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ABSTRACT

Residual neural networks are state-of-the-art deep learning models. Their
continuous-depth analog, neural ordinary differential equations (ODEs), are also
widely used. Despite their success, the link between the discrete and continuous
models still lacks a solid mathematical foundation. In this article, we take a step in
this direction by establishing an implicit regularization of deep residual networks
towards neural ODEs, for nonlinear networks trained with gradient flow. We prove
that if the network is initialized as a discretization of a neural ODE, then such a
discretization holds throughout training. Our results are valid for a finite training
time, and also as the training time tends to infinity provided that the network
satisfies a Polyak-Łojasiewicz condition. Importantly, this condition holds for a
family of residual networks where the residuals are two-layer perceptrons with an
overparameterization in width that is only linear, and implies the convergence of
gradient flow to a global minimum. Numerical experiments illustrate our results.

1 INTRODUCTION

Residual networks are a successful family of deep learning models popularized by breakthrough
results in computer vision (He et al., 2016b). The key idea behind residual networks, namely the
presence of skip connections, is now ubiquitous in deep learning, and can be found, for example,
in Transformer models (Vaswani et al., 2017). The main advantage of skip connections is to allow
successful training with depth of the order of a thousand layers, in contrast to vanilla neural networks,
leading to significant performance improvement (e.g., Wang et al., 2022). This has motivated research
on the properties of residual networks in the limit where the depth tends to infinity. One of the main
explored directions is the neural ordinary differential equation (ODE) limit (Chen et al., 2018).

Before presenting neural ODEs, we first introduce the mathematical formalism of deep residual
networks. We consider a single model throughout the paper to simplify the exposition, but most of
our results apply to more general models, as will be discussed later. We consider the formulation

hk+1 = hk +
1

L
√
m
Vk+1σ

( 1√
q
Wk+1hk

)
, k ∈ {0, . . . , L− 1}, (1)

where L is the depth of the network, hk ∈ Rq is the output of the k-th hidden layer, Vk ∈ Rq×m,
Wk ∈ Rm×q are the weights of the k-th layer, and σ is an activation function applied element-wise.
Scaling with the square root of the width is classical, although it often appears as an equivalent
condition on the variance at initialization (Glorot & Bengio, 2010; LeCun et al., 2012; He et al., 2015).
We make the scaling factors explicit to have weights of magnitude O(1) independently of the width
and the depth. The 1/L scaling factor is less common, but it is necessary for the correspondence with
neural ODEs to hold. More precisely, if there exist Lipschitz continuous functions V and W such that
Vk = V(k/L) and Wk = W(k/L), then the residual network (1) converges, as L → ∞, to the ODE

dH

ds
(s) =

1√
m
V(s)σ

( 1√
q
W(s)H(s)

)
, s ∈ [0, 1], (2)
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where s is the continuous-depth version of the layer index. It is important to note that this correspon-
dence holds for fixed limiting functions V and W . This is especially true at initialization, for example
by setting the Vk to zero and the Wk to Gaussian matrices weight-tied across the depth. The initial
residual network is then trivially equal to the neural ODE dH

ds (s) = 0. Of course, more sophisticated
initializations are possible, as shown, e.g., in Marion et al. (2022); Sander et al. (2022b). However,
regardless of an ODE structure at initialization, a more challenging question is that of the structure of
the network during and after training. Since the weights are updated during training, there is a priori
no guarantee that an ODE limit still holds after training, even if it does at initialization.

The question of a potential ODE structure for the trained network is not a mere technical one. In
fact, it is important for at least three reasons. First, it gives a precise answer to the question of the
connection between (trained) residual networks and neural ODEs, providing more solid ground to a
common statement in the community that both can coincide in the large-depth limit (see, e.g., Haber
& Ruthotto, 2017; E et al., 2019; Dong et al., 2020; Massaroli et al., 2020; Kidger, 2022). Second, it
opens exciting perspectives for understanding residual networks. Indeed, if trained residual networks
are discretizations of neural ODEs, then it is possible to apply results from neural ODEs to the
large family of residual networks. In particular, from a theoretical point of view, the approximation
capabilities of neural ODEs are well understood (Teshima et al., 2020; Zhang et al., 2020) and it is
relatively easy to obtain generalization bounds for these models (Hanson & Raginsky, 2022; Marion,
2023). From a practical standpoint, advantages of neural ODEs include memory-efficient training
(Chen et al., 2018; Sander et al., 2022b) and weight compression (Queiruga et al., 2021). This is
important because in practice memory is a bottleneck for training residual networks (Gomez et al.,
2017). Finally, our analysis is a first step towards understanding the implicit regularization (Neyshabur
et al., 2014; Vardi, 2023) of gradient descent for deep residual networks, that is, characterizing the
properties of the trained network among all minimizers of the empirical risk.

Throughout the document, it is assumed that the network is trained with gradient flow, which is a
continuous analog of gradient descent. The parameters Vk are updated according to an ODE of the
form dVk

dt (t) = −L ∂ℓ
∂Vk

(t) for t ⩾ 0, where ℓ is an empirical risk (the exact mathematical context and
assumptions are detailed in Section 3), and similarly for Wk. The scaling factor L is the counterpart
of the factor 1/L in (1), and prevents vanishing gradients as L tends to infinity. Note that the gradient
flow is defined with respect to a time index t different from the layer index s.
Contributions. Our first main contribution (Section 4.1) is to show that a neural ODE limit holds
after training up to time t, i.e., there exists a function V(s, t) such that the residual network converges,
as L tends to infinity, to the ODE

dH

ds
(s) =

1√
m
V(s, t)σ

( 1√
q
W(s, t)H(s)

)
, s ∈ [0, 1].

This large-depth limit holds for any finite training time t ⩾ 0. However, the convergence of the
optimization algorithm as t tends to infinity, which we refer to as the long-time limit to distinguish
it from the large-depth limit L → ∞, is not guaranteed without further assumptions, due to the
non-convexity of the optimization problem. We attack the question (Section 4.2) when the width
is large enough by proving a Polyak-Łojasiewicz (PL) condition, which is now state of the art in
analyzing the properties of optimization algorithms for deep neural networks (Liu et al., 2022). The
main assumption for our PL condition to hold is that the width m of the hidden layers should be
greater than some constant times the number of data n. As a second main contribution, we show that
the PL condition yields the long-time convergence of the gradient flow for residual networks with
linear overparameterization. Finally, we prove the convergence with high probability in the long-time
limit, namely the existence of functions V∞ and W∞ such that the discrete trajectory defined by the
trained residual network (1) converges as both L and t tend to infinity to the solution of the neural
ODE (2) with V = V∞ and W = W∞. In addition, our approach points out that this limiting ODE
interpolates the training data. Finally, our results are illustrated by numerical experiments (Section 5).

2 RELATED WORK

Deep residual networks and neural ODEs. Several works study the large-depth convergence of
residual networks to differential equations, but without considering the training dynamics (Thorpe &
van Gennip, 2023; Cohen et al., 2021; Marion et al., 2022; Hayou, 2023). Closer to our setting, Cont

2



Published as a conference paper at ICLR 2024

et al. (2022) and Sander et al. (2022b) analyze the dynamics of gradient descent for deep residual
networks, as we do, but with significant differences. Cont et al. (2022) consider a 1/

√
L scaling factor

in front of the residual branch, resulting in a limit that is not a neural ODE. In addition, only W is
trained. Furthermore, to obtain convergence in the long-time limit, it is assumed that the data points
are nearly orthogonal. Sander et al. (2022b) prove the existence of an ODE limit for trained residual
networks, but in the simplified case of a linear activation and under a more restricted setting.

Long-time convergence of wide residual networks. Polyak-Łojasiewicz conditions are a modern
tool to prove long-time convergence of overparameterized neural networks (Liu et al., 2022). These
conditions are a relaxation of convexity, and mean that the gradients of the loss with respect to the
parameters cannot be small when the loss is large. They have been applied to residual networks
with both linear (Bartlett et al., 2018; Wu et al., 2019; Zou et al., 2020) and nonlinear activations
(Allen-Zhu et al., 2019; Frei et al., 2019; Barboni et al., 2022; Cont et al., 2022; MacDonald et al.,
2022). Building on the proof technique of Nguyen & Mondelli (2020) for non-residual networks, we
need only a linear overparameterization to prove our PL condition, i.e., we require m = Ω(n). This
compares favorably with results requiring polynomial overparameterization (Allen-Zhu et al., 2019;
Barboni et al., 2022) or assumptions on the data, either a margin condition (Frei et al., 2019) or a
sample size smaller than the dimension of the data space (Cont et al., 2022; MacDonald et al., 2022).

Implicit regularization. Our paper can be related to a line of work on the implicit regularization
of gradient-based algorithms for residual networks (Neyshabur et al., 2014). We show that the
optimization algorithm does not just converge to any residual network that minimizes the empirical
risk, but rather to the discretization of a neural ODE. Note that most implicit regularization results
state that the optimization algorithm converges to an interpolator that minimizes some complexity
measure, which can be a margin (Lyu & Li, 2020), a norm (Boursier et al., 2022), or a matrix rank
(Li et al., 2021). Thus, an interesting next step is to understand if the neural ODE found by gradient
flow actually minimizes some complexity measure, and to characterize its generalization properties.

3 DEFINITIONS AND NOTATION

This section is devoted to specifying the setup outlined in Section 1. Proofs are given in the appendix.

Residual network. A (scaled) residual network of depth L ∈ N∗ is defined by

hL
0 = ALx

hL
k+1 = hL

k +
1

L
√
m
V L
k+1σ

( 1√
q
WL

k+1h
L
k

)
, k ∈ {0, . . . , L− 1},

FL(x) = BLhL
L.

(3)

To allow the hidden layers hL
k ∈ Rq to have a different dimension than the input x ∈ Rd, we first

map x to hL
0 with a weight matrix AL ∈ Rq×d. We assume that the hidden layers belong to a higher

dimensional space than the input and output, i.e., q ⩾ max(d, d′). The residual transformations are
two-layer perceptrons parameterized by the weight matrices V L

k ∈ Rq×m and WL
k ∈ Rm×q . This is

standard in the literature (e.g., He et al., 2016a; Dupont et al., 2019; Barboni et al., 2022). The last
weight matrix BL ∈ Rd′×q maps the last hidden layer to the output FL(x) in Rd′

. Also, σ : R → R
is an element-wise activation function assumed to be C2, non-constant, Lipschitz continuous, bounded,
and such that σ(0) = 0. The convenient shorthand ZL

k = (V L
k ,WL

k ) is occasionally used, and we
denote ∥ZL

k ∥F the sum of the Frobenius norms ∥V L
k ∥F + ∥WL

k ∥F .

Data and loss. The data is a sample of n pairs (xi, yi)1⩽i⩽n ∈ (X ×Y)n where X ×Y is a compact
set of Rd × Rd′

. The empirical risk is the mean squared error ℓL = 1
n

∑n
i=1 ∥FL(xi)− yi∥2.

Initialization. We initialize AL = (IRd×d , 0R(q−d)×d) as the identity matrix in Rd×d concatenated
row-wise with the zero matrix in R(q−d)×d, to act as a simple projection of the input onto the
higher dimensional space Rq, and similarly BL = (0Rd′×(q−d′) , IRd′×d′ ). The weights V L

k are
initialized to zero and the WL

k as weight-tied standard Gaussian matrices, i.e., for all k ∈ {1, . . . , L},
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WL
k = W ∼ N (0, 1)⊗(m×q). Initializing outer matrices to zero is standard practice (Zhang et al.,

2019), while taking weight-tied matrices instead of i.i.d. ones is less common. We show in Section 5
that it is still possible to learn with this initialization scheme on real world data. As explained in
Section 4.3, other initialization choices are possible, provided they correspond to the discretization of
a Lipschitz continuous function, but we focus on this one in the main text for simplicity.

Training algorithm. Gradient flow is the limit of gradient descent as the learning rate tends to zero.
The parameters are set at time t = 0 by the initialization, and then evolve according to the ODE

dAL

dt
(t) = − ∂ℓL

∂AL
(t),

dZL
k

dt
(t) = −L

∂ℓL

∂ZL
k

(t),
dBL

dt
(t) = − ∂ℓL

∂BL
(t), t ⩾ 0, (4)

for k ∈ {1, . . . , L}. In the following, the dependence in t is made explicit when necessary, e.g., we
write hL

k (t) instead of hL
k , and FL(x; t) instead of FL(x).

It turns out that, without further assumptions, the gradient flow can diverge in finite time, because
the dynamics are not (globally) Lipschitz continuous. A common practice (Goodfellow et al., 2016,
Section 10.11.1) is to consider instead a clipped gradient flow

dAL

dt
(t) = π

(
− ∂ℓL

∂AL
(t)

)
,

dZL
k

dt
(t) = π

(
− L

∂ℓL

∂ZL
k

(t)
)
,

dBL

dt
(t) = π

(
− ∂ℓL

∂BL
(t)

)
, (5)

where π is a generic notation for a bounded Lipschitz continuous operator. For example, clipping each
coordinate of the gradient at some C > 0 amounts to taking π as the projection on the ball centered
at 0 of radius C for the ℓ∞ norm. Clipping ensures that the gradient flow does not diverge, hence the
dynamics are well defined, as a consequence of the Picard-Lindelöf theorem (see Lemma 16).

Proposition 1. The (clipped) gradient flow (5) has a unique solution for all t ⩾ 0.

In Section 4.2, we make additional assumptions to prove the long-time convergence of the gradient
flow. We then prove that these assumptions ensure that the dynamics of the gradient flow (4) are well
defined, eliminating the need for clipping (since in this case we show that the gradients are bounded).

Neural ODE. The neural ODE corresponding to the residual network (3) is defined by

H(0) = Ax

dH

ds
(s) =

1√
m
V(s)σ

( 1√
q
W(s)H(s)

)
, s ∈ [0, 1],

F (x) = BH(1),

(6)

where x ∈ Rd is the input, H ∈ Rq is the variable of the ODE, V : [0, 1] → Rq×m and W : [0, 1] →
Rm×q are Lipschitz continuous functions, A ∈ Rq×d and B ∈ Rd′×q are matrices, and the output is
F (x) ∈ Rd′

. The following proposition shows that the neural ODE is well defined. In addition, its
output is close to the residual network (3) provided the weights are discretizations of V and W .

Proposition 2. The neural ODE (6) has a unique solution H : [0, 1] → Rq . Consider, moreover, the
residual network (3) with AL = A, V L

k = V(k/L) and WL
k = W(k/L) for k ∈ {1, . . . , L}, and

BL = B. Then there exists C > 0 such that, for all L ∈ N∗, supx∈X ∥F (x)− FL(x)∥ ⩽ C
L .

Clearly, our choices of V L
k and WL

k at initialization are discretizations of the Lipschitz continuous (in
fact, constant) functions V(s) ≡ 0 and W(s) ≡ W ∼ N (0, 1)⊗(m×q). Thus, Proposition 2 holds at
initialization, and the residual network is equivalent to the trivial ODE dH

ds (s) = 0. The next section
shows that after training we obtain non-trivial dynamics, which still discretize neural ODEs.

4 LARGE-DEPTH LIMIT OF RESIDUAL NETWORKS

We study the large-depth limit of trained residual networks in two settings. In Section 4.1, we consider
the case of a finite training time. We move in Section 4.2 to the case where the training time tends to
infinity, which is tractable under a Polyak-Łojasiewicz condition. Proofs are given in the appendix.
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4.1 CLIPPED GRADIENT FLOW AND FINITE TRAINING TIME

We first consider the case where the neural network is trained with clipped gradient flow (5) on some
training time interval [0, T ], T > 0. This allows us to prove large-depth convergence to a neural
ODE without further assumptions. We emphasize that stopping training after a finite training time is
a common technique in practice, referred to as early stopping (Goodfellow et al., 2016, Section 7.8).
It is considered as a form of implicit regularization, and our result sheds light on this intuition by
showing that the complexity of the trained networks increases with T .

The following proposition is a key step in proving the main theorem of this section.
Proposition 3. There exist M,K > 0 such that, for any t ∈ [0, T ], L ∈ N∗, and k ∈ {1, . . . , L},

max
( ∥∥AL(t)

∥∥
F
,
∥∥V L

k (t)
∥∥
F
,
∥∥WL

k (t)
∥∥
F
,
∥∥BL(t)

∥∥
F

)
⩽ M,

and, for k ∈ {1, . . . , L− 1},

max
( ∥∥V L

k+1(t)− V L
k (t)

∥∥
F
,
∥∥WL

k+1(t)−WL
k (t)

∥∥
F

)
⩽

K

L
.

Moreover, with probability at least 1− exp
(
− 3qm

16

)
, the following expressions hold for M and K:

M = TMπ + 2
√
qm, K = βTeαT , (7)

where Mπ is the supremum of π in Frobenius norm, and α and β depend on X , Y , M , and σ.

This proposition ensures that the size of the weights and the difference between successive weights
remain bounded throughout training. We can now state the main result, which states the convergence,
for any training time in [0, T ], of the neural network to a neural ODE as L → ∞. Recall that a
sequence of functions fL converges uniformly over u ∈ U to f if supu∈U ∥fL(u)− f(u)∥ → 0.
Theorem 4. Consider the residual network (3) with the training dynamics (5). Then the following
statements hold as L tends to infinity:

(i) There exist functions A : [0, T ] → Rq×d and B : [0, T ] → Rd′×q such that AL(t) and
BL(t) converge uniformly over t ∈ [0, T ] to A(t) and B(t).

(ii) There exists a Lipschitz continuous function Z : [0, 1]× [0, T ] → Rq×m × Rm×q such that

ZL : [0, 1]× [0, T ] → Rq×m × Rm×q, (s, t) 7→ ZL(s, t) = ZL
⌊(L−1)s⌋+1(t) (8)

converges uniformly over s ∈ [0, 1] and t ∈ [0, T ] to Z := (V,W).

(iii) Uniformly over s ∈ [0, 1], t ∈ [0, T ], and x ∈ X , the hidden layer hL
⌊Ls⌋(t) converges to the

solution at time s of the neural ODE

H(0, t) = A(t)x

∂H

∂s
(s, t) =

1√
m
V(s, t)σ

( 1√
q
W(s, t)H(s, t)

)
, s ∈ [0, 1].

(9)

(iv) Uniformly over t ∈ [0, T ] and x ∈ X , the output FL(x; t) converges to B(t)H(1, t).

Let us sketch the proof of statement (ii), which is the cornerstone of the theorem. A first key idea is
to introduce in (8) the piecewise-constant continuous-depth interpolation ZL of the weights, whose
ambient space does not depend on L, in contrast to the discrete weight sequence ZL

k . Since the
weights remain bounded during training by Proposition 3, the Arzelà-Ascoli theorem guarantees the
existence of an accumulation point for ZL. We show that the accumulation point is unique because it
is the solution of an ODE satisfying the conditions of the Picard-Lindelöf theorem. The uniqueness
of the accumulation point then implies the existence of a limit for the weights.

There are two notable byproducts of our proof. The first one is an explicit description of the training
dynamics of the limiting weights A, B, and Z , as the solution of an ODE system, as presented in
Appendix A.5. The second one, which we now describe, consists of norm bounds on the weights.
Proposition 3 bounds the discrete weights and the difference between two consecutive weights
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respectively by some M,K > 0. The proof of Theorem 4 shows that this bound carries over to the
continuous weights, in the sense that A(t), V(s, t), W(s, t), and B(t) are uniformly bounded by M ,
and V(·, t) and W(·, t) are uniformly Lipschitz continuous with Lipschitz constant K. Formally, this
last property means that, for any s, s′ ∈ [0, 1] and t ∈ [0, T ],

∥V(s′, t)− V(s, t)∥F ⩽ K|s′ − s| and ∥W(s′, t)−W(s, t)∥F ⩽ K|s′ − s|.
A key point to obtain this result is that K and M in Proposition 3 are independent of L. This would
not be the case if we had naively bounded in Proposition 3 the difference between two successive
weight matrices by a constant, without taking into account the smoothness of the weights. The
boundedness and Lipschitz continuity of the weights are important features because they limit the
statistical complexity of neural ODEs (Marion, 2023). More generally, norm-based bounds are
a common approach in the statistical theory of deep learning (see, e.g., Bartlett et al., 2017, and
references therein). Looking at the formula (7) for M and K, one can see in particular that the bounds
diverge exponentially with T , providing an argument in favor of early stopping.

Our approach so far characterizes the large-depth limit of the neural network for a finite training
time T , but two questions remain open. A first challenge is to characterize the value of the loss after
training. A second one is to provide insight into the convergence of the optimization algorithm in
the long-time limit, i.e., as T tends to infinity. To answer these questions, we move to the setting
where the width of the network is large enough, which allows us to prove a Polyak-Łojasiewicz (PL)
condition and thereby the long-time convergence of the training loss to zero.

4.2 CONVERGENCE IN THE LONG-TIME LIMIT FOR WIDE NETWORKS

We now introduce the definition (with the notation ZL = (V L
k ,WL

k )k∈{1,...,L}) of the PL condition:

Definition 1. For M,µ > 0, the residual network (3) is said to satisfy the (M,µ)-local PL condition
around a set of parameters (ĀL, Z̄L, B̄L) if, for every set of parameters (AL, ZL, BL) such that

∥AL − ĀL∥F ⩽ M, sup
k∈{1,...,L}

∥ZL
k − Z̄L

k ∥F ⩽ M, ∥BL − B̄L∥F ⩽ M,

one has ∥∥∥ ∂ℓL

∂AL

∥∥∥2
F
+ L

L∑
k=1

∥∥∥ ∂ℓL

∂ZL
k

∥∥∥2
F
+

∥∥∥ ∂ℓL

∂BL

∥∥∥2
F
⩾ µℓL,

where the loss ℓL is evaluated at the set of parameters (AL, ZL, BL).

The next important point is to observe that, under the setup of Section 3 and some additional
assumptions, the residual network satisfies the local PL condition of Definition 1.
Proposition 5. Assume that the sample points (xi, yi) are i.i.d. such that ∥xi∥2 =

√
q. Then there

exist c1, . . . , c4 > 0 (depending only on σ) and δ > 0 such that, if

q ⩾ d+ d′, m ⩾ c1n, L ⩾ c2
√
nq,

then, with probability at least 1− δ, the residual network (3) satisfies the (M,µ)-local PL condition
around its initialization, with M = c3/

√
nq and µ = c4/(n

√
nq).

We emphasize that Proposition 5 requires the width m to scale only linearly with the sample size n,
which improves on the literature (see Section 2). The other assumptions are mild. Note that our proof
shows that the parameter δ is small if n grows at most polynomially with d (see Appendix B.5).

We are now ready to state convergence in the long-time and large-depth limits to a global minimum of
the empirical risk, when the local PL condition holds and the norm of the targets yi is small enough.
Theorem 6. Consider the residual network (3) with the training dynamics (4), and assume that the
assumptions of Proposition 5 hold. Then there exist C, δ > 0 such that, if 1

n

∑n
i=1 ∥yi∥2 ⩽ C, then,

with probability as least 1− δ, the gradient flow is well defined on R+, and, for t ∈ R+ and L ∈ N∗,

ℓL(t) ⩽ exp
(
− C ′t

n
√
nq

)
ℓL(0), (10)

for some C ′ > 0 depending on σ. Moreover, the following statements hold as t and L tend to infinity:
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(i) There exist matrices A∞ ∈ Rq×d and B∞ ∈ Rd′×q such that AL(t) and BL(t) converge to
A∞ and B∞.

(ii) There exists a Lipschitz continuous function Z∞ : [0, 1] → Rq×m × Rm×q such that

ZL : [0, 1]× R+ → Rq×m × Rm×q, (s, t) 7→ ZL(s, t) = ZL
⌊(L−1)s⌋+1(t)

converges uniformly over s ∈ [0, 1] to Z∞ := (V∞,W∞).

(iii) Uniformly over s ∈ [0, 1] and x ∈ X , the hidden layer hL
⌊Ls⌋(t) converges to the solution at

time s of the neural ODE

H(0) = A∞x

dH

ds
(s) =

1√
m
V∞(s)σ

( 1√
q
W∞(s)H(s)

)
, s ∈ [0, 1].

(iv) Uniformly over x ∈ X , the output FL(x; t) converges to F∞(x) = B∞H(1). Furthermore,
F∞(xi) = yi for all i ∈ {1, . . . , n}.

This theorem proves two important results of separate interest. On the one hand, equation (10)
shows the long-time convergence of the gradient flow for deep residual networks under the linear
overparameterization assumption m ⩾ c1n of Proposition 5. On the other hand, when both t and L
tend to infinity, the network converges to a neural ODE that further interpolates the training data. Note
that the order in which t and L tend to infinity does not matter by uniform convergence properties.

4.3 GENERALIZATIONS TO OTHER ARCHITECTURES AND INITIALIZATION

To simplify the exposition, we have so far considered a particular residual architecture defined in (3).
However, most of our results hold for a more general residual network of the form

hL
k+1 = hL

k +
1

L
f(hL

k , Z
L
k+1), k ∈ {0, . . . , L− 1}, (11)

where f : Rq × Rp → Rq is a C2 function such that f(0, ·) ≡ 0 and f(·, z) is uniformly Lipschitz
for z in any compact. All our results are shown in the appendix for this general model, except the
PL condition of Proposition 5, which we prove only for the specific setup of Section 3. In particular,
the conclusions of Theorem 4 hold for the general model (11), as well as those of Theorem 6 if the
network satisfies a (M,µ)-local PL condition with µ sufficiently large (see Appendix B for details).

Our network of interest (3) is a special case of model (11), and other choices include convolutional
layers (or any sparse version of (3)) or a Lipschitz continuous version of Transformer (Kim et al.,
2021). This latter case is particularly interesting in the light of the literature analyzing Transformer
from a neural ODE point of view (Lu et al., 2019; Sander et al., 2022a; Geshkovski et al., 2023).

Moreover, the initialization assumption made in Section 3 can also be relaxed to include any so-called
smooth initialization of the weights (Marion et al., 2022). A smooth initialization corresponds to
taking V L

k (0) and WL
k (0) as discretizations of some Lipschitz continuous functions V0 : [0, 1] →

Rq×m and W0 : [0, 1] → Rm×q , that is, for k ∈ {1, . . . , L}, V L
k (0) = V0(

k
L ) and WL

k (0) = W0(
k
L ).

A typical concrete example is to let the entries of V0 and W0 be independent Gaussian processes with
expectation zero and squared exponential covariance K(x, x′) = exp(− (x−x′)2

2ℓ2 ), for some ℓ > 0.
As shown by Proposition 2, a smooth initialization means that the network discretizes a neural ODE.

5 NUMERICAL EXPERIMENTS

We now present numerical experiments to validate our theoretical findings, using both synthetic and
real-world data. Our code is available on GitHub (see Appendix E for details and additional plot).

5.1 SYNTHETIC DATA

We consider the residual network (3) with the initialization scheme of Section 3. The activation
function is GELU (Hendrycks & Gimpel, 2016), which is a smooth approximation of ReLU: x 7→

7
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max(x, 0). The sample points (xi, yi)1⩽i⩽n follow independent standard Gaussian distributions.
The mean-squared error is minimized using full-batch gradient descent. The following experiments
exemplify the large-depth (t ∈ [0, T ], L → ∞) and long-time (t → ∞, L finite) limits.

Figure 1: Left: 1/L convergence of the maximum distance between two successive weight matrices
max1⩽k⩽L,t∈[0,T ](∥ZL

k (t) − ZL
k+1(t)∥F ). Right: uniform convergence of ZL to its large-depth

limit Z . Here, for a matrix-valued function f , ∥f∥ denotes (
∫ 1

0
∥f(s)∥2F ds)1/2.

Large-depth limit. We illustrate key insights of Proposition 3 and Theorem 4, with T = 500.
In Figure 1 (left), we plot the maximum distance between two successive weight matrices, i.e.,
max1⩽k⩽L,t∈[0,T ](∥ZL

k (t)− ZL
k+1(t)∥F ), for different values of L and training time T . We observe

a 1/L convergence rate, as predicted by Proposition 3. Moreover, for a fixed L, the distance between
two successive weight matrices increases with the training time, however at a much slower pace
than the exponential upper bound on K given in identity (7). Figure 1 (right) depicts the uniform
convergence of ZL to its large-depth limit Z , illustrating statement (ii) of Theorem 4. The function
Z is computed using ZL for L = 214. Note that the convergence is slower for larger training times.

Long-time limit. We now turn to the long-time training setup, training for 80,000 iterations with
L = 64 and m large enough to satisfy the assumptions of Theorem 6. In Figure 2, we plot a
specific (randomly-chosen) entry of matrices V L

k and WL
k across layers, for different training times.

This illustrates Theorem 6 in a practical setting since, visually, the weights behave as a Lipschitz
continuous function for any training time and converge to a Lipschitz continuous function as t → ∞.
The loss decays to zero as a function of training time, also corroborating Theorem 6.
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Figure 2: Left: Randomly-chosen entry of the weight matrices across layers (x-axis) for various
training times t (lighter color indicates higher training time). Right: Loss against training time.

5.2 REAL-WORLD DATA

We now investigate the properties of deep residual networks on the CIFAR 10 dataset (Krizhevsky,
2009). We deviate from the mathematical model (3) by using convolutions instead of fully connected
layers. More precisely, AL is replaced by a trainable convolutional layer, and the residual layers
write hL

k+1 = hL
k + 1

Lbn
L
2,k(conv

L
2,k(σ(bn

L
1,k(conv

L
1,k(h

L
k ))))), where convLi,k are convolutions and

bnLi,k are batch normalizations (see Appendix E for discussion about normalization). The output of
the residual layers is mapped to logits through a linear layer BL. We initialize bnL2,k to 0, and bnL1,k

8
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and convLi,k either to weight-tied or to i.i.d. Gaussian. Table 1 reports the accuracy of the trained
network, and whether it has Lipschitz continuous (or smooth) weights after training, depending on
the activation function σ and on the initialization scheme. To assess the smoothness of the weights,
we simply resort to visual inspection. For example, Figure 3 (left) shows two random entries of the
convolutions across layers with GELU and a weight-tied initialization: the smoothness is preserved
after training. Smooth weights indicate that the residual network discretizes a neural ODE (see, e.g.,
Proposition 2). On the contrary, if an i.i.d. initialization is used, smoothness is not preserved after
training, as shown in Figure 3 (right), and the residual network does not discretize a neural ODE.
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Figure 3: Random entries of the convolutions across layers (x-axis) after training. Left: Weight-tied
initialization leads to smooth weights. Right: i.i.d. initialization leads to non-smooth weights.

Act. function Init. scheme Train Acc. Test Acc. Smooth trained weights

Identity Weight-tied 56.5± 0.1 59.8± 0.7 ✓
i.i.d. 56.1± 0.3 59.6± 0.7 ×

GELU Weight-tied 80.5± 0.7 79.9± 0.2 ✓
i.i.d. 89.8± 0.5 85.7± 0.1 ×

ReLU Weight-tied 97.4± 0.6 88.1± 0.1 ×
i.i.d. 98.4± 0.1 88.4± 0.5 ×

Table 1: Accuracy and smoothness of the trained weights depending on the choice of activation
function σ and initialization scheme. We display the median over 5 runs and the interquartile range
between the first and third quantile. Smooth weights correspond to a neural ODE structure.

Table 1 conveys several important messages. First, in accordance with our theory (Theorem 4), we
obtain a neural ODE structure when using a smooth activation function and weight-tied initialization
(lines 1 and 3 of Table 1). This is not the case when using the non-smooth ReLU activation and/or
i.i.d. initialization. In fact, we prove in Appendix D that the smoothness of the weights is lost when
training with ReLU in a simple setting. Furthermore, the third line of Table 1 shows that it is possible
to obtain a reasonable accuracy with a neural ODE structure, which, as emphasized in Section 1, also
comes with theoretical and practical advantages. Nevertheless, we see an improvement in accuracy in
cases corresponding to non-smooth weights, i.e., to a network that does not discretize an ODE.

6 CONCLUSION

We study the convergence of deep residual networks to neural ODEs. When properly scaled and
initialized, residual networks trained with fixed-horizon gradient flow converge to neural ODEs as the
depth tends to infinity. This result holds for very general architectures. In the case where both training
time and depth tend to infinity, convergence holds under a local Polyak-Łojasiewicz condition. We
prove such a condition for a family of deep residual networks with linear overparameterization.

The setting of neural ODE-like networks comes with strong guarantees, at the cost of some per-
formance gap when compared with i.i.d. initialization as highlighted by the experimental section.
Extending the mathematical large-depth study to i.i.d. instead of weight-tied initialization is an
interesting problem for future research. Previous work suggests that the correct limit object is then a
stochastic differential equation (Cohen et al., 2021; Cont et al., 2022; Marion et al., 2022).

9
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Appendix
Organization of the Appendix. In Section A, we give some results on the general residual
network (11). In Section B, these results are instantiated in the specific case of the residual network (3),
thus proving the results of the paper. Section C contains some lemmas that are useful for the proofs.
We present in Section D a counter-example showing that a residual network with the ReLU activation
can move away from the neural ODE structure during training. Finally, Section E presents some
experimental details.

A SOME RESULTS FOR GENERAL RESIDUAL NETWORKS

Lipschitz continuity. Let (U , ∥ · ∥), (V , ∥ · ∥), and (W , ∥ · ∥) be generic normed spaces. Then a
function of two variables g : U × V → W is:

(i) (Globally) Lipschitz continuous if there exists K ⩾ 0 such that, for (u, v), (u′, v′) ∈ U ×V ,

∥g(u, v)− g(u′, v′)∥ ⩽ K∥u− u′∥+K∥v − v′∥.

(ii) Locally Lipschitz continuous in its first variable if, for any compacts E ⊂ U , E′ ⊂ V ,
there exists K ⩾ 0 such that, for (u, v), (u′, v) ∈ E × E′,

∥g(u, v)− g(u′, v)∥ ⩽ K∥u− u′∥.

Equivalent definitions hold for a function of one variable. Moreover, g(·, v) is said to be uniformly
Lipschitz continuous for v in V if there exists K ⩾ 0 such that, for (u, v), (u′, v) ∈ U × V ,

∥g(u, v)− g(u′, v)∥ ⩽ K∥u− u′∥,

and uniformly Lipschitz continuous for v in any compact if, for any compact E′ ⊂ V , there exists
K ⩾ 0 such that, for (u, v), (u′, v) ∈ U × E′,

∥g(u, v)− g(u′, v)∥ ⩽ K∥u− u′∥.

Throughout, we refer to a Lipschitz continuous function with Lipschitz constant K ⩾ 0 as K-
Lipschitz.

Model. As explained in Section 4.3, most of our results are proven for the general residual network

hL
0 (t) = AL(t)x

hL
k+1(t) = hL

k (t) +
1

L
f(hL

k (t), Z
L
k+1(t)), k ∈ {0, . . . , L− 1}, (12)

FL(x; t) = BL(t)hL
L(t),

where ZL(t) = (ZL
1 (t), . . . , Z

L
L (t)) ∈ (Rp)L and f : Rq × Rp → Rq is a C2 function such

that f(0, ·) ≡ 0 and f(·, z) is uniformly Lipschitz for z in any compact. Let us introduce the
backpropagation equations, which are instrumental in the study of the gradient flow dynamics. These
equations define the backward state pLk (t) =

∂ℓL

∂hL
k

(t) ∈ Rq through the backward recurrence

pLL(t) = 2BL(t)⊤(FL(x; t)− y)

pLk (t) = pLk+1(t) +
1

L
∂1f(h

L
k (t), Z

L
k+1(t))p

L
k+1(t), k ∈ {0, . . . , L− 1}, (13)

where ∂1f ∈ Rq×q stands for the Jacobian matrix of f with respect to its first argument. Similarly,
we let ∂2f ∈ Rq×p be the Jacobian matrix of f with respect to its second argument. For a sample
(xi, yi)1⩽i⩽n ∈ (X ×Y)n, we let hL

k,i(t) and pLk,i(t) be, respectively, the hidden layer hL
k (t) and the

backward state pLk (t) associated with the i-th input xi. Denoting the mean squared error associated
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with the sample by ℓL, we have, by the chain rule,

∂ℓL

∂AL
(t) =

1

n

n∑
i=1

pL0,i(t)x
⊤
i (14)

∂ℓL

∂ZL
k

(t) =
1

nL

n∑
i=1

∂2f(h
L
k−1,i(t), Z

L
k (t))

⊤pLk,i(t), k ∈ {1, . . . , L}, (15)

∂ℓL

∂BL
(t) =

2

n

n∑
i=1

(FL(xi; t)− yi)h
L
L,i(t)

⊤. (16)

Initialization. The parameters (ZL
k (t))1⩽k⩽L are initialized to ZL

k (0) = Z init
(
k
L

)
, where Z init :

[0, 1] → Rp is a Lipschitz continuous function. Furthermore, we initialize AL(0) to some matrix
Ainit ∈ Rq×d and BL(0) = Binit ∈ Rd′×q . Note that this initialization scheme is a generalization of
the one presented in Section 3.

Additional notation. For a vector x, ∥x∥ denotes the Euclidean norm. For a matrix A, the operator
norm induced by the Euclidean norm is denoted by ∥A∥2, and the Frobenius norm is denoted by
∥A∥F . Finally, we use the notation AL (resp. ZL

k , BL) to denote the function t 7→ AL(t) (resp.
t 7→ ZL

k (t), t 7→ BL(t)), since the parameters are considered as functions of the training time
throughout this appendix.

Overview of Appendix A. First, in Section A.1, we study the case of the (clipped) gradient flow (5).
We show that the weights and the difference between successive weights are bounded during the
entire training. Section A.2 shows a similar result for the standard gradient flow (4) under a PL
condition. In Section A.3, we show a generalized version of the Arzelà-Ascoli theorem, which allows
us to prove the existence of a converging subsequence of the weights in the large-depth limit. Section
A.4 is devoted to the convergence of the Euler scheme for parameterized ODEs. We then proceed to
prove in Section A.5 our main result, i.e., the large-depth convergence of the gradient flow. The key
step is to establish the uniqueness of the adherence point of the weights. Finally, in Section A.6, we
prove the existence of a double limit for the weights and the hidden states when both the depth and
the training time tend to infinity.

A.1 THE TRAINED WEIGHTS ARE BOUNDED IN THE FINITE TRAINING-TIME SETUP

Before stating the result, let us introduce the notation ∂22f(h, z) ∈ Rq×p×p, which is the third-order
tensor of second partial derivatives of f with respect to z. We endow the space Rq×p×p with the
operator norm ∥ · ∥2 induced by the Euclidean norm in Rp and the ∥ · ∥2 norm in Rq×p. In other
words,

∥∂22f(h, z)∥2 = sup
u∈Rp,∥u∥=1

∥∂22f(h, z)u∥2,

where ∂22f(h, z)u ∈ Rq×p is the tensor product of ∂22f(h, z) against u. Similarly, ∂21f(h, z) ∈
Rq×p×q denotes the third-order tensor of cross second partial derivatives of f , and the space Rq×p×q

is endowed with the operator norm ∥ · ∥2 induced by the Euclidean norm in Rq and the ∥ · ∥2 norm in
Rq×p.

Proposition 7. Consider the residual network (12) initialized as explained in Appendix A and trained
with the gradient flow (5) on [0, T ], for some T ∈ (0,∞). Let

Mπ = max
(

max
A∈Rq×d

∥π(A)∥F , max
Z∈Rp

∥π(Z)∥, max
B∈Rd′×q

∥π(B)∥F
)
,

M0 = max
(
∥Ainit∥F , sup

s∈[0,1]

∥Z init(s)∥, ∥Binit∥F
)

and M = M0 + TMπ.

Then the gradient flow is well defined on [0, T ], and, for t ∈ [0, T ], L ∈ N∗, and k ∈ {1, . . . , L},

∥AL(t)∥F ⩽ M, ∥ZL
k (t)∥ ⩽ M, and ∥BL(t)∥F ⩽ M. (17)

15
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Moreover, there exist α, β > 0 such that, for t ∈ [0, T ] and k ∈ {1, . . . , L− 1},

∥ZL
k+1(t)− ZL

k (t)∥ ⩽
(
∥ZL

k+1(0)− ZL
k (0)∥+

βT

L

)
eαT .

The following expressions for α and β hold:

α = 2eKK ′M(eKM2MX +MY ) and β = 2KeKM(K + eKK ′MMX)(eKM2MX +MY ),

where

MX = sup
x∈X

∥x∥, MY = sup
y∈Y

∥y∥, K1 = sup
∥z∥⩽M

∥∥∂1f(h, z)∥∥2 (18)

E = {(h, z) ∈ Rd × Rp, ∥h∥ ⩽ eK1MMX , ∥z∥ ⩽ M} (19)

K2 = sup
(h,z)∈E

∥∥∂2f(h, z)∥∥2, K = max(K1,K2)

K ′ = sup
(h,z)∈E

(
max

(∥∥∂22f(h, z)∥∥2,∥∥∂21f(h, z)∥∥2)).
Proof. The time-independent dynamics

(AL, ZL
k , B

L) 7→
(
π
(
− ∂ℓL

∂AL

)
, π

(
− L

∂ℓL

∂ZL
k

)
, π

(
− ∂ℓL

∂BL

))
defining the gradient flow (5) are locally Lipschitz continuous, hence the gradient flow is defined
on a maximal interval [0, Tmax) by the Picard-Lindelöf theorem (see Lemma 16). Let us show by
contradiction that Tmax = T . Assume that Tmax < T . If this is true, again by the Picard-Lindelöf
theorem, we know that the parameters diverge to infinity at Tmax. However, for any t ∈ [0, Tmax),
we have

∥AL(t)∥F ⩽ ∥AL(0)∥F +

∫ t

0

∥∥∥dAL

dt
(τ)

∥∥∥
F
dτ ⩽ M0 +

∫ t

0

Mπdτ ⩽ M0 + TMπ = M.

Bounds on BL and ZL
k by M can be shown similarly. This contradicts the divergence of the

parameters at t = Tmax. We conclude that the gradient flow is well defined on [0, T ] and that the
bounds (17) hold.

It remains to bound the difference ∥ZL
k+1(t)−ZL

k (t)∥. We have, for t ∈ [0, T ] and k ∈ {1, . . . , L−1},∥∥∥dZL
k+1

dt
(t)− dZL

k

dt
(t)

∥∥∥ = L
∥∥∥ ∂ℓL

∂ZL
k+1

(t)− ∂ℓL

∂ZL
k

(t)
∥∥∥

⩽
n∑

i=1

1

n

∥∥∂2f(hL
k,i(t), Z

L
k+1(t))

⊤pLk,i(t)− ∂2f(h
L
k−1,i(t), Z

L
k (t))

⊤pLk−1,i(t)
∥∥

⩽
1

n

n∑
i=1

∥∥∂2f(hL
k,i(t), Z

L
k+1(t))

∥∥
2

∥∥pLk,i(t)− pLk−1,i(t)
∥∥

+
∥∥pLk−1,i(t)

∥∥ ∥∥∂2f(hL
k,i(t), Z

L
k+1(t))− ∂2f(h

L
k−1,i(t), Z

L
k (t))

∥∥
2

(20)

Furthermore, for t ∈ [0, T ], k ∈ {0, . . . , L− 1}, and i ∈ {1, . . . , n},

∥hL
k+1,i(t)∥ = ∥hL

k,i(t) +
1

L
f(hL

k,i(t), Z
L
k+1(t))∥ ⩽ (1 +

K1

L
)∥hL

k,i(t)∥,

since f(·, ZL
k+1(t)) is K1-Lipschitz, where K1 is defined by (18), and f(0, ZL

k+1(t)) = 0. Therefore,
for any k ∈ {1, . . . , L},

∥hL
k,i(t)∥ ⩽ eK1∥hL

0,i(t)∥ = eK1∥AL(t)xi∥ ⩽ eK1MMX . (21)

This bound shows that the pair (hL
k,i(t), Z

L
k+1(t)) belongs to the compact E defined in (19) for every

t ∈ [0, T ], k ∈ {1, . . . , L}, and i ∈ {1, . . . , n}. In particular, ∥∂2f(hL
k−1,i(t), Z

L
k (t))∥2 ⩽ K, and∥∥∂2f(hL

k,i(t), Z
L
k+1(t))− ∂2f(h

L
k−1,i(t), Z

L
k (t))

∥∥
2

⩽ K ′∥hL
k,i(t)− hL

k−1,i(t)∥+K ′∥ZL
k+1(t)− ZL

k (t)∥.
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Returning to (20), we obtain∥∥∥dZL
k+1

dt
(t)− dZL

k

dt
(t)

∥∥∥ ⩽
1

n

n∑
i=1

K∥pLk,i(t)− pLk−1,i(t)∥

+K ′∥pLk−1,i(t)∥
(
∥hL

k,i(t)− hL
k−1,i(t)∥+ ∥ZL

k+1(t)− ZL
k (t)∥

)
.

For k ∈ {1, . . . , L} and i ∈ {1, . . . , n},∥∥pLk,i(t)− pLk−1,i(t)
∥∥ =

1

L

∥∥∂1f(hL
k−1,i(t), Z

L
k (t))p

L
k,i(t)

∥∥ ⩽
K

L

∥∥pLk,i(t)∥∥ ,
and, similarly,∥∥hL

k,i(t)− hL
k−1,i(t)

∥∥ =
1

L
∥f(hL

k−1,i(t), Z
L
k (t))∥ ⩽

K

L

∥∥hL
k−1,i(t)

∥∥ ⩽
KeKMMX

L
.

Thus,∥∥∥dZL
k+1

dt
(t)− dZL

k

dt
(t)

∥∥∥ ⩽
1

n

n∑
i=1

∥pLk,i(t)∥
(K2

L
+

K ′K

L
eKMMX +K ′∥ZL

k+1(t)− ZL
k (t)∥

)
.

Moreover, for k ∈ {0, . . . , L} and i ∈ {1, . . . , n},

∥pLk,i(t)∥ ⩽ ∥pLk+1,i(t)∥+
1

L

∥∥∂1f(hL
k,i(t), Z

L
k+1(t))p

L
k+1,i(t)

∥∥ ⩽ ∥pLk+1,i(t)∥+
K

L
∥pLk+1,i(t)∥.

Hence

∥pLk,i(t)∥ ⩽ eK∥pLL,i(t)∥ = 2eK∥BL(t)⊤(FL(xi; t)− yi)∥
⩽ 2eKM

(
∥BL(t)hL

L,i(t)∥+ ∥yi∥
)
⩽ 2eKM(eKM2MX +MY ),

where we use (17) and (21) for the last inequality. Putting all the pieces together, we obtain∥∥∥dZL
k

dt
(t)− dZL

k+1

dt
(t)

∥∥∥ ⩽ α∥ZL
k (t)− ZL

k+1(t)∥+
β

L
.

Integrating between 0 and t, we see that

∥ZL
k+1(t)− ZL

k (t)∥ ⩽ ∥ZL
k+1(0)− ZL

k (0)∥+
βt

L
+

∫ t

0

α∥ZL
k (τ)− ZL

k+1(τ)∥dτ.

Applying Grönwall’s inequality (see, e.g., Dragomir, 2003), we conclude that ∥ZL
k+1(t)− ZL

k (t)∥ ⩽

(∥ZL
k+1(0)− ZL

k (0)∥+ βT
L )eαT , as desired.

Remark 1. Clipping is used in our approach to constraint the gradients to live in a ball. It is merely
a technical assumption to avoid blow-up of the weights during training. However, in any scenario
where we know that the weights do not blow up, clipping is not required. A first example of such a
scenario is under the Polyak-Łojasiewicz condition (see below). Another scenario is by using gradient
flow with momentum instead of vanilla gradient flow. This is a setup closer to Adam (Kingma & Ba,
2015), which is a very used optimizer in practice. One might then show a similar result to Theorem 4,
without clipping, because the gradient updates in the momentum case are bounded by construction.

A.2 THE TRAINED WEIGHTS ARE BOUNDED UNDER THE LOCAL PL CONDITION

Proposition 8. Consider the residual network (12) initialized as explained in Appendix A and trained
with the gradient flow (4) on [0,∞]. Then, for M > 0, there exists µ > 0 such that, if the residual
network satisfies the (M,µ)-local PL condition (1) around its initialization for any L ∈ N∗, then:

(i) The gradient flow is well defined on R+, and, for t ∈ R+, L ∈ N∗, and k ∈ {1, . . . , L},

∥AL(t)∥F ⩽ MA, ∥ZL
k (t)∥ ⩽ MZ , and ∥BL(t)∥F ⩽ MB ,

where

MA = ∥Ainit∥2 +M, MZ = sup
s∈[0,1]

∥Z init(s)∥+M, and MB = ∥Binit∥2 +M.
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(ii) There exists K̃ > 0 such that, for t ∈ R+, L ∈ N∗, and k ∈ {1, . . . , L},

∥ZL
k (t)− ZL

k+1(t)∥ ⩽
K̃

L
.

(iii) There exists a bounded integrable function b : R+ → R such that, for t ∈ R+, L ∈ N∗, and
k ∈ {1, . . . , L},

max
(∥∥∥dAL

dt
(t)

∥∥∥,∥∥∥dZL
k

dt
(t)

∥∥∥,∥∥∥dBL

dt
(t)

∥∥∥) ⩽ b(t)

(iv) AL(t), BL(t), and ZL
k (t) admit a limit uniformly over L ∈ N∗ and k ∈ {1, . . . , L} as

t → ∞.

(v) For t ∈ R+ and L ∈ N∗, ℓL(t) ⩽ e−µtℓL(0).

Moreover, the following expression for µ hold:

µ = max(MBK,MBMX ,MAMX)
8eK

M
sup
L∈N∗

√
ℓL(0), (22)

where

MX = sup
x∈X

∥x∥, K1 = sup
∥z∥⩽MZ

∥∥∂1f(h, z)∥∥
E = {(h, z) ∈ Rd × Rp, ∥h∥ ⩽ eK1MAMX , ∥z∥ ⩽ MZ}

K2 = sup
(h,z)∈E

∥∥∂2f(h, z)∥∥, K = max(K1,K2).

Proof. Let M > 0, µ defined by (22), and assume that the residual network satisfies the (M,µ)-local
PL condition (1) around its initialization for any L ∈ N∗.

The time-independent dynamics

(AL, ZL
k , B

L) 7→
(
− ∂ℓL

∂AL
,−L

∂ℓL

∂ZL
k

,− ∂ℓL

∂BL

)
defining the gradient flow (5) are locally Lipschitz continuous, hence the gradient flow is defined
on a maximal interval [0, Tmax) by the Picard-Lindelöf theorem (see Lemma 16). Let us show
by contradiction that Tmax = ∞. Assume that Tmax < ∞. If this is true, again by the Picard-
Lindelöf theorem, we know that the parameters diverge to infinity at Tmax. In particular, there exist
t ∈ (0, Tmax) and k ∈ {1, . . . , L} such that

∥AL(t)−AL(0)∥F > M or ∥ZL
k (t)− ZL

k (0)∥ > M or ∥BL(t)−BL(0)∥F > M.

Let t∗ ∈ (0, Tmax) be the infimum of such times t. Then, for t < t∗ and k ∈ {1, . . . , L},

∥AL(t)−AL(0)∥F ⩽ M and ∥ZL
k (t)− ZL

k (0)∥ ⩽ M and ∥BL(t)−BL(0)∥F ⩽ M, (23)

and, by continuity of AL, BL, and ZL
k , these inequalities also hold for t = t∗. By definition, this

means that the (M,µ)-local PL condition is satisfied for t ⩽ t∗, and ensures that∥∥∥ ∂ℓL

∂AL
(t)

∥∥∥2
F
+ L

L∑
k=1

∥∥∥ ∂ℓL

∂ZL
k

(t)
∥∥∥2 + ∥∥∥ ∂ℓL

∂BL
(t)

∥∥∥2
F
⩾ µℓL(t).

Therefore, by definition of the gradient flow (4),

dℓL

dt
(t) =

〈 ∂ℓL

∂AL
(t),

dAL

dt
(t)

〉
+

L∑
k=1

〈 ∂ℓL

∂ZL
k

(t),
dZL

k

dt
(t)

〉
+
〈 ∂ℓL

∂BL
(t),

dBL

dt
(t)

〉
= −

∥∥∥ ∂ℓL

∂AL
(t)

∥∥∥2
F
− L

L∑
k=1

∥∥∥ ∂ℓL

∂ZL
k

(t)
∥∥∥2 − ∥∥∥ ∂ℓL

∂BL
(t)

∥∥∥2
F

⩽ −µℓL(t).
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Thus, by Grönwall’s inequality, for t ⩽ t∗,
ℓL(t) ⩽ e−µtℓL(0). (24)

Furthermore, by (23) and the definition of MA, MB , MZ , we have, for t ⩽ t∗ and k ∈ {1, . . . , L},

∥AL(t)∥F ⩽ MA, ∥ZL
k (t)∥ ⩽ MZ , and ∥BL(t)∥F ⩽ MB .

A quick scan through the proof of Proposition 7 reveals that by similar arguments, we have, for
t ⩽ t∗, k ∈ {1, . . . , L}, and i ∈ {1, . . . , n},

(hL
k−1,i(t), Z

L
k (t)) ∈ E and ∥pLk−1,i(t)∥ ⩽ 2eK∥pLL,i(t)∥ ⩽ 2eKMB∥FL(xi; t)− yi∥.

Thus, for k ∈ {0, . . . , L},

1

n

n∑
i=1

∥pLk,i(t)∥ ⩽
2eKMB

n

n∑
i=1

∥FL(xi; t)− yi∥ ⩽ 2eKMB

√
ℓL(t) ⩽ 2eKMBe

−µt
2

√
ℓL(0),

(25)
where the second inequality is a consequence of the Cauchy-Schwartz inequality. Let us now bound
∥ZL

k (t
∗)− ZL

k (0)∥. We have, for k ∈ {1, . . . , L},

∥ZL
k (t

∗)− ZL
k (0)∥ ⩽

∫ t∗

0

∥∥∥dZL
k

dt
(t)

∥∥∥dt
⩽

1

n

n∑
i=1

∫ t∗

0

∥∥∂2f(hL
k−1,i(t), Z

L
k (t))

⊤pLk,i(t)
∥∥dt

(by (15)).

⩽
K

n

n∑
i=1

∫ t∗

0

∥pLk,i(t)∥dt,

since (hL
k−1,i(t), Z

L
k (t)) ∈ E and ∥∂2f(h, z)∥ ⩽ K for (h, z) ∈ E. Therefore, by (25),

∥ZL
k (t

∗)− ZL
k (0)∥ ⩽ 2KeKMB

∫ t∗

0

e−
µt
2

√
ℓL(0)dt ⩽

4KeKMB

µ

√
ℓL(0) ⩽

M

2
,

where the last inequality is a consequence of the definition of µ. Similarly, by (14) and (25),

∥AL(t∗)−AL(0)∥F ⩽
∫ t∗

0

∥∥∥dAL

dt
(t)

∥∥∥
F
dt

⩽
∫ t∗

0

1

n

n∑
i=1

∥∥pL0,i(t)x⊤
i

∥∥
F
dt

⩽ 2eKMBMX

√
ℓL(0)

∫ t∗

0

e−
µt
2 dt

⩽
4eKMBMX

µ

√
ℓL(0)

⩽
M

2
.

Finally, by (16),

∥BL(t∗)−B(0)∥F ⩽
∫ t∗

0

∥∥∥dBL

dt
(t)

∥∥∥
F
dt

⩽
∫ t∗

0

2

n

n∑
i=1

∥(FL(xi; t)− yi)h
L
L,i(t)

⊤∥F dt

⩽ 2eKMAMX

√
ℓL(0)

∫ t∗

0

e−
µt
2 dt

⩽
4eKMAMX

µ

√
ℓL(0)

⩽
M

2
,
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where the third inequality is a consequence of the Cauchy-Schwartz inequality and of the fact that
∥hL

L,i(t)∥ ⩽ eKMAMX . By continuity of AL, ZL
k , and BL, these three bounds contradict the

definition of t∗. We conclude that Tmax = ∞ and that the parameters stay within a ball of radius M
of their initialization, yielding the inequalities, for t ∈ R+, L ∈ N∗, and k ∈ {1, . . . , L},

∥AL(t)∥F ⩽ MA, ∥BL(t)∥F ⩽ MB , ∥ZL
k (t)∥ ⩽ MZ .

This proves statement (i) of the proposition. Moreover, the analysis above show that the derivatives
of AL, ZL

k , and BL are bounded by a bounded integrable function independent of L and k. This
shows (iii), together with the fact that the functions AL(t), ZL

k (t), and BL(t) admit limits as t → ∞.
Furthermore, the convergence towards their limit is uniform over L and k, as we show for example for
AL(t). If we denote by AL

∞ its limit, and apply the same steps as for bounding ∥AL(t∗)−AL(0)∥F ,
we obtain, for any t ⩾ 0,

∥AL
∞ −AL(t)∥F ⩽

∫ ∞

t

∥∥∥dAL

dτ
(τ)

∥∥∥
F
dτ

⩽ 2eKMBMX

√
ℓL(0)

∫ ∞

t

e
−µτ

2 dτ

=
4eKMBMX

µ
e

−µt
2

√
ℓL(0)

⩽
M

2
e

−µt
2 ,

where the last inequality comes from the definition of µ. The bound is independent of L, proving
statement (iv). Statement (v) readily follows from (24).

To complete the proof, it remains to prove statement (ii) by bounding the differences ∥ZL
k+1(t)−

ZL
k (t)∥. Now that we know that the weights are bounded, we can follow the same steps as in the

proof of Proposition 7 and show the existence of C1, C2 > 0 such that∥∥∥dZL
k+1

dt
(t)− dZL

k

dt
(t)

∥∥∥ ⩽
1

n

n∑
i=1

∥pLk,i(t)∥
(C1

L
+ C2∥ZL

k+1(t)− ZL
k (t)∥

)
.

Using (25), we obtain∥∥∥dZL
k+1

dt
(t)− dZL

k

dt
(t)

∥∥∥ ⩽ 2eKMBe
−µt

2

√
ℓL(0)

(C1

L
+ C2∥ZL

k+1(t)− ZL
k (t)∥

)
.

Integrating between 0 and t, we obtain

∥ZL
k+1(t)− ZL

k (t)∥ ⩽ ∥ZL
k+1(0)− ZL

k (0)∥+
∫ t

0

2eKMBe
−µτ

2

√
ℓL(0)

C1

L
dτ

+

∫ t

0

2eKMBe
−µτ

2

√
ℓL(0)C2∥ZL

k+1(τ)− ZL
k (τ)∥dτ

⩽ ∥ZL
k+1(0)− ZL

k (0)∥+
C1M

2MXL

+

∫ t

0

2eKMBe
−µτ

2

√
ℓL(0)C2∥ZL

k+1(τ)− ZL
k (τ)∥dτ,

where the second inequality uses the definition of µ. By Grönwall’s inequality,

∥ZL
k+1(t)− ZL

k (t)∥ ⩽
(
∥ZL

k+1(0)− ZL
k (0)∥+

C1M

2MXL

)
exp

(∫ t

0

2eKMBe
−µτ

2

√
ℓL(0)C2dτ

)
⩽

(
∥ZL

k+1(0)− ZL
k (0)∥+

C1M

2MXL

)
exp

(C2M

2MX

)
,

again by definition of µ. Finally, since ZL
k (0) = Z init( kL ) and Z init is Lipschitz continuous, this

proves the existence of K̃ > 0 (independent of L, t and k) such that ∥ZL
k+1(t)−ZL

k (t)∥ ⩽ K̃
L , which

yields statement (ii).
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A.3 GENERALIZED ARZELÀ–ASCOLI THEOREM

Proposition 9 (Generalized Arzelà–Ascoli theorem). Let I ⊆ R+ be an interval, and
(ZL

k )L∈N∗,1⩽k⩽L be a family of C1 functions from I to Rp. Define

ZL : [0, 1]× I → Rp, (s, t) 7→ ZL(s, t) = ZL
⌊(L−1)s⌋+1(t).

Assume that there exist a constant C > 0 and a bounded integrable function b : I → R such that the
following statements hold for any t ∈ I and L ∈ N∗:

(i) For k ∈ {1, . . . , L− 1}, ∥ZL
k+1(t)− ZL

k (t)∥ ⩽ C
L ,

(ii) For k ∈ {1, . . . , L}, ∥ZL
k (t)∥ ⩽ C and ∥dZL

k

dt (t)∥ ⩽ b(t).

Then there exist a subsequence (Zϕ(L))L∈N∗ of (ZL)L∈N∗ and a Lipschitz continuous function
Zϕ : [0, 1]× I → Rp such that Zϕ(L)(s, t) tends to Zϕ(s, t) uniformly over s and t.

Note that if I is a compact interval, then the existence of a (uniformly) convergent subsequence
is guaranteed by the standard Arzelà–Ascoli theorem. Indeed, the uniform equicontinuity is a
consequence of assumptions (i) and (ii), while (ii) provides a uniform bound. However, if I is not
compact, more involved arguments are needed.

Proof. Assume, without loss of generality, that b is also bounded by C. According to assumption (i),
for t ∈ I and i, j ∈ {1, . . . , L},

∥ZL
i (t)− ZL

j (t)∥ ⩽
C|i− j|

L
.

Also, according to (ii), for t, t′ ∈ I and k ∈ {1, . . . , L},

∥ZL
k (t)− ZL

k (t
′)∥ =

∥∥∥∫ t

t′

dZL
k

dτ
(τ)dτ

∥∥∥ ⩽ C|t− t′|.

It follows that, for s, s′ ∈ [0, 1] and t, t′ ∈ I ,
∥ZL(s, t)−ZL(s′, t′)∥ ⩽ ∥ZL(s, t)−ZL(s, t′)∥+ ∥ZL(s, t′)−ZL(s′, t′)∥

⩽ C|t− t′|+ C|⌊(L− 1)s⌋ − ⌊(L− 1)s′⌋|
L

.

Therefore, with some simple algebra, we obtain

∥ZL(s, t)−ZL(s′, t′)∥ ⩽ C|t− t′|+ C|s− s′|+ C

L
. (26)

The statement of the proposition is then a consequence of the next three steps.

There exists a convergent subsequence of (ZL(s, t))L∈N∗ . First, let ((si, ti))i∈N = (Q∩ [0, 1])×
(Q ∩ I). By (ii), the sequence (ZL(si, ti))L∈N∗,i∈N is bounded. It is therefore possible to construct
by a diagonal procedure a subsequence (Zϕ(L))L∈N∗ such that, for each i ∈ N, (Zϕ(L)(si, ti))L∈N∗

is a convergent sequence.

Let us now show that (Zϕ(L)(s, t))L∈N∗ converges for any s ∈ [0, 1] and t ∈ I , by proving that it
is a Cauchy sequence in the complete metric space Rp. Let ε > 0, s ∈ [0, 1], and t ∈ I . Since
((si, ti))i∈N is dense in [0, 1]× I , there exists some j ∈ N such that |sj − s| ⩽ ε and |tj − t| ⩽ ε.
Then, for L,M ∈ N∗, we have

∥Zϕ(L)(s, t)−Zϕ(M)(s, t)∥
⩽ ∥Zϕ(L)(s, t)−Zϕ(L)(sj , tj)∥+ ∥Zϕ(L)(sj , tj)−Zϕ(M)(sj , tj)∥
+ ∥Zϕ(M)(sj , tj)−Zϕ(M)(s, t)∥

⩽ 2Cε+
C

ϕ(L)
+ ∥Zϕ(L)(sj , tj)−Zϕ(M)(sj , tj)∥+ 2Cε+

C

ϕ(M)
,

where we used inequality (26) twice. Since (Zϕ(L)(sj , tj))L∈N∗ is a convergent sequence, it is a
Cauchy sequence. Thus, the bound can be made arbitrarily small for L,M large enough. This shows
that (Zϕ(L)(s, t))L∈N∗ is also a Cauchy sequence. It is therefore convergent, and we denote by
Zϕ(s, t) its limit.
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The function Zϕ is Lipschitz continuous. By considering (26) for the subsequence ϕ(L) and
letting L → ∞, we have that, for any s, s′ ∈ [0, 1] and t, t′ ∈ I ,

∥Zϕ(s, t)−Zϕ(s′, t′)∥ ⩽ C(|s− s′|+ |t− t′|). (27)

The convergence of (Zϕ(L)(s, t))L∈N∗ to Zϕ(s, t) is uniform over s and t. Let ε > 0, s ∈ [0, 1],
and t ∈ I . Then, by (26) and (27), it is possible to find δ > 0 such that, for any s′, s′′ ∈ [0, 1] and
t′, t′′ ∈ I satisfying |s′ − s′′| ⩽ δ and |t′ − t′′| ⩽ δ,

∥Zϕ(L)(s′, t′)−Zϕ(L)(s′′, t′)∥ ⩽ ε+
C

ϕ(L)
and ∥Zϕ(s′, t′)−Zϕ(s′′, t′)∥ ⩽ ε, (28)

and

∥Zϕ(L)(s′, t′)−Zϕ(L)(s′, t′′)∥ ⩽ ε+
C

ϕ(L)
and ∥Zϕ(s′, t′)−Zϕ(s′, t′′)∥ ⩽ ε. (29)

Furthermore, there exists a finite set {s1, . . . , sS} ⊂ [0, 1] such that

[0, 1] ⊂
S⋃

i=1

(si − δ, si + δ).

In the sequel, we denote by s∗ an element of {s1, . . . , sS} that is at distance at most δ from s.

If I is unbounded, then, by assumption (ii) and since b is integrable, there exists some t0 > 0 such
that, for t ⩾ t0,

∥Zϕ(L)(s, t)−Zϕ(L)(s, t0)∥ ⩽
∫ t

t0

∥∥∥ d

dt
Z

ϕ(L)
⌊(ϕ(L)s−1)⌋+1(τ)

∥∥∥dτ ⩽
∫ t

t0

b(τ)dτ ⩽ ε. (30)

The same inequality holds for Zϕ by letting L tend to infinity. If I is bounded, we simply let
t0 = sup I .

We may then pick a finite set {t1, . . . , tT } ⊂ [0, t0] such that

[0, t0] ⊂
T⋃

i=1

(ti − δ, ti + δ).

Two cases may arise depending on the value of t. If t ∈ [0, t0], then there exists an element of the set
{t1, . . . , tT } at distance at most δ from t, and we denote it by t∗. If t > t0, we let t∗ = t0. According
to (29) and (30), we then have in both cases that

∥Zϕ(L)(s, t)−Zϕ(L)(s, t∗)∥ ⩽ ε+
C

ϕ(L)
and ∥Zϕ(s, t)−Zϕ(s, t∗)∥ ⩽ ε. (31)

To conclude, we have to bound the term ∥Zϕ(L)(s, t)−Zϕ(s, t)∥ uniformly over s and t. We first
have

∥Zϕ(L)(s, t)−Zϕ(s, t)∥
⩽ ∥Zϕ(L)(s, t)−Zϕ(L)(s, t∗)∥+ ∥Zϕ(L)(s, t∗)−Zϕ(s, t∗)∥
+ ∥Zϕ(s, t∗)−Zϕ(s, t)∥

⩽ 2ε+
C

ϕ(L)
+ ∥Zϕ(L)(s, t∗)−Zϕ(s, t∗)∥,

where the last inequality is a consequence of (31). The last term can be bounded as follows:

∥Zϕ(L)(s, t∗)−Zϕ(s, t∗)∥
⩽ ∥Zϕ(L)(s, t∗)−Zϕ(L)(s∗, t∗)∥+ ∥Zϕ(L)(s∗, t∗)−Zϕ(s∗, t∗)∥
+ ∥Zϕ(s∗, t∗)−Zϕ(s, t∗)∥

⩽ 2ε+
C

ϕ(L)
+ max

i∈{1,...,S}
∥Zϕ(L)(si, t

∗)−Zϕ(si, t
∗)∥,
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by using (28) and the fact that s∗ ∈ {s1, . . . , sS}. Putting all the pieces together, we finally obtain

∥Zϕ(L)(s, t)−Zϕ(s, t)∥ ⩽ 4ε+
2C

ϕ(L)
+ max

i∈{1,...,S},j∈{1,...,T}
∥Zϕ(L)(si, tj)−Zϕ(si, tj)∥.

By taking L large enough, independent of s and t, the sum of the last two terms can be made less
than ε. Since ε is arbitrary, this concludes the proof.

A consequence of this result is a simplified version for sequences of functions only indexed by L and
not k, as follows.
Corollary 10. Let I ⊆ R+ be an interval, and (ZL)L∈N∗ be a family of C1 functions from I to Rp.
Assume that there exist a constant C > 0 and a bounded integrable function b : I → R such that,
for any t ∈ I and L ∈ N∗, ∥ZL(t)∥ ⩽ C and ∥dZL

dt (t)∥ ⩽ b(t). Then there exist a subsequence
(Zϕ(L))L∈N∗ of (ZL)L∈N∗ and a function Zϕ : I → Rp such that Zϕ(L)(t) tends to Zϕ(t) uniformly
over t.

A.4 CONSISTENCY OF THE EULER SCHEME FOR PARAMETERIZED ODES

Proposition 11 (Consistency of the Euler scheme for parameterized ODEs.). Let (θLk )L∈N∗,1⩽k⩽L

be a bounded family of vectors of Rp, and let

ΘL : [0, 1] → Rp, s 7→ θL⌊(L−1)s⌋+1.

Assume that there exists Θ : [0, 1] → Rp a Lipschitz continuous function such that ΘL(s) tends to
Θ(s) uniformly over s. Let (aL)L∈N∗ be a sequence of vectors in some compact E ⊂ Rd converging
to a ∈ E. Let g : Rd × Rp → Rd be a C1 function such that g(0, ·) ≡ 0 and g(·, θ) is uniformly
Lipschitz continuous for θ in any compact of Rp. Consider the discrete scheme

uL
0 = aL

uL
k+1 = uL

k +
1

L
g(uL

k , θ
L
k+1), k ∈ {0, . . . , L− 1}.

(32)

Then uL
⌊Ls⌋ tends to U(s) uniformly over s ∈ [0, 1], where U is the unique solution of the ODE

U(0) = a

dU

ds
(s) = g(U(s),Θ(s)), s ∈ [0, 1].

(33)

Moreover, the convergence only depends on the sequence (aL)L∈N∗ and on its limit a ∈ E through
(∥aL − a∥)L∈N∗ .

Proof. Let M be a bound of the sequence (θLk )L∈N∗,1⩽k⩽L. By definition of ΘL, the sequence
(ΘL)L∈N∗ is also uniformly bounded by M , and the same is true for Θ. Then the function g(·,Θ(s))
is uniformly Lipschitz for s ∈ [0, 1]. Furthermore, (U, s) 7→ g(U,Θ(s)) is continuous in s because
g and Θ are continuous. Thus the ODE (33) has a unique solution on [0, 1] by the Picard-Lindelöf
theorem (see Lemma 16).

Denote by C the uniform Lipschitz constant of g(·, θ) for ∥θ∥ ⩽ M . Since g(0, ·) ≡ 0 and g(·,Θ(s))
is C-Lipschitz, one has ∥∥∥dU

ds
(s)

∥∥∥ = ∥g(U(s),Θ(s))∥ ⩽ C∥U(s)∥.

Therefore, by Grönwall’s inequality,

∥U(s)∥ ⩽ ∥U(0)∥ exp(C) = ∥a∥ exp(C) ⩽ DE exp(C),

where DE = supx∈E ∥x∥ < ∞. A similar reasoning applies to the discrete scheme (32), using the
discrete version of Grönwall’s inequality. More precisely, for any k ∈ {0, . . . , L− 1},

∥uL
k+1∥ ⩽ ∥uL

k ∥+
1

L
∥g(uL

k , θ
L
k+1)∥ ⩽

(
1 +

C

L

)
∥uL

k ∥.
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Thus,
∥uL

k ∥ ⩽ ∥uL
0 ∥ exp(C) = ∥aL∥ exp(C) ⩽ DE exp(C).

Overall, we can consider a restriction of g to a compact set depending only on M , C, and E, which
we will still denote by g with a slight abuse of notation. Since g is C1, it is therefore bounded and
Lipschitz continuous, and we still let C be its Lipschitz constant.

For L ∈ N∗ and k ∈ {0, . . . , L}, we denote by ∆L
k the gap between the continuous and the discrete

schemes, i.e.,

∆L
k =

∥∥∥U( k

L

)
− uL

k

∥∥∥.
The next step is to recursively bound the size of this gap, first observing that ∆L

0 = ∥aL − a∥. We
have that

s 7→ dU

ds
(s) = g(U(s),Θ(s)) (34)

is a Lipschitz continuous function with some Lipschitz constant C̃. To see this, just note that U itself
is Lipschitz continuous in s, since g is bounded, and therefore the function (34) is a composition
of Lipschitz continuous functions. In particular, dU

ds is almost everywhere differentiable, and its
derivative d2U

ds2 (s) is bounded in the supremum norm by C̃. As a consequence, for k ∈ {0, . . . , L−1},
the Taylor expansion of U on [ kL ,

k+1
L ] takes the form

U
(k + 1

L

)
= U

( k

L

)
+

1

L

dU

ds

( k

L

)
+

∫ (k+1)/L

k/L

(k + 1

L
− s

)d2U
ds2

(s)ds,

where the norm of the remainder term is less than C̃/L2. Therefore,

∆L
k+1 =

∥∥∥U(k + 1

L

)
− uL

k+1

∥∥∥
=

∥∥∥U( k

L

)
+

1

L
g
(
U
( k

L

)
,Θ

( k

L

))
+

∫ (k+1)/L

k/L

(k + 1

L
− s

)d2U
ds2

(s)ds

− uL
k − 1

L
g(uL

k , θ
L
k+1)

∥∥∥
⩽

∥∥∥U( k

L

)
− uL

k

∥∥∥+
∥∥∥ 1

L
g
(
U
( k

L

)
,Θ

( k

L

))
− 1

L
g(uL

k , θ
L
k+1)

∥∥∥
+

∫ (k+1)/L

k/L

(k + 1

L
− s

)∥∥∥d2U
ds2

(s)
∥∥∥ds

⩽ ∆L
k +

C

L
∆L

k +
C

L

∥∥∥Θ( k

L

)
− θLk+1

∥∥∥+
C̃

L2
.

In the last inequality, we used the fact that g is C-Lipschitz. Since, by definition, θLk+1 = ΘL( k
L−1 ),

we obtain, for k ∈ {0, . . . , L− 1},

∆L
k+1 ⩽

(
1 +

C

L

)
∆L

k +
C

L

∥∥∥Θ( k

L

)
−ΘL

( k

L− 1

)∥∥∥+
C̃

L2

⩽
(
1 +

C

L

)
∆L

k +
C

L
sup

s∈[0,1]

∥Θ(s)−ΘL(s)∥+ C

L

∥∥∥Θ( k

L

)
−Θ

( k

L− 1

)∥∥∥+
C̃

L2

⩽
(
1 +

C

L

)
∆L

k +
C

L
sup

s∈[0,1]

∥Θ(s)−ΘL(s)∥+ CCΘ

L2
+

C̃

L2
,

where CΘ is the Lipschitz constant of Θ. By the discrete Grönwall’s inequality, we deduce that, for
k ∈ {0, . . . , L− 1},

∆L
k+1 ⩽

(
∆L

0 + sup
s∈[0,1]

∥Θ(s)−ΘL(s)∥+ CΘ

L
+

C̃

LC

)
eC

=
(
∥aL − a∥+ sup

s∈[0,1]

∥Θ(s)−ΘL(s)∥+ CΘ

L
+

C̃

LC

)
eC . (35)
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This shows that the gaps ∆L
k converge to zero uniformly over k ∈ {0, . . . , L} as L tends to infinity.

We conclude by observing that, for any s ∈ [0, 1],

∥U(s)− uL
⌊Ls⌋∥ ⩽

∥∥∥U(s)− U
(⌊Ls⌋

L

)∥∥∥+
∥∥∥U(⌊Ls⌋

L

)
− uL

⌊Ls⌋

∥∥∥ ⩽
CU

L
+∆L

⌊Ls⌋, (36)

where CU is the Lipschitz constant of U . Both terms converge to zero uniformly over s as L
tends to infinity. Finally, an inspection of our bounds shows that the convergence only depends on
(aL)L∈N∗ ∈ EN∗

through ∥aL − a∥.

The results of Proposition 11 can be extended without much effort to two other related cases. First,
the parameters θLk may depend on some other variable t, as long as all assumptions are verified
uniformly over t. Second, these parameters may converge to some limit parameters as both L and t
go to infinity. This is encapsulated in the following two corollaries.
Corollary 12. Let I ⊆ R+ be an interval. Let (θLk )L∈N∗,1⩽k⩽L be a uniformly bounded family of
functions from I to Rp, and let

ΘL : [0, 1]× I → Rp, (s, t) 7→ θL⌊(L−1)s⌋+1(t).

Assume that there exists a function Θ : [0, 1]× I → Rp such that ΘL(s, t) tends to Θ(s, t) uniformly
over s and t, and Θ(·, t) is uniformly Lipschitz continuous for t ∈ I . Let (aL)L∈N∗ be a family of
functions from I to some compact E ⊂ Rd, uniformly converging to a : I → E. Let g : Rd × Rp →
Rd be a C1 function such that g(0, ·) ≡ 0 and g(·, θ) is uniformly Lipschitz continuous for θ in any
compact of Rp. Consider the discrete scheme, for t ∈ I ,

uL
0 (t) = aL(t)

uL
k+1(t) = uL

k (t) +
1

L
g(uL

k (t), θ
L
k+1(t)), k ∈ {0, . . . , L− 1}.

Then uL
⌊Ls⌋(t) tends to U(s, t) uniformly over s ∈ [0, 1] and t ∈ I , where U(·, t) is the unique

solution of the ODE

U(0, t) = a(t)

∂U

∂s
(s, t) = g(U(s, t),Θ(s, t)), s ∈ [0, 1].

Moreover, the convergence only depends on the sequence (aL)L∈N∗ and on its limit a ∈ EI through
(supt∈I ∥aL(t)− a(t)∥)L∈N∗ .

Corollary 13. Let I ⊆ R+ be an interval. Let (θLk )L∈N∗,1⩽k⩽L be a uniformly bounded family of
functions from I to Rp, and let

ΘL : [0, 1]× R+ → Rp, (s, t) 7→ θL⌊(L−1)s⌋+1(t).

Assume that there exists a function Θ∞ : [0, 1] → Rp such that ΘL(s, t) tends to Θ∞(s) uniformly
over s as L, t → ∞, and Θ∞ is Lipschitz continuous. Let (aL)L∈N∗ be a family of functions from I
to some compact E ⊂ Rd, and converging to a∞ ∈ E as L, t → ∞. Let g : Rd × Rp → Rd be a C1

function such that g(0, ·) ≡ 0 and g(·, θ) is uniformly Lipschitz continuous for θ in any compact of
Rp. Consider the discrete scheme, for t ∈ I ,

uL
0 (t) = aL(t)

uL
k+1(t) = uL

k (t) +
1

L
g(uL

k (t), θ
L
k+1(t)), k ∈ {0, . . . , L− 1}.

Then uL
⌊Ls⌋(t) tends to U(s) uniformly over s ∈ [0, 1] as L, t → ∞, where U is the unique solution

of the ODE

U(0) = a∞

dU

ds
(s) = g(U(s),Θ∞(s)), s ∈ [0, 1].

Moreover, the convergence only depends on the sequence (aL)L∈N∗ and on its limit a ∈ EI through
(supt∈I ∥aL(t)− a(t)∥)L∈N∗ .
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A.5 LARGE-DEPTH CONVERGENCE OF THE GRADIENT FLOW

This section is devoted to proving the main result of Appendix A, namely the large-depth convergence
of the gradient flow. The setting we consider encompasses both Section 4.1 (finite training time and
clipped gradient flow) and Section 4.2 (arbitrary training time and standard gradient flow). To this end,
we consider a training interval I = [0, T ] ⊆ R+, for T ⩽ ∞, and the gradient flow formulation (5),
which is equivalent to the standard gradient flow (4) if π equals the identity. Note that we do not need
to assume in the following proof that π is bounded (but only Lipschitz continuous). Therefore, the
proof also holds in the case where π equals the identity.

Theorem 14. Consider the residual network (12) initialized as explained in Appendix A and trained
with the gradient flow (5) on I = [0, T ] ⊆ R+, for some T ∈ (0,∞]. Assume that there exists a unique
solution to the gradient flow, such that (AL)L∈N∗ and (BL)L∈N∗ each satisfies the assumptions of
Corollary 10, and (ZL

k )L∈N∗,1⩽k⩽L satisfies the assumptions of Proposition 9. Then the following
four statements hold as L tends to infinity:

(i) There exist functions A : I → Rq×d and B : I → Rd′×q such that AL(t) and BL(t)
converge uniformly over t ∈ I to A(t) and B(t).

(ii) There exists a Lipschitz continuous function Z : [0, 1]× I → Rp such that

ZL : [0, 1]× I → Rp, (s, t) 7→ ZL(s, t) = ZL
⌊(L−1)s⌋+1(t)

converges uniformly over s ∈ [0, 1] and t ∈ I to Z(s, t).

(iii) Uniformly over s ∈ [0, 1], t ∈ I , and x ∈ X , the hidden layer hL
⌊Ls⌋(t) converges to the

solution at time s of the neural ODE

H(0, t) = A(t)x

∂H

∂s
(s, t) = f(H(s, t),Z(s, t)), s ∈ [0, 1].

(iv) Uniformly over t ∈ I and x ∈ X , the output FL(x; t) converges to B(t)H(1, t).

Proof. According to Proposition 9, there exists a subsequence (Zϕ(L))L∈N∗ of (ZL)L∈N∗ and a
Lipschitz continuous function Zϕ : [0, 1]×I → Rp such that Zϕ(L)(s, t) tends to Zϕ(s, t) uniformly
over s and t. Similarly, by Corollary 10, there exists subsequences of (AL)L∈N∗ and (BL)L∈N∗ that
converge uniformly. With a slight abuse of notation, we still denote these subsequences by ϕ, and the
corresponding limits by Aϕ and Bϕ.

In the remainder, we prove the uniqueness of the accumulation point (Zϕ, Aϕ, Bϕ) by showing
that it is the solution of an ODE that satisfies the assumptions of the Picard-Lindelöf theorem. The
statements (i) to (iv) then follow easily.

Consider a general input (x, y) ∈ X × Y , and let HL(s, t) = hL
⌊Ls⌋(t) (recall that hL

k (t) is defined

by the forward propagation (12)). Corollary 12, with θLk = Z
ϕ(L)
k , Θ = Zϕ, aL = Aϕ(L)x, g = f ,

ensures that Hϕ(L)(s, t) converges uniformly (over s and t) to Hϕ(s, t) that is the solution at time s
of the ODE

Hϕ(0, t) = Aϕ(t)x

∂Hϕ

∂s
(s, t) = f(Hϕ(s, t),Zϕ(s, t)), s ∈ [0, 1].

By inspecting the proof of the corollary, we also have that (hϕ(L)
k )L∈N∗,1⩽k⩽ϕ(L) and (Hϕ(L))L∈N∗

are uniformly bounded and that Hϕ(·, t) is uniformly Lipschitz continuous for t ∈ I .

We now turn our attention to the backpropagation recurrence (13), which defines the backward state
pLk (t). First observe that the convergence of Hϕ(L) implies that

p
ϕ(L)
ϕ(L)(t) = 2Bϕ(L)(t)⊤(Bϕ(L)(t)h

ϕ(L)
ϕ(L)(t)− y) = 2Bϕ(L)(t)⊤(Bϕ(L)(t)Hϕ(L)(1, t)− y)
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converges uniformly to 2Bϕ(t)⊤(Bϕ(t)Hϕ(1, t) − y) ∈ Rd. Now, let PL(s, t) = pL⌊Ls⌋(t). We

apply again Corollary 12, this time to the backpropagation recurrence (13), with θLk = (h
ϕ(L)
k , Z

ϕ(L)
k ),

Θ = (Hϕ,Zϕ), g : (p, (h, Z)) 7→ ∂1f(h, Z)p, and aL = 2(Bϕ(L))⊤(Bϕ(L)Hϕ(L)(1, ·) − y). Let
us quickly check that the conditions of the corollary are met:

• The sequence (h
ϕ(L)
k )L∈N∗,1⩽k⩽ϕ(L) is bounded, as noted previously, and the same holds

for (Zϕ(L)
k )L∈N∗,1⩽k⩽ϕ(L) by the assumptions of Theorem 14.

• The function Hϕ(·, t) is uniformly Lipschitz continuous for t ∈ I , as noted previously, and
the same is true for Zϕ(·, t) since Zϕ is Lipschitz continuous.

• The function h
ϕ(L)
⌊(ϕ(L)−1)s⌋+1(t) tends to Hϕ(s, t) uniformly over s and t, as seen in the

beginning of the proof. More precisely, we know that Hϕ(L)(s, t) = h
ϕ(L)
⌊ϕ(L)s⌋(t) tends to

Hϕ(s, t). Simple algebra and the fact that two successive iterates of (12) are separated
by a distance proportional to 1/L show that both statements are equivalent. Furthermore,
Zϕ(L)(s, t) tends to Zϕ(s, t) uniformly over s and t as noted above.

• The sequence (aL)L∈N∗ is uniformly bounded, since Bϕ(L) and Hϕ(L)(1, ·) are. It also
converges uniformly to a : t 7→ 2Bϕ(t)⊤(Bϕ(t)Hϕ(1, t)− y).

• The function g is C1 since f is C2. We clearly have g(0, ·) ≡ 0. Finally, g(·, (h, Z)) is
uniformly Lipschitz continuous for (h, Z) in any compact since ∂1f is continuous.

Overall, we obtain that Pϕ(L)(s, t) converges uniformly (over s and t) to Pϕ(s, t), the solution at
time s of the backward ODE

Pϕ(1, t) = 2Bϕ(t)⊤(Bϕ(t)Hϕ(1, t)− y)

∂Pϕ

∂s
(s, t) = ∂1f(H

ϕ(s, t),Zϕ(s, t))Pϕ(s, t), s ∈ [0, 1].

Furthermore, the proof of the corollary shows that (Pϕ(L))L∈N∗ is uniformly bounded. Now, recall
that the gradient flow for Zϕ(L)

k (t), given by (5) and (15), takes the following form, for t ∈ I and
k ∈ {1, . . . , ϕ(L)},

∂Z
ϕ(L)
k (t)

∂t
= π

(
− 1

n

n∑
i=1

∂2f(h
ϕ(L)
k−1,i(t), Z

ϕ(L)
k (t))⊤p

ϕ(L)
k,i (t)

)
,

where the i subscript corresponds to the i-th input xi. By definition, for s ∈ [0, 1], Zϕ(L)(s, t) =

Z
ϕ(L)
⌊(ϕ(L)−1)s⌋+1(t). Thus, the equation above can be rewritten, for s ∈ [0, 1] and t ∈ I ,

∂Zϕ(L)(s, t)

∂t
= π

(
− 1

n

n∑
i=1

∂2f(h
ϕ(L)
⌊(ϕ(L)−1)s⌋,i(t), Z

ϕ(L)
⌊(ϕ(L)−1)s⌋+1(t))

⊤p
ϕ(L)
⌊(ϕ(L)−1)s⌋+1,i(t)

)
.

(37)
The term inside π can be rewritten as

− 1

n

n∑
i=1

∂2f
(
H

ϕ(L)
i

(⌊(ϕ(L)− 1)s⌋
ϕ(L)

, t
)
,Zϕ(L)(s, t)

)⊤
P

ϕ(L)
i

(⌊(ϕ(L)− 1)s⌋+ 1

ϕ(L)
, t
)
.

Since f is C2, ∂2f is locally Lipschitz continuous. Applying the first part of the proof to the specific
case of xi, we know that Hϕ(L)

i and P
ϕ(L)
i uniformly bounded, and that Hϕ(L)

i (s, t) and P
ϕ(L)
i (s, t)

converge uniformly to Hϕ
i (s, t) and Pϕ

i (s, t). Therefore, the right-hand side of (37) converges
uniformly over s and t to

π
(
− 1

n

n∑
i=1

∂2f(H
ϕ
i (s, t),Zϕ(s, t))⊤Pϕ

i (s, t)
)
.
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We have just shown the uniform convergence of the derivative in t of Zϕ(L)(s, t). Furthermore, we
know that, for s ∈ [0, 1], the sequence (t 7→ Zϕ(L)(s, t))L∈N∗ converges to Zϕ(s, ·). These two
statements imply that Zϕ is differentiable with respect to t and that, for s ∈ [0, 1], its derivative
satisfies the ordinary differential equation

∂Zϕ(s, t)

∂t
= π

(
− 1

n

n∑
i=1

∂2f(H
ϕ
i (s, t),Zϕ(s, t))⊤Pϕ

i (s, t)
)
. (38)

Moreover, by our initialization scheme,

Zϕ(s, 0) = Z init(s). (39)

A similar approach reveals that Aϕ(t) and Bϕ(t) are differentiable and that they verify the equations

dAϕ

dt
(t) = π

(
− 1

n

n∑
i=1

Pϕ
i (0, t)x

⊤
i

)
, Aϕ(0) = Ainit, (40)

dBϕ

dt
(t) = π

(
− 2

n

n∑
i=1

(Bϕ(t)Hϕ
i (1, t)− yi)H

ϕ
i (1, t)

⊤
)
, Bϕ(0) = Binit. (41)

The equations (38) to (41) can be seen as an initial value problem whose variables are the function
Zϕ(·, t) : [0, 1] → Rp and the matrices Aϕ(t) ∈ Rq×d, Bϕ(t) ∈ Rd′×q. To complete the proof,
it remains to show, using the Picard-Lindelöf theorem (see Lemma 16), that there exists a unique
solution to this problem. First, note that the space B([0, 1],Rp) of bounded functions from [0, 1] to Rp

endowed with the supremum norm is a Banach space, which is the proper space in which to apply the
Picard-Lindelöf theorem. We therefore endow the space of parameters B([0, 1],Rp)×Rq×d ×Rd′×q

with the norm
∥(Z, A,B)∥ := sup

s∈[0,1]

∥Z(s)∥+ ∥A∥2 + ∥B∥2,

which makes it a Banach space. We have to show that the mapping

(Z, A,B) 7→
(
s 7→ π

(
− 1

n

n∑
i=1

∂2f(Hi(s),Z(s))⊤Pi(s)
)
,

π
(
− 1

n

n∑
i=1

Pi(0)x
⊤
i

)
, π

(
− 2

n

n∑
i=1

(BHi(1)− yi)Hi(1)
⊤
)) (42)

is locally Lipschitz continuous with respect to this norm, where we recall that Hi(s) in (42) is the
solution at time s of the initial value problem

Hi(0) = Axi

dHi

ds
(s) = f(Hi(s),Z(s)), s ∈ [0, 1],

(43)

and Pi(s) is the solution at time s of the initial value problem

Pi(1) = 2B⊤(BHi(1)− yi)

dPi

ds
(s) = ∂1f(Hi(s),Z(s))Pi(s), s ∈ [0, 1].

(44)

To prove that the mapping (42) is locally Lipschitz continuous, we first check that it is well defined.
Since Z is assumed to be only bounded (and not continuous), the solutions of the initial value
problems (43) and (44) are well defined in the sense of the Caratheodory conditions, which are given
in Lemma 17.

Next, we can show that (Z, A,B) 7→ Hi is locally Lipschitz continuous for i ∈ {1, . . . , n}. To do
this, consider two sets of parameters (Z, A,B) and (Z̃, Ã, B̃) belonging to a compact set D. Let
Hi and H̃i denote the corresponding hidden states. As in the proof of Proposition 11, it holds that
Hi and H̃i belong to some compact set E that depends only on D and f . Let Kf be the Lipschitz
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constant of the C1 function f on E ×D. Then,

∥H̃i(s)−Hi(s)∥ ⩽ ∥H̃i(0)−Hi(0)∥+
∫ s

0

∥∥∥dH̃i

dr
(r)− dHi

dr
(r)

∥∥∥dr
⩽ ∥H̃i(0)−Hi(0)∥+

∫ s

0

∥f(H̃i(r), Z̃(r))− f(Hi(r),Z(r))∥dr.

The norm inside the integral can be bounded by

∥f(H̃i(r), Z̃(r))− f(H̃i(r),Z(r))∥+ ∥f(H̃i(r),Z(r))− f(Hi(r),Z(r))∥
⩽ Kf sup

r∈[0,1]

∥Z̃(r)−Z(r)∥+Kf∥H̃i(r)−Hi(r)∥.

Therefore,

∥H̃i(s)−Hi(s)∥ ⩽ ∥Ã−A∥2∥xi∥+Kf sup
r∈[0,1]

∥Z̃(r)−Z(r)∥+
∫ s

0

Kf∥H̃i(r)−Hi(r)∥dr.

Using Grönwall’s inequality, we obtain, for any s ∈ [0, 1],

∥H̃i(s)−Hi(s)∥ ⩽
(
∥Ã−A∥2∥xi∥+Kf sup

r∈[0,1]

∥Z̃(r)−Z(r)∥
)
exp(Kf ).

This shows that the function (Z, A,B) 7→ Hi is locally Lipschitz continuous. One proves by
similar arguments that the function (Z, A,B) 7→ Pi is locally Lipschitz continuous. Thus, overall,
the mapping (42) is locally Lipschitz continuous as a composition of locally Lipschitz continuous
functions.

The Picard-Lindelöf theorem guarantees the uniqueness of the maximal solution of the initial value
problem (38)–(41) in the space B([0, 1],Rp) × Rd×q × Rd′×q. Since any accumulation point
(Zϕ, Aϕ, Bϕ) is a solution belonging to this space, this proves the uniqueness of the accumulation
point, which we therefore denote as (Z, A,B).

The uniform convergence of (ZL, AL, BL) to (Z, A,B) is then easily shown by contradiction.
Suppose that uniform convergence does not hold. If this is true, then there exists a subsequence
that stays at distance ε > 0 from (Z, A,B) (in the sense of the uniform norm). Then arguments
similar to the beginning of the proof show the existence of a second accumulation point, which is a
contradiction. This shows the uniform convergence, yielding statements (i) and (ii) of the theorem.

Finally, reapplying Corollary 12 with θLk = ZL
k , Θ = Z , aL = ALx, g = f , completes the proof by

proving statements (iii) and (iv).

Training dynamics of the limiting weights. Interestingly, the proof of Theorem 14 provides us
with an explicit description of the evolution of the continuous-depth limiting weights during training.
With the notation of the proof, the continuous weights satisfy the training dynamics:

dA

dt
(t) = π

(
− 1

n

n∑
i=1

Pi(0, t)x
⊤
i

)
∂Z
∂t

(s, t) = π
(
− 1

n

n∑
i=1

∂2f(Hi(s, t),Z(s, t))⊤Pi(s, t)
)

dB

dt
(t) = π

(
− 2

n

n∑
i=1

(B(t)Hi(1, t)− yi)Hi(1, t)
⊤
)
,

where we recall that Hi(s, t) is the solution at time s of the initial value problem

Hi(0, t) = A(t)xi

∂Hi

∂s
(s, t) = f(Hi(s, t),Z(s, t)), s ∈ [0, 1],
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and Pi(s, t) is the solution at time s of the problem

Pi(1, t) = 2B(t)⊤(B(t)Hi(1, t)− yi)

∂Pi

∂s
(s, t) = ∂1f(Hi(s, t),Z(s, t))Pi(s, t), s ∈ [0, 1].

These equations can be thought of as the continuous-depth equivalent of the backpropagation equa-
tions.

A.6 EXISTENCE OF THE DOUBLE LIMIT WHEN L, t TEND TO INFINITY

Proposition 15. Consider the residual network (12), and assume that:

(i) AL(t), ZL
⌊Ls⌋(t), and BL(t) converge uniformly over L ∈ N∗ and s ∈ [0, 1] as t → ∞.

(ii) AL(t), ZL
⌊Ls⌋(t), and BL(t) converge uniformly over t ∈ R+ and s ∈ [0, 1] as L → ∞.

(iii) The loss ℓL(t) converges to 0 uniformly over L ∈ N∗ as t → ∞.

Then the following four statements hold as t and L tend to infinity:

(i) There exist matrices A∞ ∈ Rq×d and B∞ ∈ Rd′×q such that AL(t) and BL(t) converge to
A∞ and B∞.

(ii) There exists a Lipschitz continuous function Z∞ : [0, 1] → Rp such that ZL
⌊Ls⌋(t) converges

to Z∞(t) uniformly over s ∈ [0, 1].

(iii) Uniformly over s ∈ [0, 1] and x ∈ X , the hidden layer hL
⌊Ls⌋(t) converges to the solution at

time s of the ODE

H(0) = A∞x

dH

ds
(s) = f(H(s),Z∞(s)), s ∈ [0, 1].

(45)

(iv) Uniformly over x ∈ X , the output FL(x; t) converges to F∞(x) = B∞H(1). Furthermore,
F∞(xi) = yi for i ∈ {1, . . . , n}.

Proof. The existence of limits A∞ and B∞ to AL(t) and BL(t) as L and t tend to infinity is given by
Lemma 19. The same argument applies to ZL

⌊sL⌋(t), which provides a limit Z∞(s) to the sequence.
Furthermore, following the proof of the lemma, we see that the convergence of ZL

⌊sL⌋(t) to Z∞(s) is
uniform over s ∈ [0, 1]. Corollary 13, applied with θLk = ZL

k , Θ∞ = Z∞, aL = ALx, g = f , then
ensures that hL

⌊Ls⌋(t) converges uniformly (over s ∈ [0, 1] and x ∈ X ) to H(s) that is the solution at
time s of (45), as L and t tend to infinity. As a consequence, FL(x; t) converges uniformly over x to
F∞(x) as L, t → ∞. Furthermore, recall that

ℓL(t) =
1

n

n∑
i=1

∥FL(xi; t)− yi∥22.

The left-hand side converges as L, t → ∞ to 0 by assumption of the proposition, while the right-hand
side converges to

1

n

n∑
i=1

∥F∞(xi)− yi∥22.

Therefore, F∞(xi) = yi for i ∈ {1, . . . , n}, and the proof is complete.
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B PROOFS OF THE RESULTS OF THE MAIN PAPER

In this section, we prove the results of the main paper. Most of these results follow from those
presented in Section A. The only substantial proof is that of Proposition 5, which shows the local PL
condition. It uses a result of Nguyen & Mondelli (2020) involving the Hermite transform and the
sub-Gaussian variance proxy, which we define briefly. We refer to Debnath & Bhatta (2014, Chapter
17) and Vershynin (2018, Sections 2.5.2 and 3.4.1), respectively, for more detailed explanations.

Hermite transform. The r-th normalized probabilist’s Hermite polynomial is given by

hr(x) =
1√
r!
(−1)rex

2/2 dr

dxr
e−x2/2, r ⩾ 0.

This family of polynomials forms an orthonormal basis of square-integrable functions for the inner
product

⟨f1, f2⟩ =
1√
2π

∫ ∞

−∞
f1(x)f2(x)e

−x2/2dx.

Therefore, any function σ such that 1√
2π

∫∞
−∞ σ2(x)e−x2/2dx < ∞ can be decomposed on this basis.

The r-th coefficient of this decomposition is denoted by ηr(σ).

Sub-Gaussian random vector. A random vector x ∈ Rd is sub-Gaussian with variance proxy
vx > 0 if, for every y ∈ Rd of unit norm,

P(|⟨x, y⟩| ⩾ t) ⩽ 2 exp
(
− t2

2v2x

)
.

Additional notation. For a matrix A, we let smin and smax its minimum and maximum singular
values, and similarly, λmin and λmax its minimum and maximum eigenvalues (whenever they exist).

Before delving into the proofs, we briefly describe the parts of this section that make use of the specific
model (3). The most important one is the proof of Proposition 5, i.e., the proof that the residual
network satisfies the (M,µ)-local PL condition. Additionally, in the proof of Proposition 3, the
expressions for M and K are valid only for the specific model (3). Finally, in the proof of Theorem 6,
the beginning of the proof reveals that condition (22) of Proposition 8 on µ can be expressed as a
condition on the norm of the labels yi. This applies only to the specific model (3). Observe that, if
one assumes that the general residual network of Section A satisfies the (M,µ)-local PL condition
with µ given by (22), then the rest of the proof of Theorem 6 unfolds, and the conclusions of the
theorem hold for the general model.

B.1 PROOF OF PROPOSITION 1

Proposition 1 is a consequence of Proposition 7 with f(h, (V,W )) = 1√
m
V σ( 1√

qWh).

B.2 PROOF OF PROPOSITION 2

Proposition 11, with θLk = (V L
k ,WL

k ), Θ = (V,W), aL = Ax, g(h, (V,W )) = 1√
m
V σ( 1√

qWh),
gives the existence and uniqueness of the solution of the neural ODE (6). Moreover, inspecting the
proof of Proposition 11, equations (35) gives that, for any input x ∈ X , the difference between the
last hidden layer hL

L of the discrete residual network (3) and its continuous counterpart H(1) in the
neural ODE (6) is bounded by

C ′
( 1

L
+ sup

s∈[0,1]

∥Θ(s)−ΘL(s)∥
)
,

where C ′ > 0 is independent of L and x ∈ X , and ΘL(s) = θL⌊(L−1)s⌋+1. The function ΘL is a
piecewise-constant interpolation of Θ with pieces of length 1

L−1 . Since Θ is Lipschitz continuous,
the distance between Θ and ΘL decreases as C′′

/L for some C ′′ > 0 depending on Θ but not on L.
This yields ∥hL

L −H(1)∥ ⩽ C′(1++C′′)
L , where C ′ and C ′′ are independent of L and x ∈ X . Since

FL(x) = BhL
L and F (x) = BH(1), the result is proven.
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B.3 PROOF OF PROPOSITION 3

We apply Proposition 7 with f(h, (V,W )) = 1√
m
V σ( 1√

qWh). Recall that the parameters Z =

(V,W ) are considered in Proposition 7 as a vector. In particular, ∥Z∥ = ∥V ∥F + ∥W∥F . Therefore,
Proposition 7 shows that, for t ∈ [0, T ], L ∈ N∗, and k ∈ {1, . . . , L},

∥AL(t)∥F ⩽ M, ∥V L
k (t)∥F + ∥WL

k (t)∥F ⩽ M, and ∥BL(t)∥F ⩽ M,

where

M = M0 + TMπ

M0 = max
(
∥AL(0)∥F , ∥V L

0 (0)∥F + ∥WL
0 (0)∥F , ∥BL(0)∥F

)
Mπ = max

(
max

A∈Rq×d
∥π(A)∥F , max

Z∈Rq×m×Rm×q
∥π(Z)∥, max

B∈Rd′×q
∥π(B)∥F

)
.

Furthermore, due to our initialization scheme described in Section 3,

∥AL(0)∥F =
√
d, ∥V L

0 (0)∥F = 0, ∥WL
0 (0)∥F ⩽ 2

√
qm, ∥BL(0)∥F =

√
d′,

where the third inequality holds with probability at least 1− exp(− 3qm
16 ) by Lemma 20. Since we

take q ⩾ max(d, d′), this implies that, with high probability, M0 ⩽ 2
√
qm, yielding the formula

for M in Proposition 3. Finally, the existence of K = βTeαT such that the difference between
two successive weight matrices is bounded by K/L, as well as the dependence of α and β on X ,
Y , M , and σ, follows easily from Proposition 7, given that our initialization scheme ensures that
ZL
k (0) = ZL

k+1(0) for all L ∈ N∗ and k ∈ {1, . . . , L}.

B.4 PROOF OF THEOREM 4

By Proposition 3 and the fact that π is bounded, the sequences (AL)L∈N∗ and (BL)L∈N∗ each
satisfy the assumptions of Corollary 10, and (ZL

k )L∈N∗,1⩽k⩽L satisfies the assumptions of Proposi-
tion 9. Theorem 4 then follows directly from Theorem 14, by taking, as previously, f(h, (V,W )) =
1√
m
V σ( 1√

qWh).

B.5 PROOF OF PROPOSITION 5

We drop the L superscripts for this proof, since L is fixed. Denote by Ā, B̄, V̄k, W̄k parameters
sampled according to the initialization scheme of Section 3, which means in particular that V̄k = 0 and
W̄k = W̄ ∼ N⊗(m×q). Since, by assumption, the activation function σ is bounded and not constant,
it cannot be a polynomial function. As a consequence, there are infinitely many non-zero coefficients
ηr(σ) in its Hermite expansion (defined at the beginning of Section B). Throughout, we let r ⩾ 2
be an integer such that ηr(σ) is nonzero. We also let Kσ be the Lipschitz constant of σ and Mσ its
supremum norm. Now, let A,B, Vk,Wk be parameters at distance at most M = min( ηr(σ)

32Kσ
√
2nq

, 1
2 )

from Ā, B̄, V̄k, W̄k in the sense of Definition 1.

It is useful for this proof to introduce a matrix-valued version of the residual network (3). More
specifically, given data matrices x ∈ Rd×n and y ∈ Rd′×n, the matrix-valued residual network
writes

h0 = Ax

hk+1 = hk +
1

L
√
m
Vk+1σ

( 1√
q
Wk+1hk

)
, k ∈ {0, . . . , L− 1}, (46)

where now hk ∈ Rq×n. The loss is equal to ℓ = 1
n∥BhL − y∥2F and we let pk = ∂ℓ

∂hk
∈ Rq×n be

the matrix-valued backward state. Observe that the columns of x are bounded and thus sub-Gaussian.
In the sequel, we denote by vx the sub-Gaussian variance proxy of the columns of

√
d/qx.

Now that we have introduced the necessary notation, we can proceed to prove some preliminary
estimates. Since M ⩽ 1

2 ⩽
√
2qm, we have, for k ∈ {1, . . . , n},

∥A− Ā∥F ⩽ M, ∥B − B̄∥F ⩽
1

2
, ∥Vk∥F ⩽ 1, ∥Wk − W̄∥F ⩽

1

2
⩽

√
2qm. (47)
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By Lemma 20, with probability at least 1− exp
(
− qm

16

)
, one has ∥W̄∥F ⩽

√
2qm. Together with

the previous inequalities, this implies

∥A∥2 ⩽ 2, smin(B) ⩾
1

2
, ∥B∥2 ⩽

3

2
, ∥Vk∥F ⩽ 1, ∥Wk∥F ⩽ 2

√
2qm, (48)

where the second inequality is a consequence of Lemma 18, as follows:

smin(B) ⩾ smin(B̄)− ∥B − B̄∥F = 1− ∥B − B̄∥F ⩾
1

2
.

Let us now bound ∥hk∥F and ∥pk∥F . We have

∥h0∥F = ∥Ax∥F ⩽ ∥A∥2∥x∥F ⩽ 2
√
qn. (49)

Moreover, by (46), for any k ∈ {0, . . . , L− 1},

∥hk+1∥F ⩽ ∥hk∥F +
Kσ

L
√
m
√
q
∥Vk+1∥F ∥Wk+1∥F ∥hk∥F ⩽

(
1 +

2
√
2Kσ

L

)
∥hk∥F ,

where the second inequality is a consequence of (48). Therefore, by (49),

∥hk∥F ⩽ exp(2
√
2Kσ)∥h0∥F ⩽ 2 exp(2

√
2Kσ)

√
qn. (50)

Moving on to ∥pk∥F , the chain rule leads to

pk = pk+1 +
1

L
√
qm

W⊤
k+1

(
(V ⊤

k+1pk+1)⊙ σ′( 1√
q
Wk+1hk

))
, k ∈ {0, . . . , L− 1},

where ⊙ denotes the element-wise product. Noting that |σ′| ⩽ Kσ and using (48), we obtain

∥pk∥F ⩾ ∥pk+1∥F − Kσ

L
√
qm

∥Wk+1∥F ∥Vk+1∥F ∥pk+1∥F ⩾
(
1− 2

√
2Kσ

L

)
∥pk+1∥F .

It follows that ∥pk∥F ⩾ exp(−2
√
2Kσ)∥pL∥F . In addition,

pL =
∂ℓ

∂hL
=

2

n
B⊤(BhL − y).

Therefore, by Lemma 18, since d′ ⩽ q,

∥pL∥F ⩾
2

n
smin(B)∥BhL − y∥F ⩾

1√
n

√
ℓ.

Collecting bounds, we conclude that, for k ∈ {0, . . . , L},

∥pk∥F ⩾
1√
n
exp(−2

√
2Kσ)

√
ℓ. (51)

A similar proof reveals that, for k ∈ {0, . . . , L},

∥pk∥F ⩽
3√
n
exp(2

√
2Kσ)

√
ℓ.

Having established these preliminary estimates, our goal in the remainder of the proof is to lower
bound the quantity ∥ ∂ℓ

∂Vk+1
∥F . First note that, by the chain rule, for any k ∈ {0, . . . , L− 1},

∂ℓ

∂Vk+1
=

1

L
√
m
pk+1σ

( 1√
q
Wk+1hk

)⊤
.

As a consequence, when m ⩾ n, by Lemma 18,∥∥∥ ∂ℓ

∂Vk+1

∥∥∥
F
⩾

1

L
√
m
∥pk+1∥F · smin

(
σ
( 1√

q
Wk+1hk

))
⩾

1

L
√
mn

exp(−2
√
2Kσ)

√
ℓ · smin

(
σ
( 1√

q
Wk+1hk

))
, (52)
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using (51). Next, by Lemma 18,

smin

(
σ
( 1√

q
Wk+1hk

))
⩾ smin

(
σ
( 1√

q
W̄ Āx

))
−
∥∥∥σ( 1√

q
Wk+1hk

)
− σ

( 1√
q
W̄ Āx

)∥∥∥
F
.

Let us first lower bound the first term. Since, by our choice of initialization, Ā = (IRd×d , 0R(q−d)×d),
we have

smin

(
σ
( 1√

q
W̄ Āx

))
= smin(σ(W̃ x̃)),

where W̃ ∼ N (0, 1)⊗(m×d) and x̃ = 1√
qx ∈ Rd×n has i.i.d. unitary columns independent of W̃ .

Therefore, by Lemma 21, with probability at least 1− exp
(
− 3mη2

r(σ)
64M2

σn

)
− 2n2 exp

(
− d

2vxn2/r

)
,

smin

(
σ
( 1√

q
WĀx

))
⩾

√
mηr(σ)

4
.

Next,∥∥∥σ( 1√
q
Wk+1hk

)
− σ

( 1√
q
W̄ Āx

)∥∥∥
F
⩽

Kσ√
q

(
∥Wk+1 − W̄∥F ∥hk∥F + ∥W̄∥F ∥hk −Ax∥F

+ ∥W̄∥F ∥Ax− Āx∥F
)
.

Clearly,

∥hk −Ax∥F =
∥∥∥ k∑

j=1

1

L
√
m
Vjσ

( 1√
q
Wjhj−1

)∥∥∥
F
⩽

4
√
2Kσk

L
exp(2

√
2Kσ)

√
qn,

by (48) and (50). Also,

∥Ax− Āx∥F ⩽ ∥A− Ā∥F ∥x∥F ⩽
ηr(σ)

32
√
2Kσ

,

by (47) and by definition of M . Putting together the two bounds above as well as (47), (48), and (50),
we obtain∥∥∥σ( 1√

q
Wk+1hk

)
− σ

( 1√
q
WĀx

)∥∥∥
F
⩽ Kσ exp(2

√
2Kσ)

√
n
(
1 +

√
qm

8Kσk

L

)
+
√
m
ηr(σ)

32

⩽ C1

√
n+ C2

√
nqmk

16L
+

√
m
ηr(σ)

32
,

where C1 = Kσ exp(2
√
2Kσ) and C2 = 128C1Kσ . Thus, when C1

√
n ⩽ 1

32

√
mηr(σ), we have

smin

(
σ
( 1√

q
Wk+1hk

))
⩾

√
m
( 3

16
ηr(σ)−

C2

16

√
nq

k

L

)
⩾

1

8

√
mηr(σ)

for k ⩽ Lηr(σ)
C2

√
nq . As a consequence, for k ⩽ Lηr(σ)

C2
√
nq , returning to (52),∥∥∥ ∂ℓ

∂Vk+1

∥∥∥
F
⩾

1

8L
√
n
ηr(σ) exp(−2

√
2Kσ)

√
ℓ =

C3ηr(σ)

L
√
n

√
ℓ,

letting C3 = exp(−2
√
2Kσ)

8 . Therefore,

∥∥∥ ∂ℓ

∂A

∥∥∥2
F
+ L

L∑
k=1

∥∥∥ ∂ℓ

∂Zk+1

∥∥∥2
F
+

∥∥∥ ∂ℓ

∂B

∥∥∥2
F
⩾ L

⌊
Lηr(σ)
C2

√
nq

⌋∑
k=1

∥∥∥ ∂ℓ

∂Vk+1

∥∥∥2
F

⩾ L
⌊Lηr(σ)
C2

√
nq

⌋C2
3ηr(σ)

2

L2n
ℓ

⩾
C2

3ηr(σ)
3

2C2n
√
nq

ℓ,
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where we used the inequality ⌊x⌋ ⩾ x/2 for x ⩾ 1. This proves the result, with

c1 = max
( 210C2

1

ηr(σ)2
, 1
)
= max

(210K2
σ exp(4

√
2Kσ)

ηr(σ)2
, 1
)

c2 =
C2

ηr(σ)
=

128K2
σ exp(2

√
2Kσ)

ηr(σ)

c3 = min
( ηr(σ)

32
√
2Kσ

,
1

2

)
c4 =

C2
3ηr(σ)

3

2C2
=

ηr(σ)
3

214K2
σ exp(6

√
2Kσ)

δ = exp
(
− qm

16

)
+ n exp

(
− 3mη2r(σ)

64M2
σn

)
+ 2n2 exp

(
− d

2vxn2/r

)
.

Remark 2. With appropriate values of r and m, the probability of failure δ can be made as small as

ε+ 2n2 exp
(
− d

2vxnε

)
, (53)

for any ε > 0. This is possible first by choosing r such that 2/r ⩾ ε, then by choosing m such
that the first two terms are less than ε. Moreover, we refer the interested reader to Goel et al.
(2020, Lemmas A.2 and A.9) for quantitative estimates of ηr(σ) for ReLU and sigmoid activations.
Finally, the expression (53) is essentially the same as the one appearing in Nguyen & Mondelli (2020,
Theorem 3.3). As in this paper, we note that this expression is small if n grows at most polynomially
with d, in which case the exponential term in d dominates the polynomial term in n.

B.6 PROOF OF THEOREM 6

By Proposition 5, there exists δ > 0 such that, with probability at least 1− δ, the residual network (3)
satisfies the (M,µ)-local PL condition around its initialization, with

M =
c3√
nq

and µ =
c4

n
√
nq

,

for c3 and c4 depending on σ. Let us now apply Proposition 8 with f(h, (V,W )) = 1√
m
V σ( 1√

qWh).
The only assumption of Proposition 8 that requires some care to check is that the PL condition
holds for the value of µ given by equation (22). Since the (M,µ)-local PL condition implies the
(M, µ̃)-local PL condition for any µ̃ ∈ (0, µ), it is the case if

c4
n
√
nq

⩾ max(MBK,MBMX ,MAMX)
8eK

M
sup
L∈N∗

√
ℓL(0),

with MX , MA, MB , and K defined in Proposition 8. Due to the initialization scheme of Section 3,
we have, for any input x ∈ X , hL

L(0) = hL
0 (0), hence FL(x) = BL(0)AL(0)x = 0 since q ⩾ d+d′.

As a consequence, ℓL(0) = 1
n

∑n
i=1 ∥yi∥2. Therefore, the condition becomes

1

n

n∑
i=1

∥yi∥2 ⩽
c23c

2
4

64n4q3 max(MBK,MBMX ,MAMX)2e2K
,

where we replaced M by its value. Define C to be equal to the constant on the right-hand side. Then,
according to the above, as soon as 1

n

∑n
i=1 ∥yi∥2 ⩽ C, we can apply Proposition 8, which gives

several guarantees. First, the gradient flow is well defined on R+. Moreover, the proposition and
the expression of µ given above yield the bound on the empirical risk. In particular, the empirical
risk converges uniformly to zero. Furthermore, Proposition 8 shows the uniform convergence of the
weights as t → ∞. Finally, the proposition ensures that the sequences (AL)L∈N∗ and (BL)L∈N∗

each satisfy the assumptions of Corollary 10, and that (ZL
k )L∈N∗,1⩽k⩽L satisfies the assumptions of

Proposition 9. We can therefore apply Theorem 14, with f defined above and π equal to the identity.
This gives the uniform convergence of the weights as L → ∞. The four asymptotic statements of
Theorem 6 are then a consequence of Proposition 15.
Remark 3. A close examination of the quantities involved in the definition of C reveals that it
depends only on X , σ, n, and q. In particular, it does not depend on the dimension m.
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C SOME TECHNICAL LEMMAS

We start by recalling the Picard-Lindelöf theorem (see, e.g., Luk, 2017, for a self-contained presenta-
tion, and Arnold, 1992, for a textbook).
Lemma 16 (Picard-Lindelöf theorem). Let I = [0, T ] ⊂ R+ be an interval, for some T ∈ (0,∞].
Consider the initial value problem

U(s) = U0 +

∫ s

0

g(U(r), r)dr, s ∈ I, (54)

where g : Rd × I → Rd is continuous and locally Lipschitz continuous in its first variable. Then the
initial value problem is well defined on an interval [0, Tmax) ⊂ I , i.e., there exists a unique maximal
solution on this interval. Moreover, if Tmax < T , then ∥U(s)∥ tends to infinity when s tends to Tmax.
Finally, if g(·, r) is uniformly Lipschitz continuous for r in any compact, then Tmax = T .

We define time-dependent dynamics (54) for generality, but the time-independent case U(s) =
U0 +

∫ s

0
g(U(r))dr is also of interest. In this case, the existence and uniqueness of the maximal

solution holds if g is locally Lipschitz continuous, and the solution is defined on I if g is Lipschitz
continuous. Besides, the first statement of Lemma 16 (existence and uniqueness of the maximal
solution) also holds if Rd is replaced by any (potentially infinite-dimensional) Banach space.

The next lemma gives conditions for the existence and uniqueness of the global solution of the initial
value problem (54) when the assumption of continuity of g in its second variable is removed, thereby
generalizing the Picard-Lindelöf theorem.
Lemma 17 (Caratheodory conditions for the existence and uniqueness of the global solution of an
initial value problem). Consider the initial value problem

U(s) = U0 +

∫ s

0

g(U(r), r)dr, s ∈ [0, 1],

where g : Rd × [0, 1] → Rd is measurable and the integral is understood in the sense of Lebesgue
integration. Assume that g(·, r) is uniformly Lipschitz continuous for almost all r ∈ [0, 1], and that
g(0, r) ≡ 0. Then there exists a unique solution to the initial value problem, defined on [0, 1].

Proof. The proof is a consequence of Filippov (1988, Theorems 1, 2, and 4). More specifically,
denote by C > 0 the uniform Lipschitz constant of g(·, r). According to Filippov (1988, Theorems
1 and 2), under the conditions of the lemma, there exists a unique maximal solution to the initial
value problem. Let us now consider a restricted version of the problem, where g is defined on
D × [0, 1], with D a compact of Rd large enough to contain in its interior the ball of center 0 and
radius ∥U0∥ exp(C). There exists a unique maximal solution to this problem as well, also according
to Filippov (1988, Theorems 1 and 2), and, according to Filippov (1988, Theorem 4), it is defined
until it reaches the boundary of D × [0, 1], which it reaches at some point (U∗, s∗). If s∗ < 1, it
means that U∗ is on the boundary of D, and in particular that ∥U∗∥ > ∥U0∥ exp(C). But, on the
other hand, for almost every r ∈ [0, 1],

∥g(U(r), r)∥ ⩽ ∥g(0, r)∥+ ∥g(U(r), r)− g(0, r)∥ ⩽ C∥U(r)∥.
Hence, by Grönwall’s inequality, for s ⩽ s∗,

∥U(s)∥ ⩽ ∥U0∥ exp(C).

Thus, ∥U∗∥ ⩽ ∥U0∥ exp(C), which is impossible. Hence the maximal solution of the restricted
problem is defined on [0, 1]. Furthermore, the maximal solution of the original problem coincides
with the restricted one whenever U(s) ∈ D, which is the case for every s ∈ [0, 1], hence the maximal
solution is defined on [0, 1].

The next three lemmas recall well-known results from linear algebra, analysis, and random matrix
theory. Recall that smin and λmin denote respectively the minimum singular value and eigenvalue of
a matrix.
Lemma 18. Let A,A′ ∈ Rm×r and B ∈ Rr×n. Then

smin(A+A′) ⩾ smin(A)− ∥A′∥F .
If m ⩾ r, then ∥AB∥F ⩾ smin(A)∥B∥F . Furthermore, if n ⩾ r, then ∥AB∥F ⩾ ∥A∥F smin(B).
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Proof. The first statement is a consequence of, e.g., Loyka (2015), which establishes that smin(A+
A′) ⩾ smin(A)− smax(A

′), yielding the first inequality since smax(A
′) = ∥A∥2 ⩽ ∥A∥F . As for

the second one, we have

∥AB∥2F = Tr(ABB⊤A⊤) = Tr(BB⊤A⊤A) ⩾ λmin(A
⊤A)Tr(BB⊤) = λmin(A

⊤A)∥B∥2F .
Since m ⩾ r, the rightmost quantity is equal to smin(A)∥B∥F , proving the second statement of the
lemma. The third statement is similar.

Lemma 19. Let (ex,y)x∈R+,y∈R+
⊂ E, where E is a Banach space, such that ex,y converges

uniformly to e∞,y when x → ∞, and converges uniformly to ex,∞ when y → ∞. Then there exists
e∞ ∈ E such that

lim
x,y→∞

ex,y = lim
x→∞

ex,∞ = lim
y→∞

e∞,y = e∞.

Proof. Let ε > 0. Since ex,y converges uniformly to e∞,y as x → ∞, there exists x0 ∈ R+ such
that, for x1, x2 > x0 and y ∈ R+,

∥ex1,y − ex2,y∥ ⩽
ε

2
.

Similarly, there exists y0 ∈ R+ such that, for x ∈ R+ and y1, y2 > y0,

∥ex,y1
− ex,y2

∥ ⩽
ε

2
.

Hence, for x1, x2 > x0 and y1, y2 > y0,

∥ex1,y1 − ex2,y2∥ ⩽ ∥ex1,y1 − ex1,y2∥+ ∥ex1,y2 − ex2,y2∥ ⩽ ε.

We conclude that (ex,y)x∈R+,y∈R+ is a Cauchy sequence, which therefore converges to some limit
e∞ ∈ E.

Lemma 20. Let W ∈ Rq×m be a standard Gaussian random matrix. Then, for MW ⩾
√
2, with

probability at least 1− exp(− (M2
W−1)qm
16 ), one has ∥W∥F ⩽ MW

√
q
√
m.

Proof. The quantity ∥W∥2F follows a chi-squared distribution with qm degrees of freedom. Hence,
according to Laurent & Massart (2000, Lemma 1), for x ⩾ 0,

P(∥W∥2F − qm ⩾ 2
√
qmx+ 2x) ⩽ exp(−x).

Taking x =
(M2

W−1)qm
16 , we see that

2
√
qmx =

1

2

√
M2

W − 1qm ⩽
1

2
(M2

W − 1)qm,

where the bound follows from MW ⩾
√
2. Since furthermore 2x ⩽ 1

2 (M
2
W − 1)qm, we obtain

2
√
qmx+ 2x ⩽ (M2

W − 1)qm,

and thus
P(∥W∥2F > M2

W qm) ⩽ P(∥W∥2F − qm ⩾ 2
√
qmx+ 2x) ⩽ exp(−x),

yielding the result.

Finally, the last lemma of the section gives a lower bound on the smallest singular value of a matrix
of the form σ(A), where σ is a bounded function applied element-wise and A belongs to a family of
random matrix. The lower bound involves the Hermite transform of σ, which is defined in Section B.
Lemma 21. Let σ be a function bounded by some Mσ > 0. Let W ∈ Rm×d be a standard Gaussian
random matrix, and X ∈ Rd×n a random matrix with i.i.d. unitary columns independent of W . Then,
for any integer r ⩾ 2, there exists δ > 0 such that, with probability at least 1 − δ, the smallest
singular value of σ(WX) is greater than 1

4

√
mηr(σ), where ηr(σ) is the r-th coefficient in the

Hermite transform of σ. Furthermore, the following expression for δ holds:

δ = n exp
(
− 3mη2r(σ)

64M2
σn

)
+ 2n2 exp

(
− d

2Cn2/r

)
,

where C is the sub-Gaussian variance proxy of the columns of
√
dX .
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Proof. Denoting by wi the i-th row of W and letting

Mi = σ(X⊤w⊤
i )σ(wiX),

our goal is to lower bound the smallest eigenvalue value λmin(M) of M =
∑m

i=1 Mi. Observe that

E(M |X) = mEw̃∼N (0,Id)

(
σ(X⊤w̃⊤)σ(w̃X)

∣∣∣X)
= mEw̃∼N (0, 1d Id)

(
σ
(
(
√
dX)⊤w̃⊤)σ(w̃(√dX)

)∣∣∣X)
.

Letting λmin(E(M |X)) be the smallest eigenvalue of this matrix and r ⩾ 2 be an integer, Nguyen
& Mondelli (2020, Lemma 3.4) show that, with probability at least 1− 2n2 exp(− d

2Cn2/r ) over the
matrix X ,

λmin(E(M |X)) ⩾
mη2r(σ)

8
. (55)

We now apply a matrix Chernoff’s bound to lower bound with high probability the smallest eigenvalue
λmin(M |X) of M conditionally on X , as a function of λmin(E(M |X)). By Tropp (2012, Remark
5.3), we have, for t ∈ [0, 1],

P(λmin(M) ⩽ tλmin(E(M |X))|X) ⩽ n exp
(
− (1− t2)λmin(E(M |X))

2R(X)

)
,

where R(X) is an almost sure upper bound on the largest eigenvalue of Mi|X , which we can take
equal to M2

σn since the largest eigenvalue of Mi is equal to ∥σ(wiX)∥22 ⩽ M2
σn. Taking t = 1/2,

we obtain, on the event [λmin(E(M |X)) ⩾ mη2
r(σ)
8 ],

P
(
λmin(M) ⩾

λmin(E(M |X))

2

∣∣∣X)
⩾ 1− n exp

(
− 3mη2r(σ)

64M2
σn

)
,

thus, on the event [λmin(E(M |X)) ⩾ mη2
r(σ)
8 ],

P
(
λmin(M) ⩾

mη2r(σ)

16

)
⩾ 1− n exp

(
− 3mη2r(σ)

64M2
σn

)
.

Using (55), we obtain

P
(
λmin(M) ⩾

mη2r(σ)

16

)
⩾

(
1− n exp

(
− 3mη2r(σ)

64M2
σn

))
P
(
λmin(E(M |X)) ⩾

mη2r(σ)

8

)
⩾

(
1− n exp

(
− 3mη2r(σ)

64M2
σn

))(
1− 2n2 exp

(
− d

Cn2/r

))
⩾ 1− n exp

(
− 3mη2r(σ)

64M2
σn

)
− 2n2 exp

(
− d

2Cn2/r

)
.

D COUNTER-EXAMPLE FOR THE RELU CASE.

This section gives a proof sketch to illustrate that, with the ReLU activation σ : x 7→ max(0, x),
the smoothness of the weights can be lost during training. More precisely, we show a case where
successive weights are at distance O( 1

L ) at initialization and at distance Ω(1) after training.

For the sake of simplicity, we will assume that the depth is even, and denote it as 2L. We place
ourselves in a one-dimensional setting (i.e., d = 1). The parameters are (w1, · · · , w2L) ∈ R2L, and
the residual network writes as follows, for an input x ∈ R:

h0(t) = x

hk+1(t) = hk(t) +
1

2L
σ(wk+1(t)hk(t)), k ∈ {0, . . . , 2L− 1}.
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We consider a sample consisting of a single point (x,Cx) ∈ R2
+, with C > 1 (independent of L),

and define the empirical risk as ℓ(t) = (h2L(t)− Cx)2. The risk is minimized by gradient flow.

The weights are initialized to wk(0) = (−1)k

2L . For x ∈ R+ we have that hk(t) ⩾ 0 for all
k ∈ {0, . . . , 2L}. Note that the argument of σ on the odd layers is negative. Therefore, by definition
of σ, the gradient of the loss with respect to the odd layers is zero and we have, for k ∈ {0, . . . , L−1},
w2k+1(t) = w2k+1(0). On the other hand, the argument of σ is positive on the even layers, and thus,

h2L(t) =

L∏
j=1

(
1 +

w2j(t)

2L

)
x.

As a consequence, the gradient flow equation for the even layers is, for k ∈ {1, . . . , L},

dw2k

dt
(t) = − ∂ℓ

∂w2k
(t) = 2x

(
C −

L∏
j=1

(
1 +

w2j(t)

2L

)) L∏
j=1,j ̸=k

(
1 +

w2j(t)

2L

)
.

Due to the symmetry of these equations for k ∈ {1, . . . , L} and the fact that all the w2k(0) are equal,
the parameters on each even layer coincide at all times and are equal to w(t) such that

dw

dt
(t) = 2x

(
C −

(
1 +

w(t)

2L

)L)(
1 +

w(t)

2L

)L−1

.

An analysis of this ODE reveals that w(t) tends as t → ∞ to w⋆ > 0 satisfying that(
1 +

w⋆

2L

)L

= C. (56)

This can be seen by letting y(t) = C − (1 + w(t)
2L )L, and applying Grönwall’s inequality to y.

Therefore, as t → ∞, one has w2k+1(t) → − 1
2L and w2k(t) → w⋆, where (56) implies that

w⋆ ⩾ 2 log(C). This shows that the final weights are not smooth in the sense that the distance
between two successive weights is Ω(1).

This result contrasts sharply with Proposition 7, which shows that successive weights remain at a
distance O( 1

L ) throughout training, when initialized as a discretization of a Lipschitz continuous
function, and with a smooth activation function. In fact, Proposition 7 can be generalized to any
initialization such that successive weights are at distance O( 1

L ) at initialization, which is the case
in the counter-example. This means that the only broken assumption in our counter-example is the
non-smoothness of the activation function. This non-smoothness causes the gradient flow dynamics
for two successive weights to deviate, even though the weights are initially close to each other,
because they are separated by the kink of ReLU at zero.

E EXPERIMENTAL DETAILS

Our code is available at https://github.com/michaelsdr/
implicit-regularization-resnets-nodes.

We use Pytorch (Paszke et al., 2019).

Synthetic data. To ease the presentation, we consider the case where q = d = d′, and we do
not train the weights AL and BL, which therefore stay equal to the identity. The sample points
(xi, yi)1⩽i⩽n follow independent standard Gaussian distributions. Note that it does not hurt to take
x and y independent since, in this subsection, our focus is on optimization results only and not on
statistical aspects.

Large-depth limit. We take n = 100, d = 16, m = 32. We train for 500 iterations, and set the
learning rate to L× 10−2. The scaling of the learning rate with L is the equivalent of the L factor in
the gradient flow (4).

Long-time limit. We take n = 50, d = 16, m = 64, L = 64, and train for 80,000 iterations with a
learning rate of 5L× 10−3.
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Real-world data. We take L = 256. The first layer is a trainable convolutional layer with a kernel
size of 5× 5, a stride of 2, a padding of 1, and 16 out channels. We then iterate the residual layers

hL
k+1 = hL

k +
1

L
bnL2,k(conv

L
2,k(σ(bn

L
1,k(conv

L
1,k(h

L
k ))))), k ∈ {0, . . . , L− 1},

where convLi,k are convolutions with kernel size 3, stride of 2, and padding of 1, and bnLi,k are batch
normalizations, as is standard in residual networks (He et al., 2016b). The model is trained using
stochastic gradient descent on the cross-entropy loss for 180 epochs. The initial learning rate is
4× 10−2 and is gradually decreased using a cosine learning rate scheduler.

Normalization. The residual layers considered in the real-world case have a batch normalization
layer (see formula above). We observe empirically that implicit regularization towards a neural ODE
still holds in this case. However, these layers are not present in the models we consider. Nevertheless,
as discussed in Section 4.3, some of our results extend to a setting where we only assume that the
residual connection is a Lipschitz-continuous function. The intuition suggests that this should include
in particular the case where layer normalizations are added to the architecture, although this should
clearly necessitate a rigorous and separate mathematical analysis. Finally, note that a connection has
been drawn between batch normalization and scaling factors (De & Smith, 2020).

Additional plot. To complement Figure 3, we display the average (across layers) of the Frobenius
norm of the difference between two successive weights in the convolutional ResNets after training
on CIFAR-10, depending on the initialization strategy. The index i corresponds to the index of
the convolution layer. Results are averaged over 5 runs. We see that a smooth initialization leads
to weights that are in average an order of magnitude smoother than those obtained with an i.i.d.
initialization.
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Figure 4: Average (across layers) of the Frobenius norm of the difference between two successive
weights in the convolutional ResNets after training on CIFAR-10, depending on the initialization
strategy.
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