n,, we deduce that u(K)(X(r)) 0. This concludes the proof. O

Definition 2.7 (Overfitting gap). For any n,n.,n, € N* and A(igge) = 0, the overfitting gap operator
OG.n,.n, is defined, for all u € C™(Q,R%), by

OGi gy (1) = [RV9E) () = T (u)].

Lemma 2.8 (Monitoring the overfitting gap). Let &£ > 0, A(sdge) > 0, H > 2, and D € N*. Let
n,ne,ny € N*. Let § € OH.p be a parameter such that (i) R,(,rl,(ljege,),r( uy) <infyenng (D) R,(l lr(ljfe,)lr (u)+e

and (ii) OGyp p, n, () < & Then

Fn(ug) < inf  Fp(u) +28+0n, n,—oo(1).
ueNNg (D)

Proof. On the one hand, since %, < Rﬁlr’i,?f?,),r + OGy, 5, ,n,,» assumptions (i) and (i) imply that
T (1) < infyenngy (D) RENE) (u) + 26. On the other hand, RUSE) — OG, ,,. ne < . The
proof of Theorem 4.6 reveals that there exists a sequence (6(ne,n;))n, n,eN € ® p such that
limy, 5, —c0 OGu,ng n, (Ug(nyn,)) = 0 and limy, j, o Zn(Ug(n,,n,)) = infuenng (D) %’ (u). Thus,

inf, NNy (D) R,Sr,l,(,ieg?,)lr () <infaNg (D) Zn(U) +0p, n,—e0(1). We deduce that

%n(ué) < ueN%\?,f(D) r%n(u) +2e+ One,nr—>oo(1)~

O

Lemma 2.9 (Minimizing sequence of the theoretical risk.). Ler H,D € N*. Define the sequence
(vp)pen € NNy (D)N of neural networks by vp(x) =tanh, o tanh®# =1 (x). Then, forany A, >0,

1
pli_r)r}x)/le(l —vp(1))2+%/_l x> (v7,)?(x)dx =0.

Proof. tanh®#~1) is an increasing C*® function such that tanh® ¥ =1 (0) = 0. Therefore, Lemma 2.4
shows that lim,, o v, (1) =1, so that lim,, o de(1 = vp( 1))% = 0. This shows the convergence of the
left-hand term of the lemma.

To bound the right-hand term, we have, according to the chain rule,

/( J < ]o(H—l) { ]/( ]o(H—l)(X))




8

with || tanh°H—1) llct(ry < oo by Corollary 2.5. Thus,

1
/ X (Vi) (x)dx < || tanh® =D 12, / p*x*(tanh’(p tanh®# =1 (x)))?dx.

Notice that x> (tanh’ (p tanh® ¥~ (x)))? is an even function, so that

1
/ x*(v),)*(x)dx < 2| tanh®F~ 1)||Cl(R)/ px*(tanh’ (p tanh° 7~ (x)))dx.

Remark that (tanh’)?(x) = (1 — tanh(x))?(1 + tanh(x))? < 16 exp(—2x), so that

1 1
/1 Xz(v;)z(x)dx < 32| tanh®H D ”2CI(R)‘/0 p*x%exp(-2p tanh°7 =1 (x))dx.

If H =1, then the change of variable X = px states that

1 o0
/ p’x? exp (—2px)dx < p! / %’ exp (—2X)dx 2770
0 0
and the lemma is proved.

If H > 2, notice that tanh(x) > X1y<1/2 + 1x>1/2 for all x > 0, and therefore we have that
tanh° (71 (x) > X1y oh-i J2H + 1ysom- /2H  Thus, using the change of variable X = px,

1 1
/ p2x2exp(—2ptanh°(H_1)(x))dxg/ p>x%exp(-271 px)dx
0 0
gp”/ %2 exp(-2H71%)dx.
0

Since this upper bound vanishes as p — oo, this concludes the proof when H > 2.
O

Definition 2.10 (Weak lower semi-continuity). A fonction 7 : H"(Q) — R is weakly lower semi-
continuous on H"(Q) if, for any sequence (up,)pen € H™ () that weakly converges to uq € H™(Q)
in H™ (L), one has I (#e) < liminf, e I(up).

The following technical lemma will be useful for the proof of Proposition 5.6.

Lemma 2.11 (Weak lower semi-continuity with convex Lagrangians). Let the Lagrangian L €

di+m d
2
C*(R n X -+ X R x Rdl,R) be such that, for any x(m),...,x(o), and z, the function
() s L (xmD) | xO) 2) is convex and nonnegative.
Then the function I : u +— fQ L((ﬁ”’i]"l.mﬂu(x))]gil ,,,,, i1 <dy >+ - - » U(X),X)dX is lower-semi contin-

uous for the weak topology on H™'(Q,R%).

Proof. This results generalizes Evans (2010 Theorem 1, Chapter 8. 2) which treats the case m = 0.
m+1 Q ]-) N A A o m+1 Q ]-) 3
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H™1(Q,R%). Our goal is to prove that I(i1e) < lim inf, o I(up). Upon passing to a subsequence,
we can suppose that lim, oo [(up) =liminf, oo I(up).

As a first step, we strengthen the convergence of (u,)pen by showing that for any & > 0, there
exists a subset E. of Q such that |Q\E .| < & (the notation | - | stands for the Lebesgue measure),
and such that there exists a subsequence that uniformly converges on E., as well as its derivatives.
Recalling that a weakly convergent sequence is bounded (e.g., Evans, 2010, Chapter D.4), one has
sup , e [lup | Hm+ (@) < 0. Theorem 1.4 ensures that a subsequence of (up)pen converges to, say,
Uoo € H™1(Q,R?%) with respect to the H” (L) norm. Upon passing again to another subsequence,
we conclude that for all || < m and for almost every x in Q, limp 0 0%up(x) = 0%uw(x) (see, e.g.
Brezis, 2010, Theorem 4.9). Finally, by Egorov’s theorem (Evans, 2010, Chapter E.2), for any & > 0,
there exists a measurable set E ¢ such that |Q\E .| < £ and such that, for all || < m, limp, e ||0%up -
0%Ucs|lL>(E,) =0.

Our next goal is to bound the function L. Let Fe = {x € Q, 34| <m+1 [0 U0 (X)] < &1} and
G¢ = E; N Fg. Observe that limz_,o |Q\G¢| = 0. Since, for all |a] <m + 1, ||0%Uco|lco,G. < 0,
and since limj, e [|0%u) — 0%Uwl|r>(G,) = 0, then, for all p large enough, (||[0%up|lr=(G,.))pen
is bounded. For now, for the ease of notation, we denote ((6i1 +1 fel Wiy somrigp1 <dy >+ - - U(2)5 2)

by (D™ 'u(z),...,u(z),z). Therefore, since the Lagrangian L is smooth and Q is bounded, for all p
large enough, (||L(Dm+1up(-), v Dup (1), up (), )lL=(G,))pen is bounded as well.

To conclude the proof, we take advantage of the convexity of the Lagrangian L. Let J,,,+; be the
Jacobian matrix of L along the vector x(*1) The convexity of L implies

LD upy(2),. .. up(2),2)
> L(D"™ M ueo(2), D™up(2) . . . up(2),2)
+ I 1 (D" oo (2), D™ up (2) .. o1 (2),2) X (D™ (2) = D™ uc (2)).

Using the fact that L > 0 and that I (up) > fG L(Dm”up (2),...,up(z),z)dz, we obtain

M) > [ L0 (2.0 2.1y (2).2)

+ It (D™ s (2), D™ (2), o up (2),2) X (D™, (2) = D™ ueo (2))dz.

Since (||L(Dm+1up(-), s Dup (), up (), )lL=(G,))pen is bounded for p large enough, and since,
for all |a| < m, limp e ||0%Uup — 0%uUco || = (G,) =0, the dominated convergence theorem ensures that

Jim L(D”“']uw(z),Dmup(z),...,u,,(z),z)dzz/L(Dm“uoo(z),...,uoo(z),z)dz.
—00 Ge

Since (i) L is smooth (and therefore Lipschitz on bounded domains), (if) for all p large enough,
(10%upllL=(G.)) pen is bounded, and (iii) for all || < m, lim, [|0%up — 0¥ ueoll Lo (G, ) =0, we have
that lim,—e0 ||/41 (Dm+1'400(')’ D"up (), ttp (), ) = It (DmHMOO(')’ e loo (), ')”L""(Gg) =0.
Therefore, since Dm+1up — pmly

p—)OO

Hm [ Tyt (D™ ueo (2), D™t (2), -1t p(2),2) X (D™t (2) = D™ uce (2))dz = 0.

Hence, limp 00 I (1)) > /G , L(D™'Yo(2), ..., e (z), z)dz. Finally, applying the monotone conver-
e e i — i > I(u), which is the desired resu ]

0 shows that lim,,
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Lemma 2.12 (Measurability of i,,). Let @i, = argmin, . gym+1 (Q.RD) %’,ﬁreg) (u), where, for all u €
Hm+1 (Q., Rdz),

. Ad V- - e e
A5 () == Y 1) (X) = Yilly + 4B ) (X)) = (X))l
i=1

M
1
+ al Z 15 12 ) +/lt||u”i1m+l @
k=1

Then i, is a random variable.

Proof. Recall that

Ad + IS
A4 ) = A 0.0) = 2B (0) + L DI+ ABIRX )+ 15 > /Q By (x)%dx.
i=1 k=1

Throughout we use the notation Ay ¢ (u, u) instead of A, (u,u), to make the dependence of A, in
the random variables x = (X1,...,X,) and e = (&1, ..., &,) more explicit. We do the same with B,,.
For a given a normed space (F,|| - ||), we let Z(F, || - ||) be the Borel o-algebra on F induced by the
norm || - ||.

Our goal is to prove that the function

iy (Q'XR"2, B(Q KR ||-[12) = (H™(QRD), Z(H™ (QRE), ||| yme1 ()

(x,e) —> argmin Ay o) (U, u) —2B(x ) (1)
ue Hm+1(QR%)

is measurable. Recall that H"*!(Q,R%) is a Banach space separable with respect to its norm || -
| g1 (- Let (vg)gen € H™1(Q,R%)N be a sequence dense in H™*! (Q, R%). Note that, for any x €
Q" and any e € R, one has minuEH,ﬂH(Q’Rdz) Ax,e) (U, 1) = 2By oy (u) = infgen Ax.e) (Vgsvg) —
28 (x,e) (vq). This identity is a consequence of the fact that the function u = Ax ¢) (1, u) = 2B (x ¢y (1)
is continuous for the H™*!(Q) norm, as shown in the proof of Proposition 5.5). Moreover, according
to this proof, each function Fy (X, e) := Ax ¢) (Ug, ttg) — 2B(x,¢) (1g) is a composition of continuous
functions, and is therefore measurable. Thus, the function

G(x,e) = min A(x,e) (u,u) =28B(x,¢) (u) = inf A(x,e) (g, ug) _ZB(X,e)(”q)
ue H™+1(QR%) qeN
is measurable.

Next, since Q, R, and H™*! (Q, Rdz) are separable, we know that the o-algebras #(Q" x R x
H™ 1 (QR%D), || - |lg) and ZB(Q" x R™2 || - |) ® B(H™(Q,R%),] - l| gm+1 () are identical,
where ||(x,e,u)lle = ||(X,e)|l2 + ||u||Hm+1(Q) (see, e.g. Rogers and Williams, 2000, Chapter I1.13,
E13.11c). This implies that the coordinate projections Il , and IT,—defined for (x,e) € Q" X RNz
and u € H™*(Q,R%) by Iy . (X, e, u) = (X, e) and I, (X, e, u) = u—are || - || measurable. It is easy to
check that, for any (x, e) € Q" xR"% and u € H"™*1(Q,R%), iflimp o0 [|(Xp, ep,up) — (X, e,u)|le =0,
then lim, e |T1(up) — TI()]le,@ = 0 and, since T(u) € CO(QR®), limp_e0 Ax,, e, (Up.Up) —
2By, e, (Up) = Ao (1, 1) —2Bx ¢ (). This proves that 1 : (Q" xR"%2 x H™(Q,R%2), 22(Q" xR"%2 X
H™1(Q,R), | - lo)) = (R, Z(R)) defined by

I(X,e,u) = Ax ey (1, 1t) = 2B ¢y (11)




" "

is continuous with respect to || - || and therefore measurable. According to the above, the function
i(X, e, u) = I(X’ e, I/l) - G © Hx,e(X, €, M)

is also measurable. Observe that, by definition, i, = J o (Xy,...,X,,&(,...,&n), Where J(X,e) =
IL, (I ({0}) N ({(x, e) } x H™*!(Q,R%))). For any measurable set S € Z(H"*' (Q,R%, |- || yme1 @)
J7HS) =y (I71({0}) N (Q" x R™2 x §)) € B(Q" x R"42). (Notice that J~!(S) is the collection
of all pairs (x,e) € Q" X R”di satisfying arg min,, . g1 @.rd2) Ax.e) (u,u) —2B(x ¢)(u) € S.) To see
this, ju~t note that for any set S € Z(Q" xR || - |,) ® B(H™ (Q,R%), || - Il st (Q,Rdz)), one has
I, . (S) € B(Q" x R"%,|| - ||5) (see, e.g. Rogers and Williams, 2000, Lemma 11.4, Chapter II). We
conclude that the function J is measurable and so is #,. O]

Let B(L, || - || gms1 () = {u € H™(Q,R®), ]l pyme1 () < 1} be the ball of radius r centered at
0. Let N(B(L || - | gms+1(@)))s | - | gms1 () ) be the minimum number of balls of radius r according to
the norm || - || yym+1 () needed to cover the space B(L, || - || gm+1(q))-

Lemma 2.13 (Entropy of H"*! (Q,R%)). Let Q C R4 be a Lipschitz domain. For m > 1, one has

log N(B(1, || - || ggme1 (Q)), Il | gomes (Q),r) = r(_))o(,-_dl/(mﬂ))_

Proof. According to the extension theorem (Stein, 1970, Theorem 5, Chapter V1.3.3), there exists
a constant Cq > 0, depending only on Q, such that any u € H™+'(Q,R%) can be extended to ii €
H™ (R RD), with || gme @1y < Callull gme () Let r > 0 be such that Q € B(r, || - [12) and let

¢ € C* (R4, R%) be such that

1 forxeQ
p(x) = {OforxeRdl |x| >

Then, for any u € H™*' (Q,R%), (i) ¢ii € H™ (RY,R%), (if) pii|g = u, and (iii) there exists a con-
stant Cq > 0 such that 1A gy Ry S Cg||u||Hm+1(Q) The lemma follows from Nickl and Pétscher
(2007, Corollary 4). O

Lemma 2.14 (Empirical process L2). Let Xy, ..., X}, be i.i.d. random variables, with common distri-
bution pux on Q. Then there exists a constant Cq > 0, depending only on Q, such that

a,l/zcQ
B swp EIIH(M)(X)IIZ——ZIIH(M)(X,)II) <2

”u||Hm+1 (Q) <

and
. 1 2y drCq
B s BIA@EE - Y I X)l3) ) < 22,
il st o) <1 nia "
where X1 is the Sobolev embedding (see Theorem 1.1).
Proof. For any u € H™(Q,R%), let
1 n
Zn.u =BT (u) (X3) |5 - - Z M) (X)) and Z,=  sup  Zyu.

| [Jze]| m+l <1
J=1 H ()
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For any u,v € H™*1(Q,R%) such that lleell grms1 (@) < 1 and [[v][ gme1 () < 1, we have

| 001G (X0 3 = BT ) (X0 1) =+ (L) (%0 1 = B (%0 )
< (M=) (X0 + B~ V) (XDlo)

4C .
< TQ\/ZHM —Vllgm (@) (by applying Theorem 1.1).

Therefore, applying Hoeffding’s, Azuma’s and Dudley’s theorem similarly as in the proof of Theorem
5.2 shows that

E(z,,)<24cgd;/2n—1/0 [log N(B(L || l| g1 (@) | g1 (- 7)1 2l

Lemma 2.13 shows that there exists a constant ng, depending only on Q, such that E(Z,) <
Cédé/ Zp-1r2, Applying McDiarmid’s inequality as in the proof of Theorem 5.2 shows that Var(Z,;) <
16C£22d2n‘1. Finally, since E(Z2) < Var(Z,) + E(Z,)?, we deduce that

dy .
E(Z?) < 72((%)2 +16C2).
O

Lemma 2.15 (Empirical process). Let X1,...,X,,&1,...,&, be independent random variables, such
that X; is distributed along ux and g; is distributed along g, such that E(g) = 0. Then there exists a
constant Cq > 0, depending only on Q, such that

1< . ) , i
E((H Iy, <1sz(“)(Xﬂ-E<H(u)(X)),s,->) )s%c@
u Hm+1(.Q)\ 7=

where X1 is the Sobolev embedding.

Proof. First note, since H™*!(Q,R%) is separable and since, for all u € H™* (Q,R%), the func-
tion (X1,...,Xn,€1,...,€5) — %Z;.‘:l<1=[(u)(xj) — E(TT(u)(X)),e;) is continuous, that the quantity
7 = SUP et g <1 %Z;‘:l(l:[(u)(Xj) — E(f1(u)(X)), ;) is a random variable. Moreover, |Z| <

2CoVd, X't llejll2/n, where Cq is the constant of Theorem 1.1. Thus, E(Z?) < co.
Define, for any u € H™* (Q,R%),

Znu= % i(ﬁ(u)(xj) —E(MI(u)(X)),&;) and Z,= sup Zn.u.

7= leell gme1 () <1

For any u,v € H™1(Q,R%), we have

| 0100 (%) ~ BT (), )~ - (1) (X) ~ B0 (X)), )

= %I(ﬁ(u —v)(X;) = E((u = v) (X)), &)
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ZCQ .
\/d_2||u —vllgm (g llill2 (by applying Theorem 1.1).
Using that ¢ is independent of X, so that the conditional expectation of Z,, is indeed a real expectation

with €1,...,&, fixed, we can apply Hoeffding’s, Azuma’s and Dudley’s theorem similarly as in the
proof of Theorem 5.2 to show that

24Cq S 12
B(Zo |er,.oom) < = 2o Y lleil3)
i=1

x /0 [log N(B(LII - | g1 () 11 - [l ggmst (- 7)1 2l

Hence, according to Lemma 2.13, there exists a constant C(, > 0, depending only on Q, such that

12
E(Zn | &1, . 6n) < Cén_lx/d_2( . ||sl-||§) . We deduce that

, —(Ellsl})"?
B(Zn) < CoNeb——5—,

and

2
Var(E(Zy | &1, ..., &n)) <E(E(Zy | &1, ..., 80)%) < (Ch)*da ” Il .

Applying McDiarmid’s inequality as in the proof of Theorem 5.2 shows that
1 n
Var(Zy | £1,....6n) < 16Cadr— D leill3.
i=l

The law of the total variance ensures that
Var(Z,) = Var(E(Z, | €1,...,&n)) +E(Var(Z, | €1,....&n))
< @'éﬁug((%)2 +16C3).
Since E(Z2) < Var(Z,) +E(Z,)?, we deduce that

d>Ellell3

E(Z2) < (2(CH)* +16C3).

3. Proofs of Proposition 2.3

De Ryck, Lanthaler and Mishra (2021, Theorem 5.1) ensures that NN is dense in (C*° ([0, 1]91,R), || -
| CK ([0 l]dl)) for all d; > 1 and K € N. Note that the authors state the result for Holder spaces

(WK+Le (10,119, || - llwx. (10,1 dl)) (see Evans, 2010, for a definition). Clearly, C*([0,1]%) C
HZK_H’OO([Q ]]dl) and the norms and | - coincide on COO(IO 1 ]dl)
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Our proof generalizes this result to any bounded Lipschitz domain €, to any number H > 2 of layers,

and to any output dimension d». We stress that for any U € R?!, the set NN, € C*(R%, R%) can of]
course be seen as a subset of C* (U, R%2).
Generalization to any bounded Lipschitz domain Q In this and the next paragraph, d, = 1. Our
objective is to prove that NN is dense in (C*(Q,R), | - llck (q))- Let f € C¥(Q,R). Since Q is
bounded, there exists an affine transformation 7 : x — A, x + b, with A; € R* and b, € R4, such that
7(Q) € [0,1]%. Set f = f(r~"). According to the extension theorem for Lipschitz domains of Stein
(1970, Theorem 5 Chapter V1.3.3), the function f can be extended to a function f € WK-*(]0,1]9)
such that f l-(@) = f |+ (@)- Fix € > 0. According to De Ryck, Lanthaler and Mishra (2021, Theorem
5.1), there exists ug € NN5 such that ||ug — fIIWk,m([O’l]d) < €. Since f is an extension of f, f|T(Q) €
C*(Q) and one also has |Jug — f”cK(T(Q)) <e.

Now, let m € N and let @ be a multi-index such that Zf.izll a; =m. Then, clearly, 8 (f (1)) = A x
0% f (7). Therefore, [lug (1) = £(7)llck () < € X max(1, AX), that is

||M9(T) _f||cK(Q) < € X max(l,Af).

But, since 7 is affine, u g (7) belongs to NNj. This is the desires result. Generalization to any number
H > 2 of layers We show in this paragraph that NN is dense in (C®(Q,R), || - llcx (q)) forall H > 2.
The case H =2 has been treated above and it is therefore assumed that H > 3.

Let f € C*(,R). Introduce the function v defined by

V(x1s. .., xg,) = (tanh®F =D (x ) tanh®H 72 (x,)),

where tanh®¥~2) stands for the tanh function composed (H — 2) times with itself. For all ug € NNj,
ug(v) € NNy is a neural network such that the first weights matrices (W¢)1<s<H—2 are identity ma-
trices and the first offsets (b)1<e<H-2 are equal to zero. Since tanh is an increasing C* function, v
is a C* diffeomorphism. Therefore, v(€) is a bounded Lipschitz domain and f(v~!) € C®(v(Q),R).
Lemma 2.2 shows that f(v™') € C*(#(Q),R), where 7#(Q) is the closure of v(Q). According to the
previous paragraph, there exists a sequence (6,,)mnen of parameters such that ug,, € NN, and

nli_r)noo llue,, — f(V_l)“CK(v(Q)) =0.
Thus, ug,, approximates f (v™1), and we would like ug,, (v) to approximate f. From Lemma 2.2,
6, () = fllex (@) < Bk X llug,, = f o v lex gy X (1+ | tanh®™ 2 || ok )X,

while Corollary 2.5 asserts that || tanh°* =2 llcx (ry < co. Therefore, we deduce that limy, e [[g,, (v) =
fllck (@) =0 with ug,, (v) € NNg, which proves the lemma for H > 2.
Generalization to all output dimension d, We have shown so far that for all H > 2, NNy is dense in
(C¥(QR). || - llck (q))- It remains to establish that NN is dense in (C®(Q,R%), || - llcx (q)) for any
output dimension d;.

Let f = (fi,...,f1,) € CO(QR®). For all 1 <i < dy, let (05))men € (NNg)™ be a sequence
of neural networks such that lim,; ”ué),(,f) - fillck (@) = 0. Denote by ug,, = (u%l),...,ug(dz)) the

stacking of these sequences. For all m € N, ug, € NNy and lim,, .« |lug,, — fllcx @ = 0. TlTerefore,
NNy is dense in (C®(Q,R), || - || cxqy)




" "

4. Proofs of Section 3

4.1. Proof of Proposition 3.1

Consider uy(,, , py € NNg (D), the neural network defined by

Y<z+1> Y(i) [

6 s
tanh;),H (x— X(i) — (nznr)) + 1],

u@(p ny D)(X) Y(]) +Z

i=1

where 6 (n, n,-) is defined in (6) and where the observations have been reordered according to increasing
values of the X(;y. According to Lemma 2.6, one has, for all 1 <i < n, 1imp_mu9(p - D)(X )=
Y;. Moreover, for all order K > 1 of differentiation and all 1 < j < n,, limp e u(K) ( (r)) =

0. Recalling that .# (u,x) = mu’’ (x) + yu’(x), we have ||,/(u,x)||2 < m||u”(x)||2 + 7||u (x)||2 We
therefore conclude that lim,_,co Ry, 5, (¢ 0(p.ny, D)) =0, which is the first statement of the proposition.

Next, using the Cauchy-Schwarz inequality, we have that, for any function f € C?(R) and any & > 0,

20 [“nsang 2= ([ mgt e ) = Imr@ - 1 cen @ - s
Thus,

Zn(U4(pn,,D))
1

> — F(uy ,x)zdx
T [0,T] H(P»nr’D)

1 n X +6(n,n.)/[2+e
>T ./ F(Ug(p,n, D)’X)zdX
T X(i)+d(n,n)/2-¢& o

1<l
_Zg[m(uﬂ(pn )X +0(n.ny)/2+¢) - nr’D)(X<i)+6(n,nr)/2—s))

i=

ﬂ

2
+7(”é(p,n,,D)(X(i) +6(n,n.)/2+¢e)— ”é(p,n,,D)(X(i) +6(n,n.)/2 - s))] .
Observe that, as soon as 6(n,n,)/4 > &, one has, forall 1 <i<n-1,

Jil)réo”é(p,nr,D)(X(i) +6(n,nr)/2+8) - Mé(p,nr,D) (X(i) +6(n,nr)/2 - 8) = Y(i+]) _Y(i),

and, forall 1 <i<n-1,

lim u’, (X(,)+6(n n)/2+¢e)—u;

A0 UG o (X(i) +6(n,n.)/2-€)=0.

d(p.n-,D)

Hence, for any 0 < &€ < 8(n,n,)/4,

n
1 ’ ’
Z Z [m(ué(p,nr,D) (X(l) + 6(”, nr)/2 - 8) - ué(p,nr,D) (X(l) + 6(”1, nr)/2 - '9))
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y SN (Yiivn) = Yy)?
p—o Y 2e '

We have just proved that, for any 0 < € < §(n, n,-) /4, there exists P € N such that, for all p > P,

S Vi) = Yy)?
2eT '

R4 (pn, ) 2V %
We conclude as desired that lim, e Ry (1 (ponr D)) = o0, since we suppose that there exists two ob-

servations Y(;) # ¥(;).

4.2. Proof of Proposition 3.2
Letugp nyn,.0) € NNH (4) be the neural network defined by

UG(p ey, D) X1 =tanh®" (x + 0.5 + pt) — tanh°" (x — 0.5 + pr)
+tanh®? (0.5 + pt) — tanh®" (1.5 + pr).

Clearly, for any p € N, u, (pone.ny D) satisfies the initial condition

UG pme.ny.p) (%5 0) = tanh® (x +0.5) — tanh®" (x — 0.5) + tanh®? (0.5) — tanh®” (1.5).

We are going to prove in the next paragraphs that the derivatives of UG(pone.ny D) vanish as
p — oo, starting with the temporal derivative and continuing with the spatial ones. According to
Lemma 2.4, for all & > 0 and all x € [-1,1], limp_, ||ué(p’ne’nr,D)(x,-)||C2([£’T]) = 0. There-

fore, for any X € {~1,1} x [0,T], limp o [l 3 . ..y (X2 = 0 and, for any Xj.’) €Q,
1m0 1016 o ey (X5 ll2 =0 (since X" ¢ 6€2).

Letting v(x,7) = tanh® (x + 0.5 + pt) — tanh°" (x — 0.5 + pr), it comes that a)%,xué(p,ne,nr,D) =
p‘26,2’tv. Thus, invoking again Lemma 2.4, for all £ > 0, and all x € [-1, 1],

pli_I)l’(l)op_znatz’tV(x, ')”oo,[e,T] = plggo ||6)%,xué(p,ng,nr,D) (x’ ’)”oo,[s,T] =0.

Therefore, for any X;.r) € Q, one has lim,_,« ||a)%,x“é(p,ne,nr,D)(Xj'r))lb =0 and, in turn, one has
1m0 17 (3 ey 0y X5 )l = 0. Thus, for all ne, = 0, 1impsco R, (45 1 ) =0-

Next, observe that %(ué([’,ne»nr,D)) > ./[—1,1]><[0,T] (8’“(9(p,ne,nr,D) - af,xué(p’ne,nr’m)z. By the
Cauchy-Schwarz inequality, for any 6 > 0,

(Brug -2 uy )?
A/[—l,l]X[O,T] t"9(p,ne.n.,D) X, X" 0(p,ne,ny,D)

1 o 2
25‘1/ 1(/ZOaf”é(p,ne,nr,D)(x’t)_aixué(p,ne,nr,D)(x’t)) dx
xX=— =l

WV

1 o 2
-1 2
o / | (ué(p’”@nr’D)(x’é‘)_ué(pvne’nr’D)('x’o)_‘[0ax,xué(p,ne,nr,D)('x7t)dt) dx.
X =|
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Invoking again Lemma 2.4, we know that limp—m””é(p,ne,nr,D)("5)”[—1,1],00 = 0. Moreover,
for all £ >0 and all -1 <x < 1, limp e 6§,Xué(p,ne,nr,D)(x’ t) = 0. Besides, by Corollary 2.5,

”a)%,xué(p,ne,nr,D) lloo,[0,17x[~1,17 < 2| tanh°H ||C2(R) < co. Thus, by the dominated convergence the-
orem, for any ¢ > 0 and all p large enough,

1! 2
%(ué(p,ne,nr,D)) Z %‘/’ (ué(p,ne,nr,D) (X,O)) dx.

x=-1

Noticing that UG(pone.ny,D) (x,0) corresponds to the initial condition, that does not depends on p, we
conclude that im0 %(ué(p _— D)) = oo.

5. Proofs of Section 4

5.1. Proof of Proposition 4.2

Recall that each neural network ug € NNy (D) is written as ug = A4 o (tanhoAgy) o --- o
(tanhoA;), where each Ay : REk-1 — Rk is an affine function of the form Ay (x) = Wix + by,

with Wy a (Lg_; X Lp)-matrix, by € RLx a vector, Lo=dy, Ly=---=Lg =D, Ly = dy,
H

and 0 = (Wi, by,..., Wi, b)) € RE=0LitDXLi For each i € {1,...,d,}, we let n; be the

projection operator on the ith coordinate, defined by m;(x1,...,xq,) = x;. Similarly, for a matrix

W= (Wi,j)léigdz,lgjgdp we let ﬂi,j(W) =W ; and ||W]|e = Max|<i<dy,1<j<d; |Wi,j|. Note that
IWiX|loo < Li—1[|Wi|lool|X]|o- Clearly, maxy <k < g+1 ([[Wklloo» 16k lloo) < [|0]lco < [|6]]2. Finally, we re-
cursively define the constants Ck g for all K >0 and all H > 1 by Co iy = 1, Cx.1 =251 x (K +2)!,
and

Cx .1 = Bk2X1 (K +2)! L max_ || Ce.1s (7
| EXEETY K
i +2ipg++Kig =K 1SESK

where Bk is the Kth Bell number, defined in (1).
We prove the proposition by induction on H, starting with the case H = 1. Clearly, for H = 1, one has

luglleo < [|W2 X tanh oA ||eo + [|D2]lco < [[WallooD + [|b2]lc0 < (D + 1)]16]]2. 3
Next, for any multi-index & = (a1, ..., aq,) such that |a| > 1,

T (W)W Xy g, (Wp) @ x tanh 19D (71 (A4 (x)))

0%ug(x) =W : ©)
Tay (W)™ X - X 70g, a, (Wp) @ x tanh 19D (74, (A} (x)))
Upon noting that |71 4, (W1)| < [|0]|c, We see that
10%ugleo < DIWalleo 16N [ tanh 19D 1o < D)L tanh @D | . (10)

Therefore, combining (8) and (10), for any K > 1, ”“9”CK(R‘11) < (D + 1) maxg<g ||tanh(k) [|loo (1 +
16112)% /16|12 Applying Lemma 2.3, we conclude that, for all u € NN (D) and for all K > 0,

loll ok pary < Cr.1 (D + D) (A +1|0]1) K 1612
(LN l} B
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Induction Assume that for a given H > 1, one has, for any neural network ug € NNg (D) and any
K >0,

luollcx gary < Cr,m (D + DL+ (10]1) <7 16112 (11)

Our objective is to show that for any ug € NNy, (D) and any K > 0,
ol ok gary < Ck vt (D + 1) KED (1o)X HD g .

For such a ug, we have, by definition, ug = Ay o tanhovg, where vy € NNy (D) (by a slight
abuse of notation, the parameter of vy is in fact 8’ = (Wy, by,..., Wyt1,bgy1) while 6 = (Wy, by, ...,
Whi2,bH+2), 0 [|07]2 < [10]]2 and [|6’||co < [|6]|c0)- Consequently,

luglloo < IWai2lleoD + b H42]l00 < (D + D)|O]l2. (12)
In addition, for any multi-index @ = (@1, ..., @g4,) such that |a] > 1,

0% (tanhomr| o vg(x))
0%ug(x) =Wri2 :
0% (tanhomrp o vg(x))

Thus, [[0%ug||lc < D||WhH42llco maxj<p || tanhon; o V(~)||CK(Rdl ) Invoking identity (2), one has

tanhom;ov ayy < Br || tanh || ~x max miovel .
I joVlickga) < Bxlltanhllex gy, max o [ 1 ollce g
1<6<K

Observing that r; o v belongs to NNy (D), Lemma 2.3 and inequality (11) show that

l[tanhorj 0 vollce gayy < Coet (D + 1) H (14 [10]12) 7 1612

Therefore, [|0%ug |l < Cx pr41(D + 1)*KH (1 410]12)K H+D|g]|,, which concludes the induction.
To complete the proof, it remains to show that the exponent of ||8]|, is optimal. To this aim,
we let dy =d, =1, D = 1. For each H > 1, we consider the sequence (OSnH))meN defined by
o = (W™ p\™ Wi bW, with W = m and b7 = 0. Then, for all 6 = (Wi, by, ...,
W41, bH+1) € On 1, the associated neural network’s derivatives satisfy

H
k o
ey lleo = Il (tanh™) 5l oo Wrr i | ] T 1wl

i=1
Next, since ||0§,LH) I, =mVH + 1, we have

””e}f) ok getry = Hui}?ﬂIi)Hw > H(tanhOH)(K)”meHK > C(H. K)Ilgl(nH)”?HK’

where C(H,K) = (H + 1)~ (WHK) /2| (tanh®H) (K)|| . Since limym_eo 05|, = o0, we conclude that

the bound of inequality (11) is tight. ... |
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5.2. Lipschitz dependence of the Holder norm in the NN parameters

Proposition 5.1 (Lipschitz dependence of the Holder norm in the NN parameters). Consider the
class NNy (D) = {ug,0 € ®y.p}. Let K € N. Then there exists a constant Cx iy > 0, depending only
on K and H, such that, for all 6,6’ € Oy p,

~ 2 2 ,
luo —uerllcx (@) < Cr.m(1+diM(Q) (D + DI (1410 ) K 10 - 0/,
where M (Q) = supyeo |X]]co-

Proof. We recursively define the constants C’K,H for all K >0 and all H > 1 by C‘K,l = (K +
2)2*K-1(K +2)!1(K +3)!, and

Cr.ie1=Cr a1 [1+ (K +1)Bg2* K71 (K +3)1(K +2)!Ck 1]

Recall that 7; is the projection operator on the ith coordinate, defined by 7;(x1,...,x4,) = x;. Before
embarking on the proof, observe that by identity (2), we have, for all uy,u, € CK(Q,RP), for all
1<i<D,

0% (tanhomr; o uy —tanhom; oup) = Z [tanhIPD or; 0 uy] l_[ S (m;0uy)
Pell(K) SeP

— [tanh'PD or; 0 uy] l_[ %S (n; 0 uy).
SepP

In addition, for two sequences (a;)1<i<n and (b;)1<i<n-

i—1
] ai—ﬁbi=i(a,~—bi>( [ aj)(i_[b,-) <nlrgi<xn{|ai—b,-|}]£[max(|ai|,|bi|). (13)
i=1 i=1 i=1 j=itl j=1 SN i=1

Observe that for any 1 <i < dj and P € [1(K), the term [tanhIPD) or; 0 u;] [1sep S (i ouy) —
[tanhIPD) o7; 0 uy] [Msep %) (n; o uy) is the difference of two products of |P| + 1 terms to which we
can apply (13). So,

”[tanh(lnl) om;oup] l_[ %S (m; 0uy) — [tanh1D oxr; 0 us) l—l %S (1, 0 uz)H o
SeP Sen >

< (IP1+ 1) ([ tanh PV g ey = uzllo,0 + ey = u2llox (o)

x [[tanh D [l [ T max (1075 uy .0 197 12|, ). (14)
SepP

Notice finally that || tanh P llLip = Il tanh 71+ || .

With the preliminary results out of the way, we are now equipped to prove the statement of the
proposition, by induction on H. Assume first that H = 1. We start by examining the case K = 0 and then
generalize to all K > 1. Let ug = A o tanhoA; and ugr = A o tanh o A|. Notice that

_ g’ < _ _W . <lg—6
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where M (Q) = maxxeq |[X[|c. Since || tanh [|Lip = 1, we deduce that || tanh oA — tanh oA [[co < |6 —
0 l2(1+dy M(Q)). Similarly, |72 — A} e, 51 ) < 10— @' 2(1+ D). Next,

lug —uorllo,@ < [(Az = A) o tanh oA || oo, @ + [|A] 0 tanh oA — A o tanh oA} [|eo,2
A2 = Al lloo, B(1, |- o) + PIIW ol tanh oA} — tanh 0 A || o,

<
<0 =6ll2(1+D + DO’ [l2(1 + d 1 M(L)))
< Co,1(1+diM(Q)(D + 1) (1 +max([16112, 1612)16 = 6"l

This shows the result for H = 1 and K = 0. Assume now that K > 1, and let @ be a multi-index such
that || = K. Observe that

10 (o —ug)lleo,@ < [(W2 — W3)0? (tanh oAy ) [| 0,00
+[|[W;0¢ (tanh oA — tanh oA ) || o0 - (15)
By Lemma 2.3 and an argument similar to the inequality (9), we have
(W2 = W) (tanh oA ) [|eo. < (D +1)[|6 = 6’ [[2]|6]15 || tanh [| o g,
2K +2UD+ DI - l12l161l5 (16)

In order to bound the second term on the right-hand side of (15), we use inequality (14) with u = A
and up = A} In this case, the only non-zero term on the right-hand side of (14) corresponds to the
partition 7 = {{1}, {2}, ..., {K}}. Recall that [|A; — Al < ||6 — 6"[[2(1 + d M (L)), and note that
whenever |a| = 1, [[09 (A = A))le0,@ < |0 =€’ ||2. Therefore, | A = Alllck (o) = A1 = Al llc1(q) <
16— 6’ Il2(1 + d1 M(L)). Observe that [1ge((1}.(2)..... k1) Max([109B) Ay |0 0. 109 B A [, 0) <
max(||6]]2, [|6’]12)%. Thus, putting all the pieces together, we are led to

|09 (tanh oA — tanh oA/ ) ||, 0
< (K + D)l tanhE+ Y116 = 6 [l2 (1 + dy M (Q))]] tanh ) || max (16112, [16”]12) % .
Now, by Lemma 2.3, || tanh®) ||, <2K-1(K +2)! So,

|09 (tanh oA} — tanh o A}) [|eo,
K+ 122K +2)1(K +3)!16 = 6'[l2(1 +d1 M (L)) max(||6]12, [16]12)%. (17)

Combining inequalities (15), (16), and (17), we conclude that
10 (o = ug )l < Ci.1(1+diM(Q)(D + 1)(1+max([|6]2, 16/ [12) <116 = &/,

so that |lug —uerllcx (@) < C1(1+diM(Q))(D +1)(1+max(||6]2, 116 [12)) %+ |6 — 6.
Induction Fix H > 1, and assume that for all ug,ug € NNy (D) and all K > 0,

lluo —uer ||c’<(g2)

~ 2 , 2
< Cr,u(1+d M (Q) (D + DFE (1 4 max (1611, 116 [12)) 577116 - 0/ (18)
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Let ug,ugr € NNgy,1(D). Observe that ug = Ag,p o tanhovy and ugr = A
vg,ve € NNy (D). Moreover,

’
Hao © tanh ovgs, where

109 (ug —ug)llco2
<N[(Wha2 = Wy,,)0 (tanh ovg) ||, + [W},,,0“ (tanh ovg — tanh ovgr) ||,
< D(]|0 = 0']l2 x [0 (tanhovg)[|co,@ + [|6"[|l2 X [|0 (tanh ov g — tanhovg/)[|0,).  (19)
Since tanhovg € NNy, (D), we have, by Proposition 4.2,
10 (tanh ov g) |eo.2 < Cic_pr41 (D + 1)K HED (14 || 1) KHHD g . (20)
Moreover, using (14), Lemma 2.3, and the definition of Cx_ g1 in (7), we have
|0 (tanhovg — tanhovgr)|le. 0
< Bk (K + D) tanh ) [ [vg = verll ok (g [l tanh &) 1o
X Ci g1 (D + 1) (1 4+ max(]|6]]2, 116/ ]12)) %
< 2K N K +3) UK +2) 1Bk (K + D)llve —verll ok o
X Ci g+1(D + D)X (1 4+ max([|0]12, 116 [12)) <. 1)

The term [[vg — ver[lck () in (21) can be upper bounded using the induction assumption (18). Thus,
combining (19), (20), and (21), we conclude as desired that for all ug,ug € NNg4 (D) and all K € N,

~ 2
luo —uerllcx @) < Cr pa1 (1+d M(Q)) (D + 1) HD+KHD

/’ 2 ’
x (1+max([|6]l2, 16’ [|2)) F+HIEED 19 — g7,

5.3. Uniform approximation of integrals

Throughout this section, the parameters H, D € N* are held fixed, as well as the neural architecture
NNg (D) parameterized by O p. We let d be a metric in ®g_p, and denote by B(r, d) the closed ball
in ®y p centered at 0 and of radius » according to the metric d, thatis, B(r,d) = {6 € ®u p, d(0,0) <

r}.

Theorem 5.2 (Uniform approximation of integrals). Ler Q C R% be a bounded Lipschitz domain,
let a; > 0, a_nd let X],_ ..., Xy, be a sequence of i.i.d. random variables in Q, with distribution ux.
Let f: C®(€,R%) x Q — R% be an operator, and assume that the following two requirements are
satisfied:

(i) there exist Cy > 0 and B € [0, 1/2[ such that, for alln > 1 and all 6,0’ € B(n1, ||.||2),
£ (ue.) = fuer. oo < Crrfl]|6 = €'12: (22)

(ii) there exist Cy > 0 and B, € [0, 1/2[ satisfying Br > ay + 1 such that, for all n > 1 and all
6 B(n,||.Il2),

If (1, Mo < Con (23)
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Then, almost surely, there exists N € N* such that, for alln > N,

sup
¢9EB(n"1 II-112)

Zf(ue,X) /f(ug, )d/,txH <log?(mynP2112,

(Notice that the rank N is random.)

Proof. Let us start the proof by considering the case d; = 1. For a given 6 € B(n®1, || - ||2), we let

= 2 X0 = [ 7w i

We are interested in bounding the random variable

Zy= sup |Zn. 0| = sup Zn.g.
0€B(n1,||-|l2) 0eB(n,||-12)

Note that there is no need of absolute value in the rightmost term since, for any 6 = (W, by,...
WH+19bH+1)€B(nal?” ||2)71tISCICarthat9/ (Wlab19~~ WHst’_WH+19 b1‘1+1)€B(na1 ” ||2)
and ugr = —ug. Let M () = max, g ||x||2. Using inequality (22), we have, for any 6,8’ € B(n®!, || - ||2).

Lo xn - [ o ddux) - Hrwy X - [ £y ydux)| < 260110 - .

According to Hoeffding’s theorem (van Handel, 2016, Lemma 3.6), the random variable n™~ 1 (f(ug,X;)
—fQ fug,)dux) — n_l(f(ufg,Xi) - fo(ufg, -)duyx) is subgaussian with parameter 4C%n2'31_2||0 -
9’||§. Invoking Azuma’s theorem (van Handel, 2016, Lemma 3.7), we deduce that Z, g — Z, ¢,
is also subgaussian, with parameter 4C12n251‘1 |6 — 9’|I§. Since E(Z,,9) = 0, we conclude that for
all n > 1, (Zn,0)9eB(n™ ,|-||,) 1S @ subgaussian process on B(n®',|| - [|2) for the metric d(6,6") =
2CnP1=112||g = ¢’||,. Moreover, since 6 — Z,, ¢ is continuous for the topology induced by the metric
d, (Zn,0)60cB(n™ ,|-||,) is separable (van Handel, 2016, Remark 5.23). Thus, by Dudley’s theorem (van
Handel, 2016, Corollary 5.25)

B(Z) <12 [ DogN (B0 I).d.n) ar.
0

where N(B(n,|| - ||2),d,r) is the minimum number of balls of radius r according to the metric
d needed to cover the space B(n®, | - [l»). Clearly, N(B(n®, | - 1), d, r) = N(B(n®, || - [l2), | -
ll2, n'/2~Pir/(2Cy)). Thus,

E(Z,) < 24Cinf17 12 / [log NB1, || [12). Il ll2,r)]"2dr

0

and, in turn,

E(Zy) < 24Cn P12 / log N(B(L, |- I2), I - ll2,r)]"dr.

0

Upon noting that N(B(1, || - ||2), || - ll2,7) =1 for r > 1, we are led to

1
B(20) <4C B2 [ llog NB(LI- 1), 11 12,1 b
JO
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Since Oy p = R(+DD+(H-1)D(D+1)+(D+1)d> according to van Handel (2016, Lemma 5.13), one has
log N(B(L, [ - 1), Il - ll2,r) < [(d1 + )D + (H - 1)D(D + 1) + (D + 1)d>] log(3/r).

Notice that /01 log(3/r)"2dr < 3/2. Therefore,
E(Zy) <36Ci[(di +1)D + (H = 1)D(D + 1) + (D + 1)dy] /2 n #1112, (24)
Next, observe that, by definition of Z,, = Z,,(X{, ..., Xp,),

Sup Zn(Xla-~-7X[—1’Xi,Xi+l,-~-,Xn)_ lnf Z (Xl"'"Xi—laxi’Xi+17'-"Xn)

X; ERdl Xi ER !

<2n”! sup
0€B(n,|I-l2)

<dn™' sup (If(ue,)lleo.
0eB(n,||-1l2)

Pl X = [ Fluo )],

Using inequality (23), McDiarmid’s inequality (van Handel, 2016, Theorem 3.11) ensures that Z,

is subgaussian with parameter 4C§n252‘1. In particular, for all 7, > 0, P(|Z, — E(Z,)| > t,) <

Zexp(—nl_zﬁzt,zl/(SC%)), which is summable with 1, = C3n8271/210g?(n), where C3 is any positive

constant. Thus, recalling that 8, > a; + 1, the Borel-Cantelli lemma and (24) ensure that, almost

surely, for all n large enough, 0 < Z, < 2C3nP2~1/210g?(n). Taking C3 = 1/2 yields the desired result.
The generalization to the case d, > 2 is easy. Just note, letting f = (f1,..., fa4,), that

B Zf(ue,X) [ rtwo v,

<\, max | Zf,(ua, X [ fi(uo. x|

1<j<d, aeB(n“' [I-112)

9€B(n"1 ll-112)

Taking C3 =d, 12 /2 as above leads to the result. O

Proposition 5.3 (Condition function). Letr Q be a bounded Lipschitz domain, let E be a closed subset
of 0Q, and let h € Lip(E,R%). Then the operator 7 (u,X) = Iy g ||u(x) — h(x)||? satisfies inequalities
(22) and 23) with ay < 3+ H)™Y/2, By =1+ H)ay, and 1/2 > B2 > (3 + H)a.

Proof. First note, since Lip(E,R%) C CO(E,R%), that ||A||e < co. Observe also that for any v, w €
RE, ()13 = llwli3] = (v +w,v =w)| < |lv+wllallv = wll2 < dallv +wllo|[v = wlleo, where (-, -) denotes
the canonical scalar product. Thus, we obtain, for all §,0” € B(n®!,|| - ||») and all x € E,

| (ug,x) = A (ug,x)| < (llug ()2 + llwer (X) |2 + 212 (%) [12) lug (X) = uer ()12
<da(lluolleg+ llue llog +2MAllo)lluo — ol o
<dy(2(D + 1)n™ +2||hl|eo)llug — ugr|leo g (by inequality (12))
<2dr((D + 1)n™ +[|hlleo) Co, 1 (1 +dy M (Q))
x(D+DHA+nH||6-0¢"||, (by Proposition 5.1)

<CiPro - 0|2,
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where 81 = (1 + H)a; and C1 =20 dy (D + 1 + || h|o0) Co.r (1 + d1 M(Q)) (D + 1)H |
Next, using (12) once again, for all 6 € B(n™, ||.|l2), 7 (ug,)leo.g < d2([ugllco.g + hlle)* <

d>((D + 1)n® +||hl|e)? < Con*@1 . Recall that for inequality (23), 8> must satisfy a; + 8 < 2 < 1/2.
This is true for 8, = (3 + H)a|, which completes the proof. O

Proposition 5.4 (Polynomial operator). Let Q be a bounded Lipschitz domain, and let F € P,
Then the operator lyeq.F (ug,X)? satisfies inequalities (22) and (23) with a1 < [2+ H(1 + (2 +
H)deg(Z)]7 /2, Bi=H( + 2+ H)deg(F))ay, and 1/2> B > [2+ H(1 + (2 + H) deg(.F))] a1.

Proof. Let.% € &,,. By definition, there exist a degree s >> 1, a polynomial P € C* (R4, R) [Z1,15-. -,
Za,,s], and a sequence (@; j)1<i<dy,1<j<s Of multi-indexes such that, for any u € C*(Q, R%),
F(u,+) = P((0" u;)1<i<d,,1<j<s)- Namely, there exists N(P) € N*, exponents I(i j,k) €N, and
functions ¢ ¢ (p) € C¥(QR), such that P(Z. 1. .. Zay.s) = S ou x 12, TT, 20675,
Recall, by Definition 4.5, that deg(.%#) = maxy Zl‘.lzzl Z‘;:l (L+1a; i DI, j, k).

Now, according to Proposition 4.2, there exists a positive constant Cgeg(.77), 7 such that

||f(ug, )2“00 Q
N(P)

2
Z Ikl o0 l_[ l_[ ||3ai,ju9||£fg,k)

i=1 j=1

< N%(P c D + 2HET) (] 4 1911,)2H dee(F)
N( )[lgknéla}\)/((P) ||¢k||oog] deg(?)H( + ) ( || ||2)

Thus, for any § € B(n?, || - ||2), |-% (ug, - )2”009 ConP2, where

Cy =22Hdeg(g)N2(P)[1<krr<1£}\);(P) ||¢k”oo Q] C dee( 7). H(D + 1)2Hdeg(9)’

and for any B > 2H deg(.%)a;.
Next, observe that, any u and v, ||u|> = [v]?| = |(u +v)(u — v)| < |u +v||u — v|. Therefore,

| (19, %)* = F (g, %)°| < (| (g, X)| +|F (g, X)) | F (g, %) = F (ugr, %)

2C1/2 Hdeg(Z)a1| 7 (49,%) — F (ugr, X))

Using inequality (13) (remark that the product I—[fljl j ) Zl(l k) has less than deg(.%) terms differ-
ent from 1), it is easy to see that

1P w0%) = F aor O <N |_max  [0cll o de(Fllno = o

\k\

1(i,j,k)
x| max l—[max(ﬂueﬂcml gy 116 |t g1 gy ) .

From Proposition 4.2, we deduce that

’ o I(i,j,k)
I<KSN(P) li_j[max(””e”c'%f'<sz)’ luorllcieciq))

< Cheg( 7). (D + D) (1 4 max(||g]]2, [16”]]2)) 7 7).
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Combining the last two inequalities with Proposition 5.1 gives that
|7 (ug. %) = F (ugr,x)|

SN _max 194,0] des(F) Cocy 7)1 (1 + i M(Q)) 10 =

X Cdeg(y),H(D + 1)H(l+(l+H) deg(E/))(l +max(||9||2, ”9/”2))H(1+(1+H) deg(z/')).
Hence, for all 6,6’ € B(n®, || - ||2), |.Z (ug,x)? — F (ug:,x)%| < CinP||0 — 0’||5, where

_~l/2 _ ~
=20 N[ _max  119]6]] dee(F)Cacgi 711 (141 M(Q)

X Caeg().11(D + 1)H (1+(1+H) dea(F)) o H (1+(1+H) deg(F))

and 81 = H(1+ (2+ H)deg(F))a;.
Recall that for inequality (23), B, must satisfy a| + 1 < 82 < 1/2. This is true for 8, = [2+ H(1 +
(2+H)deg(:F))]|a; and a1 < [2+H(1+ (2+ H)deg(.#))] ' /2. O

5.4. Proof of Theorem 4.6

Let ug =0 € NNy (D) be the neural network with parameter 6 = (0, . ..,0). Obviously, R,(,r’i,‘,jf’e,)lr (ug) =

Ry n,,n, (uo). Also,

d
Rone.n, (10) < ZHY I3+ ||h||w+—ZZ||fk<o Xy IB:

rdi =

Since each %} is a polynomial operator (see Definition 4.4), it takes the form

N (Pg) dy sk
Fi(u,x) = Z m]‘[]‘[(awu (x))x 100,
i=1 j=1
Therefore,
R (0) < 24 S %12 4 2,111 +fN(ZPk)||¢ o
n,ne,n, \U0 n Z 2 e oo 4 4 €,k lloo,Q
=1, (25)

where I does not depend on A (yigge)» 7te> and ;..

Let (§92®) (p. n,, n,, D)) pen be any minimizing sequence of the empirical risk of the ridge PINN,

ie., limp,_ e Rflrffe,)lr (ué(r‘dge>(p,ne,nr,D)) =infgeoy p R,S“,‘ffe),r (ug). In the rest of the proof, we let

nr.e =min(n,,n.). We will make use of the following three sets: &1 (n, ) = {6 € On p, ||9||2 > nyf .},

Ex(nye) = {6 € O p, nfly < |16ll2 < nf.}, and E3(nre) = {0 € O p, 116l < ni/s}. Clearly,
Ou.p =6 UEUE;. The proof relies on the argument that almost surely, given any nr and n,, for
all p large enough, g (ridge) (p,ne,ny, D) € E U E3. Moreover, on &, U &3, the empirical risk function
R,(,ifj’?)lr is close to the theoretical risk Z,, when n, . is large enough. For clarity, the proof is divided
into four steps
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Step 1 We start by observing that, for any 6 € E;(n, ), Rﬁ,{ff?,)lr (0) = A(ridge) ||0||§ 2 ny . Therefore,

according to (25), once n, o > (I + 1)1/K,

. id. id . id
s RIS, (o) + 1 <RI, o)+ 1< inf RIS o).

This shows that, for all n, . large enough and for all p large enough, ¢ (ridge) (p,ne,ny, D) € E1(nre).
Step 2 Applying Proposition 5.3 and Proposition 5.4 with @; =« and B, = 2+ H(1 + (2 +

H) maxy deg(-%#)))ay, and then Theorem 5.2, we know that, almost surely, there exists N € N* such
that, for all n, . > N,

0€&r(ny e)UE3 (nr,e) Ne %

1 &
sup — > lug(X$) = XS 13 = Ellug (X)) = (X)) |13
j=1

<log?(ny o) 112 (26)

and, foreach 1 <k < M,

1 & 1 .
sup — > Tl XV - / Fi(ug.x)%dx| <log* (ny. )% 2. @7)
€82 (ny ) UEs (ny0) TV 4 12l Jo

Thus, almost surely, for all n, . large enough and for all 6 € E(n, ),

id -1/2
RN (1g) > R (ug) + A siage) 1013 — (M + 1) log? (ny o )n2 12,

But, for all 6 € Ex(nr.e), A(ridge) ||6’||§ > n;";/z. Upon noting that —«/2 > B, — 1/2, we conclude that,
almost surely, for all n, , large enough and for all 6 € E;(n;, ), R,Sf‘,i‘ff’,lr (ug) = %n(ug).

Step 3 Clearly, for all 6 € E3(ny ), A(ridge) ||9||% < n;';/z. Using inequalities (26) and (27), we deduce

that, almost surely, for all n, . large enough and for all 8 € E3(n;, ), |R,(lr,i,?fi),r(u9) - Zn(ug)| <

(M +2)1og(ny o)y .
Step 4 Fix € > 0. Let (6,,) pen be any minimizing sequence of the theoretical risk function %, that
is, limp_c0 Zn(ug,) = infocoy , #n(ug). Thus, by definition, there exists some P € N such that
|%Zn(uep, ) —infgeoy p, Zn(ug)| < &.

For fixed n, ., according to Step 1, we have, for all p large enough, g (ridge) (p,ne,nr, D) € Ex(ny ) U
&E3(ny ). So, according to Step 2 and Step 3,

(ridge) 2 —K/2
e@n(lfié(ridge) (p,ne,nr,D)) < Rn,neg,nr (”é(ridge> (p,ne,nr,D)) +(M +2)log (nr,e)nr,’é/ .

Now, by definition of the minimizing sequence (é(ridge) (p,ne,ny,D))pen, for all p large enough,

d . d .
R,ar;lege,),r (tgcises) (poy.my.0y) < INfoc0H 1> R,ar;lege,zr (ug) + &. Also, according to Step 3,

(ridge) . (ridge)
R < f R
9682("r,ler)lu‘g3 (nr.e) itetr (Mg) O¢e 13nnr,£‘ et (ua)
inf  Zp(ug) + (M +2)log?(ny.o)ny /2.

X
0€&E;3(ny,e)
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Observe that, for all n, . large enough, 0p, € E3(n; ). Therefore, infgc g, (n, ) Zn(1tg) < Xn(ugp,)-
Combining the previous inequalities, we conclude that, almost surely, for all n, . large enough and for
all p large enough,

R (U i < inf %, (ug) +3e.
n( g(rldge)(p,ne,nr,D))\ On.p n( 0)

0

Since ¢ is arbitrary, almost surely, lim,,, , —co liMp 00 % (U g ridge) (p,ne,nr,D)) =infgeey , %n(g).

5.5. Proof of Theorem 4.7

The result is a direct consequence of Theorem 4.6, Proposition 2.3 and of the continuity of %, with
respect to the CX (Q) norm.

6. Proofs of Section 5

6.1. Proof of Proposition 5.5

Since the functions in H”*1 (Q, R%) are only defined almost everywhere, we first have to give a mean-
ing to the pointwise evaluations u(X;) when u € H™*1(Q,R%). Since Q is a bounded Lipschitz do-
main and (m + 1) > d;/2, we can use the Sobolev embedding of Theorem 1.1. Clearly, IT is linear
and [|[T1(u) ||e < Collul| gms1 (@)- The natural choice to evaluate u € H™1(Q,R%) at the point X; is

therefore to evaluate its unique continuous modification l:[(pt) at X;.
By assumption, F (u,) = F"™ (u, ) + Br, where Z"™ (u,) = 3} o)<k (Ak,0r 0u) and Ay o €
C>(Q, R ). Next, consider the symmetric bilinear form, defined for all u,v € H m+l (Q, ]Rdl) by

) = 24 3 010 (X0), )XY + B ) (X)), ) (X))
i=1

M
1 / (lin) (lin) Ay /
F u,x).7 v, X)dX + — 0%u(x), 0% (x))dx,
gl Tk (u,x)F,. 7 (v,X) § (0%u(x) (x))

+ E—
Q] & 19 G

along with the linear form defined for all u € H™*!(Q,R%) by

B () = "L 3" 0 F1() (X)) + A BT ) (X)), (X))
i=1

M
—ﬁz /Q Br(x).Z"™ (v,x)dx.
k=1

Observe that

Ag & 1 M
) =28, (u) = B () = 22N Y13 - AENRX )3 - /B 2dx.
Pn(a,10) = 28, () = 7" (u) ~ = ;n {13 = AEIAX )3 lm;.() k() dx




28

In addition, A, (u,u) > /l,||u||%1m+1 @ where A; > 0, so that A, is coercive on the normed space

(H™N(Q), || - || gms1 (@y)- Since (m +1) > max(d; /2, K), one has that

(A ()] < (g +2)CE+ D0 (D) Ak alleo.@)® + ) lull st ) 1Vl st ()
1<k<M |a|<K

and

M
Ag z
B0 < Ca(2L Y IWill+ Aellille+ Y (1Belloss D Ak o))l e
i=1 k=1 la[<K

This shows that the operators ‘A,, and B,, are continuous. Therefore, by the Lax-Milgram theorem (e.g.,
Brezis, 2010, Corollary 5.8), there exists a unique & € H™*1(Q, R%) such that A, (&, 7) — 2B, (i) =
min,, _gme (Q.RD) Ay (u,u) — 28, (u). This directly implies that 4 is the unique minimizer of %,(,reg)

over H™*1 (Q, Rdz). Furthermore, the Lax-Milgram theorem also states that i is the unique element of
H™1(Q,R%) such that, for all v € H™*!(Q,R%), A, (i,v) = B,,(v). This concludes the proof of the
proposition.

6.2. Proof of Proposition 5.6

Let i,, be the unique minimizer of the regularized theoretical risk %\ over H™*+! (Q, R%) given by
Proposition 5.5. Notice that

inf 2% (u) = inf 2 (u) = B (it).
ueC>(Q,R%) ue H+1(Q,R%2)

The first equality is a consequence of the density of C*®(Q,R%) in H™*!1(Q,R%), together with the

continuity of the function e%’,(,reg) s H™1(Q,R%) — R with respect to the H™*!(Q) norm (see the
proof of Proposition 5.5). The density argument follows from the extension theorem of Stein (1970,
Chapter VI.3.3, Theorem 5) and from Evans (2010, Chapter 5.3, Theorem 3).

Our goal is to show that the regularized theoretical risk satisfies some form of continuity, so that

we can connect %(reg)(up) and 2% (71,,). Recall that, by assumption, .Zy (u, ) = ﬂk(“n)(u, ) + By,
where ﬁk(hn) (1,°) = Xja|<k (Ak,a(+),0%u(-)) and Ay o € C*®(Q,R%). Observe that

e 1
Z (1) = F(u) + a0 (28)

where

F(a) =243 1) (%) = %l + BT (X)) = X B,
i=1

1) = /Q LA™ a1t <dpse o 1t(X), 30X,

15 esimel

and where the function L satisfies

M
L(x(”“']),. ) "x(O)’Z) :Z (Bk(Z) + Z

|
s

m+1

2 .
(A @58 42, ) DB,
7=0
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di+j-1

. dy
J-1 ) corresponds to the to the concatenation of all the partial derivatives
ij“(x))1<i1 ,,,,, ij<d .) Clearly, L > 0 and, since (m + 1) > K, the

(The term x/) e R '
of order j, i.e., to the term (Gijl

.....

Lagrangian L is convex in x 1) Therefore, according to Lemma 2.11, the function I is weakly lower-
semi continuous on H"*!(Q, R%).

Now, let us proceed by contradiction and assume that there is a sequence (up,),en of functions such
that (i) up, € C*(Q, R%), (i) limp 0 %,Ereg) (up) = e%’,(,reg) (@in), and (iii) (up)pen does not converge
to i, with respect to the H"(Q) norm. Therefore, upon passing to a subsequence, there exists &£ > 0
such that, for all p > 0, [lup — d,llgm Q) = &.

Since ,@,(,reg)(up) Z At llupll ggmer (q)> 4 > 0, and (p)pen is a minimizing sequence, (up)pen is
bounded in H™*!(Q, R%2). Therefore, Theorem 1.4 states that passing to a subsequence, (u p)peN con-
verges to a limit, say u.,, both weakly in Hml (Q, Rdz) and with respect to the H" () norm. Then,
since I is weakly lower-semi continuous on H™*!(Q, R%), we deduce that

lim 1(up) > 1(us). (29)

Recalling the definition of IT in Theorem 1.1, we know that there exists a constant Co > 0 such that
llup — l:[(uoo)Hoo,Q = ||ﬁ(up — Uoo)|leo,@ < Callutp — tco|lpm (). We deduce that limp, e F(up) =
F (iteo). Therefore, combining this result with (28) and (29), we deduce that lim, e 25 (u)) >
f%’,(lreg) (#00). However, recalling that lim, %,’(lreg) (up) = %ﬁreg) () and that i, is the unique mini-
mizer of %’,f,reg) over H™1(Q,R%), we conclude that ue, = iij,.

We just proved that there exists a subsequence of (up,),en Which converges to i, with respect to the
H"(£2) norm. This contradicts the assumption [|u;, — i, || gm Q) = & for all p 2> 0.

6.3. Proof of Theorem 5.7

The result is an immediate consequence of Theorem 4.7, Propositions 5.5, and Proposition 5.6.

6.4. Proof of Theorem 5.8

Throughout the proof, since no data are involved, we denote the regularized theoretical risk by Z (reg)
instead of %’,ﬁ“"g). Also, to make the dependence in the hyperparameter A, transparent, we denote by
u(2;) the unique minimizer of %2 instead of 7,,.

We proceed by contradiction and assume that limy, o [|u(4;) — u*||gm (q) # 0. If this is true, then,
upon passing to a subsequence (A;,p,)pen such that limj, . 4;,,, = 0, there exists & > 0 such that, for
all p 20, [lu(As,p) —u*llpm () > &.

Notice that [[u(s,p) [l gme1 (q) < R (u¥) |4y = ll*|| gym+1 (r)- Theorem 1.4 proves that upon
passing to a subsequence, (#(1;,,))pen converges with respect to the H™ () norm to a function ue €
H™1(Q,R%). Since m > K, the theoretical risk Z is continuous with respect to the H™ () norm and
we have that Z(ue) = limp_,c0 Z(u(A;,p)). Moreover, by definition of u(1; ,) and since Z(u*) =
0, we have that Z(u(A;,p)) + As,pllu(As p) |l g @) S g, p ™ || gms ()- Therefore, Z(us) =0 and

N . . S A o S
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6.5. Proof of Proposition 5.11

We prove the proposition in several steps. In the sequel, given a measure ¢ on € and a function u €
H™1(Q,R%), we let ||u||L2( | fg [ITT () (x) ||%dy (x), where, as usual, T1(u) is the unique continuous

function such that IT(x) = u almost everywhere.

Step 1: Decomposing the problem into two simpler ones Following the framework of Arnone et al.
(2022), the core idea is to decompose the problem into two simpler ones thanks to the linearity in i,
and in ¥; of the identity

Vv e H™N(Q,R®D), A, (dn,v) = Bn(v)

of Proposition 5.5. Thus, recalling that ¥; = u*(X;) + &;, we let

B10) =20 (X0, TH0) (X0)) + LB (X, KX
i=1

-] Z/B x).Z ™ (v, x)dx

and

Ad ¥ ~
B (1) = 24N (e, T () (X)),
n i=1
Clearly, 8, = B + B, (noise) . Using Proposition 5.5 with ¥; instead of ¢;, and setting 4, = 0, we see that
there exists a unique # A(nom) € H™1(Q,R%) such that, for all v € H™(Q,R%), A, (ﬁ,(,nmse),v) =
Bnoise) (1), Furthermore 7(1°1%¢) i the unique minimizer over H™*! (Q, R%) of

. A A - 1
A (1) = Z P10 (X0) = el + Bl (X + 1 Z / F (w3 dx

+ At””lleH Q)"

Similarly, Proposition 5.5 shows that there exists a unique &% € H™*!(Q,R%2) such that, for all v €
H™ 1 (Q,R%), A, (i, v) = B} (v), and i}k is the unique minimizer over H™+ (Q, R%) of

8w =20 S G ) (X0 B + 4B ) (X)) ~ (X )3
i=1

‘o Z [ Zetux e il

By the bilinearity of A, one has, for all v € H™(Q,R%), A, (4% + ﬁi,nmse) v) = B,(v). However,
according to Proposrtion 5.5, i, is the unique element of H™*!(Q, R%2) satisfying this property. There-
fore, i, = 0% + ") Step 2: Some properties of the minimizers According to Lemma 2.12, i,

A A norse
a*, and @ ( )

are random variables. Our goal in this paragraph is to prove that E|f,]>

H +1 )
(

Q)




" "

Hml (Q) and E” A(n()lse) ||Hm+l (Q)
~(noise)

tions on i, 4, and i, . Recall that, since A, ||ii,||?

7 (0, =0,

Ella*]2 are finite, so that we can safely use conditional expecta-

Hm+l (Q) ‘%r(lreg) (ﬁn) < %;greg) (O), and since

Aa
Adlln G ) < ZIIYIIZM E[AX )3 + |sz|2 / Bi(%)*dx.

Hence,

Elldnll3m o <A;1(AdE||u*(X>+s||%+AeE||h(X<e>>||§+ a Z / By (x)? dx

Similarly,
1 M
Bl 1 ymer () < A;l(AdEuu*(X)n%+aeE||h(X<e>)||§+@kz /Q Bi(x)%dx),
=1

and E[|ay "> |12,,.., (@ ST AdEl el
Step 3: Bias-variance decomposition In this paragraph, we use the notation Ay ) (u,u) instead of]

A (u,u), to make the dependence of A, in the random variables x = (X1,...,Xy,)and e = (&1,...,&n)
more explicit. We do the same with B, and 2", Observe that, for any (x, ¢) € Q" x R"® and for

any u € H™1(Q,R%), one has

Ax,-e) (1,10) = 2B (1) = Ay o (—u, =) = 2810 (<u).

(x,e) (x,—e)

Therefore, i p(noise) _ _p(noise)
(x,e) (x,—e)
Since, by assumption, & has the same law as —eg, this implies E(u(nmse) | Xi,...,X;;) =0, and
E(A(“mse)) = O Moreover, since @} is a measurable function of Xl,...,Xn, we have E(i) |
Xi,...,X,) =ir. Recalling (Step 1) that i, = 4¥ + i A(nom) , we deduce the following bias-variance
decomp051t10n

A k2 _ > —u* ~(noise) 112
Elln — 12, ) =Bl — 12, ) +ENAS2, (30)
Step 4: Bounding the bias Recall that 4} minimizes %) over H™!(Q,R%), so that Z} (u*) >

% (). Therefore, PI(u*) +/lt||u*||Hm+1 (Q) > 4a Ly I ay - u*)(X,-)II%. We deduce that

1
/l (PI(M*) + /lt “u*”HmH (Q))

||ax —u*

2”’2:{1 *”Lz(y )

*

2
Jexo;

— U ||Hm+1 (Q)

iy, S0P <1(E||ﬁ<u>(X>||§—%Z||ﬁ<u)<xi>||§)

()
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2 ”u:: *”L2(”X)

N 14 .
Ak * 2 2
= 2(13 R s ) *+ 1 g ) SUP (Eun(u)(X)nz—;E] 171G (X0)1)-
=

u IHm+1(Q)<l

Moreover, PI(u*) + /ltllu*lle+I @ = /ltllbi*lle+1 @ Taking expectations, we conclude by Lemma

2.14 that there exists a constant C(,, depending only on €, such that

1/2

Bl =1 ) < 2 (PLG) + Al By )+~

Hm+l (Q))

PI(u*)
*
1/2 (2“ “H’"”(Q) +T)

Step 5: Bounding the variance Since 125[10 %) minimizes %,(,mise) over H™(Q,R%), we have
%(noise) (0) S %(noise) (ﬁ(noise)) So
n = n n . >

Ad X Ad O e~ (noi
> Ml > 2 3 I @) (X0) ~ el
i=1 i=1

Observing that [T1(2,"**)) (X¢) = &ill3 = (@) (X0 I3 = 2001 (@) (Xi), &) + llill3, we de-
duce that
2 ¢ i IS i
= (@) (X)) > = > @) (X,
i=1 i=1
and
B . n 2 & . 5 .
( / (a0 du., > =)+ = 3 (@) ) - / 1@ dux, 1)
Q = =) Q
>1 S i (noise) X
> = > I (X3
i=1
Therefore,
(noise) 12 (noise)y » 2\
~ (noise ~ (noise
1851 < ([ 10y x5 )
1=
+125 ) g () su —Z(H(u)(X) E(T1(u)(X)), &)
|u||Hm+]<Q)<1 =1

. . 1
a1 s g o (B XIB -~ > ) (X))
Wil gm=+ i=1

](Q)\l

=A+B+C.

According to the Cauchy-Schwarz inequality,

2)1/2 y 2(Ellel)'?

1/2 ?
n-

BA) < (E] [ 1)
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and so, by Jensen’s inequality,

2(Ellell3)'/?

1/2
) nl/2

E(A) < (Bllay™ 13,

The inequality %,(,mise) 0) > %,(,mise) (ﬁf,mise)) also implies that

A A . .
o || gilli > ||H< (noise)y (X;) — &1 + A a5 )2
H™1(Q)"
i=1 i=1

Therefore,

S 21 (K. ) > 1

nl; £ " i i Hm (@)
and

Aq (nos
o sup —Z(n(u)(X)s,> 12 | gmen () -

At Yl a1 T

By Theorem 1.1, if [|ul m+1 (g < 1, then (E(H(u)(X)) 1 Z” 1€)) < ¢

i—1 €ill2- Thus,
A (NOo1se
125" || et )
1/2 n

(Q IR LN @) (X)) - B (X)), 7).

lall s oy <17 44

Using Lemma 2.15 together with the fact that, for all X,y € R, (x +y)? < 2(x> +y?),

2

2z
E| A(nolse)” CQdZEHS”z

Hm+l (Q)
Similarly, observing that for all random variables X,Y € R, E(XY)? < E(X?)E(Y?),
ﬁd
E(B) < gdZE” 13-

Moreover, by Lemma 2.14 and the inequality E(XYZ)2 <E(X?)E(Y?)E(Z?),

/12
B(O) < — 2cch”Eu £l13.

Therefore, we conclude that there exists a constant Cq > 0, depending only on €, such that
2 2(El|l|2)'
L2 (ux) nl/2
2

EH A(nmse)” E” A(n01se)”

L2(ux) (

44
_CQdZE” ”2

3/2
. Cah d5*Bllsl3.
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Hence, using elementary algebra,

2
. Elle))3)!/? A
. (noise) |2 1/2 ( 2 ( 3/4( d d ))
(Ella, ||L2(/1X)) S~ 2+2Cqd, _/li/2+/ltnl/4

and

i 8Ell¢l13 Pl 2
~(noise) |12 2 3/2(Ad d
e (1+ng2 (_At +12n1/2))'

t

Step 6: Putting everything together Combining Steps 3, 4, and 5, we conclude that

1/2
. ! ot PI(u*)
Bllitn = 1175 ) < 7 (PLOC) + el i ) + e (2 s g + T)

8E||«|12 sl A
+ —=|1+Cqd (—+ ))
n ( N2\, T e

6.6. Proof of Proposition 5.12

By definition, #i,, minimizes f%’,(lreg) over H™1(Q,R%). So, e%’,(lreg) (u*) > %,(,reg) (). Moreover, since

ITT(d,) (X;) = YilI5 = 1T (@ — u*) (X3 = 2¢01 (8 — u*) (X)), &0) + || &:]13,

one has
1 n
= D M) (X)) - Yill3
i=1
n
. 1 - _
> 2l —u*llgmer )% sup = > ([ (X)) — E(f(w)(X)), &)
‘u”Hm+1(Q)<l n j:l
1 v 1 v
=2 [ M-y Y )+ Y el
Q e e
Thus,

IR
= D M) (X)) - Yill3
i=1

> =2l g+ Dgmsin) sp = DK = ETwX). )
j=1

u”HmH(Q)\
—2</1:[(ﬁ —u*)d 1an‘s)#ingwﬁ 31)
o n ﬂX’n 1 i n £ illy-

i=

Recall from Steps 4 and 5 of the proof of Theorem 5.11 that

N ~ ~(noise
Elldnl? e on < 2B e +2E||a{") |12, "
H Q) Q) H

H HQ)




" "

812
d 2 2
+ —CQd2E||s||2
n/l%

PI(u*) .
<2 e )

Therefore, Lemma 2.15 and the inequality E(XY)? < E(X)?E(Y)? show that

E(”MAnHHerl(Q)

_Z_:<n(u)(xj) E(IT(u) (X)), 81>) (ﬂ_d)

”u”HmH (Q) gl

By Theorem 5.11,
n

E‘</Ql:[(12n—u*)dux,%zsi>
1

i=

4 ” )1/2E||5||§ _ ( )1/2
L2 (ux) 1’11/2 _n—>oo nz/lt ’

< (Ellu* -

Combining these three results with (31), we conclude that

E(%Zn]nﬁ(ﬁn)(xa—nn%) >Ellel; + O (de)
i=1

2

Therefore, since lim,_co :—j’t =0 and since Z.® (4,) = A wm () (Xi) — Yill3 + PI(d,) +
/lt”un”HWH] (Q)
E(74" (i) > A4Bllel3 +E(PI(@,) + o (D).

Similarly, almost everywhere,

Il 1 &
S A X) =Yl =~ ) lledll3.
i=1 i=1

Hence,

E(23 %) (u*)) = AaBlall} + PLw*) + A, ¥ 12, e -

Since E(%’(reg)( ) < E(%(reg) (u*)) and since A; — 0, we are led to

B(PI(2,)) <PI(u*) + o (1),

which is the desired result.
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