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1. Some reminders of functional analysis on Lipschitz domains

Extension theorems Let Ω ⊆ R𝑑1 be an open set and let 𝐾 ∈ N be an order of differentiation. It is not
straightforward to extend a function 𝑢 ∈ 𝐻𝐾 (Ω,R𝑑2 ) to a function �̃� ∈ 𝐻𝐾 (R𝑑1 ,R𝑑2 ) such that

�̃� |Ω = 𝑢 |Ω and ∥�̃�∥
𝐻𝐾 (R𝑑1 ) ⩽𝐶Ω∥𝑢∥𝐻𝐾 (Ω) ,

for some constant 𝐶Ω independent of 𝑢. This result is known as the extension theorem in Evans (2010,
Chapter 5.4) when Ω is a manifold with 𝐶1 boundary. However, the simplest domains in PDEs take
the form ]0, 𝐿 [3×]0,𝑇 [, the boundary of which is not 𝐶1. Fortunately, Stein (1970, Theorem 5 Chapter
VI.3.3) provides an extension theorem for bounded Lipschitz domains. We refer the reader to Shvartz-
man (2010) for a survey on extension theorems.
Example of a non-extendable domain Let the domain Ω =] − 1,1[2\({0} × [0,1[) be the square
] − 1,1[2 from which the segment {0} × [0,1[ has been removed. Then the function

𝑢(𝑥, 𝑦) =
{

0 if 𝑥 < 0 or if 𝑦 ⩽ 0
exp(− 1

𝑦
) if 𝑥, 𝑦 > 0,

belongs to 𝐶∞ (Ω,R) but cannot be extended to R2, since it cannot be continuously extended to the
segment {0} × [0,1[. Notice that Ω is not a Lipschitz domain because it lies on both sides of the
segment {0} × [0,1[, which belongs to its boundary 𝜕Ω.

Theorem 1.1 (Sobolev inequalities). Let Ω ⊆ R𝑑1 be a bounded Lipschitz domain and let 𝑚 ∈ N.
If 𝑚 ⩾ 𝑑1/2, then there exists an operator Π̃ : 𝐻𝑚 (Ω,R𝑑2 ) → 𝐶0 (Ω,R𝑑2 ) such that, for any 𝑢 ∈
𝐻𝑚 (Ω,R𝑑2 ), Π̃(𝑢) = 𝑢 almost everywhere. Moreover, there exists a constant 𝐶Ω > 0, depending only
on Ω, such that, ∥Π̃(𝑢)∥∞,Ω ⩽𝐶Ω∥𝑢∥𝐻𝑚 (Ω) .

Proof. Since Ω is a bounded Lipschitz domain, there exists a radius 𝑟 > 0 such that Ω ⊆ 𝐵(0, 𝑟). Ac-
cording to the extension theorem (Stein, 1970, Theorem 5, Chapter VI.3.3), there exists a constant
𝐶Ω > 0, depending only on Ω, such that any 𝑢 ∈ 𝐻𝑚 (Ω,R𝑑2 ) can be extended to �̃� ∈ 𝐻𝑚 (𝐵(0, 𝑟),R𝑑2 ),
with ∥�̃�∥𝐻𝑚 (𝐵(0,𝑟 ) ) ⩽ 𝐶Ω∥𝑢∥𝐻𝑚 (Ω) . Since 𝑚 ⩾ 𝑑1/2, the Sobolev inequalities (e.g., Evans, 2010,
Chapter 5.6, Theorem 6) state that there exists a constant �̃�Ω > 0, depending only on Ω, and a lin-
ear embedding Π : 𝐻𝑚 (𝐵(0, 𝑟),R𝑑2 ) →𝐶0 (𝐵(0, 𝑟),R𝑑2 ) such that ∥Π(�̃�)∥∞ ⩽ �̃�Ω∥�̃�∥𝐻𝑚 (𝐵(0,𝑟 ) ) and
Π(�̃�) = �̃� in 𝐻𝑚 (𝐵(0, 𝑟),R𝑑2 ). Therefore, Π̃(𝑢) = Π(�̃�) |Ω and ∥Π̃(𝑢)∥∞,Ω ⩽𝐶Ω�̃�Ω∥𝑢∥𝐻𝑚 (Ω) .

Definition 1.2 (Weak convergence in 𝐿2 (Ω)). A sequence (𝑢𝑝)𝑝∈N ∈ 𝐿2 (Ω)N weakly converges to
𝑢∞ ∈ 𝐿2 (Ω) if, for any 𝜙 ∈ 𝐿2 (Ω), lim𝑝→∞

∫
Ω
𝜙𝑢𝑝 =

∫
Ω
𝜙𝑢∞. This convergence is denoted by 𝑢𝑝 ⇀

𝑢∞.
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The Cauchy-Schwarz inequality shows that the convergence with respect to the 𝐿2 (Ω) norm im-
plies the weak convergence. However, the converse is not true. For example, the sequence of functions
𝑢𝑝 (𝑥) = cos(𝑝𝑥) weakly converges to 0 in 𝐿2 ( [−𝜋, 𝜋]), whereas ∥𝑢𝑝 ∥𝐿2 ( [−𝜋,𝜋 ] ) = 1/2.

Definition 1.3 (Weak convergence in 𝐻𝑚 (Ω)). A sequence (𝑢𝑝)𝑝∈N ∈ 𝐻𝑚 (Ω)N weakly converges to
𝑢∞ ∈ 𝐻𝑚 (Ω) in 𝐻𝑚 (Ω) if, for all |𝛼 | ⩽𝑚, 𝜕𝛼𝑢𝑝⇀ 𝜕𝛼𝑢∞.

Theorem 1.4 (Rellich-Kondrachov). Let Ω ⊆ R𝑑1 be a bounded Lipschitz domain and let 𝑚 ∈ N.
Let (𝑢𝑝)𝑝∈N ∈ 𝐻𝑚+1 (Ω,R𝑑2 ) be a sequence such that (∥𝑢𝑝 ∥𝐻𝑚+1 (Ω) )𝑝∈N is bounded. There exists
a function 𝑢∞ ∈ 𝐻𝑚+1 (Ω,R𝑑2 ) and a subsequence of (𝑢𝑝)𝑝∈N that converges to 𝑢∞ both weakly in
𝐻𝑚+1 (Ω,R𝑑2 ) and with respect to the 𝐻𝑚 (Ω) norm.

Proof. Let 𝑟 > 0 be such that Ω ⊆ 𝐵(0, 𝑟). According to the extension theorem of Stein (1970,
Theorem 5, Chapter VI.3.3), there exists a constant 𝐶𝑟 > 0 such that each 𝑢𝑝 can be extended to
�̃�𝑝 ∈ 𝐻𝑚+1 (𝐵(0, 𝑟),R𝑑2 ), with ∥�̃�𝑝 ∥𝐻𝑚+1 (𝐵(0,𝑟 ) ) ⩽ 𝐶𝑟 ∥𝑢𝑝 ∥𝐻𝑚+1 (Ω) . Observing that, for all |𝛼 | ⩽ 𝑚,
𝜕𝛼�̃�𝑝 belongs to 𝐻1 (𝐵(0, 𝑟),R𝑑2 ), the Rellich-Kondrachov compactness theorem (Evans, 2010, Theo-
rem 1, Chapter 5.7) ensures that there exists a subsequence of (�̃�𝑝)𝑝∈N that converges to an extension
of 𝑢∞ with respect to the 𝐻𝑚 (𝐵(0, 𝑟)) norm. Since the subsequence is also bounded, upon passing to
another subsequence, it also weakly converges in 𝐻𝑚+1 (𝐵(0, 𝑟),R𝑑2 ) to 𝑢∞ ∈ 𝐻𝑚+1 (𝐵(0, 𝑟),R𝑑2 ) (e.g.,
Evans, 2010, Chapter D.4). Therefore, by considering the restrictions of all the previous functions to Ω,
we deduce that there exists a subsequence of (𝑢𝑝)𝑝∈N that converges to 𝑢∞ both weakly in 𝐻𝑚+1 (Ω)
and with respect to the 𝐻𝑚 (Ω) norm.

2. Some useful lemmas
The 𝑛th Bell number 𝐵𝑛 (Hardy, 2006) corresponds to the number of partitions of the set {1, . . . , 𝑛}.
Bell numbers satisfy the relationship 𝐵0 = 1 and

𝐵𝑛+1 =

𝑛∑︁
𝑘=0

(
𝑛

𝑘

)
𝐵𝑘 . (1)

For 𝐾 ⩾ 1 and 𝑢 ∈ 𝐶𝐾 (R𝑑1 ,R𝑑2 ), the 𝐾th derivative of 𝑢 is denoted by 𝑢 (𝐾 ) .

Lemma 2.1 (Bounding the partial derivatives of a composition of functions). Let 𝑑1, 𝑑2 ⩾ 1, 𝐾 ⩾ 0,
𝑓 ∈ 𝐶𝐾 (R𝑑1 ,R), and 𝑔 ∈ 𝐶𝐾 (R,R𝑑2 ). Then

∥𝑔 ◦ 𝑓 ∥
𝐶𝐾 (R𝑑1 ) ⩽ 𝐵𝐾 ∥𝑔∥𝐶𝐾 (R) (1 + ∥ 𝑓 ∥

𝐶𝐾 (R𝑑1 ) )
𝐾 .

Proof. Let 𝐾1 ⩽ 𝐾 and let Π(𝐾1) be the set of all partitions of {1, . . . , 𝐾1}. According to Hardy (2006,
Proposition 1), one has, for all ℎ ∈ 𝐶𝐾1 (R𝐾1+𝑑1 ,R),

𝜕
𝐾1
1,2,3,...,𝐾1

(𝑔 ◦ ℎ) =
∑︁

𝑃∈Π (𝐾1 )
𝑔 ( |𝑃 | ) ◦ ℎ ×

∏
𝑆∈𝑃

[ (∏
𝑗∈𝑆

𝜕 𝑗
)
ℎ

]
.

Let 𝛼 = (𝛼1, . . . , 𝛼𝑑1 ) be a multi-index such that |𝛼 | = 𝐾1. Setting 𝛼0 = 0, 𝑦 𝑗 = 𝑥𝐾1+ 𝑗 + (𝑥𝛼1+···+𝛼𝑗−1 +
· · · + 𝑥𝛼1+···+𝛼𝑗−1), and letting ℎ(𝑥1, . . . , 𝑥𝐾1+𝑑1 ) = 𝑓 (𝑦1, . . . , 𝑦𝑑1 ), we are led to

𝜕𝛼 (𝑔 ◦ 𝑓 ) =
∑︁

𝑃∈Π (𝐾1 )
𝑔 ( |𝑃 | ) ◦ 𝑓 ×

∏
𝑆∈𝑃

𝜕𝛼(𝑆) 𝑓 , (2)
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where 𝛼(𝑆) = ( |{𝑏 ∈ 𝑆, 𝛼1 + · · · + 𝛼ℓ−1 ⩽ 𝑏 ⩽ 𝛼1 + · · · + 𝛼ℓ }|)1⩽ℓ⩽𝑑1 . Moreover, by definition of the
Bell number, |Π(𝐾1) | = 𝐵𝐾1 , and, by definition of a partition, |𝑃 | ⩽ 𝐾1. So,

∥𝜕𝛼 (𝑔 ◦ 𝑓 )∥∞ ⩽ 𝐵𝐾1 ∥𝑔∥𝐶𝐾1 (R𝑑1 ) max
𝑖1+2𝑖2+···+𝐾1𝑖𝐾1=𝐾1

𝐾1∏
𝑗=1

∥ 𝑓 ∥𝑖 𝑗
𝐶 𝑗 (R𝑑1 )

⩽ 𝐵𝐾1 ∥𝑔∥𝐶𝐾1 (R𝑑1 ) (1 + ∥ 𝑓 ∥
𝐶𝐾1 (R𝑑1 ) )

𝐾1 .

Since this inequality is true for all 𝐾1 ⩽ 𝐾 and for all |𝛼 | = 𝐾1, the lemma is proved.

Lemma 2.2 (Bounding the partial derivatives of a changing of coordinates 𝑓 ). Let 𝑑1, 𝑑2 ⩾
1, 𝐾 ⩾ 0, 𝑓 ∈ 𝐶𝐾 (R,R), and 𝑔 ∈ 𝐶𝐾 (R𝑑1 ,R𝑑2 ). Let 𝑣 ∈ 𝐶𝐾 (R𝑑1 ,R𝑑1 ) be defined by 𝑣(x) =
( 𝑓 (𝑥1), . . . , 𝑓 (𝑥𝑑1 )). Then

∥𝑔 ◦ 𝑣∥
𝐶𝐾 (R𝑑1 ) ⩽ 𝐵𝐾 × ∥𝑔∥

𝐶𝐾 (R𝑑1 ) × (1 + ∥ 𝑓 ∥𝐶𝐾 (R) )𝐾 .

Proof. Let 𝛼 = (𝛼1, . . . , 𝛼𝑑1 ) be a multi-index such that |𝛼 | = 𝐾 . For x = (𝑥1, . . . , 𝑥𝑑1 ) and a fixed
𝑖 ∈ {1, . . . , 𝑑1}, we let ℎ(𝑡) = 𝑔( 𝑓 (𝑥1), . . . , 𝑓 (𝑥𝑖−1), 𝑡, 𝑓 (𝑥𝑖+1), . . . , 𝑓 (𝑥𝑑1 )). Clearly, (ℎ ◦ 𝑓 ) (𝛼𝑖 ) (𝑥𝑖) =
(𝜕𝑖)𝛼𝑖 (𝑔 ◦ 𝑣) (x). Thus, according to Lemma 2.1,

(ℎ ◦ 𝑓 ) (𝛼𝑖 ) =
∑︁

𝑃𝑖∈Π (𝛼𝑖 )
ℎ ( |𝑃𝑖 | ) ◦ 𝑓 ×

∏
𝑆𝑖∈𝑃𝑖

𝑓 ( |𝑆𝑖 | ) .

Therefore,

(𝜕𝑖)𝛼𝑖 (𝑔 ◦ 𝑣) (x) =
∑︁

𝑃𝑖∈Π (𝛼𝑖 )
(𝜕𝑖) |𝑃𝑖 |𝑔 ◦ 𝑣(x)

∏
𝑆𝑖∈𝑃𝑖

𝑓 ( |𝑆𝑖 | ) (𝑥𝑖).

Letting 𝑖 = 1 and observing that 𝜕 𝑗 𝑓 ( |𝑆1 | ) (𝑥1) = 0 for 𝑗 ≠ 1, we see that

𝜕𝛼 (𝑔 ◦ 𝑣) (x) =
∑︁

𝑃1∈Π (𝛼1 )

[ ∏
𝑆1∈𝑃1

𝑓 ( |𝑆1 | ) (𝑥1)
]
× (𝜕2)𝛼2 . . . (𝜕𝑑1 )

𝛼𝑑1 [(𝜕1) |𝑃1 |𝑔 ◦ 𝑣] (x).

Repeating the same procedure for (𝜕1) |𝑃1 |𝑔 ◦ 𝑣, . . . , (𝜕1) |𝑃1 | . . . (𝜕𝑑1 )
|𝑃𝑑1 |𝑔 ◦ 𝑣, we obtain

𝜕𝛼 (𝑔 ◦ 𝑣) (x) =
∑︁

𝑃1∈Π (𝛼1 )

[ ∏
𝑆1∈𝑃1

𝑓 ( |𝑆1 | ) (𝑥1)]
]
× · · ·

· · · ×
∑︁

𝑃𝑑1 ∈Π (𝛼𝑑1 )

[ ∏
𝑆𝑑1 ∈𝑃𝑑1

𝑓
( |𝑆𝑑1 | ) (𝑥𝑑1 )]

]
× (𝜕1) |𝑃1 | . . . (𝜕𝑑1 )

|𝑃𝑑1 |𝑔 ◦ 𝑣(x).

Since
∑
𝑆𝑖∈𝑃𝑖 |𝑆𝑖 | = 𝛼𝑖 and

∑𝑑1
𝑖=1 𝛼𝑖 = 𝐾 , we conclude that

∥𝜕𝛼 (𝑔 ◦ 𝑣)∥∞ ⩽ 𝐵𝛼1 × · · · × 𝐵𝛼𝑑1
× ∥𝜕𝛼𝑔∥∞ (1 + ∥ 𝑓 ∥𝐶𝐾 (R) )𝐾 .

Using the injective map M : Π(𝛼1) × · · · × Π(𝛼𝑑1 ) → Π(𝐾) such that M(𝑃1, . . . , 𝑃𝑑1 ) = ∪𝑑1
𝑖=1𝑃𝑖 , we

have 𝐵𝛼1 × · · · × 𝐵𝛼𝑑1
⩽ 𝐵𝐾 . This concludes the proof.
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Lemma 2.3 (Bounding hyperbolic tangent and its derivatives). For all 𝐾 ∈ N, one has

∥ tanh(𝐾 ) ∥∞ ⩽ 2𝐾−1 (𝐾 + 2)!

Proof. The tanh function is a solution of the equation 𝑦′ = 1 − 𝑦2. An elementary induction shows
that there exists a sequence of polynomials (𝑃𝐾 )𝐾∈N such that tanh(𝐾 ) = 𝑃𝐾 (tanh), with 𝑃0 (𝑋) = 𝑋
and 𝑃𝐾+1 (𝑋) = (1 − 𝑋2) × 𝑃′

𝐾
(𝑋). Clearly, 𝑃𝐾 is a real polynomial of degree 𝐾 + 1, of the form

𝑃𝐾 (𝑋) = 𝑎 (𝐾 )
0 + 𝑎 (𝐾 )

1 𝑋 + · · · + 𝑎 (𝐾 )
𝐾+1𝑋

𝐾+1. One verifies that 𝑎 (𝐾+1)
𝑖

= (𝑖 + 1)𝑎 (𝐾 )
𝑖+1 − (𝑖 − 1)𝑎 (𝐾 )

𝑖−1 , with

𝑎
(𝐾 )
−1 = 𝑎

(𝐾 )
𝐾+2 = 0. The largest coefficient 𝑀 (𝑃𝐾 ) = max0⩽𝑖⩽𝐾+1 |𝑎 (𝐾 )

𝑖
| of 𝑃𝐾 satisfies 𝑀 (𝑃𝐾+1) ⩽

2(𝐾 + 1) ×𝑀 (𝑃𝐾 ). Thus, since 𝑀 (𝑃1) = 1, we see that 𝑀 (𝑃𝐾 ) ⩽ 2𝐾−1𝐾! . Recalling that 0 ⩽ tanh ⩽
1, we conclude that

∥ tanh(𝐾 ) ∥∞ = ∥𝑃𝐾 (tanh)∥∞ ⩽ (𝐾 + 2)𝑀 (𝑃𝐾 ) ⩽ 2𝐾−1 (𝐾 + 2)!

In the sequel, for all \ ∈ R, we write tanh\ (𝑥) = tanh(\𝑥). We define the sign function such that
sgn(𝑥) = 1𝑥>0 − 1𝑥<0.

Lemma 2.4 (Characterizing the limit of hyperbolic tangent in Hölder norm). Let 𝐾 ∈ N and 𝐻 ∈
N★. Then, for all Y > 0, lim\→∞ ∥ tanh◦𝐻\ −sgn∥𝐶𝐾 (R\]−Y,Y [ ) = 0.

Proof. Fix Y > 0. We prove the stronger statement that, for all 𝑚 ∈ N, one has

lim
\→∞

\𝑚∥ tanh◦𝐻\ −sgn∥𝐶𝐾 (R\]−Y,Y [ ) = 0.

We start with the case 𝐻 = 1 and then prove the result by induction on 𝐻. Observe first, since
tanh◦𝐻\ −sgn is an odd function, that

∥ tanh◦𝐻\ −sgn∥𝐶𝐾 (R\]−Y,Y [ ) = ∥ tanh◦𝐻\ −sgn∥𝐶𝐾 ( [Y,∞[) .

The case 𝐻 = 1 Assume, to start with, that 𝐾 = 0. For all 𝑥 ⩾ Y, one has

\𝑚 | tanh\ (𝑥) − 1| = 2\𝑚

1 + exp(−2\𝑥) ⩽
2\𝑚

1 + exp(−2\Y) .

Therefore, for all 𝑚 ∈ N,

\𝑚∥ tanh\ −sgn∥∞,R\]−Y,Y [ = \𝑚∥ tanh\ −sgn∥∞, [Y,∞[ ⩽
2\𝑚

1 + exp(−2\Y)
\→∞−−−−→ 0.

Next, to prove that the result if true for all 𝐾 ⩾ 1, it is enough to show that, for all 𝑚,

\𝑚∥ tanh(𝐾 )
\

∥∞,R\]−Y,Y [
\→∞−−−−→ 0.

According to the proof of Lemma 2.3, there exists a sequence of polynomials (𝑃𝐾 )𝐾∈N such that
tanh(𝐾 ) = 𝑃𝐾 (tanh) and 𝑃𝐾+1 (𝑋) = (1 − 𝑋2) × 𝑃′

𝐾
(𝑋). Since tanh\ (𝑥) = tanh(\𝑥), one has

tanh(𝐾 )
\

(𝑥) = \𝐾 tanh(𝐾 ) (\𝑥)

= \𝐾 (1 − tanh2 (\𝑥)) × 𝑃′𝐾−1 (tanh(\𝑥))

= \𝐾 (1 − tanh(\𝑥)) (1 + tanh(\𝑥)) × 𝑃′𝐾−1 (tanh(\𝑥)).
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Fix 𝑥 ⩾ Y. Then, letting 𝑀𝐾 = ∥𝑃′
𝐾−1∥∞, [−1,1] , we are led to

| tanh(𝐾 )
\

(𝑥) | ⩽ 2𝑀𝐾 \𝐾 (1 − tanh(\𝑥)) ⩽ 4𝑀𝐾 × \𝐾

1 + exp(2\𝑥)

⩽ 4𝑀𝐾 × \𝐾

1 + exp(2\Y) .

This shows that \𝑚∥ tanh(𝐾 )
\

∥∞, [Y,∞[ ⩽ 4𝑀𝐾 × \𝐾+𝑚
1+exp(2\ Y) . One proves with similar arguments that

the same result holds for all 𝑥 ⩽ −Y. Thus,

\𝑚∥ tanh(𝐾 )
\

∥∞,R\]−Y,Y [ ⩽ 4𝑀𝐾 × \𝐾+𝑚

1 + exp(2\Y)
\→∞−−−−→ 0,

and the lemma is proved for 𝐻 = 1. Induction Assume that that, for all 𝐾 and all 𝑚,

\𝑚∥ tanh◦𝐻\ −sgn∥𝐶𝐾 (R\]−Y,Y [ )
\→∞−−−−→ 0. (3)

Our objective is to prove that, for all 𝐾2 and all 𝑚2,

\𝑚2 ∥ tanh◦(𝐻+1)
\

−sgn∥𝐶𝐾2 (R\]−Y,Y [ )
\→∞−−−−→ 0.

If 𝐾2 = 0, since, for all (𝑥, 𝑦) ∈ R2, | tanh\ (𝑥) − tanh\ (𝑦) | ⩽ \ |𝑥− 𝑦 | × ∥ tanh′ ∥∞ ⩽ \ |𝑥− 𝑦 |. We deduce
that

\𝑚2 ∥ tanh◦(𝐻+1)
\

− tanh\ (sgn)∥∞,R\]−Y,Y [ ⩽ \𝑚2+1∥ tanh◦𝐻\ −sgn∥∞,R\]−Y,Y [ .

Therefore, according to (3), we have that lim\→∞ \𝑚2 ∥ tanh◦(𝐻+1)
\

− tanh\ (sgn)∥∞,R\]−Y,Y [ = 0. Since
tanh\ (sgn) − sgn = (tanh(\) − 1)1𝑥>0 − (tanh(\) − 1)1𝑥<0, we see that, for all 𝑚2,

lim
\→∞

\𝑚2 ∥ tanh\ (sgn) − sgn∥∞,R\]−Y,Y [ = 0.

Using the triangle inequality, we conclude as desired that, for all 𝑚2,

\𝑚2 ∥ tanh◦(𝐻+1)
\

−sgn∥∞,R\]−Y,Y [
\→∞−−−−→ 0. (4)

Assume now that 𝐾2 ⩾ 1. Since tanh◦(𝐻+1)
\

= tanh◦𝐻 (tanh), the Faà di Bruno formula (e.g., Comtet,
1974, Chapter 3.4) states that

(tanh◦(𝐻+1)
\

) (𝐾2 ) =
∑︁

𝑚1+2𝑚2+···+𝐾2𝑚𝐾2=𝐾2

𝐾2!∏𝐾2
𝑖=1𝑚𝑖! × 𝑖!𝑚𝑖

× (tanh◦𝐻\ ) (𝑚1+···+𝑚𝐾2 ) (tanh\ ) ×
𝐾2∏
𝑗=1

(tanh( 𝑗 )
\

)𝑚 𝑗 .

Notice that if |𝑥 | ≤ arctanh(1/
√

2), | tanh(𝑥) | ⩾ |𝑥 |
2 because by calling 𝑓 (𝑥) = tanh(𝑥) − 𝑥

2 , 𝑓 (0) = 0
and 𝑓 ′ (𝑥) = (1 − tanh(𝑥)2) − 1

2 ⩾ 0. Therefore, if |𝑥 | ≥ Y, | tanh(\𝑥) | ⩾ min( 1√
2
, \2 Y) ⩾ Y if \ ⩾ 2 and
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Y ⩾ 1√
2

. This is why for \ ⩾ 2 and Y ⩽ 1,

∥(tanh◦𝐻\ ) (𝑚1+···+𝑚𝐾2 ) (tanh\ )∥∞,R\]−Y,Y [ ⩽ ∥(tanh◦𝐻\ ) (𝑚1+···+𝑚𝐾2 ) ∥∞,R\]−Y,Y [ .

Therefore, from the triangular inequality on ∥ · ∥∞,R\]−Y,Y [ ,

∥(tanh◦(𝐻+1)
\

) (𝐾2 ) ∥∞,R\]−Y,Y [ ⩽
∑︁

𝑚1+2𝑚2+···+𝐾2𝑚𝐾2=𝐾2

𝐾2!∏𝐾2
𝑖=1𝑚𝑖! × 𝑖!𝑚𝑖

× ∥(tanh◦𝐻\ ) (𝑚1+···+𝑚𝐾2 ) ∥∞,R\]−Y,Y [
𝐾2∏
𝑗=1

∥ tanh( 𝑗 )
\

∥𝑚 𝑗∞,R\]−Y,Y [ .

According to the induction hypothesis (3), one has, for all 𝐾 ⩾ 1 and all 𝑚 ∈ N,

lim
\→∞

\𝑚∥(tanh◦𝐻\ ) (𝐾 ) ∥∞,R\]−Y,Y [ = 0.

We deduce from the above that for all 𝐾2 ⩾ 1 and all 𝑚2,

\𝑚2 ∥(tanh◦(𝐻+1)
\

) (𝐾2 ) ∥∞,R\]−Y,Y [
\→∞−−−−→ 0. (5)

Combining (4) and (5), it comes that lim\→∞ \𝑚2 ∥ tanh◦(𝐻+1)
\

−sgn∥𝐶𝐾2 (R\]−Y,Y [ ) = 0.

Corollary 2.5 (Bounding hyperbolic tangent compositions and their derivatives). Let 𝐾 ∈ N and
𝐻 ∈ N★. Then, for or all \ ∈ R, ∥(tanh◦𝐻\ ) (𝐾 ) ∥∞ <∞.

Proof. An induction as the one of Lemma 2.4 shows that ∥(tanh◦𝐻\ ) (𝐾 ) ∥∞,R\]−Y,Y [ <∞. In addition,
since tanh◦𝐻\ ∈ 𝐶∞ (R,R), ∥(tanh◦𝐻\ ) (𝐾 ) ∥∞, [−Y,Y ] <∞.

When 𝑑1 = 𝑑2 = 1, the observations (X1,𝑌1), . . . , (X𝑛,𝑌𝑛) ∈ R2 can be reordered as (X(1) ,𝑌(1) ), . . . ,
(X(𝑛) ,𝑌(𝑛) ) according to increasing values of the X𝑖 , that is, X(1) ⩽ · · · ⩽ X(𝑛) . Moreover, we let
G(𝑛, 𝑛𝑟 ) = {(X𝑖 ,𝑌𝑖),1 ⩽ 𝑖 ⩽ 𝑛} ∪ {X(𝑟 )

𝑗
,1 ⩽ 𝑗 ⩽ 𝑛𝑟 }, and denote by 𝛿(𝑛, 𝑛𝑟 ) the minimum distance

between two distinct points in G(𝑛, 𝑛𝑟 ), i.e.,

𝛿(𝑛, 𝑛𝑟 ) = min
𝑧1 ,𝑧2∈G(𝑛,𝑛𝑟 )

𝑧1≠𝑧2

|𝑧1 − 𝑧2 |. (6)

Lemma 2.6 (Exact estimation with hyperbolic tangent). Assume that 𝑑1 = 𝑑2 = 1, and let 𝐻 ⩾ 1.
Let the neural network 𝑢\ ∈ NN𝐻 (𝑛 − 1) be defined by

𝑢\ (𝑥) =𝑌(1) +
𝑛−1∑︁
𝑖=1

𝑌(𝑖+1) −𝑌(𝑖)
2

[
tanh◦𝐻\

(
𝑥 − X(𝑖) −

𝛿(𝑛, 𝑛𝑟 )
2

)
+ 1

]
.

Then, for all 1 ⩽ 𝑖 ⩽ 𝑛,

lim
\→∞

𝑢\ (X𝑖) =𝑌𝑖 .

Moreover, for all order 𝐾 ∈ N★ of differentiation and all 1 ⩽ 𝑗 ⩽ 𝑛𝑟 ,

lim
\→∞

𝑢
(𝐾 )
\

(X(𝑟 )
𝑗

) = 0.
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Proof. Applying Lemma 2.4 with Y = 𝛿 (𝑛,𝑛𝑟 )/4 and letting

𝐺 = R\∪𝑛
𝑖=1]X(𝑖) +

1
4
𝛿(𝑛, 𝑛𝑟 ),X(𝑖) +

3
4
𝛿(𝑛, 𝑛𝑟 ) [,

one has, for all 𝐾 , lim\→∞ ∥𝑢\ − 𝑢∞∥𝐶𝐾 (𝐺) = 0, where

𝑢∞ (𝑥) =𝑌(1) +
𝑛−1∑︁
𝑖=1

[
𝑌(𝑖+1) −𝑌(𝑖)

]
× 1

𝑥>X(𝑖)+ 𝛿 (𝑛,𝑛𝑟 )2
.

Clearly, for all 1 ⩽ 𝑖 ⩽ 𝑛, 𝑢∞ (X𝑖) = 𝑌𝑖 . Since 𝑢′∞ (𝑥) = 0 for all 𝑥 ∈ 𝐺, and since X(𝑟 )
𝑗

∈ 𝐺 for all

1 ⩽ 𝑗 ⩽ 𝑛𝑟 , we deduce that 𝑢 (𝐾 )
∞ (X(𝑟 )

𝑗
) = 0. This concludes the proof.

Definition 2.7 (Overfitting gap). For any 𝑛, 𝑛𝑒, 𝑛𝑟 ∈ N★ and _ (ridge) ⩾ 0, the overfitting gap operator
OG𝑛,𝑛𝑒 ,𝑛𝑟 is defined, for all 𝑢 ∈ 𝐶∞ (Ω̄,R𝑑2 ), by

OG𝑛,𝑛𝑒 ,𝑛𝑟 (𝑢) = |𝑅 (ridge)
𝑛,𝑛𝑒 ,𝑛𝑟 (𝑢) −R𝑛 (𝑢) |.

Lemma 2.8 (Monitoring the overfitting gap). Let Y > 0, _ (ridge) ⩾ 0, 𝐻 ⩾ 2, and 𝐷 ∈ N★. Let

𝑛, 𝑛𝑒, 𝑛𝑟 ∈ N★. Let \̂ ∈ Θ𝐻,𝐷 be a parameter such that (𝑖) 𝑅 (ridge)
𝑛,𝑛𝑒 ,𝑛𝑟 (𝑢 \̂ ) ⩽ inf𝑢∈NN𝐻 (𝐷) 𝑅

(ridge)
𝑛,𝑛𝑒 ,𝑛𝑟 (𝑢) +Y

and (𝑖𝑖) OG𝑛,𝑛𝑒 ,𝑛𝑟 (𝑢 \̂ ) ⩽ Y. Then

R𝑛 (𝑢 \̂ ) ⩽ inf
𝑢∈NN𝐻 (𝐷)

R𝑛 (𝑢) + 2Y + 𝑜𝑛𝑒 ,𝑛𝑟→∞ (1).

Proof. On the one hand, since R𝑛 ⩽ 𝑅
(ridge)
𝑛,𝑛𝑒 ,𝑛𝑟 + OG𝑛,𝑛𝑒 ,𝑛𝑟 , assumptions (𝑖) and (𝑖𝑖) imply that

R𝑛 (𝑢 \̂ ) ⩽ inf𝑢∈NN𝐻 (𝐷) 𝑅
(ridge)
𝑛,𝑛𝑒 ,𝑛𝑟 (𝑢) + 2Y. On the other hand, 𝑅 (ridge)

𝑛,𝑛𝑒 ,𝑛𝑟 − OG𝑛,𝑛𝑒 ,𝑛𝑟 ⩽ R𝑛. The
proof of Theorem 4.6 reveals that there exists a sequence (\ (𝑛𝑒, 𝑛𝑟 ))𝑛𝑒 ,𝑛𝑟 ∈N ∈ ΘN

𝐻,𝐷
such that

lim𝑛𝑒 ,𝑛𝑟→∞ OG𝑛,𝑛𝑒 ,𝑛𝑟 (𝑢\ (𝑛𝑒 ,𝑛𝑟 ) ) = 0 and lim𝑛𝑒 ,𝑛𝑟→∞ R𝑛 (𝑢\ (𝑛𝑒 ,𝑛𝑟 ) ) = inf𝑢∈NN𝐻 (𝐷) R𝑛 (𝑢). Thus,
inf𝑢∈NN𝐻 (𝐷) 𝑅

(ridge)
𝑛,𝑛𝑒 ,𝑛𝑟 (𝑢) ⩽ infNN𝐻 (𝐷) R𝑛 (𝑢) + 𝑜𝑛𝑒 ,𝑛𝑟→∞ (1). We deduce that

R𝑛 (𝑢 \̂ ) ⩽ inf
𝑢∈NN𝐻 (𝐷)

R𝑛 (𝑢) + 2Y + 𝑜𝑛𝑒 ,𝑛𝑟→∞ (1).

Lemma 2.9 (Minimizing sequence of the theoretical risk.). Let 𝐻, 𝐷 ∈ N★. Define the sequence
(𝑣𝑝)𝑝∈N ∈ NN𝐻 (𝐷)N of neural networks by 𝑣𝑝 (x) = tanh𝑝 ◦ tanh◦(𝐻−1) (x). Then, for any _𝑒 > 0,

lim
𝑝→∞

_𝑒 (1 − 𝑣𝑝 (1))2 + 1
2

∫ 1

−1
x2 (𝑣′𝑝)2 (x)𝑑x = 0.

Proof. tanh◦(𝐻−1) is an increasing 𝐶∞ function such that tanh◦(𝐻−1) (0) = 0. Therefore, Lemma 2.4
shows that lim𝑝→∞ 𝑣𝑝 (1) = 1, so that lim𝑝→∞ _𝑒 (1 − 𝑣𝑝 (1))2 = 0. This shows the convergence of the
left-hand term of the lemma.

To bound the right-hand term, we have, according to the chain rule,

|𝑣′𝑝 (x) | ⩽ 𝑝∥ tanh◦(𝐻−1) ∥𝐶1 (R) | tanh′ (𝑝 tanh◦(𝐻−1) (x)) |,
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with ∥ tanh◦(𝐻−1) ∥𝐶1 (R) <∞ by Corollary 2.5. Thus,∫ 1

−1
x2 (𝑣′𝑝)2 (x)𝑑x ⩽ ∥ tanh◦(𝐻−1) ∥2

𝐶1 (R)

∫ 1

−1
𝑝2x2 (tanh′ (𝑝 tanh◦(𝐻−1) (x)))2𝑑x.

Notice that x2 (tanh′ (𝑝 tanh◦(𝐻−1) (x)))2 is an even function, so that∫ 1

−1
x2 (𝑣′𝑝)2 (x)𝑑x ⩽ 2∥ tanh◦(𝐻−1) ∥2

𝐶1 (R)

∫ 1

0
𝑝2x2 (tanh′ (𝑝 tanh◦(𝐻−1) (x)))2𝑑x.

Remark that (tanh′)2 (x) = (1 − tanh(x))2 (1 + tanh(x))2 ⩽ 16 exp(−2x), so that∫ 1

−1
x2 (𝑣′𝑝)2 (x)𝑑x ⩽ 32∥ tanh◦(𝐻−1) ∥2

𝐶1 (R)

∫ 1

0
𝑝2x2 exp(−2𝑝 tanh◦(𝐻−1) (x))𝑑x.

If 𝐻 = 1, then the change of variable x̄ = 𝑝x states that∫ 1

0
𝑝2x2 exp (−2𝑝x)𝑑x ⩽ 𝑝−1

∫ ∞

0
x̄2 exp (−2x̄)𝑑x̄

𝑝→∞
−−−−−→ 0

and the lemma is proved.
If 𝐻 ⩾ 2, notice that tanh(x) ⩾ x1x⩽1/2 + 1x⩾1/2 for all x ⩾ 0, and therefore we have that

tanh◦(𝐻−1) (x) ⩾ x1x⩽2𝐻−1/2𝐻 + 1x⩾2𝐻−1/2𝐻 . Thus, using the change of variable x̄ = 𝑝x,∫ 1

0
𝑝2x2 exp(−2𝑝 tanh◦(𝐻−1) (x))𝑑x ⩽

∫ 1

0
𝑝2x2 exp(−2𝐻−1𝑝x)𝑑x

⩽ 𝑝−1
∫ ∞

0
x̄2 exp(−2𝐻−1x̄)𝑑x̄.

Since this upper bound vanishes as 𝑝→∞, this concludes the proof when 𝐻 ⩾ 2.

Definition 2.10 (Weak lower semi-continuity). A fonction 𝐼 : 𝐻𝑚 (Ω) → R is weakly lower semi-
continuous on 𝐻𝑚 (Ω) if, for any sequence (𝑢𝑝)𝑝∈N ∈ 𝐻𝑚 (Ω)N that weakly converges to 𝑢∞ ∈ 𝐻𝑚 (Ω)
in 𝐻𝑚 (Ω), one has 𝐼 (𝑢∞) ⩽ lim inf𝑝→∞ 𝐼 (𝑢𝑝).

The following technical lemma will be useful for the proof of Proposition 5.6.

Lemma 2.11 (Weak lower semi-continuity with convex Lagrangians). Let the Lagrangian 𝐿 ∈

𝐶∞ (R

(
𝑑1 +𝑚
𝑚

)
𝑑2

× · · · × R𝑑2 × R𝑑1 ,R) be such that, for any 𝑥 (𝑚) , . . . , 𝑥 (0) , and 𝑧, the function
𝑥 (𝑚+1) ↦→ 𝐿 (𝑥 (𝑚+1) , . . . , 𝑥 (0) , 𝑧) is convex and nonnegative.

Then the function 𝐼 : 𝑢 ↦→
∫
Ω
𝐿 ((𝜕𝑚+1

𝑖1 ,...,𝑖𝑚+1
𝑢(x))1⩽𝑖1 ,...,𝑖𝑚+1⩽𝑑1 , . . . , 𝑢(x),x)𝑑x is lower-semi contin-

uous for the weak topology on 𝐻𝑚+1 (Ω,R𝑑2 ).

Proof. This results generalizes Evans (2010, Theorem 1, Chapter 8.2), which treats the case 𝑚 = 0.
Let (𝑢𝑝)𝑝∈N ∈ 𝐻𝑚+1 (Ω,R𝑑2 )N be a sequence that weakly converges to 𝑢∞ ∈ 𝐻𝑚+1 (Ω,R𝑑2 ) in
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𝐻𝑚+1 (Ω,R𝑑2 ). Our goal is to prove that 𝐼 (𝑢∞) ⩽ lim inf𝑝→∞ 𝐼 (𝑢𝑝). Upon passing to a subsequence,
we can suppose that lim𝑝→∞ 𝐼 (𝑢𝑝) = lim inf𝑝→∞ 𝐼 (𝑢𝑝).

As a first step, we strengthen the convergence of (𝑢𝑝)𝑝∈N by showing that for any Y > 0, there
exists a subset 𝐸Y of Ω such that |Ω\𝐸Y | ⩽ Y (the notation | · | stands for the Lebesgue measure),
and such that there exists a subsequence that uniformly converges on 𝐸Y , as well as its derivatives.
Recalling that a weakly convergent sequence is bounded (e.g., Evans, 2010, Chapter D.4), one has
sup𝑝∈N ∥𝑢𝑝 ∥𝐻𝑚+1 (Ω) < ∞. Theorem 1.4 ensures that a subsequence of (𝑢𝑝)𝑝∈N converges to, say,
𝑢∞ ∈ 𝐻𝑚+1 (Ω,R𝑑2 ) with respect to the 𝐻𝑚 (Ω) norm. Upon passing again to another subsequence,
we conclude that for all |𝛼 | ⩽ 𝑚 and for almost every 𝑥 in Ω, lim𝑝→∞ 𝜕𝛼𝑢𝑝 (𝑥) = 𝜕𝛼𝑢∞ (𝑥) (see, e.g.
Brezis, 2010, Theorem 4.9). Finally, by Egorov’s theorem (Evans, 2010, Chapter E.2), for any Y > 0,
there exists a measurable set 𝐸Y such that |Ω\𝐸Y | ⩽ Y and such that, for all |𝛼 | ⩽𝑚, lim𝑝→∞ ∥𝜕𝛼𝑢𝑝 −
𝜕𝛼𝑢∞∥𝐿∞ (𝐸Y ) = 0.

Our next goal is to bound the function 𝐿. Let 𝐹Y = {𝑥 ∈ Ω,
∑

|𝛼 |⩽𝑚+1 |𝜕𝛼𝑢∞ (𝑥) | ⩽ Y−1} and
𝐺 Y = 𝐸Y ∩ 𝐹Y . Observe that limY→0 |Ω\𝐺 Y | = 0. Since, for all |𝛼 | ⩽ 𝑚 + 1, ∥𝜕𝛼𝑢∞∥∞,𝐺Y < ∞,
and since lim𝑝→∞ ∥𝜕𝛼𝑢𝑝 − 𝜕𝛼𝑢∞∥𝐿∞ (𝐺Y ) = 0, then, for all 𝑝 large enough, (∥𝜕𝛼𝑢𝑝 ∥𝐿∞ (𝐺Y ) )𝑝∈N
is bounded. For now, for the ease of notation, we denote ((𝜕𝑚+1

𝑖1 ,...,𝑖𝑚+1
𝑢(𝑧))1⩽𝑖1 ,...,𝑖𝑚+1⩽𝑑1 , . . . , 𝑢(𝑧), 𝑧)

by (𝐷𝑚+1𝑢(𝑧), . . . , 𝑢(𝑧), 𝑧). Therefore, since the Lagrangian 𝐿 is smooth and Ω is bounded, for all 𝑝
large enough, (∥𝐿 (𝐷𝑚+1𝑢𝑝 (·), . . . , 𝐷𝑢𝑝 (·), 𝑢𝑝 (·), ·)∥𝐿∞ (𝐺Y ) )𝑝∈N is bounded as well.

To conclude the proof, we take advantage of the convexity of the Lagrangian 𝐿. Let 𝐽𝑚+1 be the
Jacobian matrix of 𝐿 along the vector 𝑥 (𝑚+1) . The convexity of 𝐿 implies

𝐿 (𝐷𝑚+1𝑢𝑝 (𝑧), . . . , 𝑢𝑝 (𝑧), 𝑧)

⩾ 𝐿 (𝐷𝑚+1𝑢∞ (𝑧), 𝐷𝑚𝑢𝑝 (𝑧) . . . , 𝑢𝑝 (𝑧), 𝑧)

+ 𝐽𝑚+1 (𝐷𝑚+1𝑢∞ (𝑧), 𝐷𝑚𝑢𝑝 (𝑧) . . . , 𝑢𝑝 (𝑧), 𝑧) × (𝐷𝑚+1𝑢𝑝 (𝑧) − 𝐷𝑚+1𝑢∞ (𝑧)).

Using the fact that 𝐿 ⩾ 0 and that 𝐼 (𝑢𝑝) ⩾
∫
𝐺Y

𝐿 (𝐷𝑚+1𝑢𝑝 (𝑧), . . . , 𝑢𝑝 (𝑧), 𝑧)𝑑𝑧, we obtain

𝐼 (𝑢𝑝) ⩾
∫
𝐺Y

𝐿 (𝐷𝑚+1𝑢∞ (𝑧), 𝐷𝑚𝑢𝑝 (𝑧), . . . , 𝑢𝑝 (𝑧), 𝑧)

+ 𝐽𝑚+1 (𝐷𝑚+1𝑢∞ (𝑧), 𝐷𝑚𝑢𝑝 (𝑧), . . . , 𝑢𝑝 (𝑧), 𝑧) × (𝐷𝑚+1𝑢𝑝 (𝑧) − 𝐷𝑚+1𝑢∞ (𝑧))𝑑𝑧.

Since (∥𝐿 (𝐷𝑚+1𝑢𝑝 (·), . . . , 𝐷𝑢𝑝 (·), 𝑢𝑝 (·), ·)∥𝐿∞ (𝐺Y ) )𝑝∈N is bounded for 𝑝 large enough, and since,
for all |𝛼 | ⩽𝑚, lim𝑝→∞ ∥𝜕𝛼𝑢𝑝 − 𝜕𝛼𝑢∞∥𝐿∞ (𝐺Y ) = 0, the dominated convergence theorem ensures that

lim
𝑝→∞

∫
𝐺Y

𝐿 (𝐷𝑚+1𝑢∞ (𝑧), 𝐷𝑚𝑢𝑝 (𝑧), . . . , 𝑢𝑝 (𝑧), 𝑧)𝑑𝑧 =
∫
𝐺Y

𝐿 (𝐷𝑚+1𝑢∞ (𝑧), . . . , 𝑢∞ (𝑧), 𝑧)𝑑𝑧.

Since (𝑖) 𝐿 is smooth (and therefore Lipschitz on bounded domains), (𝑖𝑖) for all 𝑝 large enough,
(∥𝜕𝛼𝑢𝑝 ∥𝐿∞ (𝐺Y ) )𝑝∈N is bounded, and (𝑖𝑖𝑖) for all |𝛼 | ⩽𝑚, lim𝑝 ∥𝜕𝛼𝑢𝑝 − 𝜕𝛼𝑢∞∥𝐿∞ (𝐺Y ) = 0, we have
that lim𝑝→∞ ∥𝐽𝑚+1 (𝐷𝑚+1𝑢∞ (·), 𝐷𝑚𝑢𝑝 (·), . . . , 𝑢𝑝 (·), ·) − 𝐽𝑚+1 (𝐷𝑚+1𝑢∞ (·), . . . , 𝑢∞ (·), ·)∥𝐿∞ (𝐺Y ) = 0.
Therefore, since 𝐷𝑚+1𝑢𝑝⇀𝐷𝑚+1𝑢∞,

lim
𝑝→∞

∫
𝐺Y

𝐽𝑚+1 (𝐷𝑚+1𝑢∞ (𝑧), 𝐷𝑚𝑢𝑝 (𝑧), . . . , 𝑢𝑝 (𝑧), 𝑧) × (𝐷𝑚+1𝑢𝑝 (𝑧) − 𝐷𝑚+1𝑢∞ (𝑧))𝑑𝑧 = 0.

Hence, lim𝑝→∞ 𝐼 (𝑢𝑝) ⩾
∫
𝐺Y

𝐿 (𝐷𝑚+1𝑢∞ (𝑧), . . . , 𝑢∞ (𝑧), 𝑧)𝑑𝑧. Finally, applying the monotone conver-
gence theorem with Y→ 0 shows that lim𝑝→∞ 𝐼 (𝑢𝑝) ⩾ 𝐼 (𝑢∞), which is the desired result.
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Lemma 2.12 (Measurability of �̂�𝑛). Let �̂�𝑛 = arg min
𝑢∈𝐻𝑚+1 (Ω,R𝑑2 ) R

(reg)
𝑛 (𝑢), where, for all 𝑢 ∈

𝐻𝑚+1 (Ω,R𝑑2 ),

R
(reg)
𝑛 (𝑢) = _𝑑

𝑛

𝑛∑︁
𝑖=1

∥Π̃(𝑢) (X𝑖) −𝑌𝑖 ∥2
2 + _𝑒E∥Π̃(𝑢) (X(𝑒) ) − ℎ(X(𝑒) )∥2

2

+ 1
|Ω|

𝑀∑︁
𝑘=1

∥F𝑘 (𝑢, ·)∥𝐿2 (Ω) + _𝑡 ∥𝑢∥2
𝐻𝑚+1 (Ω) .

Then �̂�𝑛 is a random variable.

Proof. Recall that

R
(reg)
𝑛 (𝑢) =A𝑛 (𝑢, 𝑢) − 2B𝑛 (𝑢) +

_𝑑

𝑛

𝑛∑︁
𝑖=1

∥𝑌𝑖 ∥2 + _𝑒E∥ℎ(X(𝑒) )∥2
2 +

1
|Ω|

𝑀∑︁
𝑘=1

∫
Ω

𝐵𝑘 (x)2𝑑x.

Throughout we use the notation A (x,𝑒) (𝑢, 𝑢) instead of A𝑛 (𝑢, 𝑢), to make the dependence of A𝑛 in
the random variables x = (X1, . . . ,X𝑛) and 𝑒 = (Y1, . . . , Y𝑛) more explicit. We do the same with B𝑛.
For a given a normed space (𝐹, ∥ · ∥), we let B(𝐹, ∥ · ∥) be the Borel 𝜎-algebra on 𝐹 induced by the
norm ∥ · ∥.

Our goal is to prove that the function

�̂�𝑛 : (Ω𝑛×R𝑛𝑑2 ,B(Ω𝑛×R𝑛𝑑2 , ∥ · ∥2)) → (𝐻𝑚+1 (Ω,R𝑑2 ),B(𝐻𝑚+1 (Ω,R𝑑2 ), ∥ · ∥𝐻𝑚+1 (Ω) ))

(x, 𝑒) ↦→ arg min
𝑢∈𝐻𝑚+1 (Ω,R𝑑2 )

A (x,𝑒) (𝑢, 𝑢) − 2B(x,𝑒) (𝑢)

is measurable. Recall that 𝐻𝑚+1 (Ω,R𝑑2 ) is a Banach space separable with respect to its norm ∥ ·
∥𝐻𝑚+1 (Ω) . Let (𝑣𝑞)𝑞∈N ∈ 𝐻𝑚+1 (Ω,R𝑑2 )N be a sequence dense in 𝐻𝑚+1 (Ω,R𝑑2 ). Note that, for any x ∈
Ω𝑛 and any 𝑒 ∈ R𝑛𝑑2 , one has min

𝑢∈𝐻𝑚+1 (Ω,R𝑑2 ) A (x,𝑒) (𝑢, 𝑢) − 2B(x,𝑒) (𝑢) = inf𝑞∈NA (x,𝑒) (𝑣𝑞 , 𝑣𝑞) −
2B(x,𝑒) (𝑣𝑞). This identity is a consequence of the fact that the function 𝑢 ↦→ A (x,𝑒) (𝑢, 𝑢) − 2B(x,𝑒) (𝑢)
is continuous for the 𝐻𝑚+1 (Ω) norm, as shown in the proof of Proposition 5.5). Moreover, according
to this proof, each function 𝐹𝑞 (x, 𝑒) := A (x,𝑒) (𝑢𝑞 , 𝑢𝑞) − 2B(x,𝑒) (𝑢𝑞) is a composition of continuous
functions, and is therefore measurable. Thus, the function

𝐺 (x, 𝑒) := min
𝑢∈𝐻𝑚+1 (Ω,R𝑑2 )

A (x,𝑒) (𝑢, 𝑢) − 2B(x,𝑒) (𝑢) = inf
𝑞∈N

A (x,𝑒) (𝑢𝑞 , 𝑢𝑞) − 2B(x,𝑒) (𝑢𝑞)

is measurable.
Next, since Ω, R, and 𝐻𝑚+1 (Ω,R𝑑2 ) are separable, we know that the 𝜎-algebras B(Ω𝑛 × R𝑛𝑑2 ×

𝐻𝑚+1 (Ω,R𝑑2 ), ∥ · ∥⊗) and B(Ω𝑛 × R𝑛𝑑2 , ∥ · ∥2) ⊗ B(𝐻𝑚+1 (Ω,R𝑑2 ), ∥ · ∥𝐻𝑚+1 (Ω) ) are identical,
where ∥(x, 𝑒, 𝑢)∥⊗ = ∥(x, 𝑒)∥2 + ∥𝑢∥𝐻𝑚+1 (Ω) (see, e.g. Rogers and Williams, 2000, Chapter II.13,
E13.11c). This implies that the coordinate projections Πx,𝑒 and Π𝑢—defined for (x, 𝑒) ∈ Ω𝑛 × R𝑛𝑑2

and 𝑢 ∈ 𝐻𝑚+1 (Ω,R𝑑2 ) by Πx,𝑒 (x, 𝑒, 𝑢) = (x, 𝑒) and Π𝑢 (x, 𝑒, 𝑢) = 𝑢—are ∥ · ∥⊗ measurable. It is easy to
check that, for any (x, 𝑒) ∈ Ω𝑛×R𝑛𝑑2 and 𝑢 ∈ 𝐻𝑚+1 (Ω,R𝑑2 ), if lim𝑝→∞ ∥(x𝑝 , 𝑒𝑝 , 𝑢𝑝) − (x, 𝑒, 𝑢)∥⊗ = 0,
then lim𝑝→∞ ∥Π̃(𝑢𝑝) − Π̃(𝑢)∥∞,Ω = 0 and, since Π̃(𝑢) ∈ 𝐶0 (Ω,R𝑑2 ), lim𝑝→∞Ax𝑝 ,𝑒𝑝 (𝑢𝑝 , 𝑢𝑝) −
2Bx𝑝 ,𝑒𝑝 (𝑢𝑝) =Ax,𝑒 (𝑢, 𝑢) −2Bx,𝑒 (𝑢). This proves that 𝐼 : (Ω𝑛×R𝑛𝑑2 ×𝐻𝑚+1 (Ω,R𝑑2 ),B(Ω𝑛×R𝑛𝑑2 ×
𝐻𝑚+1 (Ω,R𝑑2 ), ∥ · ∥⊗)) → (R,B(R)) defined by

𝐼 (x, 𝑒, 𝑢) =A (x,𝑒) (𝑢, 𝑢) − 2B(x,𝑒) (𝑢)
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is continuous with respect to ∥ · ∥⊗ and therefore measurable. According to the above, the function

𝐼 (x, 𝑒, 𝑢) = 𝐼 (x, 𝑒, 𝑢) −𝐺 ◦Π𝑥,𝑒 (x, 𝑒, 𝑢)

is also measurable. Observe that, by definition, �̂�𝑛 = 𝐽 ◦ (X1, . . . ,X𝑛, Y1, . . . , Y𝑛), where 𝐽 (x, 𝑒) =
Π𝑢 (𝐼−1 ({0})∩ ({(x, 𝑒)}×𝐻𝑚+1 (Ω,R𝑑2 ))). For any measurable set 𝑆 ∈ B(𝐻𝑚+1 (Ω,R𝑑2 , ∥ · ∥𝐻𝑚+1 (Ω) ),
𝐽−1 (𝑆) = Π𝑥,𝑒 (𝐼−1 ({0}) ∩ (Ω𝑛 × R𝑛𝑑2 × 𝑆)) ∈ B(Ω𝑛 × R𝑛𝑑2 ). (Notice that 𝐽−1 (𝑆) is the collection
of all pairs (x, 𝑒) ∈ Ω𝑛 × R𝑛𝑑2 satisfying arg min

𝑢∈𝐻𝑚+1 (Ω,R𝑑2 ) A (x,𝑒) (𝑢, 𝑢) − 2B(x,𝑒) (𝑢) ∈ 𝑆.) To see
this, jut note that for any set 𝑆 ∈ B(Ω𝑛 × R𝑛𝑑2 , ∥ · ∥2) ⊗ B(𝐻𝑚+1 (Ω,R𝑑2 ), ∥ · ∥

𝐻𝑚+1 (Ω,R𝑑2 ) ), one has
Π𝑥,𝑒 (𝑆) ∈ B(Ω𝑛 × R𝑛𝑑2 , ∥ · ∥2) (see, e.g. Rogers and Williams, 2000, Lemma 11.4, Chapter II). We
conclude that the function 𝐽 is measurable and so is �̂�𝑛.

Let 𝐵(1, ∥ · ∥𝐻𝑚+1 (Ω) ) = {𝑢 ∈ 𝐻𝑚+1 (Ω,R𝑑2 ), ∥𝑢∥𝐻𝑚+1 (Ω) ⩽ 1} be the ball of radius 𝑟 centered at
0. Let 𝑁 (𝐵(1, ∥ · ∥𝐻𝑚+1 (Ω) )), ∥ · ∥𝐻𝑚+1 (Ω) , 𝑟) be the minimum number of balls of radius 𝑟 according to
the norm ∥ · ∥𝐻𝑚+1 (Ω) needed to cover the space 𝐵(1, ∥ · ∥𝐻𝑚+1 (Ω) ).

Lemma 2.13 (Entropy of 𝐻𝑚+1 (Ω,R𝑑2 )). Let Ω ⊆ R𝑑1 be a Lipschitz domain. For 𝑚 ⩾ 1, one has

log𝑁 (𝐵(1, ∥ · ∥𝐻𝑚+1 (Ω) ), ∥ · ∥𝐻𝑚+1 (Ω) , 𝑟) = O
𝑟→0

(𝑟−𝑑1/(𝑚+1) ).

Proof. According to the extension theorem (Stein, 1970, Theorem 5, Chapter VI.3.3), there exists
a constant 𝐶Ω > 0, depending only on Ω, such that any 𝑢 ∈ 𝐻𝑚+1 (Ω,R𝑑2 ) can be extended to �̃� ∈
𝐻𝑚+1 (R𝑑1 ,R𝑑2 ), with ∥�̃�∥

𝐻𝑚+1 (R𝑑1 ) ⩽ 𝐶Ω∥𝑢∥𝐻𝑚+1 (Ω) . Let 𝑟 > 0 be such that Ω ⊆ 𝐵(𝑟, ∥ · ∥2) and let
𝜙 ∈ 𝐶∞ (R𝑑1 ,R𝑑2 ) be such that

𝜙(x) =
{

1 for x ∈ Ω

0 for x ∈ R𝑑1 , |𝑥 | ⩾ 𝑟.

Then, for any 𝑢 ∈ 𝐻𝑚+1 (Ω,R𝑑2 ), (𝑖) 𝜙�̃� ∈ 𝐻𝑚+1 (R𝑑1 ,R𝑑2 ), (𝑖𝑖) 𝜙�̃� |Ω = 𝑢, and (𝑖𝑖𝑖) there exists a con-
stant �̃�Ω > 0 such that ∥𝜙�̃�∥

𝐻𝑚+1 (R𝑑1 ) ⩽ �̃�Ω∥𝑢∥𝐻𝑚+1 (Ω) . The lemma follows from Nickl and Pötscher
(2007, Corollary 4).

Lemma 2.14 (Empirical process 𝐿2). Let X1, . . . ,X𝑛 be i.i.d. random variables, with common distri-
bution `X on Ω. Then there exists a constant 𝐶Ω > 0, depending only on Ω, such that

E
(

sup
∥𝑢∥

𝐻𝑚+1 (Ω)⩽1
E∥Π̃(𝑢) (X)∥2

2 −
1
𝑛

𝑛∑︁
𝑖=1

∥Π̃(𝑢) (X𝑖)∥2
2

)
⩽
𝑑

1/2
2 𝐶Ω

𝑛1/2
,

and

E
((

sup
∥𝑢∥

𝐻𝑚+1 (Ω)⩽1
E∥Π̃(𝑢) (X)∥2

2 −
1
𝑛

𝑛∑︁
𝑖=1

∥Π̃(𝑢) (X𝑖)∥2
2

)2)
⩽
𝑑2𝐶Ω

𝑛
,

where Π̃ is the Sobolev embedding (see Theorem 1.1).

Proof. For any 𝑢 ∈ 𝐻𝑚+1 (Ω,R𝑑2 ), let

𝑍𝑛,𝑢 = E∥Π̃(𝑢) (X𝑖)∥2
2 −

1
𝑛

𝑛∑︁
𝑗=1

∥Π̃(𝑢) (X𝑖)∥2
2 and 𝑍𝑛 = sup

∥𝑢∥
𝐻𝑚+1 (Ω)⩽1

𝑍𝑛,𝑢.
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For any 𝑢, 𝑣 ∈ 𝐻𝑚+1 (Ω,R𝑑2 ) such that ∥𝑢∥𝐻𝑚+1 (Ω) ⩽ 1 and ∥𝑣∥𝐻𝑚+1 (Ω) ⩽ 1, we have���1
𝑛
(∥Π̃(𝑢) (X𝑖)∥2

2 − E∥Π̃(𝑢) (X𝑖)∥2
2) −

1
𝑛
(∥Π̃(𝑣) (X𝑖)∥2

2 − E∥Π̃(𝑣) (X𝑖)∥2
2)

���
⩽

2
𝑛
(∥Π̃(𝑢 − 𝑣) (X𝑖)∥2 + E∥Π̃(𝑢 − 𝑣) (X𝑖)∥2)

⩽
4𝐶Ω

𝑛

√︁
𝑑2∥𝑢 − 𝑣∥𝐻𝑚+1 (Ω) (by applying Theorem 1.1).

Therefore, applying Hoeffding’s, Azuma’s and Dudley’s theorem similarly as in the proof of Theorem
5.2 shows that

E(𝑍𝑛) ⩽ 24𝐶Ω𝑑
1/2
2 𝑛−1

∫ ∞

0
[log𝑁 (𝐵(1, ∥ · ∥𝐻𝑚+1 (Ω) ), ∥ · ∥𝐻𝑚+1 (Ω) , 𝑟)]1/2𝑑𝑟.

Lemma 2.13 shows that there exists a constant 𝐶′
Ω

, depending only on Ω, such that E(𝑍𝑛) ⩽
𝐶′
Ω
𝑑

1/2
2 𝑛−1/2. Applying McDiarmid’s inequality as in the proof of Theorem 5.2 shows that Var(𝑍𝑛) ⩽

16𝐶2
Ω
𝑑2𝑛

−1. Finally, since E(𝑍2
𝑛) ⩽ Var(𝑍𝑛) + E(𝑍𝑛)2, we deduce that

E(𝑍2
𝑛) ⩽

𝑑2

𝑛

(
(𝐶′

Ω)
2 + 16𝐶2

Ω

)
.

Lemma 2.15 (Empirical process). Let X1, . . . ,X𝑛, Y1, . . . , Y𝑛 be independent random variables, such
that X𝑖 is distributed along `X and Y𝑖 is distributed along `Y , such that E(Y) = 0. Then there exists a
constant 𝐶Ω > 0, depending only on Ω, such that

E
((

sup
∥𝑢∥

𝐻𝑚+1 (Ω)⩽1

1
𝑛

𝑛∑︁
𝑗=1

⟨Π̃(𝑢) (X 𝑗 ) − E(Π̃(𝑢) (X)), Y 𝑗⟩
)2)

⩽
𝑑2E∥Y∥2

2
𝑛

𝐶Ω,

where Π̃ is the Sobolev embedding.

Proof. First note, since 𝐻𝑚+1 (Ω,R𝑑2 ) is separable and since, for all 𝑢 ∈ 𝐻𝑚+1 (Ω,R𝑑2 ), the func-
tion (x1, . . . ,x𝑛, 𝑒1, . . . , 𝑒𝑛) ↦→ 1

𝑛

∑𝑛
𝑗=1⟨Π̃(𝑢) (x 𝑗 ) − E(Π̃(𝑢) (X)), 𝑒 𝑗⟩ is continuous, that the quantity

𝑍 = sup∥𝑢∥
𝐻𝑚+1 (Ω)⩽1

1
𝑛

∑𝑛
𝑗=1⟨Π̃(𝑢) (X 𝑗 ) − E(Π̃(𝑢) (X)), Y 𝑗⟩ is a random variable. Moreover, |𝑍 | ⩽

2𝐶Ω

√
𝑑2

∑𝑛
𝑗=1 ∥Y 𝑗 ∥2/𝑛, where 𝐶Ω is the constant of Theorem 1.1. Thus, E(𝑍2) <∞.

Define, for any 𝑢 ∈ 𝐻𝑚+1 (Ω,R𝑑2 ),

𝑍𝑛,𝑢 =
1
𝑛

𝑛∑︁
𝑗=1

⟨Π̃(𝑢) (X 𝑗 ) − E(Π̃(𝑢) (X)), Y 𝑗⟩ and 𝑍𝑛 = sup
∥𝑢∥

𝐻𝑚+1 (Ω)⩽1
𝑍𝑛,𝑢.

For any 𝑢, 𝑣 ∈ 𝐻𝑚+1 (Ω,R𝑑2 ), we have���1
𝑛
⟨Π̃(𝑢) (X𝑖) − E(Π̃(𝑢) (X)), Y𝑖⟩ −

1
𝑛
⟨Π̃(𝑣) (X𝑖) − E(Π̃(𝑢) (X)), Y𝑖⟩

���
=

1
𝑛
|⟨Π̃(𝑢 − 𝑣) (X𝑖) − E(Π̃(𝑢 − 𝑣) (X)), Y𝑖⟩|
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⩽
2𝐶Ω

𝑛

√︁
𝑑2∥𝑢 − 𝑣∥𝐻𝑚+1 (Ω) ∥Y𝑖 ∥2 (by applying Theorem 1.1).

Using that Y is independent of X, so that the conditional expectation of 𝑍𝑛 is indeed a real expectation
with Y1, . . . , Y𝑛 fixed, we can apply Hoeffding’s, Azuma’s and Dudley’s theorem similarly as in the
proof of Theorem 5.2 to show that

E(𝑍𝑛 | Y1, . . . , Y𝑛) ⩽
24𝐶Ω

𝑛

√︁
𝑑2

( 𝑛∑︁
𝑖=1

∥Y𝑖 ∥2
2

)1/2

×
∫ ∞

0
[log𝑁 (𝐵(1, ∥ · ∥𝐻𝑚+1 (Ω) ), ∥ · ∥𝐻𝑚+1 (Ω) , 𝑟)]1/2𝑑𝑟.

Hence, according to Lemma 2.13, there exists a constant 𝐶′
Ω
> 0, depending only on Ω, such that

E(𝑍𝑛 | Y1, . . . , Y𝑛) ⩽𝐶′
Ω
𝑛−1√𝑑2

(∑𝑛
𝑖=1 ∥Y𝑖 ∥2

2

)1/2
. We deduce that

E(𝑍𝑛) ⩽𝐶′
Ω

√︁
𝑑2

(E∥Y∥2
2)

1/2

𝑛1/2
,

and

Var(E(𝑍𝑛 | Y1, . . . , Y𝑛)) ⩽ E(E(𝑍𝑛 | Y1, . . . , Y𝑛)2) ⩽ (𝐶′
Ω)

2𝑑2
E∥Y∥2

2
𝑛

.

Applying McDiarmid’s inequality as in the proof of Theorem 5.2 shows that

Var(𝑍𝑛 | Y1, . . . , Y𝑛) ⩽ 16𝐶2
Ω𝑑2

1
𝑛2

𝑛∑︁
𝑖=1

∥Y𝑖 ∥2
2.

The law of the total variance ensures that

Var(𝑍𝑛) = Var(E(𝑍𝑛 | Y1, . . . , Y𝑛)) + E(Var(𝑍𝑛 | Y1, . . . , Y𝑛))

⩽
𝑑2E∥Y∥2

2
𝑛

(
(𝐶′

Ω)
2 + 16𝐶2

Ω

)
.

Since E(𝑍2
𝑛) ⩽ Var(𝑍𝑛) + E(𝑍𝑛)2, we deduce that

E(𝑍2
𝑛) ⩽

𝑑2E∥Y∥2
2

𝑛

(
2(𝐶′

Ω)
2 + 16𝐶2

Ω

)
.

3. Proofs of Proposition 2.3

De Ryck, Lanthaler and Mishra (2021, Theorem 5.1) ensures that NN2 is dense in (𝐶∞ ( [0,1]𝑑1 ,R), ∥ ·
∥
𝐶𝐾 ( [0,1]𝑑1 ) ) for all 𝑑1 ⩾ 1 and 𝐾 ∈ N. Note that the authors state the result for Hölder spaces
(𝑊𝐾+1,∞ ( [0,1]𝑑1 ), ∥ · ∥

𝑊𝐾,∞ ( ]0,1[𝑑1 ) ) (see Evans, 2010, for a definition). Clearly, 𝐶∞ ( [0,1]𝑑1 ) ⊆
𝑊𝐾+1,∞ ( [0,1]𝑑1 ) and the norms ∥ · ∥𝐶𝐾 and ∥ · ∥𝑊𝐾,∞ coincide on 𝐶∞ ( [0,1]𝑑1 ).
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Our proof generalizes this result to any bounded Lipschitz domain Ω, to any number 𝐻 ⩾ 2 of layers,
and to any output dimension 𝑑2. We stress that for any 𝑈 ⊆ R𝑑1 , the set NN2 ⊆ 𝐶∞ (R𝑑1 ,R𝑑2 ) can of
course be seen as a subset of 𝐶∞ (𝑈,R𝑑2 ).
Generalization to any bounded Lipschitz domain Ω In this and the next paragraph, 𝑑2 = 1. Our
objective is to prove that NN2 is dense in (𝐶∞ (Ω̄,R), ∥ · ∥𝐶𝐾 (Ω) ). Let 𝑓 ∈ 𝐶∞ (Ω̄,R). Since Ω is
bounded, there exists an affine transformation 𝜏 : 𝑥 ↦→ 𝐴𝜏𝑥 + 𝑏𝜏 , with 𝐴𝜏 ∈ R★ and 𝑏𝜏 ∈ R𝑑1 , such that
𝜏(Ω) ⊆ [0,1]𝑑 . Set 𝑓 = 𝑓 (𝜏−1). According to the extension theorem for Lipschitz domains of Stein
(1970, Theorem 5 Chapter VI.3.3), the function 𝑓 can be extended to a function 𝑓 ∈𝑊𝐾,∞ ( [0,1]𝑑1 )
such that 𝑓 |𝜏 (Ω) = 𝑓 |𝜏 (Ω) . Fix 𝜖 > 0. According to De Ryck, Lanthaler and Mishra (2021, Theorem
5.1), there exists 𝑢\ ∈ NN2 such that ∥𝑢\ − 𝑓 ∥𝑊𝐾,∞ ( [0,1]𝑑 ) ⩽ 𝜖 . Since 𝑓 is an extension of 𝑓 , 𝑓 |𝜏 (Ω) ∈
𝐶∞ (Ω̄) and one also has ∥𝑢\ − 𝑓 ∥𝐶𝐾 (𝜏 (Ω) ) ⩽ 𝜖 .

Now, let 𝑚 ∈ N and let 𝛼 be a multi-index such that
∑𝑑1
𝑖=1 𝛼𝑖 = 𝑚. Then, clearly, 𝜕𝛼 ( 𝑓 (𝜏)) = 𝐴𝑚𝜏 ×

𝜕𝛼 𝑓 (𝜏). Therefore, ∥𝑢\ (𝜏) − 𝑓 (𝜏)∥𝐶𝐾 (Ω) ⩽ 𝜖 × max(1, 𝐴𝐾𝜏 ), that is

∥𝑢\ (𝜏) − 𝑓 ∥𝐶𝐾 (Ω) ⩽ 𝜖 × max(1, 𝐴𝐾𝜏 ).

But, since 𝜏 is affine, 𝑢\ (𝜏) belongs to NN2. This is the desires result. Generalization to any number
𝐻 ⩾ 2 of layers We show in this paragraph that NN𝐻 is dense in (𝐶∞ (Ω̄,R), ∥ · ∥𝐶𝐾 (Ω) ) for all 𝐻 ⩾ 2.
The case 𝐻 = 2 has been treated above and it is therefore assumed that 𝐻 ⩾ 3.

Let 𝑓 ∈ 𝐶∞ (Ω̄,R). Introduce the function 𝑣 defined by

𝑣(𝑥1, . . . , 𝑥𝑑1 ) = (tanh◦(𝐻−2) (𝑥1), . . . , tanh◦(𝐻−2) (𝑥𝑑1 )),

where tanh◦(𝐻−2) stands for the tanh function composed (𝐻 − 2) times with itself. For all 𝑢\ ∈ NN2,
𝑢\ (𝑣) ∈ NN𝐻 is a neural network such that the first weights matrices (𝑊ℓ )1⩽ℓ⩽𝐻−2 are identity ma-
trices and the first offsets (𝑏ℓ )1⩽ℓ⩽𝐻−2 are equal to zero. Since tanh is an increasing 𝐶∞ function, 𝑣
is a 𝐶∞ diffeomorphism. Therefore, 𝑣(Ω) is a bounded Lipschitz domain and 𝑓 (𝑣−1) ∈ 𝐶∞ (𝑣(Ω),R).
Lemma 2.2 shows that 𝑓 (𝑣−1) ∈ 𝐶∞ (�̄�(Ω),R), where �̄�(Ω) is the closure of 𝑣(Ω). According to the
previous paragraph, there exists a sequence (\𝑚)𝑚∈N of parameters such that 𝑢\𝑚 ∈ NN2 and

lim
𝑚→∞

∥𝑢\𝑚 − 𝑓 (𝑣−1)∥𝐶𝐾 (𝑣 (Ω) ) = 0.

Thus, 𝑢\𝑚 approximates 𝑓 (𝑣−1), and we would like 𝑢\𝑚 (𝑣) to approximate 𝑓 . From Lemma 2.2,

∥𝑢\𝑚 (𝑣) − 𝑓 ∥𝐶𝐾 (Ω) ⩽ 𝐵𝐾 × ∥𝑢\𝑚 − 𝑓 ◦ 𝑣−1∥𝐶𝐾 (Ω) × (1 + ∥ tanh◦𝐻−2 ∥𝐶𝐾 (R) )𝐾 ,

while Corollary 2.5 asserts that ∥ tanh◦𝐻−2 ∥𝐶𝐾 (R) <∞. Therefore, we deduce that lim𝑚→∞ ∥𝑢\𝑚 (𝑣) −
𝑓 ∥𝐶𝐾 (Ω) = 0 with 𝑢\𝑚 (𝑣) ∈ NN𝐻 , which proves the lemma for 𝐻 ⩾ 2.
Generalization to all output dimension 𝑑2 We have shown so far that for all 𝐻 ⩾ 2, NN𝐻 is dense in
(𝐶∞ (Ω̄,R), ∥ · ∥𝐶𝐾 (Ω) ). It remains to establish that NN𝐻 is dense in (𝐶∞ (Ω̄,R𝑑2 ), ∥ · ∥𝐶𝐾 (Ω) ) for any
output dimension 𝑑2.

Let 𝑓 = ( 𝑓1, . . . , 𝑓𝑑2 ) ∈ 𝐶∞ (Ω,R𝑑2 ). For all 1 ⩽ 𝑖 ⩽ 𝑑2, let (\ (𝑖)𝑚 )𝑚∈N ∈ (NN𝐻 )N be a sequence
of neural networks such that lim𝑚→∞ ∥𝑢

\
(𝑖)
𝑚

− 𝑓𝑖 ∥𝐶𝐾 (Ω) = 0. Denote by 𝑢\𝑚 = (𝑢
\
(1)
𝑚
, . . . , 𝑢

\
(𝑑2 )
𝑚

) the

stacking of these sequences. For all 𝑚 ∈ N, 𝑢\𝑚 ∈ NN𝐻 and lim𝑚→∞ ∥𝑢\𝑚 − 𝑓 ∥𝐶𝐾 (Ω) = 0. Therefore,
NN𝐻 is dense in (𝐶∞ (Ω̄,R), ∥ · ∥𝐶𝐾 (Ω) ).
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4. Proofs of Section 3

4.1. Proof of Proposition 3.1

Consider 𝑢 \̂ (𝑝,𝑛𝑟 ,𝐷) ∈ NN𝐻 (𝐷), the neural network defined by

𝑢 \̂ (𝑝,𝑛𝑟 ,𝐷) (x) =𝑌(1) +
𝑛−1∑︁
𝑖=1

𝑌(𝑖+1) −𝑌(𝑖)
2

[
tanh◦𝐻𝑝

(
x − X(𝑖) −

𝛿(𝑛, 𝑛𝑟 )
2

)
+ 1

]
,

where 𝛿(𝑛, 𝑛𝑟 ) is defined in (6) and where the observations have been reordered according to increasing
values of the X(𝑖) . According to Lemma 2.6, one has, for all 1 ⩽ 𝑖 ⩽ 𝑛, lim𝑝→∞ 𝑢 \̂ (𝑝,𝑛𝑟 ,𝐷) (X𝑖) =
𝑌𝑖 . Moreover, for all order 𝐾 ⩾ 1 of differentiation and all 1 ⩽ 𝑗 ⩽ 𝑛𝑟 , lim𝑝→∞ 𝑢

(𝐾 )
\̂ (𝑝,𝑛𝑟 ,𝐷) (X

(𝑟 )
𝑗

) =
0. Recalling that F (𝑢,x) = 𝑚𝑢′′ (x) + 𝛾𝑢′ (x), we have ∥F (𝑢,x)∥2 ⩽ 𝑚∥𝑢′′ (x)∥2 + 𝛾∥𝑢′ (x)∥2. We
therefore conclude that lim𝑝→∞ 𝑅𝑛,𝑛𝑟 (𝑢 \̂ (𝑝,𝑛𝑟 ,𝐷) ) = 0, which is the first statement of the proposition.

Next, using the Cauchy-Schwarz inequality, we have that, for any function 𝑓 ∈ 𝐶2 (R) and any Y > 0,

2Y
∫ Y

−Y
(𝑚 𝑓 ′′ + 𝛾 𝑓 ′)2 ⩾

( ∫ Y

−Y
𝑚 𝑓 ′′ + 𝛾 𝑓 ′

)2
=

[
𝑚( 𝑓 ′ (Y) − 𝑓 ′ (−Y)) + 𝛾( 𝑓 (Y) − 𝑓 (−Y))

]2
.

Thus,

R𝑛 (𝑢 \̂ (𝑝,𝑛𝑟 ,𝐷) )

⩾
1
𝑇

∫
[0,𝑇 ]

F (𝑢 \̂ (𝑝,𝑛𝑟 ,𝐷) ,x)
2𝑑x

⩾
1
𝑇

𝑛∑︁
𝑖=1

∫ X(𝑖)+𝛿 (𝑛,𝑛𝑟 )/2+Y

X(𝑖)+𝛿 (𝑛,𝑛𝑟 )/2−Y
F (𝑢 \̂ (𝑝,𝑛𝑟 ,𝐷) ,x)

2𝑑x

⩾
1
𝑇

𝑛∑︁
𝑖=1

1
2Y

[
𝑚(𝑢′

\̂ (𝑝,𝑛𝑟 ,𝐷) (X(𝑖) + 𝛿(𝑛, 𝑛𝑟 )/2 + Y) − 𝑢′
\̂ (𝑝,𝑛𝑟 ,𝐷) (X(𝑖) + 𝛿(𝑛, 𝑛𝑟 )/2 − Y))

+ 𝛾(𝑢 \̂ (𝑝,𝑛𝑟 ,𝐷) (X(𝑖) + 𝛿(𝑛, 𝑛𝑟 )/2 + Y) − 𝑢 \̂ (𝑝,𝑛𝑟 ,𝐷) (X(𝑖) + 𝛿(𝑛, 𝑛𝑟 )/2 − Y))
]2
.

Observe that, as soon as 𝛿(𝑛, 𝑛𝑟 )/4 > Y, one has, for all 1 ⩽ 𝑖 ⩽ 𝑛 − 1,

lim
𝑝→∞

𝑢 \̂ (𝑝,𝑛𝑟 ,𝐷) (X(𝑖) + 𝛿(𝑛, 𝑛𝑟 )/2 + Y) − 𝑢 \̂ (𝑝,𝑛𝑟 ,𝐷) (X(𝑖) + 𝛿(𝑛, 𝑛𝑟 )/2 − Y) =𝑌(𝑖+1) −𝑌(𝑖) ,

and, for all 1 ⩽ 𝑖 ⩽ 𝑛 − 1,

lim
𝑝→∞

𝑢′
\̂ (𝑝,𝑛𝑟 ,𝐷) (X(𝑖) + 𝛿(𝑛, 𝑛𝑟 )/2 + Y) − 𝑢′

\̂ (𝑝,𝑛𝑟 ,𝐷) (X(𝑖) + 𝛿(𝑛, 𝑛𝑟 )/2 − Y) = 0.

Hence, for any 0 < Y < 𝛿(𝑛, 𝑛𝑟 )/4,

𝑛∑︁
𝑖=1

1
2Y

[
𝑚(𝑢′

\̂ (𝑝,𝑛𝑟 ,𝐷) (X(𝑖) + 𝛿(𝑛, 𝑛𝑟 )/2 − Y) − 𝑢′
\̂ (𝑝,𝑛𝑟 ,𝐷) (X(𝑖) + 𝛿(𝑛, 𝑛𝑟 )/2 − Y))

+ 𝛾(𝑢 \̂ (𝑝,𝑛𝑟 ,𝐷) (X(𝑖) + 𝛿(𝑛, 𝑛𝑟 )/2 − Y) − 𝑢 \̂ (𝑝,𝑛𝑟 ,𝐷) (X(𝑖) + 𝛿(𝑛, 𝑛𝑟 )/2 − Y))
]2
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−−−−−→
𝑝→∞

𝛾 ×
∑𝑛−1
𝑖=1 (𝑌(𝑖+1) −𝑌(𝑖) )2

2Y
.

We have just proved that, for any 0 < Y < 𝛿(𝑛, 𝑛𝑟 )/4, there exists 𝑃 ∈ N such that, for all 𝑝 ⩾ 𝑃,

R𝑛 (𝑢 \̂ (𝑝,𝑛𝑟 ,𝐷) ) ⩾ 𝛾 ×
∑𝑛−1
𝑖=1 (𝑌(𝑖+1) −𝑌(𝑖) )2

2Y𝑇
.

We conclude as desired that lim𝑝→∞R𝑛 (𝑢 \̂ (𝑝,𝑛𝑟 ,𝐷) ) =∞, since we suppose that there exists two ob-
servations 𝑌(𝑖) ≠𝑌( 𝑗 ) .

4.2. Proof of Proposition 3.2

Let 𝑢 \̂ (𝑝,𝑛𝑒 ,𝑛𝑟 ,𝐷) ∈ NN𝐻 (4) be the neural network defined by

𝑢 \̂ (𝑝,𝑛𝑒 ,𝑛𝑟 ,𝐷) (𝑥, 𝑡) = tanh◦𝐻 (𝑥 + 0.5 + 𝑝𝑡) − tanh◦𝐻 (𝑥 − 0.5 + 𝑝𝑡)

+ tanh◦𝐻 (0.5 + 𝑝𝑡) − tanh◦𝐻 (1.5 + 𝑝𝑡).

Clearly, for any 𝑝 ∈ N, 𝑢 \̂ (𝑝,𝑛𝑒 ,𝑛𝑟 ,𝐷) satisfies the initial condition

𝑢 \̂ (𝑝,𝑛𝑒 ,𝑛𝑟 ,𝐷) (𝑥, 0) = tanh◦𝐻 (𝑥 + 0.5) − tanh◦𝐻 (𝑥 − 0.5) + tanh◦𝐻 (0.5) − tanh◦𝐻 (1.5).

We are going to prove in the next paragraphs that the derivatives of 𝑢 \̂ (𝑝,𝑛𝑒 ,𝑛𝑟 ,𝐷) vanish as
𝑝 → ∞, starting with the temporal derivative and continuing with the spatial ones. According to
Lemma 2.4, for all Y > 0 and all 𝑥 ∈ [−1,1], lim𝑝→∞ ∥𝑢 \̂ (𝑝,𝑛𝑒 ,𝑛𝑟 ,𝐷) (𝑥, ·)∥𝐶2 ( [Y,𝑇 ] ) = 0. There-

fore, for any X(𝑒)
𝑖

∈ {−1,1} × [0,𝑇], lim𝑝→∞ ∥𝑢 \̂ (𝑝,𝑛𝑒 ,𝑛𝑟 ,𝐷) (X
(𝑒)
𝑖

)∥2 = 0 and, for any X(𝑟 )
𝑗

∈ Ω,

lim𝑝→∞ ∥𝜕𝑡𝑢 \̂ (𝑝,𝑛𝑒 ,𝑛𝑟 ,𝐷) (X
(𝑟 )
𝑗

)∥2 = 0 (since X(𝑟 )
𝑗

∉ 𝜕Ω).
Letting 𝑣(𝑥, 𝑡) = tanh◦𝐻 (𝑥 + 0.5 + 𝑝𝑡) − tanh◦𝐻 (𝑥 − 0.5 + 𝑝𝑡), it comes that 𝜕2

𝑥,𝑥𝑢 \̂ (𝑝,𝑛𝑒 ,𝑛𝑟 ,𝐷) =

𝑝−2𝜕2
𝑡 ,𝑡𝑣. Thus, invoking again Lemma 2.4, for all Y > 0, and all 𝑥 ∈ [−1,1],

lim
𝑝→∞

𝑝−2∥𝜕2
𝑡 ,𝑡𝑣(𝑥, ·)∥∞, [Y,𝑇 ] = lim

𝑝→∞
∥𝜕2
𝑥,𝑥𝑢 \̂ (𝑝,𝑛𝑒 ,𝑛𝑟 ,𝐷) (𝑥, ·)∥∞, [Y,𝑇 ] = 0.

Therefore, for any X(𝑟 )
𝑗

∈ Ω, one has lim𝑝→∞ ∥𝜕2
𝑥,𝑥𝑢 \̂ (𝑝,𝑛𝑒 ,𝑛𝑟 ,𝐷) (X

(𝑟 )
𝑗

)∥2 = 0 and, in turn, one has

lim𝑝→∞ ∥F (𝑢 \̂ (𝑝,𝑛𝑒 ,𝑛𝑟 ,𝐷) ,X
(𝑟 )
𝑗

)∥2 = 0. Thus, for all 𝑛𝑒, 𝑛𝑟 ⩾ 0, lim𝑝→∞ 𝑅𝑛𝑒 ,𝑛𝑟 (𝑢 \̂ (𝑝,𝑛𝑒 ,𝑛𝑟 ,𝐷) ) = 0.
Next, observe that R (𝑢 \̂ (𝑝,𝑛𝑒 ,𝑛𝑟 ,𝐷) ) ⩾

∫
[−1,1]×[0,𝑇 ] (𝜕𝑡𝑢 \̂ (𝑝,𝑛𝑒 ,𝑛𝑟 ,𝐷) − 𝜕2

𝑥,𝑥𝑢 \̂ (𝑝,𝑛𝑒 ,𝑛𝑟 ,𝐷) )2. By the
Cauchy-Schwarz inequality, for any 𝛿 > 0,∫

[−1,1]×[0,𝑇 ]
(𝜕𝑡𝑢 \̂ (𝑝,𝑛𝑒 ,𝑛𝑟 ,𝐷) − 𝜕

2
𝑥,𝑥𝑢 \̂ (𝑝,𝑛𝑒 ,𝑛𝑟 ,𝐷) )

2

⩾ 𝛿−1
∫ 1

𝑥=−1

( ∫ 𝛿

𝑡=0
𝜕𝑡𝑢 \̂ (𝑝,𝑛𝑒 ,𝑛𝑟 ,𝐷) (𝑥, 𝑡) − 𝜕

2
𝑥,𝑥𝑢 \̂ (𝑝,𝑛𝑒 ,𝑛𝑟 ,𝐷) (𝑥, 𝑡)

)2
𝑑𝑥

⩾ 𝛿−1
∫ 1

𝑥=−1

(
𝑢 \̂ (𝑝,𝑛𝑒 ,𝑛𝑟 ,𝐷) (𝑥, 𝛿) − 𝑢 \̂ (𝑝,𝑛𝑒 ,𝑛𝑟 ,𝐷) (𝑥, 0) −

∫ 𝛿

𝑡=0
𝜕2
𝑥,𝑥𝑢 \̂ (𝑝,𝑛𝑒 ,𝑛𝑟 ,𝐷) (𝑥, 𝑡)𝑑𝑡

)2
𝑑𝑥.
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Invoking again Lemma 2.4, we know that lim𝑝→∞ ∥𝑢 \̂ (𝑝,𝑛𝑒 ,𝑛𝑟 ,𝐷) (·, 𝛿)∥ [−1,1],∞ = 0. Moreover,
for all 𝑡 > 0 and all −1 ⩽ 𝑥 ⩽ 1, lim𝑝→∞ 𝜕2

𝑥,𝑥𝑢 \̂ (𝑝,𝑛𝑒 ,𝑛𝑟 ,𝐷) (𝑥, 𝑡) = 0. Besides, by Corollary 2.5,
∥𝜕2
𝑥,𝑥𝑢 \̂ (𝑝,𝑛𝑒 ,𝑛𝑟 ,𝐷) ∥∞, [0,1]×[−1,1] ⩽ 2∥ tanh◦𝐻 ∥𝐶2 (R) <∞. Thus, by the dominated convergence the-

orem, for any 𝛿 > 0 and all 𝑝 large enough,

R (𝑢 \̂ (𝑝,𝑛𝑒 ,𝑛𝑟 ,𝐷) ) ⩾
1

2𝛿

∫ 1

𝑥=−1

(
𝑢 \̂ (𝑝,𝑛𝑒 ,𝑛𝑟 ,𝐷) (𝑥, 0)

)2
𝑑𝑥.

Noticing that 𝑢 \̂ (𝑝,𝑛𝑒 ,𝑛𝑟 ,𝐷) (𝑥,0) corresponds to the initial condition, that does not depends on 𝑝, we
conclude that lim𝑝→∞ R (𝑢 \̂ (𝑝,𝑛𝑒 ,𝑛𝑟 ,𝐷) ) =∞.

5. Proofs of Section 4

5.1. Proof of Proposition 4.2

Recall that each neural network 𝑢\ ∈ NN𝐻 (𝐷) is written as 𝑢\ = A𝐻+1 ◦ (tanh◦A𝐻 ) ◦ · · · ◦
(tanh◦A1), where each A𝑘 : R𝐿𝑘−1 → R𝐿𝑘 is an affine function of the form A𝑘 (𝑥) = 𝑊𝑘𝑥 + 𝑏𝑘 ,
with 𝑊𝑘 a (𝐿𝑘−1 × 𝐿𝑘)-matrix, 𝑏𝑘 ∈ R𝐿𝑘 a vector, 𝐿0 = 𝑑1, 𝐿1 = · · · = 𝐿𝐻 = 𝐷, 𝐿𝐻+1 = 𝑑2,
and \ = (𝑊1, 𝑏1, . . . ,𝑊𝐻+1, 𝑏𝐻+1) ∈ R

∑𝐻
𝑖=0 (𝐿𝑖+1)×𝐿𝑖 . For each 𝑖 ∈ {1, . . . , 𝑑1}, we let 𝜋𝑖 be the

projection operator on the 𝑖th coordinate, defined by 𝜋𝑖 (𝑥1, . . . , 𝑥𝑑1 ) = 𝑥𝑖 . Similarly, for a matrix
𝑊 = (𝑊𝑖, 𝑗 )1⩽𝑖⩽𝑑2 ,1⩽ 𝑗⩽𝑑1 , we let 𝜋𝑖, 𝑗 (𝑊) =𝑊𝑖, 𝑗 and ∥𝑊 ∥∞ = max1⩽𝑖⩽𝑑2 ,1⩽ 𝑗⩽𝑑1 |𝑊𝑖, 𝑗 |. Note that
∥𝑊𝑘x∥∞ ⩽ 𝐿𝑘−1∥𝑊𝑘 ∥∞∥x∥∞. Clearly, max1⩽𝑘⩽𝐻+1 (∥𝑊𝑘 ∥∞, ∥𝑏𝑘 ∥∞) ⩽ ∥\∥∞ ⩽ ∥\∥2. Finally, we re-
cursively define the constants 𝐶𝐾,𝐻 for all 𝐾 ⩾ 0 and all 𝐻 ⩾ 1 by 𝐶0,𝐻 = 1, 𝐶𝐾,1 = 2𝐾−1 × (𝐾 + 2)!,
and

𝐶𝐾,𝐻+1 = 𝐵𝐾2𝐾−1 (𝐾 + 2)! max
𝑖1 ,...,𝑖𝐾 ∈N

𝑖1+2𝑖2+···+𝐾𝑖𝐾=𝐾

∏
1⩽ℓ⩽𝐾

𝐶ℓ,𝐻 , (7)

where 𝐵𝐾 is the 𝐾th Bell number, defined in (1).
We prove the proposition by induction on 𝐻, starting with the case 𝐻 = 1. Clearly, for 𝐻 = 1, one has

∥𝑢\ ∥∞ ⩽ ∥𝑊2 × tanh◦A1∥∞ + ∥𝑏2∥∞ ⩽ ∥𝑊2∥∞𝐷 + ∥𝑏2∥∞ ⩽ (𝐷 + 1)∥\∥2. (8)

Next, for any multi-index 𝛼 = (𝛼1, . . . , 𝛼𝑑1 ) such that |𝛼 | ⩾ 1,

𝜕𝛼𝑢\ (x) =𝑊2
©«
𝜋1,1 (𝑊1)𝛼1 × · · · × 𝜋1,𝑑1 (𝑊1)𝛼𝑑1 × tanh( |𝛼 | ) (𝜋1 (A1 (x)))

...

𝜋1,𝑑1 (𝑊1)𝛼1 × · · · × 𝜋𝑑1 ,𝑑1 (𝑊1)𝛼𝑑1 × tanh( |𝛼 | ) (𝜋𝑑1 (A1 (x)))

ª®®¬ . (9)

Upon noting that |𝜋1,𝑑1 (𝑊1) | ⩽ ∥\∥∞, we see that

∥𝜕𝛼𝑢\ ∥∞ ⩽ 𝐷∥𝑊2∥∞∥\∥ |𝛼 |2 ∥ tanh( |𝛼 | ) ∥∞ ⩽ 𝐷∥\∥1+|𝛼 |
2 ∥ tanh( |𝛼 | ) ∥∞. (10)

Therefore, combining (8) and (10), for any 𝐾 ⩾ 1, ∥𝑢\ ∥𝐶𝐾 (R𝑑1 ) ⩽ (𝐷 + 1) max𝑘≤𝐾 ∥ tanh(𝑘 ) ∥∞ (1 +
∥\∥2)𝐾 ∥\∥2. Applying Lemma 2.3, we conclude that, for all 𝑢 ∈ NN1 (𝐷) and for all 𝐾 ⩾ 0,

∥𝑢\ ∥𝐶𝐾 (R𝑑1 ) ⩽𝐶𝐾,1 (𝐷 + 1) (1 + ∥\∥2)𝐾 ∥\∥2.
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Induction Assume that for a given 𝐻 ⩾ 1, one has, for any neural network 𝑢\ ∈ NN𝐻 (𝐷) and any
𝐾 ⩾ 0,

∥𝑢\ ∥𝐶𝐾 (R𝑑1 ) ⩽𝐶𝐾,𝐻 (𝐷 + 1)1+𝐾𝐻 (1 + ∥\∥2)𝐾𝐻 ∥\∥2. (11)

Our objective is to show that for any 𝑢\ ∈ NN𝐻+1 (𝐷) and any 𝐾 ⩾ 0,

∥𝑢\ ∥𝐶𝐾 (R𝑑1 ) ⩽𝐶𝐾,𝐻+1 (𝐷 + 1)1+𝐾 (𝐻+1) (1 + ∥\∥2)𝐾 (𝐻+1) ∥\∥2.

For such a 𝑢\ , we have, by definition, 𝑢\ = A𝐻+2 ◦ tanh◦𝑣 \ , where 𝑣 \ ∈ NN𝐻 (𝐷) (by a slight
abuse of notation, the parameter of 𝑣 \ is in fact \′ = (𝑊1, 𝑏1, . . . ,𝑊𝐻+1, 𝑏𝐻+1) while \ = (𝑊1, 𝑏1, . . . ,

𝑊𝐻+2, 𝑏𝐻+2), so ∥\′∥2 ⩽ ∥\∥2 and ∥\′∥∞ ⩽ ∥\∥∞). Consequently,

∥𝑢\ ∥∞ ⩽ ∥𝑊𝐻+2∥∞𝐷 + ∥𝑏𝐻+2∥∞ ⩽ (𝐷 + 1)∥\∥2. (12)

In addition, for any multi-index 𝛼 = (𝛼1, . . . , 𝛼𝑑1 ) such that |𝛼 | ⩾ 1,

𝜕𝛼𝑢\ (x) =𝑊𝐻+2
©«
𝜕𝛼 (tanh◦𝜋1 ◦ 𝑣 \ (x))

...

𝜕𝛼 (tanh◦𝜋𝐷 ◦ 𝑣 \ (x))

ª®®¬ .
Thus, ∥𝜕𝛼𝑢\ ∥∞ ⩽ 𝐷∥𝑊𝐻+2∥∞ max 𝑗⩽𝐷 ∥ tanh◦𝜋 𝑗 ◦ 𝑣 \ ∥𝐶𝐾 (R𝑑1 ) . Invoking identity (2), one has

∥ tanh◦𝜋 𝑗 ◦ 𝑣∥𝐶𝐾 (R𝑑1 ) ⩽ 𝐵𝐾 ∥ tanh ∥𝐶𝐾 (R) max
𝑖1+2𝑖2+···+𝐾𝑖𝐾=𝐾

∏
1⩽ℓ⩽𝐾

∥𝜋 𝑗 ◦ 𝑣 \ ∥𝑖ℓ
𝐶ℓ (R𝑑1 )

.

Observing that 𝜋 𝑗 ◦ 𝑣 \ belongs to NN𝐻 (𝐷), Lemma 2.3 and inequality (11) show that

∥ tanh◦𝜋 𝑗 ◦ 𝑣 \ ∥𝐶ℓ (R𝑑1 ) ⩽𝐶ℓ,𝐻+1 (𝐷 + 1)1+ℓ𝐻 (1 + ∥\∥2)1+ℓ𝐻 ∥\∥2.

Therefore, ∥𝜕𝛼𝑢\ ∥∞ ⩽𝐶𝐾,𝐻+1 (𝐷 + 1)1+𝐾𝐻 (1 + ∥\∥2)𝐾 (𝐻+1) ∥\∥2, which concludes the induction.
To complete the proof, it remains to show that the exponent of ∥\∥2 is optimal. To this aim,

we let 𝑑1 = 𝑑2 = 1, 𝐷 = 1. For each 𝐻 ⩾ 1, we consider the sequence (\ (𝐻 )
𝑚 )𝑚∈N defined by

\
(𝐻 )
𝑚 = (𝑊 (𝑚)

1 , 𝑏
(𝑚)
1 , . . . ,𝑊

(𝑚)
𝐻+1, 𝑏

(𝑚)
𝐻+1), with 𝑊𝑚

𝑖
= 𝑚 and 𝑏𝑚

𝑖
= 0. Then, for all \ = (𝑊1, 𝑏1, . . . ,

𝑊𝐻+1, 𝑏𝐻+1) ∈ Θ𝐻,1, the associated neural network’s derivatives satisfy

∥𝑢 (𝑘 )
\

∥∞ = ∥(tanh◦𝐻 ) (𝐾 ) ∥∞ |𝑊𝐻+1 |
𝐻∏
𝑖=1

|𝑊𝑖 |𝐾 .

Next, since ∥\ (𝐻 )
𝑚 ∥2 =𝑚

√
𝐻 + 1, we have

∥𝑢
\
(𝐻)
𝑚

∥
𝐶𝐾 (R𝑑1 ) ⩾

𝑢 (𝐾 )
\
(𝐻)
𝑚


∞ ⩾

(tanh◦𝐻 ) (𝐾 )
∞𝑚

1+𝐻𝐾 ⩾ �̄� (𝐻,𝐾)∥\ (𝐻 )
𝑚 ∥1+𝐻𝐾

2 ,

where �̄� (𝐻,𝐾) = (𝐻 + 1)−(1+𝐻𝐾 )/2∥(tanh◦𝐻 ) (𝐾 ) ∥∞. Since lim𝑚→∞ ∥\ (𝐻 )
𝑚 ∥2 =∞, we conclude that

the bound of inequality (11) is tight.
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5.2. Lipschitz dependence of the Hölder norm in the NN parameters

Proposition 5.1 (Lipschitz dependence of the Hölder norm in the NN parameters). Consider the
class NN𝐻 (𝐷) = {𝑢\ , \ ∈ Θ𝐻,𝐷}. Let 𝐾 ∈ N. Then there exists a constant �̃�𝐾,𝐻 > 0, depending only
on 𝐾 and 𝐻, such that, for all \, \′ ∈ Θ𝐻,𝐷 ,

∥𝑢\ − 𝑢\ ′ ∥𝐶𝐾 (Ω) ⩽ �̃�𝐾,𝐻 (1 + 𝑑1𝑀 (Ω)) (𝐷 + 1)𝐻+𝐾𝐻2 (1 + ∥\∥2)𝐻+𝐾𝐻2 ∥\ − \′∥2,

where 𝑀 (Ω) = supx∈Ω ∥x∥∞.

Proof. We recursively define the constants �̃�𝐾,𝐻 for all 𝐾 ⩾ 0 and all 𝐻 ⩾ 1 by �̃�𝐾,1 = (𝐾 +
2)22𝐾−1 (𝐾 + 2)!(𝐾 + 3)!, and

�̃�𝐾,𝐻+1 =𝐶𝐾,𝐻+1 [1 + (𝐾 + 1)𝐵𝐾22𝐾−1 (𝐾 + 3)!(𝐾 + 2)!�̃�𝐾,𝐻 ] .

Recall that 𝜋𝑖 is the projection operator on the 𝑖th coordinate, defined by 𝜋𝑖 (𝑥1, . . . , 𝑥𝑑1 ) = 𝑥𝑖 . Before
embarking on the proof, observe that by identity (2), we have, for all 𝑢1, 𝑢2 ∈ 𝐶𝐾 (Ω,R𝐷), for all
1 ⩽ 𝑖 ⩽ 𝐷,

𝜕𝛼 (tanh◦𝜋𝑖 ◦ 𝑢1 − tanh◦𝜋𝑖 ◦ 𝑢2) =
∑︁

𝑃∈Π (𝐾 )
[tanh( |𝑃 | ) ◦𝜋𝑖 ◦ 𝑢1]

∏
𝑆∈𝑃

𝜕𝛼(𝑆) (𝜋𝑖 ◦ 𝑢1)

− [tanh( |𝑃 | ) ◦𝜋𝑖 ◦ 𝑢2]
∏
𝑆∈𝑃

𝜕𝛼(𝑆) (𝜋𝑖 ◦ 𝑢2).

In addition, for two sequences (𝑎𝑖)1⩽𝑖⩽𝑛 and (𝑏𝑖)1⩽𝑖⩽𝑛,

𝑛∏
𝑖=1

𝑎𝑖 −
𝑛∏
𝑖=1

𝑏𝑖 =

𝑛∑︁
𝑖=1

(𝑎𝑖 − 𝑏𝑖)
( 𝑛∏
𝑗=𝑖+1

𝑎 𝑗

) ( 𝑖−1∏
𝑗=1

𝑏 𝑗

)
⩽ 𝑛 max

1⩽𝑖⩽𝑛
{|𝑎𝑖 − 𝑏𝑖 |}

𝑛∏
𝑖=1

max( |𝑎𝑖 |, |𝑏𝑖 |). (13)

Observe that for any 1 ⩽ 𝑖 ⩽ 𝑑2 and 𝑃 ∈ Π(𝐾), the term [tanh( |𝑃 | ) ◦𝜋𝑖 ◦ 𝑢1]
∏
𝑆∈𝑃 𝜕

𝛼(𝑆) (𝜋𝑖 ◦ 𝑢1) −
[tanh( |𝑃 | ) ◦𝜋𝑖 ◦𝑢2]

∏
𝑆∈𝑃 𝜕

𝛼(𝑆) (𝜋𝑖 ◦𝑢2) is the difference of two products of |𝑃 | + 1 terms to which we
can apply (13). So,[tanh( | 𝜋 | ) ◦𝜋𝑖 ◦ 𝑢1]

∏
𝑆∈𝑃

𝜕𝛼(𝑆) (𝜋𝑖 ◦ 𝑢1) − [tanh( | 𝜋 | ) ◦𝜋𝑖 ◦ 𝑢2]
∏
𝑆∈𝜋

𝜕𝛼(𝑆) (𝜋𝑖 ◦ 𝑢2)

∞,Ω

⩽ ( |𝑃 | + 1)
(
∥ tanh( |𝑃 | ) ∥Lip∥𝑢1 − 𝑢2∥∞,Ω + ∥𝑢1 − 𝑢2∥𝐶𝐾 (Ω)

)
× ∥ tanh( |𝑃 | ) ∥∞

∏
𝑆∈𝑃

max(∥𝜕𝛼(𝑆)𝑢1∥∞,Ω, ∥𝜕𝛼(𝑆)𝑢2∥∞,Ω). (14)

Notice finally that ∥ tanh( |𝑃 | ) ∥Lip = ∥ tanh( |𝑃 |+1) ∥∞.
With the preliminary results out of the way, we are now equipped to prove the statement of the

proposition, by induction on 𝐻. Assume first that 𝐻 = 1. We start by examining the case 𝐾 = 0 and then
generalize to all 𝐾 ⩾ 1. Let 𝑢\ =A2 ◦ tanh◦A1 and 𝑢\ ′ =A′

2 ◦ tanh◦A′
1. Notice that

∥A1 −A′
1∥∞,Ω ⩽ ∥𝑏1 − 𝑏′1∥∞ + 𝑑1𝑀 (Ω)∥𝑊1 −𝑊 ′

1∥∞ ⩽ ∥\ − \′∥2 (1 + 𝑑1𝑀 (Ω)),



20

where 𝑀 (Ω) = maxx∈Ω ∥x∥∞. Since ∥ tanh ∥Lip = 1, we deduce that ∥ tanh◦A1 − tanh◦A′
1∥∞ ⩽ ∥\ −

\′∥2 (1 + 𝑑1𝑀 (Ω)). Similarly, ∥A2 −A′
2∥∞,𝐵(1, ∥ · ∥∞ ) ⩽ ∥\ − \′∥2 (1 + 𝐷). Next,

∥𝑢\ − 𝑢\ ′ ∥∞,Ω ⩽ ∥(A2 −A′
2) ◦ tanh◦A1∥∞,Ω + ∥A′

2 ◦ tanh◦A1 −A′
2 ◦ tanh◦A′

1)∥∞,Ω
⩽ ∥A2 −A′

2∥∞,𝐵(1,∥ · ∥∞ ) + 𝐷∥𝑊 ′
2∥∞∥ tanh◦A1 − tanh◦A′

1∥∞,Ω
⩽ ∥\ − \′∥2 (1 + 𝐷 + 𝐷∥\′∥2 (1 + 𝑑1𝑀 (Ω)))

⩽ �̃�0,1 (1 + 𝑑1𝑀 (Ω)) (𝐷 + 1) (1 + max(∥\∥2, ∥\′∥2))∥\ − \′∥2.

This shows the result for 𝐻 = 1 and 𝐾 = 0. Assume now that 𝐾 ⩾ 1, and let 𝛼 be a multi-index such
that |𝛼 | = 𝐾 . Observe that

∥𝜕𝛼 (𝑢\ − 𝑢\ ′ )∥∞,Ω ⩽ ∥(𝑊2 −𝑊 ′
2)𝜕

𝛼 (tanh◦A1)∥∞,Ω
+ ∥𝑊 ′

2𝜕
𝛼 (tanh◦A1 − tanh◦A′

1)∥∞,Ω. (15)

By Lemma 2.3 and an argument similar to the inequality (9), we have

∥(𝑊2 −𝑊 ′
2)𝜕

𝛼 (tanh◦A1)∥∞,Ω ⩽ (𝐷 + 1)∥\ − \′∥2∥\∥𝐾2 ∥ tanh ∥𝐶𝐾 (R)

⩽ 2𝐾−1 (𝐾 + 2)!(𝐷 + 1)∥\ − \′∥2∥\∥𝐾2 . (16)

In order to bound the second term on the right-hand side of (15), we use inequality (14) with 𝑢1 =A1
and 𝑢2 = A′

1. In this case, the only non-zero term on the right-hand side of (14) corresponds to the
partition 𝜋 = {{1}, {2}, . . . , {𝐾}}. Recall that ∥A1 −A′

1∥∞,Ω ⩽ ∥\ − \′∥2 (1 + 𝑑1𝑀 (Ω)), and note that
whenever |𝛼 | = 1, ∥𝜕𝛼 (A1−A′

1)∥∞,Ω ⩽ ∥\−\′∥2. Therefore, ∥A1−A′
1∥𝐶𝐾 (Ω) = ∥A1−A′

1∥𝐶1 (Ω) ⩽

∥\ − \′∥2 (1 + 𝑑1𝑀 (Ω)). Observe that
∏
𝐵∈{{1},{2},...,{𝐾 }} max(∥𝜕𝛼(𝐵)A1∥∞,Ω, ∥𝜕𝛼(𝐵)A′

1∥∞,Ω) ⩽
max(∥\∥2, ∥\′∥2)𝐾 . Thus, putting all the pieces together, we are led to

∥𝜕𝛼 (tanh◦A1 − tanh◦A′
1)∥∞,Ω

⩽ (𝐾 + 1)∥ tanh(𝐾+1) ∥∞∥\ − \′∥2 (1 + 𝑑1𝑀 (Ω))∥ tanh(𝐾 ) ∥∞ max(∥\∥2, ∥\′∥2)𝐾 .

Now, by Lemma 2.3, ∥ tanh(𝐾 ) ∥∞ ⩽ 2𝐾−1 (𝐾 + 2)! So,

∥𝜕𝛼 (tanh◦A1 − tanh◦A′
1)∥∞,Ω

⩽ (𝐾 + 1)22𝐾−1 (𝐾 + 2)!(𝐾 + 3)!∥\ − \′∥2 (1 + 𝑑1𝑀 (Ω)) max(∥\∥2, ∥\′∥2)𝐾 . (17)

Combining inequalities (15), (16), and (17), we conclude that

∥𝜕𝛼 (𝑢\ − 𝑢\ ′ )∥∞,Ω ⩽ �̃�𝐾,1 (1 + 𝑑1𝑀 (Ω)) (𝐷 + 1) (1 + max(∥\∥2, ∥\′∥2))𝐾+1∥\ − \′∥2,

so that ∥𝑢\ − 𝑢\ ′ ∥𝐶𝐾 (Ω) ⩽ �̃�𝐾,1 (1 + 𝑑1𝑀 (Ω)) (𝐷 + 1) (1 + max(∥\∥2, ∥\′∥2))𝐾+1∥\ − \′∥2.
Induction Fix 𝐻 ⩾ 1, and assume that for all 𝑢\ , 𝑢\ ′ ∈ NN𝐻 (𝐷) and all 𝐾 ⩾ 0,

∥𝑢\ − 𝑢\ ′ ∥𝐶𝐾 (Ω)

⩽ �̃�𝐾,𝐻 (1 + 𝑑1𝑀 (Ω)) (𝐷 + 1)𝐻+𝐾𝐻2 (1 + max(∥\∥2, ∥\′∥2))𝐻+𝐾𝐻2 ∥\ − \′∥2. (18)
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Let 𝑢\ , 𝑢\ ′ ∈ NN𝐻+1 (𝐷). Observe that 𝑢\ = A𝐻+2 ◦ tanh◦𝑣 \ and 𝑢\ ′ = A′
𝐻+2 ◦ tanh◦𝑣 \ ′ , where

𝑣 \ , 𝑣 \ ′ ∈ NN𝐻 (𝐷). Moreover,

∥𝜕𝛼 (𝑢\ − 𝑢\ ′ )∥∞,Ω
⩽ ∥(𝑊𝐻+2 −𝑊 ′

𝐻+2)𝜕
𝛼 (tanh◦𝑣 \ )∥∞,Ω + ∥𝑊 ′

𝐻+2𝜕
𝛼 (tanh◦𝑣 \ − tanh◦𝑣 \ ′ )∥∞,Ω

⩽ 𝐷 (∥\ − \′∥2 × ∥𝜕𝛼 (tanh◦𝑣 \ )∥∞,Ω + ∥\′∥2 × ∥𝜕𝛼 (tanh◦𝑣 \ − tanh◦𝑣 \ ′ )∥∞,Ω). (19)

Since tanh◦𝑣 \ ∈ NN𝐻+1 (𝐷), we have, by Proposition 4.2,

∥𝜕𝛼 (tanh◦𝑣 \ )∥∞,Ω ⩽𝐶𝐾,𝐻+1 (𝐷 + 1)1+𝐾 (𝐻+1) (1 + ∥\∥2)𝐾 (𝐻+1) ∥\∥2. (20)

Moreover, using (14), Lemma 2.3, and the definition of 𝐶𝐾,𝐻+1 in (7), we have

∥𝜕𝛼 (tanh◦𝑣 \ − tanh◦𝑣 \ ′ )∥∞,Ω

⩽ 𝐵𝐾 (𝐾 + 1)∥ tanh(𝐾+1) ∥∞∥𝑣 \ − 𝑣 \ ′ ∥𝐶𝐾 (Ω) ∥ tanh(𝐾 ) ∥∞

×𝐶𝐾,𝐻+1 (𝐷 + 1)𝐾𝐻 (1 + max(∥\∥2, ∥\′∥2))𝐾𝐻

⩽ 22𝐾−1 (𝐾 + 3)!(𝐾 + 2)!𝐵𝐾 (𝐾 + 1)∥𝑣 \ − 𝑣 \ ′ ∥𝐶𝐾 (Ω)

×𝐶𝐾,𝐻+1 (𝐷 + 1)𝐾𝐻 (1 + max(∥\∥2, ∥\′∥2))𝐾𝐻 . (21)

The term ∥𝑣 \ − 𝑣 \ ′ ∥𝐶𝐾 (Ω) in (21) can be upper bounded using the induction assumption (18). Thus,
combining (19), (20), and (21), we conclude as desired that for all 𝑢\ , 𝑢\ ′ ∈ NN𝐻+1 (𝐷) and all 𝐾 ∈ N,

∥𝑢\ − 𝑢\ ′ ∥𝐶𝐾 (Ω) ⩽ �̃�𝐾,𝐻+1 (1 + 𝑑1𝑀 (Ω)) (𝐷 + 1) (𝐻+1)+𝐾 (𝐻+1)2

× (1 + max(∥\∥2, ∥\′∥2)) (𝐻+1)+𝐾 (𝐻+1)2 ∥\ − \′∥2.

5.3. Uniform approximation of integrals

Throughout this section, the parameters 𝐻, 𝐷 ∈ N★ are held fixed, as well as the neural architecture
NN𝐻 (𝐷) parameterized by Θ𝐻,𝐷 . We let 𝑑 be a metric in Θ𝐻,𝐷 , and denote by 𝐵(𝑟, 𝑑) the closed ball
in Θ𝐻,𝐷 centered at 0 and of radius 𝑟 according to the metric 𝑑, that is, 𝐵(𝑟, 𝑑) = {\ ∈ Θ𝐻,𝐷 , 𝑑 (0, \) ⩽
𝑟}.

Theorem 5.2 (Uniform approximation of integrals). Let Ω ⊆ R𝑑1 be a bounded Lipschitz domain,
let 𝛼1 > 0, and let X1, . . . ,X𝑛 be a sequence of i.i.d. random variables in Ω̄, with distribution `𝑋.
Let 𝑓 : 𝐶∞ (Ω̄,R𝑑2 ) × Ω̄ → R𝑑2 be an operator, and assume that the following two requirements are
satisfied:

(𝑖) there exist 𝐶1 > 0 and 𝛽1 ∈ [0,1/2[ such that, for all 𝑛⩾ 1 and all \, \′ ∈ 𝐵(𝑛𝛼1 , ∥.∥2),

∥ 𝑓 (𝑢\ , ·) − 𝑓 (𝑢\ ′ , ·)∥∞,Ω̄ ⩽𝐶1𝑛
𝛽1 ∥\ − \′∥2; (22)

(𝑖𝑖) there exist 𝐶2 > 0 and 𝛽2 ∈ [0,1/2[ satisfying 𝛽2 > 𝛼1 + 𝛽1 such that, for all 𝑛 ⩾ 1 and all
\ ∈ 𝐵(𝑛𝛼1 , ∥.∥2),

∥ 𝑓 (𝑢\ , ·)∥∞,Ω̄ ⩽𝐶2𝑛
𝛽2 . (23)
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Then, almost surely, there exists 𝑁 ∈ N★ such that, for all 𝑛⩾ 𝑁 ,

sup
\∈𝐵(𝑛𝛼1 , ∥ .∥2 )

1
𝑛

𝑛∑︁
𝑖=1

𝑓 (𝑢\ ,X𝑖) −
∫
Ω̄

𝑓 (𝑢\ , ·)𝑑`𝑋


2
⩽ log2 (𝑛)𝑛𝛽2−1/2.

(Notice that the rank 𝑁 is random.)

Proof. Let us start the proof by considering the case 𝑑2 = 1. For a given \ ∈ 𝐵(𝑛𝛼1 , ∥ · ∥2), we let

𝑍𝑛,\ =
1
𝑛

𝑛∑︁
𝑖=1

𝑓 (𝑢\ ,X𝑖) −
∫
Ω̄

𝑓 (𝑢\ , ·)𝑑`𝑋 .

We are interested in bounding the random variable

𝑍𝑛 = sup
\∈𝐵(𝑛𝛼1 , ∥ · ∥2 )

|𝑍𝑛,\ | = sup
\∈𝐵(𝑛𝛼1 , ∥ · ∥2 )

𝑍𝑛,\ .

Note that there is no need of absolute value in the rightmost term since, for any \ = (𝑊1, 𝑏1, . . . ,

𝑊𝐻+1, 𝑏𝐻+1) ∈ 𝐵(𝑛𝛼1 , ∥ · ∥2), it is clear that \′ = (𝑊1, 𝑏1, . . . ,𝑊𝐻 , 𝑏𝐻 , −𝑊𝐻+1,−𝑏𝐻+1) ∈ 𝐵(𝑛𝛼1 , ∥ · ∥2)
and 𝑢\ ′ = −𝑢\ . Let 𝑀 (Ω) = maxx∈Ω̄ ∥𝑥∥2. Using inequality (22), we have, for any \, \′ ∈ 𝐵(𝑛𝛼1 , ∥ · ∥2),���1

𝑛

(
𝑓 (𝑢\ ,X𝑖) −

∫
Ω̄

𝑓 (𝑢\ , ·)𝑑`𝑋
)
− 1
𝑛

(
𝑓 (𝑢′\ ,X𝑖) −

∫
Ω̄

𝑓 (𝑢′\ , ·)𝑑`𝑋
)���⩽ 2𝐶1𝑛

𝛽1−1∥\ − \′∥2.

According to Hoeffding’s theorem (van Handel, 2016, Lemma 3.6), the random variable 𝑛−1 ( 𝑓 (𝑢\ ,X𝑖)
−

∫
Ω̄
𝑓 (𝑢\ , ·)𝑑`𝑋) − 𝑛−1 ( 𝑓 (𝑢′

\
,X𝑖) −

∫
Ω̄
𝑓 (𝑢′

\
, ·)𝑑`𝑋) is subgaussian with parameter 4𝐶2

1𝑛
2𝛽1−2∥\ −

\′∥2
2. Invoking Azuma’s theorem (van Handel, 2016, Lemma 3.7), we deduce that 𝑍𝑛,\ − 𝑍𝑛,\ ′ ,

is also subgaussian, with parameter 4𝐶2
1𝑛

2𝛽1−1∥\ − \′∥2
2. Since E(𝑍𝑛,\ ) = 0, we conclude that for

all 𝑛 ⩾ 1, (𝑍𝑛,\ )\∈𝐵(𝑛𝛼1 , ∥ · ∥2 ) is a subgaussian process on 𝐵(𝑛𝛼1 , ∥ · ∥2) for the metric 𝑑 (\, \′) =
2𝐶1𝑛

𝛽1−1/2∥\ − \′∥2. Moreover, since \ ↦→ 𝑍𝑛,\ is continuous for the topology induced by the metric
𝑑, (𝑍𝑛,\ )\∈𝐵(𝑛𝛼1 , ∥ · ∥2 ) is separable (van Handel, 2016, Remark 5.23). Thus, by Dudley’s theorem (van
Handel, 2016, Corollary 5.25)

E(𝑍𝑛) ⩽ 12
∫ ∞

0
[log𝑁 (𝐵(𝑛𝛼1 , ∥ · ∥2), 𝑑, 𝑟)]1/2𝑑𝑟,

where 𝑁 (𝐵(𝑛𝛼1 , ∥ · ∥2), 𝑑, 𝑟) is the minimum number of balls of radius 𝑟 according to the metric
𝑑 needed to cover the space 𝐵(𝑛𝛼1 , ∥ · ∥2). Clearly, 𝑁 (𝐵(𝑛𝛼1 , ∥ · ∥2), 𝑑, 𝑟) = 𝑁 (𝐵(𝑛𝛼1 , ∥ · ∥2), ∥ ·
∥2, 𝑛

1/2−𝛽1𝑟/(2𝐶1)). Thus,

E(𝑍𝑛) ⩽ 24𝐶1𝑛
𝛽1−1/2

∫ ∞

0
[log𝑁 (𝐵(𝑛𝛼1 , ∥ · ∥2), ∥ · ∥2, 𝑟)]1/2𝑑𝑟

and, in turn,

E(𝑍𝑛) ⩽ 24𝐶1𝑛
𝛼1+𝛽1−1/2

∫ ∞

0
[log𝑁 (𝐵(1, ∥ · ∥2), ∥ · ∥2, 𝑟)]1/2𝑑𝑟.

Upon noting that 𝑁 (𝐵(1, ∥ · ∥2), ∥ · ∥2, 𝑟) = 1 for 𝑟 ⩾ 1, we are led to

E(𝑍𝑛) ⩽ 24𝐶1𝑛
𝛼1+𝛽1−1/2

∫ 1

0
[log𝑁 (𝐵(1, ∥ · ∥2), ∥ · ∥2, 𝑟)]1/2𝑑𝑟.
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Since Θ𝐻,𝐷 = R(𝑑1+1)𝐷+(𝐻−1)𝐷 (𝐷+1)+(𝐷+1)𝑑2 , according to van Handel (2016, Lemma 5.13), one has

log𝑁 (𝐵(1, ∥ · ∥2), ∥ · ∥2, 𝑟) ⩽ [(𝑑1 + 1)𝐷 + (𝐻 − 1)𝐷 (𝐷 + 1) + (𝐷 + 1)𝑑2] log(3/𝑟).

Notice that
∫ 1

0 log(3/𝑟)1/2𝑑𝑟 ⩽ 3/2. Therefore,

E(𝑍𝑛) ⩽ 36𝐶1 [(𝑑1 + 1)𝐷 + (𝐻 − 1)𝐷 (𝐷 + 1) + (𝐷 + 1)𝑑2]1/2𝑛𝛼1+𝛽1−1/2. (24)

Next, observe that, by definition of 𝑍𝑛 = 𝑍𝑛 (X1, . . . ,X𝑛),

sup
x𝑖∈R𝑑1

𝑍𝑛 (X1, . . . ,X𝑖−1,x𝑖 ,X𝑖+1, . . . ,X𝑛) − inf
x𝑖∈R𝑑1

𝑍𝑛 (X1, . . . ,X𝑖−1,x𝑖 ,X𝑖+1, . . . ,X𝑛)

⩽ 2𝑛−1 sup
\∈𝐵(𝑛𝛼1 , ∥ · ∥2 )

 𝑓 (𝑢\ ,X𝑖) − ∫
Ω̄

𝑓 (𝑢\ , ·)𝑑`𝑋


2

⩽ 4𝑛−1 sup
\∈𝐵(𝑛𝛼1 , ∥ · ∥2 )

∥ 𝑓 (𝑢\ , ·)∥∞.

Using inequality (23), McDiarmid’s inequality (van Handel, 2016, Theorem 3.11) ensures that 𝑍𝑛
is subgaussian with parameter 4𝐶2

2𝑛
2𝛽2−1. In particular, for all 𝑡𝑛 ⩾ 0, P( |𝑍𝑛 − E(𝑍𝑛) | ⩾ 𝑡𝑛) ⩽

2 exp(−𝑛1−2𝛽2 𝑡2𝑛/(8𝐶2
2 )), which is summable with 𝑡𝑛 = 𝐶3𝑛

𝛽2−1/2 log2 (𝑛), where 𝐶3 is any positive
constant. Thus, recalling that 𝛽2 > 𝛼1 + 𝛽1, the Borel-Cantelli lemma and (24) ensure that, almost
surely, for all 𝑛 large enough, 0 ⩽ 𝑍𝑛 ⩽ 2𝐶3𝑛

𝛽2−1/2 log2 (𝑛). Taking 𝐶3 = 1/2 yields the desired result.
The generalization to the case 𝑑2 ⩾ 2 is easy. Just note, letting 𝑓 = ( 𝑓1, . . . , 𝑓𝑑2 ), that

sup
\∈𝐵(𝑛𝛼1 , ∥ · ∥2 )

1
𝑛

𝑛∑︁
𝑖=1

𝑓 (𝑢\ ,X𝑖) −
∫
Ω̄

𝑓 (𝑢\ , ·)𝑑`𝑋


2

⩽
√︁
𝑑2 max

1⩽ 𝑗⩽𝑑2
sup

\∈𝐵(𝑛𝛼1 , ∥ · ∥2 )

1
𝑛

𝑛∑︁
𝑖=1

𝑓 𝑗 (𝑢\ ,X𝑖) −
∫
Ω̄

𝑓 𝑗 (𝑢\ , ·)𝑑`𝑋


2
.

Taking 𝐶3 = 𝑑
−1/2
2 /2 as above leads to the result.

Proposition 5.3 (Condition function). Let Ω be a bounded Lipschitz domain, let 𝐸 be a closed subset
of 𝜕Ω, and let ℎ ∈ Lip(𝐸,R𝑑2 ). Then the operator H (𝑢,x) = 1x∈𝐸 ∥𝑢(x) − ℎ(x)∥2 satisfies inequalities
(22) and (23) with 𝛼1 < (3 + 𝐻)−1/2, 𝛽1 = (1 + 𝐻)𝛼1, and 1/2 > 𝛽2 ⩾ (3 + 𝐻)𝛼1.

Proof. First note, since Lip(𝐸,R𝑑2 ) ⊆ 𝐶0 (𝐸,R𝑑2 ), that ∥ℎ∥∞ < ∞. Observe also that for any 𝑣, 𝑤 ∈
R𝑑2 , |∥𝑣∥2

2 − ∥𝑤∥2
2 | = |⟨𝑣 +𝑤, 𝑣 −𝑤⟩| ⩽ ∥𝑣 +𝑤∥2∥𝑣 −𝑤∥2 ⩽ 𝑑2∥𝑣 +𝑤∥∞∥𝑣 −𝑤∥∞, where ⟨·, ·⟩ denotes

the canonical scalar product. Thus, we obtain, for all \, \′ ∈ 𝐵(𝑛𝛼1 , ∥ · ∥2) and all x ∈ 𝐸 ,

|H (𝑢\ ,x) −H (𝑢\ ′ ,x) | ⩽ (∥𝑢\ (x)∥2 + ∥𝑢\ ′ (x)∥2 + 2∥ℎ(x)∥2)∥𝑢\ (x) − 𝑢\ ′ (x)∥2

⩽ 𝑑2 (∥𝑢\ ∥∞,Ω̄ + ∥𝑢\ ′ ∥∞,Ω̄ + 2∥ℎ∥∞)∥𝑢\ − 𝑢\ ′ ∥∞,Ω̄
⩽ 𝑑2 (2(𝐷 + 1)𝑛𝛼1 + 2∥ℎ∥∞)∥𝑢\ − 𝑢\ ′ ∥∞,Ω̄ (by inequality (12))

⩽ 2𝑑2 ((𝐷 + 1)𝑛𝛼1 + ∥ℎ∥∞)�̃�0,𝐻 (1 + 𝑑1𝑀 (Ω))

× (𝐷 + 1)𝐻 (1 + 𝑛𝛼1 )𝐻 ∥\ − \′∥2 (by Proposition 5.1)

⩽𝐶1𝑛
𝛽1 ∥\ − \′∥2,
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where 𝛽1 = (1 + 𝐻)𝛼1 and 𝐶1 = 2𝐻+1𝑑2 (𝐷 + 1 + ∥ℎ∥∞)�̃�0,𝐻 (1 + 𝑑1𝑀 (Ω)) (𝐷 + 1)𝐻 .
Next, using (12) once again, for all \ ∈ 𝐵(𝑛𝛼1 , ∥.∥2), ∥H (𝑢\ , ·)∥∞,Ω̄ ⩽ 𝑑2 (∥𝑢\ ∥∞,Ω̄ + ∥ℎ∥∞)2 ⩽

𝑑2 ((𝐷 + 1)𝑛𝛼1 + ∥ℎ∥∞)2 ⩽𝐶2𝑛
2𝛼1 . Recall that for inequality (23), 𝛽2 must satisfy 𝛼1 + 𝛽1 < 𝛽2 < 1/2.

This is true for 𝛽2 = (3 + 𝐻)𝛼1, which completes the proof.

Proposition 5.4 (Polynomial operator). Let Ω be a bounded Lipschitz domain, and let F ∈ Pop.
Then the operator 1x∈ΩF (𝑢\ ,x)2 satisfies inequalities (22) and (23) with 𝛼1 < [2 + 𝐻 (1 + (2 +
𝐻) deg(F ))]−1/2, 𝛽1 = 𝐻 (1 + (2 + 𝐻) deg(F ))𝛼1, and 1/2 > 𝛽2 ⩾ [2 + 𝐻 (1 + (2 + 𝐻) deg(F ))]𝛼1.

Proof. Let F ∈ Pop. By definition, there exist a degree 𝑠⩾ 1, a polynomial 𝑃 ∈ 𝐶∞ (R𝑑1 ,R) [𝑍1,1, . . . ,

𝑍𝑑2 ,𝑠], and a sequence (𝛼𝑖, 𝑗 )1⩽𝑖⩽𝑑2 ,1⩽ 𝑗⩽𝑠 of multi-indexes such that, for any 𝑢 ∈ 𝐶∞ (Ω̄,R𝑑2 ),
F (𝑢, ·) = 𝑃((𝜕𝛼𝑖, 𝑗𝑢𝑖)1⩽𝑖⩽𝑑2 ,1⩽ 𝑗⩽𝑠). Namely, there exists 𝑁 (𝑃) ∈ N★, exponents 𝐼 (𝑖, 𝑗 , 𝑘) ∈ N, and
functions 𝜙1, . . . , 𝜙𝑁 (𝑃) ∈ 𝐶∞ (Ω̄,R), such that 𝑃(𝑍1,1, . . . , 𝑍𝑑2 ,𝑠) =

∑𝑁 (𝑃)
𝑘=1 𝜙𝑘 ×

∏𝑑2
𝑖=1

∏𝑠
𝑗=1 𝑍

𝐼 (𝑖, 𝑗 ,𝑘 )
𝑖, 𝑗

.

Recall, by Definition 4.5, that deg(F ) = max𝑘
∑𝑑2
𝑖=1

∑𝑠
𝑗=1 (1 + |𝛼𝑖, 𝑗 |)𝐼 (𝑖, 𝑗 , 𝑘).

Now, according to Proposition 4.2, there exists a positive constant 𝐶deg(F ) ,𝐻 such that

∥F (𝑢\ , ·)2∥∞,Ω̄

⩽

[ 𝑁 (𝑃)∑︁
𝑘=1

∥𝜙𝑘 ∥∞,Ω̄
𝑑2∏
𝑖=1

𝑠∏
𝑗=1

∥𝜕𝛼𝑖, 𝑗𝑢\ ∥𝐼 (𝑖, 𝑗 ,𝑘 )∞,Ω̄

]2

⩽ 𝑁2 (𝑃)
[

max
1⩽𝑘⩽𝑁 (𝑃)

∥𝜙𝑘 ∥∞,Ω̄
]2
𝐶2

deg(F ) ,𝐻 (𝐷 + 1)2𝐻 deg(F ) (1 + ∥\∥2)2𝐻 deg(F ) .

Thus, for any \ ∈ 𝐵(𝑛𝛼1 , ∥ · ∥2), ∥F (𝑢\ , ·)2∥∞,Ω̄ ⩽𝐶2𝑛
𝛽2 , where

𝐶2 = 22𝐻 deg(F )𝑁2 (𝑃)
[

max
1⩽𝑘⩽𝑁 (𝑃)

∥𝜙𝑘 ∥∞,Ω̄
]2
𝐶2

deg(F ) ,𝐻 (𝐷 + 1)2𝐻 deg(F ) ,

and for any 𝛽2 ⩾ 2𝐻 deg(F )𝛼1.
Next, observe that, any 𝑢 and 𝑣, | |𝑢 |2 − |𝑣 |2 | = | (𝑢 + 𝑣) (𝑢 − 𝑣) | ⩽ |𝑢 + 𝑣 | |𝑢 − 𝑣 |. Therefore,

|F (𝑢\ ,x)2 −F (𝑢\ ′ ,x)2 | ⩽
(
|F (𝑢\ ,x) | + |F (𝑢\ ′ ,x) |

)
|F (𝑢\ ,x) −F (𝑢\ ′ ,x) |

⩽ 2𝐶1/2
2 𝑛𝐻 deg(F )𝛼1 |F (𝑢\ ,x) −F (𝑢\ ′ ,x) |.

Using inequality (13) (remark that the product
∏𝑑2
𝑖=1

∏𝑠
𝑗=1 𝑍

𝐼 (𝑖, 𝑗 ,𝑘 )
𝑖, 𝑗

has less than deg(F ) terms differ-
ent from 1), it is easy to see that

|F (𝑢\ ,x) −F (𝑢\ ′ ,x) | ⩽ 𝑁 (𝑃)
[

max
1⩽𝑘⩽𝑁 (𝑃)

∥𝜙𝑘 ∥∞,Ω̄
]

deg(F )∥𝑢\ − 𝑢\ ′ ∥𝐶deg(F ) (Ω)

× max
1⩽𝑘⩽𝑁 (𝑃)

∏
𝑖, 𝑗

max(∥𝑢\ ∥𝐶 |𝛼𝑖, 𝑗 | (Ω) , ∥𝑢\ ′ ∥𝐶 |𝛼𝑖, 𝑗 | (Ω) )
𝐼 (𝑖, 𝑗 ,𝑘 ) .

From Proposition 4.2, we deduce that

max
1⩽𝑘⩽𝑁 (𝑃)

∏
𝑖, 𝑗

max(∥𝑢\ ∥𝐶 |𝛼𝑖, 𝑗 | (Ω) , ∥𝑢\ ′ ∥𝐶 |𝛼𝑖, 𝑗 | (Ω) )
𝐼 (𝑖, 𝑗 ,𝑘 )

⩽𝐶deg(F ) ,𝐻 (𝐷 + 1)𝐻 deg(F ) (1 + max(∥\∥2, ∥\′∥2))𝐻 deg(F ) .
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Combining the last two inequalities with Proposition 5.1 gives that

|F (𝑢\ ,x) −F (𝑢\ ′ ,x) |

⩽ 𝑁 (𝑃)
[

max
1⩽𝑘⩽𝑁 (𝑃)

∥𝜙𝑘 ∥∞,Ω̄
]

deg(F )�̃�deg(F ) ,𝐻 (1 + 𝑑1𝑀 (Ω))∥\ − \′∥2

×𝐶deg(F ) ,𝐻 (𝐷 + 1)𝐻 (1+(1+𝐻 ) deg(F ) ) (1 + max(∥\∥2, ∥\′∥2))𝐻 (1+(1+𝐻 ) deg(F ) ) .

Hence, for all \, \′ ∈ 𝐵(𝑛𝛼1 , ∥ · ∥2), |F (𝑢\ ,x)2 −F (𝑢\ ′ ,x)2 | ⩽𝐶1𝑛
𝛽1 ∥\ − \′∥2, where

𝐶1 = 2𝐶1/2
2 𝑁 (𝑃)

[
max

1⩽𝑘⩽𝑁 (𝑃)
∥𝜙𝑘 ∥∞,Ω̄]

]
deg(F )�̃�deg(F ) ,𝐻 (1 + 𝑑1𝑀 (Ω))

×𝐶deg(F ) ,𝐻 (𝐷 + 1)𝐻 (1+(1+𝐻 ) deg(F ) )2𝐻 (1+(1+𝐻 ) deg(F ) )

and 𝛽1 = 𝐻 (1 + (2 + 𝐻) deg(F ))𝛼1.
Recall that for inequality (23), 𝛽2 must satisfy 𝛼1 + 𝛽1 < 𝛽2 < 1/2. This is true for 𝛽2 = [2 + 𝐻 (1 +

(2 + 𝐻) deg(F ))]𝛼1 and 𝛼1 < [2 + 𝐻 (1 + (2 + 𝐻) deg(F ))]−1/2.

5.4. Proof of Theorem 4.6

Let 𝑢0 = 0 ∈ NN𝐻 (𝐷) be the neural network with parameter \ = (0, . . . ,0). Obviously, 𝑅 (ridge)
𝑛,𝑛𝑒 ,𝑛𝑟 (𝑢0) =

𝑅𝑛,𝑛𝑒 ,𝑛𝑟 (𝑢0). Also,

𝑅𝑛,𝑛𝑒 ,𝑛𝑟 (𝑢0) ⩽
_𝑑

𝑛

𝑛∑︁
𝑖=1

∥𝑌𝑖 ∥2
2 + _𝑒∥ℎ∥∞ + 1

𝑛𝑟

𝑀∑︁
𝑘=1

𝑛𝑟∑︁
ℓ=1

∥F𝑘 (0,X(𝑟 )
ℓ

)∥2
2.

Since each F𝑘 is a polynomial operator (see Definition 4.4), it takes the form

F𝑘 (𝑢,x) =
𝑁 (𝑃𝑘 )∑︁
ℓ=1

𝜙ℓ,𝑘

𝑑2∏
𝑖=1

𝑠𝑘∏
𝑗=1

(𝜕𝛼𝑖, 𝑗,𝑘𝑢𝑖 (x))𝐼𝑘 (𝑖, 𝑗 ,ℓ ) .

Therefore,

𝑅𝑛,𝑛𝑒 ,𝑛𝑟 (𝑢0) ⩽
_𝑑

𝑛

𝑛∑︁
𝑖=1

∥𝑌𝑖 ∥2
2 + _𝑒∥ℎ∥∞ +

𝑀∑︁
𝑘=1

𝑁 (𝑃𝑘 )∑︁
ℓ=1

∥𝜙ℓ,𝑘 ∥∞,Ω̄

:= 𝐼, (25)

where 𝐼 does not depend on _ (ridge) , 𝑛𝑒, and 𝑛𝑟 .
Let (\̂ (ridge) (𝑝, 𝑛𝑒, 𝑛𝑟 , 𝐷))𝑝∈N be any minimizing sequence of the empirical risk of the ridge PINN,

i.e., lim𝑝→∞ 𝑅
(ridge)
𝑛,𝑛𝑒 ,𝑛𝑟 (𝑢 \̂ (ridge) (𝑝,𝑛𝑒 ,𝑛𝑟 ,𝐷) ) = inf\∈Θ𝐻,𝐷 𝑅

(ridge)
𝑛,𝑛𝑒 ,𝑛𝑟 (𝑢\ ). In the rest of the proof, we let

𝑛𝑟 ,𝑒 = min(𝑛𝑟 , 𝑛𝑒). We will make use of the following three sets: E1 (𝑛𝑟 ,𝑒) = {\ ∈ Θ𝐻,𝐷 , ∥\∥2 ≥ 𝑛^𝑟 ,𝑒},
E2 (𝑛𝑟 ,𝑒) = {\ ∈ Θ𝐻,𝐷 , 𝑛

^/4
𝑟 ,𝑒 ≤ ∥\∥2 ≤ 𝑛^𝑟 ,𝑒}, and E3 (𝑛𝑟 ,𝑒) = {\ ∈ Θ𝐻,𝐷 , ∥\∥2 ≤ 𝑛

^/4
𝑟 ,𝑒 }. Clearly,

Θ𝐻,𝐷 = E1 ∪ E2 ∪ E3. The proof relies on the argument that almost surely, given any 𝑛𝑟 and 𝑛𝑒, for
all 𝑝 large enough, \̂ (ridge) (𝑝, 𝑛𝑒, 𝑛𝑟 , 𝐷) ∈ E2 ∪ E3. Moreover, on E2 ∪ E3, the empirical risk function
𝑅
(ridge)
𝑛,𝑛𝑒 ,𝑛𝑟 is close to the theoretical risk R𝑛, when 𝑛𝑟 ,𝑒 is large enough. For clarity, the proof is divided

into four steps.
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Step 1 We start by observing that, for any \ ∈ E1 (𝑛𝑟 ,𝑒), 𝑅 (ridge)
𝑛,𝑛𝑒 ,𝑛𝑟 (\) ⩾ _ (ridge) ∥\∥2

2 ⩾ 𝑛^𝑟 ,𝑒. Therefore,
according to (25), once 𝑛𝑟 ,𝑒 ≥ (𝐼 + 1)1/^ ,

inf
\∈E3 (𝑛𝑟,𝑒 )

𝑅
(ridge)
𝑛,𝑛𝑒 ,𝑛𝑟 (𝑢\ ) + 1 ⩽ 𝑅

(ridge)
𝑛,𝑛𝑒 ,𝑛𝑟 (𝑢0) + 1 ⩽ inf

\∈E1 (𝑛𝑟,𝑒 )
𝑅
(ridge)
𝑛,𝑛𝑒 ,𝑛𝑟 (𝑢\ ).

This shows that, for all 𝑛𝑟 ,𝑒 large enough and for all 𝑝 large enough, \̂ (ridge) (𝑝, 𝑛𝑒, 𝑛𝑟 , 𝐷) ∉ E1 (𝑛𝑟 ,𝑒).
Step 2 Applying Proposition 5.3 and Proposition 5.4 with 𝛼1 = ^ and 𝛽2 = (2 + 𝐻 (1 + (2 +
𝐻) max𝑘 deg(F𝑘)))𝛼1, and then Theorem 5.2, we know that, almost surely, there exists 𝑁 ∈ N★ such
that, for all 𝑛𝑟 ,𝑒 ⩾ 𝑁 ,

sup
\∈E2 (𝑛𝑟,𝑒 )∪E3 (𝑛𝑟,𝑒 )

��� 1
𝑛𝑒

𝑛𝑒∑︁
𝑗=1

∥𝑢\ (X(𝑒)
𝑗

) − ℎ(X(𝑒)
𝑗

)∥2
2 − E∥𝑢\ (X

(𝑒) ) − ℎ(X(𝑒) )∥2
2

���
⩽ log2 (𝑛𝑟 ,𝑒)𝑛𝛽2−1/2

𝑟 ,𝑒 (26)

and, for each 1 ⩽ 𝑘 ⩽ 𝑀 ,

sup
\∈E2 (𝑛𝑟,𝑒 )∪E3 (𝑛𝑟,𝑒 )

��� 1
𝑛𝑟

𝑛𝑟∑︁
ℓ=1

F𝑘 (𝑢\ ,X(𝑟 )
ℓ

)2 − 1
|Ω|

∫
Ω

F𝑘 (𝑢\ ,x)2𝑑x
���⩽ log2 (𝑛𝑟 ,𝑒)𝑛𝛽2−1/2

𝑟 ,𝑒 . (27)

Thus, almost surely, for all 𝑛𝑟 ,𝑒 large enough and for all \ ∈ E2 (𝑛𝑟 ,𝑒),

𝑅
(ridge)
𝑛,𝑛𝑒 ,𝑛𝑟 (𝑢\ ) ⩾ R𝑛 (𝑢\ ) + _ (ridge) ∥\∥2

2 − (𝑀 + 1) log2 (𝑛𝑟 ,𝑒)𝑛𝛽2−1/2
𝑟 ,𝑒 .

But, for all \ ∈ E2 (𝑛𝑟 ,𝑒), _ (ridge) ∥\∥2
2 ⩾ 𝑛

−^/2
𝑒,𝑟 . Upon noting that −^/2 > 𝛽2 − 1/2, we conclude that,

almost surely, for all 𝑛𝑟 ,𝑒 large enough and for all \ ∈ E2 (𝑛𝑟 ,𝑒), 𝑅 (ridge)
𝑛,𝑛𝑒 ,𝑛𝑟 (𝑢\ ) ⩾ R𝑛 (𝑢\ ).

Step 3 Clearly, for all \ ∈ E3 (𝑛𝑟 ,𝑒), _ (ridge) ∥\∥2
2 ⩽ 𝑛

−^/2
𝑒,𝑟 . Using inequalities (26) and (27), we deduce

that, almost surely, for all 𝑛𝑟 ,𝑒 large enough and for all \ ∈ E3 (𝑛𝑟 ,𝑒), |𝑅 (ridge)
𝑛,𝑛𝑒 ,𝑛𝑟 (𝑢\ ) − R𝑛 (𝑢\ ) | ⩽

(𝑀 + 2) log2 (𝑛𝑟 ,𝑒)𝑛−^/2
𝑟 ,𝑒 .

Step 4 Fix Y > 0. Let (\𝑝)𝑝∈N be any minimizing sequence of the theoretical risk function R𝑛, that
is, lim𝑝→∞ R𝑛 (𝑢\𝑝 ) = inf\∈Θ𝐻,𝐷 R𝑛 (𝑢\ ). Thus, by definition, there exists some 𝑃Y ∈ N such that
|R𝑛 (𝑢\𝑃Y ) − inf\∈Θ𝐻,𝐷 R𝑛 (𝑢\ ) | ⩽ Y.

For fixed 𝑛𝑟 ,𝑒, according to Step 1, we have, for all 𝑝 large enough, \̂ (ridge) (𝑝, 𝑛𝑒, 𝑛𝑟 , 𝐷) ∈ E2 (𝑛𝑟 ,𝑒) ∪
E3 (𝑛𝑟 ,𝑒). So, according to Step 2 and Step 3,

R𝑛 (𝑢 \̂ (ridge) (𝑝,𝑛𝑒 ,𝑛𝑟 ,𝐷) ) ⩽ 𝑅
(ridge)
𝑛,𝑛𝑒 ,𝑛𝑟 (𝑢 \̂ (ridge) (𝑝,𝑛𝑒 ,𝑛𝑟 ,𝐷) ) + (𝑀 + 2) log2 (𝑛𝑟 ,𝑒)𝑛−^/2

𝑟 ,𝑒 .

Now, by definition of the minimizing sequence (\̂ (ridge) (𝑝, 𝑛𝑒, 𝑛𝑟 , 𝐷))𝑝∈N, for all 𝑝 large enough,
𝑅
(ridge)
𝑛,𝑛𝑒 ,𝑛𝑟 (𝑢 \̂ (ridge) (𝑝,𝑛𝑒 ,𝑛𝑟 ,𝐷) ) ⩽ inf\∈Θ𝐻,𝐷 𝑅

(ridge)
𝑛,𝑛𝑒 ,𝑛𝑟 (𝑢\ ) + Y. Also, according to Step 3,

inf
\∈E2 (𝑛𝑟,𝑒 )∪E3 (𝑛𝑟,𝑒 )

𝑅
(ridge)
𝑛,𝑛𝑒 ,𝑛𝑟 (𝑢\ ) ⩽ inf

\∈E3 (𝑛𝑟,𝑒 )
𝑅
(ridge)
𝑛,𝑛𝑒 ,𝑛𝑟 (𝑢\ )

⩽ inf
\∈E3 (𝑛𝑟,𝑒 )

R𝑛 (𝑢\ ) + (𝑀 + 2) log2 (𝑛𝑟 ,𝑒)𝑛−^/2
𝑟 ,𝑒 .
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Observe that, for all 𝑛𝑟 ,𝑒 large enough, \𝑃Y ∈ E3 (𝑛𝑟 ,𝑒). Therefore, inf\∈E3 (𝑛𝑟,𝑒 ) R𝑛 (𝑢\ ) ⩽ R𝑛 (𝑢\𝑃Y ).
Combining the previous inequalities, we conclude that, almost surely, for all 𝑛𝑟 ,𝑒 large enough and for
all 𝑝 large enough,

R𝑛 (𝑢 \̂ (ridge) (𝑝,𝑛𝑒 ,𝑛𝑟 ,𝐷) ) ⩽ inf
\∈Θ𝐻,𝐷

R𝑛 (𝑢\ ) + 3Y.

Since Y is arbitrary, almost surely, lim𝑛𝑒 ,𝑛𝑟→∞ lim𝑝→∞ R𝑛 (𝑢 \̂ (ridge) (𝑝,𝑛𝑒 ,𝑛𝑟 ,𝐷) ) = inf\∈Θ𝐻,𝐷 R𝑛 (𝑢\ ).

5.5. Proof of Theorem 4.7

The result is a direct consequence of Theorem 4.6, Proposition 2.3 and of the continuity of R𝑛 with
respect to the 𝐶𝐾 (Ω) norm.

6. Proofs of Section 5

6.1. Proof of Proposition 5.5

Since the functions in 𝐻𝑚+1 (Ω,R𝑑2 ) are only defined almost everywhere, we first have to give a mean-
ing to the pointwise evaluations 𝑢(X𝑖) when 𝑢 ∈ 𝐻𝑚+1 (Ω,R𝑑2 ). Since Ω is a bounded Lipschitz do-
main and (𝑚 + 1) > 𝑑1/2, we can use the Sobolev embedding of Theorem 1.1. Clearly, Π̃ is linear
and ∥Π̃(𝑢)∥∞ ⩽ 𝐶Ω∥𝑢∥𝐻𝑚+1 (Ω) . The natural choice to evaluate 𝑢 ∈ 𝐻𝑚+1 (Ω,R𝑑2 ) at the point X𝑖 is
therefore to evaluate its unique continuous modification Π̃(𝑢) at X𝑖 .

By assumption, F𝑘 (𝑢, ·) = F (lin)
𝑘

(𝑢, ·) + 𝐵𝑘 , where F (lin)
𝑘

(𝑢, ·) = ∑
|𝛼 |⩽𝐾 ⟨𝐴𝑘,𝛼, 𝜕𝛼𝑢⟩ and 𝐴𝑘,𝛼 ∈

𝐶∞ (Ω̄,R𝑑1 ). Next, consider the symmetric bilinear form, defined for all 𝑢, 𝑣 ∈ 𝐻𝑚+1 (Ω,R𝑑2 ) by

A𝑛 (𝑢, 𝑣) =
_𝑑

𝑛

𝑛∑︁
𝑖=1

⟨Π̃(𝑢) (X𝑖), Π̃(𝑣) (X𝑖)⟩ + _𝑒E⟨Π̃(𝑢) (X(𝑒) ), Π̃(𝑣) (X(𝑒) )⟩

+ 1
|Ω|

𝑀∑︁
𝑘=1

∫
Ω

F (lin)
𝑘

(𝑢,x)F (lin)
𝑘

(𝑣,x)𝑑x + _𝑡

|Ω|
∑︁

|𝛼 |⩽𝑚+1

∫
Ω

⟨𝜕𝛼𝑢(x), 𝜕𝛼𝑣(x)⟩𝑑x,

along with the linear form defined for all 𝑢 ∈ 𝐻𝑚+1 (Ω,R𝑑2 ) by

B𝑛 (𝑢) =
_𝑑

𝑛

𝑛∑︁
𝑖=1

⟨𝑌𝑖 , Π̃(𝑢) (X𝑖)⟩ + _𝑒E⟨Π̃(𝑢) (X(𝑒) ), ℎ(X(𝑒) )⟩

− 1
|Ω|

𝑀∑︁
𝑘=1

∫
Ω

𝐵𝑘 (x)F (lin)
𝑘

(𝑣,x)𝑑x.

Observe that

A𝑛 (𝑢, 𝑢) − 2B𝑛 (𝑢) = R
(reg)
𝑛 (𝑢) − _𝑑

𝑛

𝑛∑︁
𝑖=1

∥𝑌𝑖 ∥2
2 − _𝑒E∥ℎ(X

(𝑒) )∥2
2 −

1
|Ω|

𝑀∑︁
𝑘=1

∫
Ω

𝐵𝑘 (x)2𝑑x.
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In addition, A𝑛 (𝑢, 𝑢) ⩾ _𝑡 ∥𝑢∥2
𝐻𝑚+1 (Ω) , where _𝑡 > 0, so that A𝑛 is coercive on the normed space

(𝐻𝑚+1 (Ω), ∥ · ∥𝐻𝑚+1 (Ω) ). Since (𝑚 + 1) > max(𝑑1/2, 𝐾), one has that

|A𝑛 (𝑢, 𝑣) | ⩽ ((_𝑑 + _𝑒)𝐶2
Ω +

∑︁
1⩽𝑘⩽𝑀

(
∑︁

|𝛼 |⩽𝐾
∥𝐴𝑘,𝛼∥∞,Ω)2 + _𝑡 )∥𝑢∥𝐻𝑚+1 (Ω) ∥𝑣∥𝐻𝑚+1 (Ω) ,

and

|B𝑛 (𝑢) | ⩽𝐶Ω

(_𝑑
𝑛

𝑛∑︁
𝑖=1

∥𝑌𝑖 ∥2 + _𝑒∥ℎ∥∞ +
𝑀∑︁
𝑘=1

(∥𝐵𝑘 ∥∞,Ω
∑︁

|𝛼 |⩽𝐾
∥𝐴𝑘,𝛼∥∞,Ω)

)
∥𝑢∥𝐻𝑚+1 (Ω) .

This shows that the operators A𝑛 and B𝑛 are continuous. Therefore, by the Lax-Milgram theorem (e.g.,
Brezis, 2010, Corollary 5.8), there exists a unique �̂� ∈ 𝐻𝑚+1 (Ω,R𝑑2 ) such that A𝑛 (�̂�, �̂�) − 2B𝑛 (�̂�) =
min

𝑢∈𝐻𝑚+1 (Ω,R𝑑2 ) A𝑛 (𝑢, 𝑢) − 2B𝑛 (𝑢). This directly implies that �̂� is the unique minimizer of R
(reg)
𝑛

over 𝐻𝑚+1 (Ω,R𝑑2 ). Furthermore, the Lax-Milgram theorem also states that �̂� is the unique element of
𝐻𝑚+1 (Ω,R𝑑2 ) such that, for all 𝑣 ∈ 𝐻𝑚+1 (Ω,R𝑑2 ), A𝑛 (�̂�, 𝑣) = B𝑛 (𝑣). This concludes the proof of the
proposition.

6.2. Proof of Proposition 5.6

Let �̂�𝑛 be the unique minimizer of the regularized theoretical risk R
(reg)
𝑛 over 𝐻𝑚+1 (Ω,R𝑑2 ) given by

Proposition 5.5. Notice that

inf
𝑢∈𝐶∞ (Ω̄,R𝑑2 )

R
(reg)
𝑛 (𝑢) = inf

𝑢∈𝐻𝑚+1 (Ω,R𝑑2 )
R

(reg)
𝑛 (𝑢) = R𝑛 (�̂�𝑛).

The first equality is a consequence of the density of 𝐶∞ (Ω̄,R𝑑2 ) in 𝐻𝑚+1 (Ω,R𝑑2 ), together with the
continuity of the function R

(reg)
𝑛 : 𝐻𝑚+1 (Ω,R𝑑2 ) → R with respect to the 𝐻𝑚+1 (Ω) norm (see the

proof of Proposition 5.5). The density argument follows from the extension theorem of Stein (1970,
Chapter VI.3.3, Theorem 5) and from Evans (2010, Chapter 5.3, Theorem 3).

Our goal is to show that the regularized theoretical risk satisfies some form of continuity, so that
we can connect R (reg) (𝑢𝑝) and R (reg) (�̂�𝑛). Recall that, by assumption, F𝑘 (𝑢, ·) = F (lin)

𝑘
(𝑢, ·) + 𝐵𝑘 ,

where F (lin)
𝑘

(𝑢, ·) =∑
|𝛼 |⩽𝐾 ⟨𝐴𝑘,𝛼 (·), 𝜕𝛼𝑢(·)⟩ and 𝐴𝑘,𝛼 ∈ 𝐶∞ (Ω̄,R𝑑1 ). Observe that

R
(reg)
𝑛 (𝑢) = 𝐹 (𝑢) + 1

|Ω| 𝐼 (𝑢), (28)

where

𝐹 (𝑢) = _𝑑
𝑛

𝑛∑︁
𝑖=1

∥Π̃(𝑢) (X𝑖) −𝑌𝑖 ∥2
2 + _𝑒E∥Π̃(𝑢) (X(𝑒) ) − ℎ(X(𝑒) )∥2

2,

𝐼 (𝑢) =
∫
Ω

𝐿 ((𝜕𝑚+1
𝑖1 ,...,𝑖𝑚+1

𝑢(x))1⩽𝑖1 ,...,𝑖𝑚+1⩽𝑑1 , . . . , 𝑢(x),x)𝑑x,

and where the function 𝐿 satisfies

𝐿 (𝑥 (𝑚+1) , . . . , 𝑥 (0) , 𝑧) =
𝑀∑︁
𝑘=1

(
𝐵𝑘 (𝑧) +

∑︁
|𝛼 |⩽𝐾

⟨𝐴𝑘,𝛼 (𝑧), 𝑥 ( |𝛼 | )𝛼 ⟩
)2

+ _𝑡
𝑚+1∑︁
𝑗=0

∥𝑥 ( 𝑗 ) ∥2
2.
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(The term 𝑥 ( 𝑗 ) ∈ R

(
𝑑1 + 𝑗 − 1
𝑗 − 1

)
𝑑2

corresponds to the to the concatenation of all the partial derivatives
of order 𝑗 , i.e., to the term (𝜕 𝑗

𝑖1 ,...,𝑖 𝑗
𝑢(x))1⩽𝑖1 ,...,𝑖 𝑗⩽𝑑1 .) Clearly, 𝐿 ⩾ 0 and, since (𝑚 + 1) > 𝐾 , the

Lagrangian 𝐿 is convex in 𝑥 (𝑚+1) . Therefore, according to Lemma 2.11, the function 𝐼 is weakly lower-
semi continuous on 𝐻𝑚+1 (Ω,R𝑑2 ).

Now, let us proceed by contradiction and assume that there is a sequence (𝑢𝑝)𝑝∈N of functions such
that (𝑖) 𝑢𝑝 ∈ 𝐶∞ (Ω̄,R𝑑2 ), (𝑖𝑖) lim𝑝→∞ R

(reg)
𝑛 (𝑢𝑝) = R

(reg)
𝑛 (�̂�𝑛), and (𝑖𝑖𝑖) (𝑢𝑝)𝑝∈N does not converge

to �̂�𝑛 with respect to the 𝐻𝑚 (Ω) norm. Therefore, upon passing to a subsequence, there exists Y > 0
such that, for all 𝑝 ⩾ 0, ∥𝑢𝑝 − �̂�𝑛∥𝐻𝑚 (Ω) ⩾ Y.

Since R
(reg)
𝑛 (𝑢𝑝) ⩾ _𝑡 ∥𝑢𝑝 ∥𝐻𝑚+1 (Ω) , _𝑡 > 0, and (𝑢𝑝)𝑝∈N is a minimizing sequence, (𝑢𝑝)𝑝∈N is

bounded in 𝐻𝑚+1 (Ω,R𝑑2 ). Therefore, Theorem 1.4 states that passing to a subsequence, (𝑢𝑝)𝑝∈N con-
verges to a limit, say 𝑢∞, both weakly in 𝐻𝑚+1 (Ω,R𝑑2 ) and with respect to the 𝐻𝑚 (Ω) norm. Then,
since 𝐼 is weakly lower-semi continuous on 𝐻𝑚+1 (Ω,R𝑑2 ), we deduce that

lim
𝑝→∞

𝐼 (𝑢𝑝) ⩾ 𝐼 (𝑢∞). (29)

Recalling the definition of Π̃ in Theorem 1.1, we know that there exists a constant 𝐶Ω > 0 such that
∥𝑢𝑝 − Π̃(𝑢∞)∥∞,Ω = ∥Π̃(𝑢𝑝 − 𝑢∞)∥∞,Ω ⩽ 𝐶Ω∥𝑢𝑝 − 𝑢∞∥𝐻𝑚 (Ω) . We deduce that lim𝑝→∞ 𝐹 (𝑢𝑝) =
𝐹 (𝑢∞). Therefore, combining this result with (28) and (29), we deduce that lim𝑝→∞ R

(reg)
𝑛 (𝑢𝑝) ⩾

R
(reg)
𝑛 (𝑢∞). However, recalling that lim𝑝→∞ R

(reg)
𝑛 (𝑢𝑝) = R

(reg)
𝑛 (�̂�𝑛) and that �̂�𝑛 is the unique mini-

mizer of R
(reg)
𝑛 over 𝐻𝑚+1 (Ω,R𝑑2 ), we conclude that 𝑢∞ = �̂�𝑛.

We just proved that there exists a subsequence of (𝑢𝑝)𝑝∈N which converges to �̂�𝑛 with respect to the
𝐻𝑚 (Ω) norm. This contradicts the assumption ∥𝑢𝑝 − �̂�𝑛∥𝐻𝑚 (Ω) ⩾ Y for all 𝑝 ⩾ 0.

6.3. Proof of Theorem 5.7

The result is an immediate consequence of Theorem 4.7, Propositions 5.5, and Proposition 5.6.

6.4. Proof of Theorem 5.8

Throughout the proof, since no data are involved, we denote the regularized theoretical risk by R (reg)

instead of R
(reg)
𝑛 . Also, to make the dependence in the hyperparameter _𝑡 transparent, we denote by

𝑢(_𝑡 ) the unique minimizer of R (reg) instead of �̂�𝑛.
We proceed by contradiction and assume that lim_𝑡→0 ∥𝑢(_𝑡 ) − 𝑢★∥𝐻𝑚 (Ω) ≠ 0. If this is true, then,

upon passing to a subsequence (_𝑡 , 𝑝)𝑝∈N such that lim𝑝→∞ _𝑡 , 𝑝 = 0, there exists Y > 0 such that, for
all 𝑝 ⩾ 0, ∥𝑢(_𝑡 , 𝑝) − 𝑢★∥𝐻𝑚 (Ω) ⩾ Y.

Notice that ∥𝑢(_𝑡 , 𝑝)∥𝐻𝑚+1 (Ω) ⩽ R (reg) (𝑢★)/_𝑡 , 𝑝 = ∥𝑢★∥𝐻𝑚+1 (Ω) . Theorem 1.4 proves that upon
passing to a subsequence, (𝑢(_𝑡 , 𝑝))𝑝∈N converges with respect to the 𝐻𝑚 (Ω) norm to a function 𝑢∞ ∈
𝐻𝑚+1 (Ω,R𝑑2 ). Since 𝑚 ⩾ 𝐾 , the theoretical risk R is continuous with respect to the 𝐻𝑚 (Ω) norm and
we have that R (𝑢∞) = lim𝑝→∞ R (𝑢(_𝑡 , 𝑝)). Moreover, by definition of 𝑢(_𝑡 , 𝑝) and since R (𝑢★) =
0, we have that R (𝑢(_𝑡 , 𝑝)) + _𝑡 , 𝑝 ∥𝑢(_𝑡 , 𝑝)∥𝐻𝑚+1 (Ω) ⩽ _𝑡 , 𝑝 ∥𝑢★∥𝐻𝑚+1 (Ω) . Therefore, R (𝑢∞) = 0 and
𝑢∞ = 𝑢★. This contradicts the assumption that for all 𝑝 ⩾ 0, ∥𝑢(_𝑡 , 𝑝) − 𝑢★∥𝐻𝑚 (Ω) ⩾ Y.
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6.5. Proof of Proposition 5.11

We prove the proposition in several steps. In the sequel, given a measure ` on Ω and a function 𝑢 ∈
𝐻𝑚+1 (Ω,R𝑑2 ), we let ∥𝑢∥2

𝐿2 (`) =
∫
Ω
∥Π̃(𝑢) (x)∥2

2𝑑`(x), where, as usual, Π̃(𝑢) is the unique continuous

function such that Π̃(𝑢) = 𝑢 almost everywhere.
Step 1: Decomposing the problem into two simpler ones Following the framework of Arnone et al.
(2022), the core idea is to decompose the problem into two simpler ones thanks to the linearity in �̂�𝑛
and in 𝑌𝑖 of the identity

∀𝑣 ∈ 𝐻𝑚+1 (Ω,R𝑑2 ), A𝑛 (�̂�𝑛, 𝑣) = B𝑛 (𝑣)

of Proposition 5.5. Thus, recalling that 𝑌𝑖 = 𝑢★(X𝑖) + Y𝑖 , we let

B★𝑛 (𝑣) =
_𝑑

𝑛

𝑛∑︁
𝑖=1

⟨𝑢★(X𝑖), Π̃(𝑣) (X𝑖)⟩ + _𝑒E⟨Π̃(𝑣) (X(𝑒) ), ℎ(X(𝑒) )⟩

− 1
|Ω|

𝑀∑︁
𝑘=1

∫
Ω

𝐵𝑘 (x)F (lin)
𝑘

(𝑣,x)𝑑x

and

B (noise)
𝑛 (𝑣) = _𝑑

𝑛

𝑛∑︁
𝑖=1

⟨Y𝑖 , Π̃(𝑣) (X𝑖)⟩.

Clearly, B𝑛 = B★𝑛 +B
(noise)
𝑛 . Using Proposition 5.5 with 𝑌𝑖 instead of Y𝑖 , and setting _𝑒 = 0, we see that

there exists a unique �̂� (noise)
𝑛 ∈ 𝐻𝑚+1 (Ω,R𝑑2 ) such that, for all 𝑣 ∈ 𝐻𝑚+1 (Ω,R𝑑2 ), A𝑛 (�̂� (noise)

𝑛 , 𝑣) =
B (noise)
𝑛 (𝑣). Furthermore, �̂� (noise)

𝑛 is the unique minimizer over 𝐻𝑚+1 (Ω,R𝑑2 ) of

R (noise)
𝑛 (𝑢) = _𝑑

𝑛

𝑛∑︁
𝑖=1

∥Π̃(𝑢) (X𝑖) − Y𝑖 ∥2
2 + _𝑒E∥𝑢(X

(𝑒) )∥2
2 +

1
|Ω|

𝑀∑︁
𝑘=1

∫
Ω

F (lin)
𝑘

(𝑢,x)2𝑑x

+ _𝑡 ∥𝑢∥2
𝐻𝑚+1 (Ω) .

Similarly, Proposition 5.5 shows that there exists a unique �̂�★𝑛 ∈ 𝐻𝑚+1 (Ω,R𝑑2 ) such that, for all 𝑣 ∈
𝐻𝑚+1 (Ω,R𝑑2 ), A𝑛 (�̂�★𝑛 , 𝑣) = B★𝑛 (𝑣), and �̂�★𝑛 is the unique minimizer over 𝐻𝑚+1 (Ω,R𝑑2 ) of

R★
𝑛 (𝑢) =

_𝑑

𝑛

𝑛∑︁
𝑖=1

∥Π̃(𝑢 − 𝑢★) (X𝑖)∥2
2 + _𝑒E∥Π̃(𝑢) (X(𝑒) ) − ℎ(X(𝑒) )∥2

2

+ 1
|Ω|

𝑀∑︁
𝑘=1

∫
Ω

F𝑘 (𝑢,x)2𝑑x + _𝑡 ∥𝑢∥2
𝐻𝑚+1 (Ω) .

By the bilinearity of A𝑛, one has, for all 𝑣 ∈ 𝐻𝑚+1 (Ω,R𝑑2 ), A𝑛 (�̂�★𝑛 + �̂�
(noise)
𝑛 , 𝑣) = B𝑛 (𝑣). However,

according to Proposition 5.5, �̂�𝑛 is the unique element of 𝐻𝑚+1 (Ω,R𝑑2 ) satisfying this property. There-
fore, �̂�𝑛 = �̂�★𝑛 + �̂�

(noise)
𝑛 . Step 2: Some properties of the minimizers According to Lemma 2.12, �̂�𝑛,

�̂�★𝑛 , and �̂�
(noise)
𝑛 are random variables. Our goal in this paragraph is to prove that E∥�̂�𝑛∥2

𝐻𝑚+1 (Ω) ,
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E∥�̂�★𝑛 ∥2
𝐻𝑚+1 (Ω) , and E∥�̂� (noise)

𝑛 ∥2
𝐻𝑚+1 (Ω) are finite, so that we can safely use conditional expecta-

tions on �̂�𝑛, �̂�★𝑛 , and �̂� (noise)
𝑛 . Recall that, since _𝑡 ∥�̂�𝑛∥2

𝐻𝑚+1 (Ω) ⩽ R
(reg)
𝑛 (�̂�𝑛) ⩽ R

(reg)
𝑛 (0), and since

F (lin)
𝑘

(0, ·) = 0,

_𝑡 ∥�̂�𝑛∥2
𝐻𝑚+1 (Ω) ⩽

_𝑑

𝑛

𝑛∑︁
𝑖=1

∥𝑌𝑖 ∥2
2 + _𝑒E∥ℎ(X

(𝑒) )∥2
2 +

1
|Ω|

𝑀∑︁
𝑘=1

∫
Ω

𝐵𝑘 (x)2𝑑x.

Hence,

E∥�̂�𝑛∥2
𝐻𝑚+1 (Ω) ⩽ _−1

𝑡

(
_𝑑E∥𝑢★(X) + Y∥2

2 + _𝑒E∥ℎ(X
(𝑒) )∥2

2 +
1
|Ω|

𝑀∑︁
𝑘=1

∫
Ω

𝐵𝑘 (x)2𝑑x
)
.

Similarly,

E∥�̂�★𝑛 ∥2
𝐻𝑚+1 (Ω) ⩽ _−1

𝑡

(
_𝑑E∥𝑢★(X)∥2

2 + _𝑒E∥ℎ(X
(𝑒) )∥2

2 +
1
|Ω|

𝑀∑︁
𝑘=1

∫
Ω

𝐵𝑘 (x)2𝑑x
)
,

and E∥�̂� (noise)
𝑛 ∥2

𝐻𝑚+1 (Ω) ⩽ _−1
𝑡 _𝑑E∥Y∥2

2.
Step 3: Bias-variance decomposition In this paragraph, we use the notation A (x,𝑒) (𝑢, 𝑢) instead of
A𝑛 (𝑢, 𝑢), to make the dependence of A𝑛 in the random variables x = (X1, . . . ,X𝑛) and 𝑒 = (Y1, . . . , Y𝑛)
more explicit. We do the same with B𝑛 and �̂� (noise)

𝑛 . Observe that, for any (x, 𝑒) ∈ Ω𝑛 × R𝑛𝑑2 and for
any 𝑢 ∈ 𝐻𝑚+1 (Ω,R𝑑2 ), one has

A (x,−𝑒) (𝑢, 𝑢) − 2B (noise)
(x,𝑒) (𝑢) =A (x,𝑒) (−𝑢,−𝑢) − 2B (noise)

(x,−𝑒) (−𝑢).

Therefore, �̂� (noise)
(x,𝑒) = −�̂� (noise)

(x,−𝑒) .

Since, by assumption, Y has the same law as −Y, this implies E(�̂� (noise)
𝑛 | X1, . . . ,X𝑛) = 0, and

so E(�̂� (noise)
𝑛 ) = 0. Moreover, since �̂�★𝑛 is a measurable function of X1, . . . ,X𝑛, we have E(�̂�★𝑛 |

X1, . . . ,X𝑛) = �̂�★𝑛 . Recalling (Step 1) that �̂�𝑛 = �̂�★𝑛 + �̂� (noise)
𝑛 , we deduce the following bias-variance

decomposition:

E∥�̂�𝑛 − 𝑢★∥2
𝐿2 (`X ) = E∥�̂�

★
𝑛 − 𝑢★∥2

𝐿2 (`X ) + E∥�̂�
(noise)
𝑛 ∥2

𝐿2 (`X ) . (30)

Step 4: Bounding the bias Recall that �̂�★𝑛 minimizes R★
𝑛 over 𝐻𝑚+1 (Ω,R𝑑2 ), so that R★

𝑛 (𝑢★) ⩾
R★
𝑛 (�̂�★𝑛). Therefore, PI(𝑢★) + _𝑡 ∥𝑢★∥2

𝐻𝑚+1 (Ω) ⩾
_𝑑
𝑛

∑𝑛
𝑖=1 ∥Π̃(�̂�★𝑛 − 𝑢★) (X𝑖)∥2

2. We deduce that

1
_𝑑

(
PI(𝑢★) + _𝑡 ∥𝑢★∥2

𝐻𝑚+1 (Ω)
)

⩾
∥�̂�★𝑛 − 𝑢★∥2

𝐻𝑚+1 (Ω)
𝑛

𝑛∑︁
𝑖=1

Π̃ ( �̂�★𝑛 − 𝑢★

∥�̂�★𝑛 − 𝑢★∥𝐻𝑚+1 (Ω)

)
(X𝑖)

2

2

⩾ ∥�̂�★𝑛 − 𝑢★∥2
𝐿2 (`X )

− ∥�̂�★𝑛 − 𝑢★∥2
𝐻𝑚+1 (Ω) sup

∥𝑢∥
𝐻𝑚+1 (Ω)⩽1

(
E∥Π̃(𝑢) (X)∥2

2 −
1
𝑛

𝑛∑︁
𝑖=1

∥Π̃(𝑢) (X𝑖)∥2
2

)



32

⩾ ∥�̂�★𝑛 − 𝑢★∥2
𝐿2 (`X )

− 2
(
∥�̂�★𝑛 ∥2

𝐻𝑚+1 (Ω) + ∥𝑢★∥2
𝐻𝑚+1 (Ω)

)
sup

∥𝑢∥
𝐻𝑚+1 (Ω)⩽1

(
E∥Π̃(𝑢) (X)∥2

2 −
1
𝑛

𝑛∑︁
𝑖=1

∥Π̃(𝑢) (X𝑖)∥2
2

)
.

Moreover, PI(𝑢★) + _𝑡 ∥𝑢★∥2
𝐻𝑚+1 (Ω) ⩾ _𝑡 ∥�̂�★𝑛 ∥2

𝐻𝑚+1 (Ω) . Taking expectations, we conclude by Lemma
2.14 that there exists a constant 𝐶′

Ω
, depending only on Ω, such that

E∥�̂�★𝑛 − 𝑢★∥2
𝐿2 (`X ) ⩽

1
_𝑑

(
PI(𝑢★) + _𝑡 ∥𝑢★∥2

𝐻𝑚+1 (Ω)
)
+
𝐶′
Ω
𝑑

1/2
2

𝑛1/2

(
2∥𝑢★∥2

𝐻𝑚+1 (Ω) +
PI(𝑢★)
_𝑡

)
.

Step 5: Bounding the variance Since �̂�
(noise)
𝑛 minimizes R (noise)

𝑛 over 𝐻𝑚+1 (Ω,R𝑑2 ), we have
R (noise)
𝑛 (0) ⩾ R (noise)

𝑛 (�̂� (noise)
𝑛 ). So,

_𝑑

𝑛

𝑛∑︁
𝑖=1

∥Y𝑖 ∥2
2 ⩾

_𝑑

𝑛

𝑛∑︁
𝑖=1

∥Π̃(�̂� (noise)
𝑛 ) (X𝑖) − Y𝑖 ∥2

2.

Observing that ∥Π̃(�̂� (noise)
𝑛 ) (X𝑖) − Y𝑖 ∥2

2 = ∥Π̃(�̂� (noise)
𝑛 ) (X𝑖)∥2

2 − 2⟨Π̃(�̂� (noise)
𝑛 ) (X𝑖), Y𝑖⟩ + ∥Y𝑖 ∥2

2, we de-
duce that

2
𝑛

𝑛∑︁
𝑖=1

⟨Π̃(�̂� (noise)
𝑛 ) (X𝑖), Y𝑖⟩ ⩾

1
𝑛

𝑛∑︁
𝑖=1

∥Π̃(�̂� (noise)
𝑛 ) (X𝑖)∥2

2,

and 〈 ∫
Ω

Π̃(�̂� (noise)
𝑛 )𝑑`X,

2
𝑛

𝑛∑︁
𝑖=1

Y𝑖

〉
+ 2
𝑛

𝑛∑︁
𝑖=1

〈
Π̃(�̂� (noise)

𝑛 ) (X𝑖) −
∫
Ω

Π̃(�̂� (noise)
𝑛 )𝑑`X, Y𝑖

〉
⩾

1
𝑛

𝑛∑︁
𝑖=1

∥Π̃(�̂� (noise)
𝑛 ) (X𝑖)∥2

2.

Therefore,

∥�̂� (noise)
𝑛 ∥2

𝐿2 (`X ) ⩽
〈 ∫

Ω

Π̃(�̂� (noise)
𝑛 )𝑑`X,

2
𝑛

𝑛∑︁
𝑖=1

Y𝑖

〉
+ ∥�̂� (noise)

𝑛 ∥𝐻𝑚+1 (Ω) sup
∥𝑢∥

𝐻𝑚+1 (Ω)⩽1

1
𝑛

𝑛∑︁
𝑗=1

⟨Π̃(𝑢) (X 𝑗 ) − E(Π̃(𝑢) (X)), Y 𝑗⟩

+ ∥�̂� (noise)
𝑛 ∥2

𝐻𝑚+1 (Ω) sup
∥𝑢∥

𝐻𝑚+1 (Ω)⩽1

(
E∥Π̃(𝑢) (X𝑖)∥2

2 −
1
𝑛

𝑛∑︁
𝑖=1

∥Π̃(𝑢) (X𝑖)∥2
2

)
:= 𝐴 + 𝐵 +𝐶.

According to the Cauchy-Schwarz inequality,

E(𝐴) ⩽
(
E
∫

Ω

Π̃(�̂� (noise)
𝑛 )𝑑`X

2

2

)1/2
×

2(E∥Y∥2
2)

1/2

𝑛1/2
,
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and so, by Jensen’s inequality,

E(𝐴) ⩽
(
E∥�̂� (noise)

𝑛 ∥2
𝐿2 (`X )

)1/2 ×
2(E∥Y∥2

2)
1/2

𝑛1/2
.

The inequality R (noise)
𝑛 (0) ⩾ R (noise)

𝑛 (�̂� (noise)
𝑛 ) also implies that

_𝑑

𝑛

𝑛∑︁
𝑖=1

∥Y𝑖 ∥2
2 ⩾

_𝑑

𝑛

𝑛∑︁
𝑖=1

∥Π̃(�̂� (noise)
𝑛 ) (X𝑖) − Y𝑖 ∥2

2 + _𝑡 ∥�̂�
(noise)
𝑛 ∥2

𝐻𝑚+1 (Ω) .

Therefore,

_𝑑

𝑛_𝑡

𝑛∑︁
𝑖=1

2⟨Π̃(�̂� (noise)
𝑛 ) (X𝑖), Y𝑖⟩ ⩾ ∥�̂� (noise)

𝑛 ∥2
𝐻𝑚+1 (Ω) ,

and

_𝑑

_𝑡
sup

∥𝑢∥
𝐻𝑚+1 (Ω)⩽1

1
𝑛

𝑛∑︁
𝑗=1

⟨Π̃(𝑢) (X 𝑗 ), Y 𝑗⟩ ⩾ ∥�̂� (noise)
𝑛 ∥𝐻𝑚+1 (Ω) .

By Theorem 1.1, if ∥𝑢∥𝐻𝑚+1 (Ω) ⩽ 1, then ⟨E(Π̃(𝑢) (X)), 1
𝑛

∑𝑛
𝑗=1 Y 𝑗⟩ ⩽

𝐶Ω𝑑
1/2
2
𝑛

∥∑𝑛
𝑖=1 Y𝑖 ∥2. Thus,

∥�̂� (noise)
𝑛 ∥𝐻𝑚+1 (Ω)

⩽
_𝑑

_𝑡

(𝐶Ω𝑑
1/2
2
𝑛

∥
𝑛∑︁
𝑖=1

Y𝑖 ∥2 + sup
∥𝑢∥

𝐻𝑚+1 (Ω)⩽1

1
𝑛

𝑛∑︁
𝑗=1

⟨Π̃(𝑢) (X 𝑗 ) − E(Π̃(𝑢) (X)), Y 𝑗⟩
)
.

Using Lemma 2.15 together with the fact that, for all x,y ∈ R, (x + y)2 ⩽ 2(x2 + y2),

E∥�̂� (noise)
𝑛 ∥2

𝐻𝑚+1 (Ω) ⩽
4_2
𝑑

𝑛_2
𝑡

𝐶2
Ω𝑑2E∥Y∥2

2.

Similarly, observing that for all random variables 𝑋,𝑌 ∈ R, E(𝑋𝑌 )2 ⩽ E(𝑋2)E(𝑌2),

E(𝐵) ⩽ 4_𝑑
𝑛_𝑡

𝐶2
Ω𝑑2E∥Y∥2

2.

Moreover, by Lemma 2.14 and the inequality E(𝑋𝑌𝑍)2 ⩽ E(𝑋2)E(𝑌2)E(𝑍2),

E(𝐶) ⩽
_2
𝑑

𝑛3/2_2
𝑡

𝐶2
Ω𝑑

3/2
2 E∥Y∥

2
2.

Therefore, we conclude that there exists a constant 𝐶Ω > 0, depending only on Ω, such that

E∥�̂� (noise)
𝑛 ∥2

𝐿2 (`X ) ⩽
(
E∥�̂� (noise)

𝑛 ∥2
𝐿2 (`X )

)1/2 2(E∥Y∥2
2)

1/2

𝑛1/2

+ 4_𝑑
𝑛_𝑡

𝐶2
Ω𝑑2E∥Y∥2

2 +
_2
𝑑

𝑛3/2_2
𝑡

𝐶2
Ω𝑑

3/2
2 E∥Y∥

2
2.
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Hence, using elementary algebra,

(
E∥�̂� (noise)

𝑛 ∥2
𝐿2 (`X )

)1/2 ⩽
(E∥Y∥2

2)
1/2

𝑛1/2

(
2 + 2𝐶Ω𝑑

3/4
2

(_1/2
𝑑

_
1/2
𝑡

+ _𝑑

_𝑡𝑛
1/4

))
and

E∥�̂� (noise)
𝑛 ∥2

𝐿2 (`X ) ⩽
8E∥Y∥2

2
𝑛

(
1 +𝐶Ω𝑑

3/2
2

(_𝑑
_𝑡

+
_2
𝑑

_2
𝑡 𝑛

1/2

))
.

Step 6: Putting everything together Combining Steps 3, 4, and 5, we conclude that

E∥�̂�𝑛 − 𝑢★∥2
𝐿2 (`X ) ⩽

1
_𝑑

(
PI(𝑢★) + _𝑡 ∥𝑢★∥2

𝐻𝑚+1 (Ω)
)
+
𝐶′
Ω
𝑑

1/2
2

𝑛1/2

(
2∥𝑢★∥2

𝐻𝑚+1 (Ω) +
PI(𝑢★)
_𝑡

)
+

8E∥Y∥2
2

𝑛

(
1 +𝐶Ω𝑑

3/2
2

(_𝑑
_𝑡

+
_2
𝑑

_2
𝑡 𝑛

1/2

))
.

6.6. Proof of Proposition 5.12

By definition, �̂�𝑛 minimizes R
(reg)
𝑛 over 𝐻𝑚+1 (Ω,R𝑑2 ). So, R (reg)

𝑛 (𝑢★) ⩾ R
(reg)
𝑛 (�̂�𝑛). Moreover, since

∥Π̃(�̂�𝑛) (X𝑖) −𝑌𝑖 ∥2
2 = ∥Π̃(�̂�𝑛 − 𝑢★) (X𝑖)∥2

2 − 2⟨Π̃(�̂�𝑛 − 𝑢★) (X𝑖), Y𝑖⟩ + ∥Y𝑖 ∥2
2,

one has

1
𝑛

𝑛∑︁
𝑖=1

∥Π̃(�̂�𝑛) (X𝑖) −𝑌𝑖 ∥2
2

⩾ −2∥�̂�𝑛 − 𝑢★∥𝐻𝑚+1 (Ω) × sup
∥𝑢∥

𝐻𝑚+1 (Ω)⩽1

1
𝑛

𝑛∑︁
𝑗=1

⟨Π̃(𝑢) (X 𝑗 ) − E(Π̃(𝑢) (X)), Y 𝑗⟩

− 2
〈 ∫

Ω

Π̃(�̂�𝑛 − 𝑢★)𝑑`X,
1
𝑛

𝑛∑︁
𝑖=1

Y𝑖

〉
+ 1
𝑛

𝑛∑︁
𝑖=1

∥Y𝑖 ∥2
2.

Thus,

1
𝑛

𝑛∑︁
𝑖=1

∥Π̃(�̂�𝑛) (X𝑖) −𝑌𝑖 ∥2
2

⩾ −2(∥�̂�𝑛∥𝐻𝑚+1 (Ω) + ∥𝑢★∥𝐻𝑚+1 (Ω) ) sup
∥𝑢∥

𝐻𝑚+1 (Ω)⩽1

1
𝑛

𝑛∑︁
𝑗=1

⟨Π̃(𝑢) (X 𝑗 ) − E(Π̃(𝑢) (X)), Y 𝑗⟩

− 2
〈 ∫

Ω

Π̃(�̂�𝑛 − 𝑢★)𝑑`X,
1
𝑛

𝑛∑︁
𝑖=1

Y𝑖

〉
+ 1
𝑛

𝑛∑︁
𝑖=1

∥Y𝑖 ∥2
2. (31)

Recall from Steps 4 and 5 of the proof of Theorem 5.11 that

E∥�̂�𝑛∥2
𝐻𝑚+1 (Ω) ⩽ 2E∥�̂�★𝑛 ∥2

𝐻𝑚+1 (Ω) + 2E∥�̂� (noise)
𝑛 ∥2

𝐻𝑚+1 (Ω)
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⩽ 2
(PI(𝑢★)

_𝑡
+ ∥𝑢★∥2

𝐻𝑚+1 (Ω)

)
+

8_2
𝑑

𝑛_2
𝑡

𝐶2
Ω𝑑2E∥Y∥2

2

Therefore, Lemma 2.15 and the inequality E(𝑋𝑌 )2 ⩽ E(𝑋)2E(𝑌 )2 show that

E
(
∥�̂�𝑛∥𝐻𝑚+1 (Ω) sup

∥𝑢∥
𝐻𝑚+1 (Ω)⩽1

1
𝑛

𝑛∑︁
𝑗=1

⟨Π̃(𝑢) (X 𝑗 ) − E(Π̃(𝑢) (X)), Y 𝑗⟩
)
= O
𝑛→∞

( _𝑑
𝑛_𝑡

)
.

By Theorem 5.11,

E
���〈 ∫

Ω

Π̃(�̂�𝑛 − 𝑢★)𝑑`X,
1
𝑛

𝑛∑︁
𝑖=1

Y𝑖

〉���⩽ (
E∥𝑢★ − �̂�𝑛∥2

𝐿2 (`X )
)1/2E∥Y∥2

2

𝑛1/2
= O
𝑛→∞

( _𝑑
𝑛2_𝑡

)1/2
.

Combining these three results with (31), we conclude that

E
(1
𝑛

𝑛∑︁
𝑖=1

∥Π̃(�̂�𝑛) (X𝑖) −𝑌𝑖 ∥2
2

)
⩾ E∥Y∥2

2 + O
𝑛→∞

( _𝑑
𝑛_𝑡

)
.

Therefore, since lim𝑛→∞
_2
𝑑

𝑛_𝑡
= 0 and since R

(reg)
𝑛 (�̂�𝑛) = _𝑑

𝑛

∑𝑛
𝑖=1 ∥Π̃(�̂�𝑛) (X𝑖) − 𝑌𝑖 ∥2

2 + PI(�̂�𝑛) +
_𝑡 ∥�̂�𝑛∥2

𝐻𝑚+1 (Ω) ,

E
(
R

(reg)
𝑛 (�̂�𝑛)

)
⩾ _𝑑E∥Y∥2

2 + E(PI(�̂�𝑛)) + o
𝑛→∞

(1).

Similarly, almost everywhere,

1
𝑛

𝑛∑︁
𝑖=1

∥Π̃(�̂�★) (X𝑖) −𝑌𝑖 ∥2
2 =

1
𝑛

𝑛∑︁
𝑖=1

∥Y𝑖 ∥2
2.

Hence,

E
(
R

(reg)
𝑛 (𝑢★)

)
= _𝑑E∥Y∥2

2 + PI(𝑢★) + _𝑡 ∥𝑢★∥2
𝐻𝑚+1 (Ω) .

Since E(R (reg)
𝑛 (�̂�𝑛)) ⩽ E(R (reg)

𝑛 (𝑢★)) and since _𝑡 → 0, we are led to

E(PI(�̂�𝑛)) ⩽ PI(𝑢★) + o
𝑛→∞

(1),

which is the desired result.
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