Errata for Lectures on the Nearest Neighbor Method

G. Biau and L. Devroye, Springer, Cham, 2015

April 22, 2021

- Page 7, line -8 Replace $B(\mathbf{x}, \rho)$ by $B^{\circ}(\mathrm{x}, \rho)$ (pointed out by Aditya Ghosh).
- Page 11, line 1 Replace the first three lines by:

Note that

$$
\frac{n_{\ell+1}}{n_{\ell}+1} \geq 1, \quad \frac{n_{\ell+1}}{n_{\ell}+1} \leq \frac{(1+\delta)^{\ell+1}}{(1+\delta)^{\ell}}=1+\delta,
$$

and

$$
\frac{k_{n_{\ell+1}}}{k_{n_{\ell}+1}} \leq \psi\left(\frac{n_{\ell+1}-n_{\ell}-1}{n_{\ell}+1}\right) \leq \psi(\delta) .
$$

So,

$$
\frac{n_{\ell}+1}{n_{\ell+1}}(1+\varepsilon) k_{n_{\ell}+1} \geq \frac{(1+\varepsilon) k_{n_{\ell+1}}}{(1+\delta) \psi(\delta)},
$$

and thus, for all δ small enough, by Chernoff's bound... (pointed out by Aditya Ghosh).

- Page 71, Theorem 6.3 Replace $(\ell+1)$-th by $(\ell+1) k$-th.
- Page 79, line 12 The formula should be $2 \log (n+1)+\gamma$, without the extra v (pointed out by Christian Rau).
- Page 73, Remark 6.6 "worst" should be "worse".
- Page 88 Replace the last line by

$$
f(x) \leq \psi(\beta, c) \stackrel{\text { def }}{=} \max \left(\left(\frac{\beta+1}{2 \beta}\right)^{\frac{\beta}{\beta+1}} c^{\frac{1}{\beta+1}}, 1+\frac{2 c}{\beta+1}\right)
$$

(pointed out by Jiantao Jiao).

- Page 89, Lemma 7.2 The correct statement and proof of the lemma are as follows (pointed out by Jiantao Jiao):

Lemma 7.2. If f is a Lipschitz density on $[0,1]$ satisfying $\mid f(x)-$ $f\left(x^{\prime}\right)|\leq c| x-\left.x^{\prime}\right|^{\beta}\left(x, x^{\prime} \in[0,1]\right)$ for $c>0$ and $\beta \in(0,1]$, then

$$
\max _{x \in[0,1]} f(x) \leq \psi(\beta, c) \stackrel{\text { def }}{=} \max \left(\left(\frac{\beta+1}{2 \beta}\right)^{\frac{\beta}{\beta+1}} c^{\frac{1}{\beta+1}}, 1+\frac{2 c}{\beta+1}\right) .
$$

Proof. Let $x_{0} \in[0,1]$ be such that $f\left(x_{0}\right)=M \stackrel{\text { def }}{=} \max _{x \in[0,1]} f(x)$. Assume that $\left[x_{0}-\left(\frac{M}{c}\right)^{1 / \beta}, x_{0}+\left(\frac{M}{c}\right)^{1 / \beta}\right] \subseteq[0,1]$. Since $f(x) \geq \max (0, M-$ $c\left|x-x_{0}\right|^{\beta}$), we have

$$
\begin{aligned}
1=\int_{0}^{1} f(x) \mathrm{d} x & \geq \int_{x_{0}-\left(\frac{M}{c}\right)^{1 / \beta}}^{x_{0}+\left(\frac{M}{c}\right)^{1 / \beta}}\left(M-c\left|x-x_{0}\right|^{\beta}\right) \mathrm{d} x \\
& =\int_{-\left(\frac{M}{c}\right)^{1 / \beta}}^{\left(\frac{M}{c}\right)^{1 / \beta}}\left(M-c|x|^{\beta}\right) \mathrm{d} x \\
& =2 M\left(\frac{M}{c}\right)^{1 / \beta}-\frac{2 c}{\beta+1}\left(\frac{M}{c}\right)^{1+\frac{1}{\beta}} \\
& =\frac{2 M^{1+\frac{1}{\beta}}}{c^{1 / \beta}} \times \frac{\beta}{\beta+1} .
\end{aligned}
$$

Therefore,

$$
M \leq\left(\frac{\beta+1}{2 \beta}\right)^{\frac{\beta}{\beta+1}} c^{\frac{1}{\beta+1}}
$$

One shows with similar arguments that when $\left(x_{0}-\left(\frac{M}{c}\right)^{1 / \beta}<0\right.$ and $x_{0}+\left(\frac{M}{c}\right)^{1 / \beta}>1$)

$$
M \leq 1+\frac{2 c}{\beta+1},
$$

while when $\left(x_{0}-\left(\frac{M}{c}\right)^{1 / \beta}<0\right.$ and $\left.x_{0}+\left(\frac{M}{c}\right)^{1 / \beta} \leq 1\right)$ or $\left(x_{0}-\left(\frac{M}{c}\right)^{1 / \beta} \geq 0\right.$ and $\left.x_{0}+\left(\frac{M}{c}\right)^{1 / \beta}>1\right)$,

$$
M \leq\left(\frac{\beta+1}{\beta}+\frac{c}{\beta}\right)^{\frac{\beta}{\beta+1}} c^{\frac{1}{\beta+1}} .
$$

- Page 161, lines -8 and -7 Replace "under the probability sign" by "outside the probability sign" (pointed out by Christian Rau).
- Page 237, line $9 \operatorname{Ber}(\mu(\mathbf{x}))$ should be $\operatorname{Ber}(r(\mathbf{x}))$.
- Page 242, line 3 "Stone's 1997 paper" should be "Stone's 1977 paper" (pointed out by Christian Rau).
- Page 261, Theorem 20.9 The bounded difference condition should be

$$
\sup _{\substack{\left(x_{1}, \ldots, x_{n}\right) \in A^{n} \\ x_{i}^{\prime} \in A}}\left|g\left(x_{1}, \ldots, x_{n}\right)-g\left(x_{1}, \ldots, x_{i-1}, x_{i}^{\prime}, x_{i+1}, \ldots, x_{n}\right)\right| \leq c_{i}, \quad 1 \leq i \leq n,
$$

for some positive constants c_{1}, \ldots, c_{n}.

- Page 269, Lemma 20.5 Replace $\mathscr{C}(\mathbf{z}, \pi / 6)$ by $\mathscr{C}(\mathbf{z}, \theta)$ in the second line (pointed out by Aditya Ghosh).
- Page 271, Remark $20.1 \int_{\mathbb{R}^{d}}|g(\mathbf{y})| \log ^{+}|g(\mathbf{y})| \mathrm{d} \mathbf{y}<\infty$ should be $\int_{\mathbb{R}^{d}}|g(\mathbf{y})|\left(\log ^{+}|g(\mathbf{y})|\right)^{d-1} \mathrm{~d} \mathbf{y}<\infty$ (pointed out by Arnaud Guyader).
- Page 273, Lemma 20.7 The second statement of the lemma should be: Moreover, for any Borel set $A \subseteq \mathbb{R}^{d}$,

$$
\mu_{1}\left(\left\{\mathbf{x} \in A: \limsup _{\rho \downarrow 0}\left(\frac{\mu_{2}\left(B_{\rho}(\mathbf{x})\right)}{\mu_{1}\left(B_{\rho}(\mathbf{x})\right)}\right)>t\right\}\right) \leq \frac{c}{t} \mu_{2}(A)
$$

(pointed out by Jiantao Jiao).

