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Abstract

We present new insights into causal inference
in the context of Heterogeneous Treatment Ef-
fects by proposing natural variants of Random
Forests to estimate the key conditional distri-
butions. To achieve this, we recast Breiman’s
original splitting criterion in terms of Wasser-
stein distances between empirical measures.
This reformulation indicates that Random
Forests are well adapted to estimate condi-
tional distributions and provides a natural ex-
tension of the algorithm to multi-variate out-
puts. Following the philosophy of Breiman’s
construction, we propose some variants of the
splitting rule that are well-suited to the condi-
tional distribution estimation problem. Some
preliminary theoretical connections are estab-
lished along with various numerical experi-
ments, which show how our approach may
help to conduct more transparent causal infer-
ence in complex situations. A Python package
is also provided.

1 Introduction

One of the primary objectives of supervised learning is
to provide an estimation of the conditional expectation
E [Y | X = x] for some underlying 1-dimensional objec-
tive Y and a multidimensional covariate X given the
dataset Dn = {(Xi, Yi) : 1 ≤ i ≤ n}. However, in many
real-world applications, it is also important to extract
the additional information encoded in the conditional
distribution L (Y | X = x). This is particularly the
case in the field of Heterogeneous Treatment Effects
(HTE) estimation problems, which represent the main
motivation of this work.

1.1 Motivation

In HTE problems, the traditional object of interest
is the Conditional Average Treatment Effect (CATE)
function, defined by

τ(x) = E [Y (1)− Y (0) | X = x] , (1)

where Y (1) (resp. Y (0)) denotes the potential outcome
(e.g., Rubin, 1974; Imbens and Rubin, 2015) of the
treatment (resp. no treatment). The propensity score
function e(·) is defined by

e(x) = P (T = 1 | X = x) ,

which captures the probability of receiving the treat-
ment for each individual. The data are usually of
the form D̄n = {(Xi, Yi(Ti), Ti) : 1 ≤ i ≤ n}, where
Ti denotes the treatment assignment indicator. Re-
cently, many approaches based on modern statistical
learning techniques have been investigated to estimate
the CATE function (e.g., Künzel et al., 2019; Athey
and Wager, 2019; Nie and Wager, 2017). Typically,
assuming unconfoundedness, that is

(Y (0), Y (1)) ⊥⊥ T | X , (2)

and that the propensity score function is uniformly
bounded away from 0 and 1, one is able to es-
timate µ0(x) = E [Y (0) | X = x] and µ1(x) =
E [Y (1) | X = x] , respectively with

{(Xi, Y (Ti)) : Ti = 0} and {(Xi, Y (Ti)) : Ti = 1} .
(3)

The classical approach in the HTE context is to design
the causal inference procedure around the estimation of
the CATE function τ(·) defined in (1) using D̄n, and to
test whether there is a notable difference between τ(x)
and 0 for each new coming individual x. It is important
to note that this is already a difficult task for certain
datasets due to the unbalance between treatment and
control groups or other practical reasons. For instance,
the X-learner (Künzel et al., 2019) is proposed to deal
with the unbalanced design by making efficient use of
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the structural information about the CATE function,
and the R-learner (Nie and Wager, 2017) is introduced
to improve accuracy and robustness of the CATE func-
tion estimation by formulating it into a standard loss-
minimization problem. However, a simple inference
based on the CATE function, or other key features
composed by the average treatment effects. (e.g., the
sorted Group Average Treatment Effects (GATES) pro-
posed by Chernozhukov et al. 2018), may be hazardous
in some situations because of the lack of information on
the fluctuations, or multimodality, of both conditional
laws L (Y (0) | X = x) and L (Y (1) | X = x). This phe-
nomenon, in practice, can arise when Y (0) and/or Y (1)
depend on some additional unconfounding factors that
are not collected in the study, which, however, greatly
affect the behaviors of the potential outcomes. From
another point of view, being aware of the existence of
such problems may also help to fix the flaw of data
collection procedure or the lack of subgroup analysis
for future study.

Ideally, one is interested in estimating the joint condi-
tional distribution L ((Y (0), Y (1)) | X = x) . Unfortu-
nately, a major difficulty of HTE estimation lies in the
fact that it is in general impossible to collect Yi(0) and
Yi(1) at the same time for the point Xi. Unlike the
difference in the linear conditional expectation τ(·), the
dependence between Y (0) and Y (1) given X is much
more complex and difficult to track. Hence, due to
the lack of information of the collectable dataset, the
estimation of the conditional covariance between Y (0)
and Y (1) is usually unavailable, let alone the condi-
tional joint distribution. A possible route to address
this shortcoming is to concentrate on a weaker problem:
instead of estimating L ((Y (0), Y (1)) | X = x), we are
interested in the estimation of conditional marginal dis-
tributions L (Y (0) | X = x) and L (Y (1) | X = x). By
considering the two subgroups (3) of the dataset D̄n,
the problem thus enters into a more classical supervised
learning context, similar as the design of T-learners
(Künzel et al., 2019), while the objective is replaced by
the estimation of conditional distributions. In some sce-
narios, even a simple raw visualization of the marginal
conditional distributions, as a complement of CATE
function estimation, may greatly help the decision mak-
ing process for practitioners.

Another motivation comes from the need to set-up
statistically sound decision procedures for multivari-
ate objectives in the context of HTE. For example, a
treatment is often related to a cost, which is also col-
lectable and sometimes essential to the final treatment
decisions. In this context, a simple extension of the
CATE function will clearly not be able to capture the
dependencies between the treatment effects and the
cost. Thus, a statistical tool that allows conditional

distribution estimation with multivariate objective will
therefore be useful for more complex inferences involv-
ing both treatment effects and costs at the same time.
In general, the traditional nonparametric methods for
conditional distribution inference (e.g., Hall et al., 1999;
Hall and Yao, 2005) are less effective when it comes to
flexibility of implementation, parallelization, and the
ability to handle high-dimensional noisy data. Another
remark is that Gaussian Process-based methods (e.g.,
Dutordoir et al., 2018) usually require the existence of
density w.r.t. Lebesgue measure, which is not always
true in the context of HTE. So, our goal is to achieve
density-free conditional distribution estimation based
on available modern machine/statistical learning tools.

1.2 Random Forests for conditional
distribution estimation

In order to address the issues described in the subsec-
tion above, our idea is to propose an adaptation of the
Random Forests (RF) algorithm (Breiman, 2001), so
that it can be applied to the conditional distribution es-
timation problems in the HTE context. RF have proven
to be successful in many real-world applications—the
reader is referred to Biau and Scornet (2015) and the
references therein for a general introduction. If we look
at the final prediction at each point x provided by the
RF algorithm, it can be regarded as a weighted average
of (Yi : 1 ≤ i ≤ n), where the random weights depend
upon the training dataset and the stochastic mecha-
nism of the forests. Therefore, a very natural idea is
to use this weighted empirical measure to approximate
the target conditional distribution. This is also the
driving force in the construction of Quantile Regression
Forests (Meinshausen, 2006; Athey et al., 2019) and
other approaches that combine kernel density estima-
tions and Random Forests (e.g., Pospisil and Lee, 2019;
Hothorn and Zeileis, 2017).

In the present article, instead of studying the quantile or
density function of the target conditional distribution,
we focus directly on the (weighted) empirical measures
output by the forests and the associated Wasserstein
distances. This also makes further inferences based on
Monte-Carlo methods or smoothing more convenient
and straightforward. To make it clearer, let us denote
by π(x, dy) the probability measure associated with
the conditional distribution L (Y | X = x). Heuristi-
cally speaking, if the Wasserstein distance between the
Markov kernels π(x, dy) and π(z, dy) is dominated, in
some sense, by the distance between x and z, then the
data points that fall into a “neighborhood” of x are
expected to be capable of providing reliable approx-
imation of the conditional measure π(x, dy). In the
RF context, the role of each tree in the ensemble is to
build a wisely created partition of the domain, so that



Du, Biau, Petit, Porcher

the “neighborhood” mentioned above can be defined
accordingly. As such, the random weights come from
the averaging procedure of multiple trees.

As Breiman’s original RF are primarily designed for
conditional expectation estimations, we first provide
in Section 2 a reformulation that gives new insights
into Breiman’s original splitting criterion, by exploit-
ing a simple relation between empirical variance and
Wasserstein distance between empirical measures. This
reformulation allows a new interpretation of the RF
algorithm in the context of conditional distribution
estimation, which, in turn, can be used to handle mul-
tivariate objectives with a computational cost that
grows linearly with the dimension of the output. We
also investigate in this section several dedicated modi-
fications of Breiman’s splitting rule and present some
preliminary theoretical connections between their con-
structions. With a slight abuse of language, all these
RF variants aiming at conditional distribution estima-
tion are referred to as Wasserstein Random Forests
(WRF) in this article. Finally, we return in Section
3 to the HTE problem and illustrate through various
numerical experiments how WRF may help to design
more transparent causal inferences in this context.

2 Wasserstein Random Forests

In order to simplify the introduction of WRF, we tem-
porarily limit the discussion to the classical supervised
learning setting. Let X ∈ Rd and Y ∈ Rd′ be, respec-
tively, the canonical random variables of covariate and
the objective. Our goal is to estimate the conditional
measure π(x, dy) associated with L (Y | X = x) using
the dataset Dn = {(Xi, Yi) : 1 ≤ i ≤ n}.

2.1 Mechanism of Random Forests

A Random Forest is an ensemble method that aggre-
gates a collection of randomized decision trees. Denote
by M the number of trees and, for 1 ≤ j ≤M , let Θj

be the canonical random variable that captures ran-
domness of the j-th tree. Each decision tree is trained
on a randomly selected dataset D∗n(Θj) with the same
cardinal an ∈ {2, . . . , n}, sampled uniformly in Dn with
or without replacement. More concretely, for each tree,
a sequence of axis-aligned splits is made recursively
by maximizing some fixed splitting rule. At each iter-
ation, mtry ∈ {1, . . . , d} directions are explored and
the splits are always performed in the middle of two
consecutive data points, in order to remove the possible
ties. The splitting stops when the current cell contains
fewer points than a threshold nodesize ∈ {2, . . . , an},
or when all the data points are identical. In this way,
a binary hierarchical partition of Rd is constructed.
For any x ∈ Rd, we denote by An(x; Θj ,Dn) the cell

in the j-th tree that contains x and by Nn(x; Θj ,Dn)
the number of data points in D∗n(Θj) that fall into
An(x; Θj ,Dn).

The core of our approach relies on the fact that the pre-
diction πn(x, dy; Θj ,Dn) of the conditional distribution
at point x given by the j-th tree is simply the empirical
measure associated with the observations that fall into
the same cell An(x; Θj ,Dn) as x, that is

πn(x, dy; Θj ,Dn) =
∑

i∈D∗n(Θj)

1{Xi∈An(x;Θj ,Dn)}

Nn(x; Θj ,Dn)
δYi

(dy),

where δYi(dy) is the Dirac measure at Yi. Let
Θ[M ] = (Θ1, . . . ,ΘM ). As such, the final estimation
πM,n(x, dy; Θ[M ],Dn) provided by the forest is but the
average of the πn(x, dy; Θj ,Dn), 1 ≤ j ≤M , over the
M trees, i.e.,

πM,n(x, dy; Θ[M ],Dn) =
1

M

M∑
j=1

πn(x, dy; Θj ,Dn).

Equally, πM,n(x, dy; Θ[M ],Dn) =
∑n
i=1 αi(x)δYi

(dy),

where αi(x) =
∑M
j=1

1{Xi∈An(x;Θj ,Dn)}

MNn(x;Θj ,Dn) 1{i∈D∗n(Θj)} is
the random weight associated with Yi. It is readily
checked that

∑n
i=1 αi(x) = 1 for any x ∈ Rd. Thus,

the final prediction πM,n(x, dy; Θ[M ],Dn) is a weighted
empirical measure with random weights naturally given
by the tree aggregation mechanism. Our notation is
compatible with Biau and Scornet (2015), where a more
detailed introduction to RF is provided. It should be
stressed again that we are interested in learning the con-
ditional distribution L (Y | X = x), not in inferring the
conditional expectation E [Y | X = x] as in traditional
forests. This is of course a more complex task, insofar
as the expectation is just a feature, albeit essential, of
the distribution.

X1•

X2•
X3•

X4•

X5•

X6•

X7•

X10•

X8•

X9•

x×

(2)

(1)

C1 C2

C3 C4 C5

Figure 1: Illustration of the a single decision tree. Note that X9

and X10 are not sampled in the sub-dataset used for the tree’s
construction.

As an illustration, consider in Figure 1 the partition
C1 ∪ C2 ∪ C3 ∪ C4 ∪ C5 = R2 provided by a decision
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tree trained on a bidimensional sub-dataset of size 8.
The estimation of the conditional distribution at the
point x is simply the empirical measure 1

2 (δY4
+ δY5

)
associated with the cell C5 to which it belongs. Mutatis
mutandis, suppose that there is another decision tree
that gives the measure 1

2 (δY5
+ δY7

) as the estimation
at x. Then the final estimation of the conditional
distribution output by the forest that contains these
two trees is the empirical distribution 1

4δY4
+ 1

2δY5
+

1
4δY7

. On the other hand, the classical RF outputs the
average 1

4Y4 + 1
2Y5 + 1

4Y7 as the scalar estimation of
the conditional expectation.

2.2 Breiman’s Splitting criteria

Now, let us take a closer look at the splitting criteria
that are maximized at each cell in the construction of
trees. For a cell that consists in a subset of data points
A ⊂ Dn, an axis-aligned cut along the k-th coordinate
at position z defines a partition AL ∪AR of A. More
precisely, we denote

AL =
{

(Xi, Yi) ∈ A : X
(k)
i ≤ z

}
and

AR =
{

(Xi, Yi) ∈ A : X
(k)
i > z

}
.

With a slight abuse of notation, we write Xi ∈ A when
(Xi, Yi) ∈ A. Recall that Breiman’s original splitting
criterion (Breiman, 2001) takes the following form:

LB(AL, AR) =
1

NA

∑
Xi∈A

(Yi − ȲA)2

− 1

NA

∑
Xi∈AL

(Yi − ȲAL
)2 − 1

NA

∑
Xi∈AR

(Yi − ȲAR
)2,

(4)
where ȲA (resp. ȲAL

, ȲAR
) is the average of the Yi

that fall into A (resp. AL, AR), and NA (resp. NL, NR)
is the cardinal of A (resp. AL, AR). This criterion is
maximized at each node of each tree over z and the
mtry randomly chosen coordinates (see, e.g., Biau and
Scornet, 2015, section 2.2).
Remark 2.1. We recall that the Breiman’s splitting
criterion can be regarded as the gain induced by the cut
in terms of empirical L2-error. Hence, the mechanism
of the construction of the decision tree can indeed be
interpreted as a greedy optimization.

The quantity LB can also be interpreted as the differ-
ence between the total variance and the intra-class vari-
ance within the subgroups divided by the split, which,
thanks to the total variance decomposition, turns out
to be the associated inter-class variance, i.e.,

LB(AL, AR) =
NL
NA

(ȲAL
−ȲA)2+

NR
NA

(ȲAR
−ȲA)2. (5)

Remark 2.2. As mentioned in Remark 2.1, the represen-
tation (5) can be understood as the difference between
the predictions with and without the cut, in terms of
empirical L2-error. In fact, for each data point at AL
(resp. AR), the prediction with the split is ȲAL

(resp.
ȲAR

). At the same time, for all the data points in A,
the predictions without the split are given by ȲA. As
such, the associated weights NL/NA (resp. NR/NA)
come from the number of data points in the sub-cell
AL (resp. AR). This reveals a different understanding
of the Breiman’s splitting rule as mentioned in Remark
2.1: When considering conditional expectation estima-
tion, the split should be made such that the predictions
given by the tree are as different as possible, in terms
of empirical L2-error.

Regardless of the choice of interpretation, since there is
only a finite number of cuts to be evaluated at each iter-
ation, a decision tree can therefore be built in a greedy
manner. Without loss of generality, when bootstrap
is involved (i.e., D∗n(Θj) is sampled with replacement),
one may consider multisets/bags in order to deal with
duplicate data for formal definitions discussed above.
The details can be found in Algorithm 2.

2.3 Basic properties of Wasserstein distances

Before proceeding further, we recall some basic prop-
erties of Wasserstein distances. If not mentioned oth-
erwise, d and d′ denote respectively the dimension of
the covariate X and the dimension of the objective Y .
For p ≥ 1, the Wasserstein distance Wp between two
probability measures µ, ν on Rd′ is defined by

Wp(µ, ν) =

(
inf

γ∈Γ(µ,ν)

∫
‖x− y‖p γ(dx, dy)

) 1
p

, (6)

where ‖·‖ is the Euclidean norm on Rd′ and Γ(µ, ν)
denotes the set of all couplings of µ and ν, namely,
γ(dx,Rd′) = µ(dx) and γ(Rd′ , dy) = ν(dy). To guaran-
tee that (6) is well-defined, it is necessary to assume
that the p-th moments of both µ and ν are finite. When
µ and ν are the probability measures on R (i.e., d′ = 1),
one can deduce that (see, e.g., Santambrogio, 2015)

Wp(µ, ν) =

(∫ 1

0

∣∣F−1
µ (u)− F−1

ν (u)
∣∣p du) 1

p

, (7)

where F−1
µ (u) (resp. F−1

ν (u)) is the generalized inverse
distribution function defined by

F−1
µ (u) = inf {x ∈ R | Fµ(x) ≥ u} ,

with Fµ(x) (resp. Fν(x)) the cumulative distribution
function of µ (resp. ν). Thanks to (7), the Wasserstein
distance between empirical measures can be efficiently
computed in the univariate case.
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2.4 Intra-class interpretation

We focus on the representation of LB given in (4).
Denote by µN = 1

N

∑N
i=1 δUi . Observe that

Wp
p(µN , δV1

) =
1

N

N∑
i=1

‖Ui − V1‖p ,

one can rewrite the Breiman’s rule in terms of quadradic
Wasserstein distances between empirical measures,
namely,

LB(AL, AR) =
1

2NA

∑
Xi∈A

W2
2 (δYi

, πA)

− 1

2NA

∑
Xi∈AL

W2
2 (δYi

, πL)− 1

2NA

∑
Xi∈AR

W2
2 (δYi

, πR) .

(8)
In the same spirit of Remark 2.1, the interpretation
(8) heuristically indicates that RF are well-adapted
to estimate conditional distributions. More precisely,
the Breiman’s rule can also be regarded as the gain in
terms of quadratic Wasserstein error, induced by the
split.

An important consequence of this result is that it al-
lows a natural generalization of Breiman’s criterion to
outputs Y with a dimension greater than 1. Indeed,
the extension of RF to multivariate outputs is not
straightforward, even in the context of conditional ex-
pectation estimation (e.g., Segal and Xiao, 2011; Miller
et al., 2014). The dependence between the different
coordinates of the objective is usually dealt with using
additional tuning or supplementary prior knowledge.
Such a modeling is not necessary in our approach since
dependencies in the Y -vector features are captured by
the Wasserstein distances. (Note however that some
appropriate normalization should be considered when
there are noticeable differences between the coordinates
of the objective.) Besides, this extension is also compu-
tationally efficient, as the complexity of the evaluation
at each cell increases linearly w.r.t. the dimension d′
of the objective Y . The details are provided in Algo-
rithm 1. In the sequel, to increase the clarity of our
presentation, we use the notation L2

intra instead of LB
for the criterion defined in (8).

2.5 Inter-class interpretation

Using the similar idea as mentioned in Remark 2.2 by
replacing the L2-error with the W2-distance between
empirical measures according to the goal of conditional
distribution estimation, it is natural to consider the
following splitting criterion:

Lpinter(AL, AR) =
NL
NA

Wp
p(πL, πA) +

NR
NA

Wp
p(πR, πA).

Algorithm 1: Computation of L2
intra(AL, AR) in

the case Y = (Y (1), Y (2), . . . , Y (d′)) ∈ Rd′ .
Require: Sub-datasets AL, AR and A.
Result: The value of L2

intra(AL, AR).
1 for k ∈ {1, 2, . . . , d′} do
2 Compute respectively Ȳ (k)

L = 1
NL

∑
Xi∈AL

Y
(k)
i ,

Ȳ
(k)
R = 1

NR

∑
Xi∈AR

Y
(k)
i and

Ȳ
(k)
A = 1

NA

∑
Xi∈A Y

(k)
i .

3 Set respectively
W

(k)
L = 1

NA

∑
Xi∈AL

(Y
(k)
i − Ȳ (k)

L ),

W
(k)
R = 1

NA

∑
Xi∈AR

(Y
(k)
i − Ȳ (k)

R ) and

W
(k)
A = 1

NA

∑
Xi∈A(Y

(k)
i − Ȳ (k)

A ).
4 end
5 Compute and output∑d′

k=1

(
W

(k)
A −W (k)

L −W (k)
R

)
.

Remark 2.3. A very noticeable difference between intra-
class and inter-class interpretation is that one does not
need to choose a reference conditional distribution in
the latter case. More precisely, at each data point
(Xi, Yi), we have used the reference conditional distri-
bution δYi

to build the associated local optimizer in
terms of quadratic Wasserstein distance in (8). Such
choice may not be informative enough in the case where
the conditional distribution is, say, multimodal. How-
ever, in the inter-class interpretation, there is no such
problem.

In the univariate case (i.e., d′ = 1), thanks to (7),
it is easily checked that Lpinter can be computed with
O(NA log(NA)) complexity at each cell that contains
the data points A ⊂ Dn. This rate can be achieved
by considering a Quicksort algorithm in order to deal
with the generalized inverse distribution function en-
countered in (7). The implementation is tractable,
although slightly worse than O(NA), the complexity of
L2

intra. However, the computation of the Wasserstein
distance is not trivial when d′ > 1, where an exact
computation is of order O(N3

A) (e.g., Peyré and Cuturi,
2018, Section 2). A possible relaxation is to consider an
entropic regularized approximation such as Sinkhorn
distance (e.g., Cuturi, 2013; Genevay et al., 2019; Lin
et al., 2019), where the associated complexity is of order
O(N2

A/ε
2) with tolerance ε ∈ (0, 1). Nevertheless, since

the amount of evaluations of Lpinter is enormous during
the construction of RF, we only recommend using this
variant of splitting criterion for univariate problems at
the moment. The details of efficient implementations
and possible relaxations for multivariate cases will be
left for future research. It is however now time to put
our splitting analysis to good use and return to the
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HTE conditional distribution estimation problem.

3 Applications

Our primary interest is the improvement that WRF can
bring into the causal inference under the potential out-
comes framework. As for now, the potential outcomes
Y (0) and Y (1) are assumed to be univariate random
variables—extension to the multivariate case will be
discussed a little later. During the observational study,
the i.i.d. dataset D̄n = {(Xi, Yi, Ti) : 1 ≤ i ≤ n} is col-
lected with Yi an abbreviation of Yi(Ti). Under the un-
confoundedness assumption (2), our goal is to estimate
the probability distribution πt(x, dy) associated with
the conditional marginal distribution L (Y (t) | X = x)
for t ∈ {0, 1}, based on the dataset D̄n.

3.1 Wasserstein Random Forests for HTE

Before discussing the applications of these conditional
marginal distribution estimations, we would like to
stress again that we have no intention to “replace” the
Average Treatment Effect-based causal inference strat-
egy. On the contrary, our primary motivation is to
provide a complementary tool so that a more trans-
parent inference can be conducted, by maximizing the
usage of available data. More precisely, we train WRF
respectively on the treatment and control groups (3),
to estimate respectively the conditional measures π0

and π1. These estimations are denoted by π̂0 and π̂1.

First, when potential outcomes are assumed to be uni-
variate, a raw visualization of π̂0 and π̂1 is always
accessible and informative. In this way, causality can
therefore be visualized by the change of the shape of
the marginal distributions. Next, following a philoso-
phy similar to the CATE function, we propose to assess
the changes in the conditional distribution in terms of
Wasserstein distance using the criterion

Λp(x) = Wp (π0(x, dy), π1(x, dy)) .

Intuitively speaking, Λp(·) is capable of capturing cer-
tain causal effects that are less noticeable in terms of
τ(·). An estimation Λ̂p(·) can be obtained as a by-
product of the estimation of π̂0 and π̂1. For practical
implementation, a histogram of the estimation of Λp(x)
can be constructed by out-of-bag strategy. Finally,
regarding the multivariate output case, we would like
to mention that when the cost of the treatment, say
C(1), is also collected in the dataset, WRF can then
be used—as we have seen in Subsection 2.2, without
further effort—to provide an estimation of the joint
multivariate distribution L ((Y (1), C(1)) | X = x) in
order to conduct more complex inferences involving the
costs and the treatment effects at the same time. The

same idea also applies to the case where the treatment
effects themselves are also multivariate.

3.2 Univariate conditional density estimation

Since the conditional distribution is in general inac-
cessible from the real-world datasets, we present here
a simulation study based on synthetic data to illus-
trate the performance of WRF in the context of HTE,
focusing on the conditional marginal distribution es-
timation. We consider the following model, where
X = (X(1), . . . , X(d)) and the symbol N stands for the
Gaussian distribution:

• X ∼ Unif
(
[0, 1]d

)
with d = 50;

• Y (0) ∼ N (m0(X), σ2
0(X));

• Y (1) ∼ 1
2δ−1 + 1

2N
(
m1(X), σ2

1(X)
)
;

• T ∼ Bernoulli
(

1
2

)
;

with

• m0(x) = 10x(2)x(4) + x(3) + exp
{
x(4) − 2x(1)

}
;

• σ2
0(x) =

{
−x(1)x(2) + 4

(
x(3)

)2} ∨ 1
5 ;

• m1(x) = 2m0(x) + 1− 5x(2)x(5);
• σ2

1(x) = 3x(2) + x(3)x(4) + x(6).

To summarize, the conditional measure π0(x, dy) is
unimodal, while π1(x, dy) is bimodal, composed by
a Gaussian and a Dirac at −1, and thus the condi-
tional distribution of Y (1) does not have a density w.r.t.
Lebesgue measure. The mixture parameters (1/2, 1/2)
in π1 can be interpreted as an unconfounding factor that
is not collected in the study. The four functions m0(·),
σ2

0(·),m1(·), and σ2
1(·) have been designed to implement

complex dependence between the covariate and the po-
tential outcomes. We note however that the CATE
function takes the simple form τ(x) = −2.5x(2)x(5) and
is therefore equal to zero if and only if x(2)x(5) = 0.
The treatment and control groups are balanced due
to the symmetrical form of T . This simple setting is
usually referred to as randomized study. This choice
allows us to avoid the complexity when dealing with
the propensity score function, and we can thus focus
on the conditional distribution estimation. A brief dis-
cussion on the influence of propensity score function
can be found in Supplementary Material.

We trained the models based on a simulated dataset
of size n = 1000, which is reasonably small considering
the complexity of the conditional distribution estima-
tion problem. An illustration for an individual x∗ with
x

(5)
∗ = 0 (so, τ(x∗) = 0) can be found in Figure 2

((a)-(b) for L2
intra-WRF; (c)-(d) for L2

inter-WRF). This
visualization highlights the good quality of conditional
inference performed by our WRF methods—both of
them have highlighted the key properties such as mul-
timodality and fluctuation in the conditional marginal
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Algorithm 2: Wasserstein Random Forests predicted distribution at x ∈ Rd.
Require: Training dataset Dn, number of trees M > 0, subsample size an ∈ [n], Wasserstein order p > 0,

mtry ∈ [d] where d denotes the dimension of the covariate X, nodesize ∈ [an] and x ∈ Rd.
Result: The sequence of weights (αi(x); i ∈ [n]) which determines a weighted empirical measure that

estimates the conditional distribution at x.
1 for j ∈ {1, 2, . . . ,M} do
2 Select an points uniformly in Dn, with or without replacement, as the sub-dataset D∗n(Θj).
3 Initiate a binary tree T (Θj ,Dn) that only contains the root D∗n(Θj).
4 Set P = (D∗n(Θj)) the ordered list that contains the root of the tree.
5 while P 6= ∅ do
6 Let A be the first element of P.
7 if A contains less data points than nodesize or if all Xi ∈ A are identical then
8 Remove the cell A from the list P.
9 else

10 Select uniformly without replacement, a subsetMtry ⊂ [d] of cardinality mtry.
11 Select the best split position z∗ and the direction `∗ based on the sub-dataset A along the

coordinates inMtry that maximizes the selected splitting rule (i.e., L2
intra or Lpinter). Cut A

according to the best split. Denote respectively by AL and AR the corresponding cells.
12 Let the left and right children of A be respectively AL and AR, and associated the node A with

the split position and direction (z∗, `∗).
13 Remove the cell A from the list P.
14 Concatenate P, AL and AR.
15 end
16 end

17 Compute αi,j(x) :=
1{Xi∈An(x;Θj ,Dn)}

MNn(x;Θj ,Dn) 1Nn(x;Θj ,Dn)>0 for each (Xi, Yi) ∈ D∗n(Θj) according to T (Θj ,Dn).
18 end
19 Compute αi(x) = 1

M

∑M
j=1 αi,j(x) for each i ∈ [n].

distributions. More importantly, it stresses the per-
tinence of studying conditional distributions in the
HTE context, since the CATE function, as is the case
here, is not always capable to provide insights regard-
ing causality. For example, according to the trained
L2

intra-WRF model, we have Λ̂2(x∗) = 1.8591 (reference
value Λ2(x∗) = 2.1903), which is much more noticeable
as an indicator of causality than the CATE function
(estimated by −0.3675) in this situation.

A finer comparison based on average Wasserstein dis-
tance is shown in Table 1 and Table 2, where πt-Wp(N)
(t = 0, 1 and p = 1, 2) denotes the average Wp-distance
between π̂t(x, ·) and πt(x, ·) (approximated by uni-
formly distributed empirical measures of size 2000)
tested on N points (i.e., individuals x) randomly sam-
pled in [0, 1]d, which is basically a Monte-Carlo approxi-
mation of E

[
Wp(π̂t(X, ·), πt(X, ·))

∣∣ D̄n]. We compare
several WRFs with other popular RF-based methods
that are able to perform conditional distribution estima-
tion. First, we consider Mondrian Forests (MF, Laksh-
minarayanan et al., 2014), whose splits do not depend
on the response variable. The idea is to prove the rele-
vance of our splitting criteria in the high-dimensional
setting. Second, we consider Extreme Randomized

(a) π0(x∗, ·) by L2
intra-WRF (b) π1(x∗, ·) by L2

intra-WRF

(c) π0(x∗, ·) by L2
inter-WRF (d) π1(x∗, ·) by L2

inter-WRF

Figure 2: An illustration of estimated conditional distributions
provided by different variants of WRF with the same parameters:
an = 500 (with repetition), M = 200, mtry = 50, nodesize =
2. In the legend, pred and ref denote respectively the histograms
provided by WRF and reference values sampled directly from the
true conditional distribution with sample sizes fixed to be 2000.

Trees (ERT, Geurts et al., 2006) with Breiman’s rule.
This can be seen as L2

intra-WRF with different stochas-
tic construction—the candidates of splitting positions
are sampled uniformly on the edges of cells, and then
the candidate with the best score w.r.t. L2

intra is chosen.
Finally, we also compare with another RF-based con-



WRF and Applications in HTE

ditional distribution estimation method with different
splitting rule (RFCDE, Pospisil and Lee, 2019) based
on L2-error of density estimations. We stress again that
WRF do not need to assume that the conditional den-
sity w.r.t. lebesgue measure exists when dealing with
conditional distribution estimation. Finally, we also
compare with the classical Kernel Density Estimation
(KDE, Rosenblatt, 1969) and its Nearest Neighbour
counterpart (NN-KDE, Biau et al., 2015). We consider
Gaussian kernel, with the smoothing bandwidth pa-
rameter h chosen by cross-validated grid-search (for
the associated conditional expectation estimation), and
the number of neighbours chosen to be the square root
of the number of data points.

Table 1: Estimation of π0 (i.e., L (Y (0) | X = x))

Methods π0-W1(1000) π0-W2(1000)

L2
intra-WRF 0.7209 0.8809

L2
inter-WRF 0.7150 0.8766

L1
inter-WRF 0.7097 0.8642

MF 2.0835 2.4576
ERT 0.7736 0.9769
RFCDE 0.8111 0.9725
KDE 2.0110 2.5321
NN-KDE 1.9250 2.3961

Table 2: Estimation of π1 (i.e., L (Y (1) | X = x))

Methods π1-W1(1000) π1-W2(1000)

L2
intra-WRF 1.7030 2.8111

L2
inter-WRF 1.3767 2.2987

L1
inter-WRF 1.3498 2.3341

MF 2.2553 3.3778
ERT 1.6021 2.6742
RFCDE 3.2960 3.4895
KDE 2.3958 3.2993
NN-KDE 2.2490 3.1223

According to Table 1 and Table 2, it is clear that
WRFs, especially L1

inter version, provide promising re-
sults for this synthetic dataset. In particular, the good
performance of Lpinter-WRF w.r.t. L2

intra-WRF may be
connected to the discussion provided in Remark 2.3.
Since the splits of MF do not depend on Yi, it is easy
to understand that most of splits are not performed at
“good” directions. The method RFCDE is in general not
easy to tune. Despite the choice of kernel, we have used
grid searching for determining the associated hyper pa-
rameters such as bandwidth. The poor performance
in Table 2 may be explained by the non-existence of a
probability density for π1. It is interesting to note that
ERT outperforms L2

intra-WRF for the estimation of π1,
which suggests that there is still room to improve the
stochastic construction of trees.

3.3 Multivariate case

We illustrate in this section the ability of L2
intra-

WRF when dealing with multivariate output. The
implementation can be regarded as a natural gener-
alization of Breiman’s rule in the multivariate set-
ting. Moreover, the complexity is optimal (linear)
w.r.t. the dimension of Y . Denote by C(1) the cost
variable associated to the treatment, which is sup-
posed to be a random variable that depends on X,
namely, C(1) ∼ N

(
2X(3)X(5) +X(2), X(5)X(6) + 1

)
.

Our goal is to estimate the joint conditional distri-
bution L ((Y (1), C(1)) | X = x). The basic setting of
the algorithm remains the same as discussed in Sec-
tion 3.2. As shown in Figure 3, L2

intra-WRF gives, at
least visually, a promising estimation of the conditional
joint distribution even with only around 500 samples,
which outperforms MF (Table 3). The results, again,
provide evidence of the relevance of our Wasserstein
distance-based interpretation in the multivariate case.

(a) L2
intra-WRF (b) MF

Figure 3: An illustration of estimated conditional distributions
(by heatmap) at a randomly selected point provided respectively by
L2

intra-WRF and MF.

Table 3: Estimation of L ((Y (1), C(1)) | X = x)

Methods π1-W1(1000) π1-W2(1000)

L2
intra-WRF 0.0852 0.1298

MF 0.1055 0.1623

Conclusion

We have proposed a new approach based on WRF
that can help HTE inference through estimating some
key conditional distributions. From a theoretical per-
spective, the challenge is to prove consistency of WRF
when the sample size tends to infinity, in the spirit of
works such as Scornet et al. (2015); Wager (2014). For
example, a first goal would be to show that, under ap-
propriate assumptions, E [Wp(π̂t(X, ·), πt(X, ·))] → 0
as n→∞, where π̂t denotes the output of WRF and
the expectation is taken w.r.t. both the distribution of
X and the sample.
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Supplementary Material

A Additional simulation study for univariate case

In order to compare with the other conditional density estimation methods such as RFCDE (Pospisil and Lee,
2019) and take into account the influence of the propensity score function, we consider a slightly modified model:

• X ∼ Unif
(
[0, 1]d

)
with d = 50;

• Y (0) ∼ N (m0(X), σ2
0(X)) and Y (1) ∼ 1

2N (−1, 1) + 1
2N

(
m1(X), σ2

1(X)
)
;

• T ∼ Bernoulli
(

1
2 sin

(
2X(1)X(2) + 6X(3)

)
+ 1

2

)
,

with

• m0(x) = 10x(2)x(4) + x(3) + exp
{
x(4) − 2x(1)

}
;

• σ2
0(x) =

{
−x(1)x(2) + 4

(
x(3)

)2} ∨ 1
5 ;

• m1(x) = 2m0(x) + 1− 5x(2)x(5);
• σ2

1(x) = 3x(2) + x(3)x(4) + x(6).

Basically, the distributions of X and Y (0) remain the same, while the conditional distribution of Y (1) given X is
replaced by a mixture of two Gaussians, which admits a density w.r.t. Lebesgue measure on Rd. The propensity
score function is also modified in order to model the complexity of observational studies.

First, to illustrate the good quality of the estimation provided by WRF, we randomly select an individual x∗ such
that the associated CATE function is 0 (i.e., x(2)

∗ x
(5)
∗ = 0), for which a CATE-based inference cannot provide

sufficient insight in the causality. The visualization can be found in Figure 4. Note that we add a standard
kernel smoothing since conditional density is assumed to exist in this case. It is clear that both L2

intra-WRF and
L2

inter-WRF can provide a good approximation of both π0(x∗, ·) and π1(x∗, ·). A more detailed benchmark can be
found in Table 4. The setting of the experiment (for all considered forests) remains the same as in the main text:
The dataset is of size 1000 and the associated parameters for the forests are an = 500, M = 200 and nodesize
= 2.

(a) π0(x?, ·) estimated by L2
intra-WRF (b) π0(x?, ·) estimated by L2

inter-WRF

(c) π1(x?, ·) estimated by L2
intra-WRF (d) π1(x?, ·) estimated by L2

inter-WRF

Figure 4: An illustration of estimated conditional distributions provided by different variants of WRF with the same parameters: an = 500
(with repetition), M = 200, mtry = 50, nodesize = 2. In the legend, pred and ref denote respectively the prediction given by WRF and
reference values sampled directly from the true conditional distribution with sample size fixed to be 2000. The acronyms kde-pred and kde-ref
stand for the outputs of the kdeplot function of seaborn package (Waskom et al., 2020), which provides a standard kernel smoothing. Finally,
kde-Y denotes the kdeplot of the Y -population, i.e., all the Yi(1) or Yi(0) in the training dataset according to the treatment/control group.

It is clear that L2
inter-WRF provides the overall most accurate prediction for this synthetic dataset. The difference

between intra-class and inter-class WRF are more noticeable in the estimation of π1, which provides more evidence
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Table 4: Estimation of π0 (i.e., L (Y (0) | X = x)) and π1 (i.e., L (Y (0) | X = x))

Methods π0-W1(1000) π0-W2(1000) π1-W1(1000) π1-W2(1000)

L2
intra-WRF 0.6967 0.8523 1.5406 2.2493

L2
inter-WRF 0.6869 0.8403 1.3844 1.9881

L1
inter-WRF 0.6915 0.8397 1.4210 2.0428

MF 2.0110 2.0321 2.3958 2.8991
ERT 0.7025 0.8961 1.6490 2.4223
RFCDE 0.7979 3.1471 0.9503 3.3630

that inter-class variants of WRF are better suited for more complex situation (multimodality or large variance).
The fact that L2

inter-WRF outperforms L1
inter-WRF may be due to the existence of conditional density functions.

This case can be regarded as more “smooth” than the case considered in the main text, where conditional density
does not exist for π1.

B On the parameter tuning of WRF

We discuss in this section the influence of the choice of parameters (i.e., mtry, an and nodesize) of the WRF
and try to provide some suggestions on the algorithm tuning. We stick to the model provided in Section 3.2 of the
main text and compare the πt-Wp(5000) respectively for t ∈ {0, 1} and p ∈ {1, 2} to illustrate the performance of
our method in unimodal and multimodal situations. Unlike the conditional expectation estimation, the cross
validation-based tuning strategy is not straightforward to implement for conditional distribution estimation.
Indeed, we have only a single sample at each point Xi, and it does not provide enough information for the
conditional distribution. Therefore, we also track the performance of the associated conditional expectation
estimations in terms of Mean Squared Error (MSE). The conditional expectation functions given X = x of Y (0)
and Y (1) are denoted respectively by µ0(x) and µ1(x). Our goal is to illustrate whether the tuning for the
conditional expectation can be exploited to guide the tuning for the conditional distribution estimation problem.
We also note that since each tree is constructed using only part of the data, the out-of-bag errors for the forest
can thus be obtained by averaging the empirical error of each tree on the unused sub-dataset (see, e.g., Biau and
Scornet, 2015, Section 2.4) in the case where an independent test dataset is not available.

First, it is well-known that in the classical RF context the number of trees M should be taken as large as possible,
according to the available computing budget, in order to reduce the variance of the forest. Although the goal in
the WRF framework is changed to the conditional distribution estimation, it is still suggested to use a large M if
possible.

Second, let us investigate the number of directions to be explored at each cell mtry. The result is illustrated in
Figure 5 ((a)-(d) for average Wasserstein loss and (e)-(f) for MSE of conditional expectation estimation). Roughly
speaking, the value of mtry reflects the strength of greedy optimization at each cell during the construction
of decision trees. A conservative approach is to choose mtry as large as possible according to the available
computing resources.

Then, let us see the influence brought by the change of nodesize. The illustration can be found in Figure 6
((a)-(d) for average Wasserstein loss and (e)-(f) for MSE of conditional expectation estimation). In the classical
RF context, the motivation of the choice nodesize > 2 can be interpreted as introducing some local averaging
procedure at each cell in order to deal with the variance or noise of the sample. Here, as discussed in the main
text, we are interested in the conditional distribution estimation in the HTE context, where the variance or other
fluctuation of the conditional distribution is part of the information to be estimated. Hence, the interpretation of
the choice nodesize > 2 should be adapted accordingly, as the minimum sample size that is used to describe
the conditional distribution at each cell. This interpretation is better suited when it comes to the estimation of
multimodal conditional distributions. As shown in Figure 6 (a)-(d), there are some optimal choices of nodesize
between 2 and an. In the simple cases, such as the estimation of π0 (unimodal), the MSE of the associated
conditional expectation (Figure 6 (e)) can be used, accordingly, to tune the algorithm for conditional distribution
estimation. However, in the more complex case such as the estimation of π1 (bi-modal), the MSE of the conditional
expectation estimation is no as stable (Figure 6 (f)). Nevertheless, it is also recommended to use small nodesize
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(a) Comparison of π0-W1(5000). (b) Comparison of π0-W2(5000). (c) Comparison of π1-W1(5000).

(d) Comparison of π1-W2(5000). (e) Comparison of the estimation of µ0. (f) Comparison of the estimation of µ1.

Figure 5: An illustration of the performance of different variants of WRF (namely, L2
intra-WRF and L1

inter-WRF) with mtry varying in
{5, 15, 25, 35, 45, 50}, an = 500 (with repetition), M = 300 and nodesize = 3.

(a) Comparison of π0-W1(5000). (b) Comparison of π0-W2(5000). (c) Comparison of π1-W1(5000).

(d) Comparison of π1-W2(5000). (e) Comparison of the estimation of µ0. (f) Comparison of the estimation of µ1.

Figure 6: An illustration of the performance of different variants of WRF (namely, L2
intra-WRF and L1

inter-WRF) with nodesize varying in
{2, 5, 10, 20, 40, 80}, an = 500 (with repetition), M = 300 and mtry = 30.

in this situation as a conservative choice.

Finally, we discuss the size an of the sub-dataset used to construct each decision tree. Note that the choice of an
is still not well-understood even in the classical RF context (see, e.g., Biau and Scornet, 2015; Scornet et al.,
2015). When the computing budget allows to implement an = n (with replacement, which corresponds to the
classical Bootstrap), we recommend to use this choice. Otherwise, we recommend to fix the an from one fifth to
one third of the whole data size in order to maintain a reasonably good performance without heavy computations.

Suggestions on the parameter tuning The take-home message for the parameter tuning of WRF is simple:
We recommend to use largeM and mtry according to the available computing resources. The parameter nodesize
can be tuned via a cross validation-based strategy using the MSE of the associated conditional expectation
estimation. In addition, we suggest to choose smaller nodesize when there is abnormal fluctuation of the MSE
score. It is also proposed to use classical bootstrap (i.e., an = n with replacement) when possible. Otherwise, we
suggest to fix a smaller an according to the computing budget. Finally, although there is no theoretical guarantee,
we advocate to use L1

inter-WRF or L2
inter-WRF for univariate objective, since it has a better overall accuracy with

a reasonable additional computational cost.
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(a) Comparison of π0-W1(5000). (b) Comparison of π0-W2(5000). (c) Comparison of π1-W1(5000).

(d) Comparison of π1-W2(5000). (e) Comparison of the estimation of µ0. (f) Comparison of the estimation of µ1.

Figure 7: An illustration of the performance of different variants of WRF (namely, L2
intra-WRF and L1

inter-WRF) with an varies in
{50, 100, 200, 300, 500, 1000} (with repetition), nodesize = 5, M = 300 and mtry = 30.

C On the propensity score function

The propensity score function e(·) measures the probability that the treatment is assigned to a certain individual,
which basically determines the distribution of the available dataset for the estimation of π0 and π1 in the
population. More precisely, imagine that x is an individual such that in the neighbourhood of x, the value of
e(·) is close to 0. Then, it is expected that only very few training data for the estimation of π1(x, ·) can be
collected during the observational study. As a consequence, it is expected that the estimation π̂1 at such point is
of reasonably bad quality. For example, the propensity score function is

e(x) =
1

2
sin(2x(1)x(2) + 6x(3)) +

1

2
.

Denote by x? an individual such that x(1)
? = π

4 , x
(2)
? = 1, and x(6)

? = π
6 . It is readily checked that e(x?) = 0. As

shown in Figure 8, the estimation of π0(x?, ·) is very accurate (see Figure 8 (a)-(b)), while the estimation of
π1(x?, ·) is of poor quality (see Figure 8 (c)-(d)).

From a theoretical perspective, one may suppose that the propensity score function is bounded away from 0 and
1 uniformly for all x ∈ Rd (see, e.g., Künzel et al., 2019; Nie and Wager, 2017). However, it is, unfortunately,
not possible to control the propensity score during an observational study. As a consequence, it is usually very
difficult to verify such an assumption in practice. Therefore, a more meaningful question can be how to detect if
our estimation is reliable or not for a certain individual. A straightforward strategy is to estimate the propensity
score function independently, as done for example in (Athey and Wager, 2019), and to test whether the value of
this score is close to 0 and 1. Another approach is to exploit the information encoded in the splits/weights of the
forest to detect whether enough data is collected for the prediction at target individual. The details are left for
future research.

Finally, let us mention that if the goal is to estimate the function Λp(·) defined in Section 3.1 of the main text, we
expect that more dedicated variants of WRF can be constructed, in the same spirit of Causal Forests introduced
in (Athey and Wager, 2019).

D Possible extensions

In this section, we discuss two natural extensions of WRF that we did not investigate in details.

First, inspired by the Random Rotation Ensembles introduced in (Blaser and Fryzlewicz, 2016), it is natural to
consider the implementation of oblique splits, i.e., the splits are not necessarily axis-aligned. More precisely, for
each tree, by sampling a uniformly distributed rotation matrix (e.g. Blaser and Fryzlewicz, 2016, Section 3), we
are able to construct the decision tree by using the rotated sub-dataset (or equivalently, one can also implement
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(a) π0(x∗, ·) estimated by L2
intra-WRF (b) π0(x∗, ·) estimated by L1

inter-WRF

(c) π1(x∗, ·) estimated by L2
intra-WRF (d) π1(x∗, ·) estimated by L1

inter-WRF

Figure 8: An illustration of estimated conditional distributions provided by different variants of WRF with the same parameters: an = 500
(with repetition), M = 200, mtry = 50, nodesize = 2. In the legend, pred and ref denote respectively the prediction given by WRF and
reference values sampled directly from the true conditional distribution with sample size fixed to be 2000. The acronyms kde-pred and kde-ref
stand for the outputs of the kdeplot function of seaborn package (Waskom et al., 2020), which provides a standard kernel smoothing. Finally,
kde-Y denotes the kdeplot of the Y -population, i.e., all the Yi(1) or Yi(0) in the training dataset according to the treatment/control group.

randomly rotated cuts in the tree’s construction). Intuitively speaking, the rotation variants of WRF will be
more consistent when it comes to performance, while the additional computing resources are required for both
training and prediction.

Another direction is to replace the Dirac mass in the empirical measures by some kernel K(x, dy), as proposed in
(Pospisil and Lee, 2019). For instance, the Lpinter-WRF can be modified by using the following splitting criteria:

L̃pinter(AL, AR) :=
NL
NA

Wp
p

(
1

NL

∑
Xi∈AL

K(Yi, dy),
1

NA

∑
Xi∈A

K(Yi, dy)

)

+
NR
NA

Wp
p

(
1

NR

∑
Xi∈AR

K(Yi, dy),
1

NA

∑
Xi∈A

K(Yi, dy)

)
,

where the kernel K(·, ·) is chosen according to prior knowledge of the problem. At the same time, the final
prediction will be replaced by

π̃M,n(x, dy; Θ[M ],Dn) =

n∑
i=1

αi(x)K(Yi, dy),

where αi(·) remains the same as defined in Section 2.1 of the main text. When the associated Wp-distance
is easy to compute, we expect that this extension will be more accurate for small datasets. Nevertheless, the
performances of these natural extensions are still not clear. The details are therefore left for future research.
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