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1. Proof of Lemma 2.1
We only focus on the first statement since the proof of the second one is similar. Let 𝐺,𝐺′ ∈
Lip𝐾 ( [0,1],R𝑑). Observe that by the triangle inequality and the primal definition of the 1-Wasserstein
distance, we have

|𝑊1 (𝐺♯𝑈 , 𝜇𝑛) −𝑊1 (𝐺′
♯𝑈
, 𝜇𝑛) | ⩽𝑊1 (𝐺♯𝑈 , 𝐺′

♯𝑈
)

⩽
∫
R𝑑×R𝑑

∥𝑥 − 𝑦∥d𝛾(𝑥, 𝑦),

where 𝛾 is the pushforward distribution of𝑈 by the pair (𝐺,𝐺′), with marginals 𝐺♯𝑈 and 𝐺′
♯𝑈

. Thus,

|𝑊1 (𝐺♯𝑈 , 𝜇𝑛) −𝑊1 (𝐺′
♯𝑈
, 𝜇𝑛) | ⩽

∫
[0,1]

∥𝐺 (𝑢) −𝐺′ (𝑢)∥d𝑢

⩽ ∥𝐺 −𝐺′∥∞,

where ∥ · ∥∞ denotes the supremum norm of functions, i.e., for 𝑓 : [0,1] → R𝑑 , ∥ 𝑓 ∥∞ = sup{∥ 𝑓 (𝑥)∥ :
𝑥 ∈ [0,1]}. Hence the map Lip𝐾 ( [0,1],R𝑑) ∋ 𝐺 ↦→𝑊1 (𝐺♯𝑈 , 𝜇𝑛) is continuous with respect to the
uniform norm.

Now let 𝐺0 ≡ 𝑋1 be a constant function on [0,1]. Then, clearly, 𝑊1 (𝐺0
♯𝑈
, 𝜇𝑛) <∞. Next, let 𝐺 be

any function in Lip𝐾 ( [0,1],R𝑑) such that

∥𝐺∥∞ ⩾𝑊1 (𝐺0
♯𝑈
, 𝜇𝑛) + 𝐾 + max

𝑖=1,...,𝑛
∥𝑋𝑖 ∥.

Then, upon observing that there exists 𝑢0 ∈ [0,1] such that ∥𝐺 (𝑢0)∥ = ∥𝐺∥∞ and using the fact that 𝐺
is 𝐾-Lipschitz continuous on [0,1], we deduce that for all 𝑢 ∈ [0,1] and any 𝑖 ∈ {1, . . . , 𝑛}, one has

∥𝐺 (𝑢) − 𝑋𝑖 ∥ ⩾ ∥𝐺∥∞ − 𝐾 − ∥𝑋𝑖 ∥ ⩾ ∥𝐺∥∞ − 𝐾 − max
𝑖=1,...,𝑛

∥𝑋𝑖 ∥.

Hence, ∥𝐺 (𝑢) − 𝑋𝑖 ∥ ⩾ 𝑊1 (𝐺0
♯𝑈
, 𝜇𝑛), which implies that 𝑊1 (𝐺♯𝑈 , 𝜇𝑛) ⩾ 𝑊1 (𝐺0

♯𝑈
, 𝜇𝑛). Therefore,

letting

H𝐾 = {𝐺 ∈ Lip𝐾 ( [0,1],R𝑑) : ∥𝐺∥∞ ⩽𝑊1 (𝐺0
♯𝑈
, 𝜇𝑛) + 𝐾 + max

𝑖=1,...,𝑛
∥𝑋𝑖 ∥},
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we see that

inf
𝐺∈Lip𝐾 ( [0,1],R𝑑 )

𝑊1 (𝐺♯𝑈 , 𝜇𝑛) = inf
𝐺∈H𝐾

𝑊1 (𝐺♯𝑈 , 𝜇𝑛).

Endowed with the uniform norm, H𝐾 is closed and relatively compact by the Arzelà-Ascoli theorem.
It is thus a compact subset of Lip𝐾 ( [0,1],R𝑑). Consequently, by continuity and the above equality,
Lip𝐾 ( [0,1],R𝑑) ∋ 𝐺 ↦→𝑊1 (𝐺♯𝑈 , 𝜇𝑛) attains its minimum on H𝐾 . Therefore, Ĝ𝐾 is not empty.

2. Proof of Theorem 2.2

Proof of 1(𝒊)

Since 𝜇 is of order 1, one has lim𝑛→∞𝑊1 (𝜇, 𝜇𝑛) = 0 a.s. according to Villani (2008, Theorem 6.8).
Hence, by the triangle inequality and because 𝐺𝐾 ∈ Ĝ𝐾 , we only need to prove that

lim
𝑛→∞

inf
𝐺∈Lip𝐾 ( [0,1],R)

𝑊1 (𝐺♯𝑈 , 𝜇𝑛) = 0 a.s.

If 𝐾 ⩾ 𝐾0, then Lip𝐾0
( [0,1],R) ⊆ Lip𝐾 ( [0,1],R). Therefore,

0 ⩽ inf
𝐺∈Lip𝐾 ( [0,1],R)

𝑊1 (𝐺♯𝑈 , 𝜇𝑛) ⩽ inf
𝐺∈Lip𝐾0

( [0,1],R)
𝑊1 (𝐺♯𝑈 , 𝜇𝑛) ⩽𝑊1 (𝐹−1

♯𝑈
, 𝜇𝑛),

since, by assumption, 𝐹−1 ∈ Lip𝐾0
( [0,1],R). But 𝐹−1 (𝑈) has distribution 𝜇, and thus one has

lim𝑛→∞𝑊1 (𝐹−1
♯𝑈
, 𝜇𝑛) = 0. This proves the result.

Proof of (2)

The result is proved by contradiction. Fix 𝐾 > 0 and assume that on an event of strictly positive proba-
bility

lim inf
𝑛→∞

𝑊1 (𝐺𝐾♯𝑈 , 𝜇) = 0.

Since lim𝑛→∞𝑊1 (𝜇, 𝜇𝑛) = 0 a.s. and 𝐺𝐾 ∈ Ĝ𝐾 , we see that

inf
𝐺∈Lip𝐾 ( [0,1],R)

𝑊1 (𝐺♯𝑈 , 𝜇) = 0.

Now, by Lemma 2.1, there exists 𝐺𝐾 ∈ Lip𝐾 ( [0,1],R) such that

𝑊1 (𝐺𝐾♯𝑈 , 𝜇) = inf
𝐺∈Lip𝐾 ( [0,1],R)

𝑊1 (𝐺♯𝑈 , 𝜇).

So,𝑊1 (𝐺𝐾♯𝑈 , 𝜇) = 0 and therefore, since 𝐹−1 (𝑈) has distribution 𝜇, we have

𝐺𝐾 (𝑈) L∼ 𝐹−1 (𝑈). (1)

Next, by continuity of 𝐺𝐾 , there exists a compact set 𝐶 ⊆ R such that P(𝐺𝐾 (𝑈) ∈ 𝐶) = 1. But, since
𝑆(𝜇) is unbounded, P(𝐹−1 (𝑈) ∈ 𝐶) = 𝜇(𝐶) < 1, which contradicts (1).
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Proof of 1(𝒊𝒊)

We show the result by contradiction, assuming as in the proof of statement (2) that for 𝐾 < 1/𝐾1, on
an event of strictly positive probability,

lim inf
𝑛→∞

𝑊1 (𝐺𝐾♯𝑈 , 𝜇) = 0.

Arguing as in the previous proof, we have that 𝐺𝐾 (𝑈) L∼ 𝐹−1 (𝑈). Then, it is a classical exercise to

deduce from (1), since 𝐹−1 (𝑢) > −∞ for all 𝑢 ∈ (0,1) and 𝐹 is continuous, that 𝐹 ◦ 𝐺𝐾 (𝑈) L∼ 𝑈.
Iterating this relation leads to

(𝐹 ◦𝐺𝐾 )ℓ (𝑈) L∼ 𝑈, ∀ℓ ⩾ 0. (2)

Moreover, both assumptions 𝐹 ∈ Lip𝐾1
(R, [0,1]) and 𝐺𝐾 ∈ Lip𝐾 ( [0,1],R) imply

|𝐹 ◦𝐺𝐾 (𝑢) − 𝐹 ◦𝐺𝐾 (𝑣) | ⩽ 𝐾𝐾1 |𝑢 − 𝑣 | ⩽ 𝐾𝐾1, ∀(𝑢, 𝑣) ∈ [0,1]2.

Repeating this inequality entails, for all ℓ ⩾ 0,

| (𝐹 ◦𝐺𝐾 )ℓ (𝑢) − (𝐹 ◦𝐺𝐾 )ℓ (𝑣) | ⩽ (𝐾𝐾1)ℓ , ∀(𝑢, 𝑣) ∈ [0,1]2.

But, for all 𝑢 ∈ [0,1], the sequence ((𝐹 ◦ 𝐺𝐾 )ℓ (𝑢))ℓ⩾1 is bounded by 1. In addition, 𝐾𝐾1 < 1 by
assumption. Thus, there exist 𝑎 ∈ [0,1] and a subsequence (ℓ𝑞)𝑞⩾1 such that, for all 𝑢 ∈ [0,1],

lim
𝑞→∞

(𝐹 ◦𝐺𝐾 )ℓ𝑞 (𝑢) = 𝑎.

Hence, as 𝑞→∞, (𝐹 ◦𝐺𝐾 )ℓ𝑞 (𝑈) almost surely converges to 𝑎, which contradicts (2).

3. Proof of Theorem 2.3

Looking for a contradiction, we start as in the proof of Theorem 2.2, cases (1𝑖𝑖) and (2), by assuming
that on an event of strictly positive probability,

lim inf
𝑛→∞

𝑊1 (𝐺𝐾♯𝑈 , 𝜇) = 0.

As we have seen, this implies 𝑊1 (𝐺𝐾♯𝑈 , 𝜇) = 0 and, in turn, since the support of 𝐺𝐾♯𝑈 is in-
cluded in 𝐺𝐾 ( [0,1]), 𝑆(𝜇) ⊆ 𝐺𝐾 ( [0,1]). By our assumption on 𝑆(𝜇), we therefore conclude that
𝜆𝑑 (𝐺𝐾 ( [0,1])) > 0. Moreover, since 𝐺𝐾 ∈ Lip𝐾 ( [0,1],R𝑑), we have that 0 < 𝜆𝑑 (𝐺𝐾 ( [0,1])) =
H𝑑 (𝐺𝐾 ( [0,1])) ⩽ 𝐾𝑑H𝑑 ( [0,1]), where H𝑑 is the 𝑑-dimensional Hausdorff measure (see, e.g., Evans
and Gariepy, 2015, Theorem 2.8). But this is impossible since H𝑑 ( [0,1]) = 0 as soon as 𝑑 > 1.

4. Proof of Proposition 3.1

To lighten the notation, it is assumed throughout the proof that the 𝑋𝑖’s are ordered by increasing val-
ues, i.e., 𝑋1 ⩽ 𝑋2 ⩽ · · ·⩽ 𝑋𝑛. According to Santambrogio (2015, Proposition 2.17), the 1-Wasserstein
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distance between two probability measures 𝜋1 and 𝜋2 on the real line, with respective generalized
inverses 𝐹−1

1 and 𝐹−1
2 , is such that

𝑊1 (𝜋1, 𝜋2) =
∫ 1

0
|𝐹−1

1 (𝑢) − 𝐹−1
2 (𝑢) |d𝑢.

Since 𝐺★
𝐾

is monotone and continuous, the generalized inverse of 𝐺★
𝐾♯𝑈

is 𝐺★
𝐾

. On the other hand, de-

noting by 𝐹−1
𝜇𝑛

the generalized inverse of 𝜇𝑛, we have 𝐹−1
𝜇𝑛

(𝑢) =∑𝑛
𝑖=1 𝑋𝑖1{𝑢 ∈ ((𝑖 − 1)/𝑛, 𝑖/𝑛]}. There-

fore,

𝑊1 (𝐺★𝐾♯𝑈 , 𝜇𝑛) =
∫ 1

0
|𝐺★𝐾 (𝑢) − 𝐹

−1
𝜇𝑛

(𝑢) |d𝑢

=

𝑛−1∑︁
𝑖=1

∫ 𝑖/𝑛

𝑖/𝑛− 𝑋𝑖+1−𝑋𝑖
2𝐾

���𝑋𝑖 + 𝐾 (
𝑢 − ( 𝑖

𝑛
− 𝑋𝑖+1 − 𝑋𝑖

2𝐾
)
)
− 𝑋𝑖

���d𝑢
+
𝑛−1∑︁
𝑖=1

∫ 𝑖/𝑛+𝑋𝑖+1−𝑋𝑖
2𝐾

𝑖/𝑛

���𝑋𝑖+1 − 𝑋𝑖
2𝐾

+ 𝐾 (𝑢 − 𝑖

𝑛
) − 𝑋𝑖+1

���d𝑢
=

𝑛−1∑︁
𝑖=1

1
2
𝐾
( (𝑋𝑖+1 − 𝑋𝑖)2

4𝐾2 + (𝑋𝑖+1 − 𝑋𝑖)2

4𝐾2

)
=

1
4𝐾

𝑛−1∑︁
𝑖=1

(𝑋𝑖+1 − 𝑋𝑖)2,

as desired.

5. Proof of Theorem 3.2
As in the proof of Proposition 3.1, it is assumed without loss of generality that the 𝑋𝑖’s are ordered by
increasing values, i.e., 𝑋1 ⩽ 𝑋2 ⩽ · · ·⩽ 𝑋𝑛. Let 𝐺 : [0,1] → R be an arbitrary 𝐾-Lipschitz continuous
function in Ĝ𝐾 , with 𝐾 ⩾ 𝑛 max

𝑖=1,...,𝑛−1
(𝑋𝑖+1 − 𝑋𝑖). According to Proposition 3.1, the first statement will

be proven if we show that for such a function 𝐺,

𝑊1 (𝐺♯𝑈 , 𝜇𝑛) ⩾
𝑛−1∑︁
𝑖=1

(𝑋𝑖+1 − 𝑋𝑖)2

4𝐾
.

Let Π(𝜋1, 𝜋2) be the set of couplings between two probability measures 𝜋1 and 𝜋2. According to Am-
brosio and Gigli (2013, Lemma 2.12), for any 𝜋 ∈ Π(𝐺♯𝑈 , 𝜇𝑛), there exists a coupling 𝛾 ∈ Π(𝜆1, 𝜇𝑛)
such that 𝜋 = (𝐺, Id)#𝛾 , where 𝜆1 stands for the Lebesgue measure on the interval [0,1] and Id is the
identity function. Therefore,

𝑊1 (𝐺♯𝑈 , 𝜇𝑛) = inf
𝜋∈Π (𝐺♯𝑈 ,𝜇𝑛 )

∫
R×R

|𝑥 − 𝑦 |d𝜋(𝑥, 𝑦)

≥ inf
𝛾∈Π (𝜆1 ,𝜇𝑛 )

∫
[0,1]×R

|𝐺 (𝑢) − 𝑦 |d𝛾(𝑢, 𝑦).
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Since the function (𝑢, 𝑦) ↦→ |𝐺 (𝑢) − 𝑦 | is continuous, then, according to Pratelli (2007, Theorem B),
we have

inf
𝛾∈Π (𝜆1 ,𝜇𝑛 )

∫
[0,1]×R

|𝐺 (𝑢) − 𝑦 |d𝛾(𝑢, 𝑦) = inf
𝑇

∫ 1

0
|𝐺 (𝑢) −𝑇 (𝑢) |d𝑢,

where the infimum is taken over all measurable functions 𝑇 : [0,1] → {𝑋1, . . . , 𝑋𝑛} such that 𝑇♯𝑈 = 𝜇𝑛.
Any such transport map 𝑇 takes the form 𝑇 (𝑢) =∑𝑛

𝑖=1 𝑋𝑖1{𝑢 ∈ 𝐶𝑖}, where𝐶1, . . . ,𝐶𝑛 are Borel subsets
of [0,1] such that 𝜆1 (𝐶𝑖) = 1

𝑛
. We conclude that

𝑊1 (𝐺♯𝑈 , 𝜇𝑛) ⩾ inf
𝐶1 ,...,𝐶𝑛

𝑛∑︁
𝑖=1

∫
𝐶𝑖

|𝐺 (𝑢) − 𝑋𝑖 |d𝑢, (3)

where the infimum is taken over all disjoint Borel sets 𝐶1, . . . ,𝐶𝑛 ⊆ [0,1] such that 𝜆1 (𝐶𝑖) = 1
𝑛

. To
prove the first statement of the theorem, it is therefore sufficient to lower bound the infimum above.

The case 𝑛 = 1 is clear since the function 𝐺 (𝑢) ≡ 𝑋1 satisfies 𝑊1 (𝐺♯𝑈 , 𝜇1) = 0. Thus, in the se-
quel, it is assumed that 𝑛 ⩾ 2. We let 𝑎 = inf

[0,1]
𝐺, 𝑏 = sup

[0,1]
𝐺, and ℓ1 ⩽ ℓ2 so that 𝑋ℓ1 = min

𝑋𝑖⩾𝑎
𝑋𝑖 and

𝑋ℓ2 = max
𝑋𝑖⩽𝑏

𝑋𝑖 . Note that we can safely assume that ℓ1 and ℓ2 are well-defined, since for �̂� (𝑢) :=

𝐺 (𝑢)1{𝐺 (𝑢) ∈ [𝑋1, 𝑋𝑛]} + 𝑋11{𝐺 (𝑢) < 𝑋1} + 𝑋𝑛1{𝐺 (𝑢) > 𝑋𝑛}, we have

inf
𝐶1 ,...,𝐶𝑛

𝑛∑︁
𝑖=1

∫
𝐶𝑖

|𝐺 (𝑢) − 𝑋𝑖 |d𝑢 ⩾ inf
𝐶1 ,...,𝐶𝑛

𝑛∑︁
𝑖=1

∫
𝐶𝑖

|�̂� (𝑢) − 𝑋𝑖 |d𝑢.

We also suppose that 𝑛 > ℓ2 ⩾ ℓ1 +1 > 1 and leave the other cases as straightforward adaptations. Since
𝐺 is continuous, for each 𝑖 ∈ {ℓ1, . . . , ℓ2 − 1}, there exists 𝑢𝑖 ∈ [0,1] such that 𝐺 (𝑢𝑖) = 𝑋𝑖+𝑋𝑖+1

2 . We let

𝐴−
𝑖
= [𝑢𝑖 − 𝑋𝑖+1−𝑋𝑖

2𝐾 , 𝑢𝑖], 𝐴+𝑖 = [𝑢𝑖 , 𝑢𝑖 + 𝑋𝑖+1−𝑋𝑖
2𝐾 ], and write 𝑇 (𝑢) =

𝑛∑
𝑗=1
𝑋 𝑗1{𝑢 ∈ 𝐶 𝑗 }. With this notation,

∫
𝐴−
𝑖

|𝐺 (𝑢) −𝑇 (𝑢) |d𝑢 =
𝑖∑︁
𝑗=1

∫
𝐴−
𝑖

(𝐺 (𝑢) − 𝑋𝑖 + 𝑋𝑖 − 𝑋 𝑗 )1{𝑢 ∈ 𝐶 𝑗 }d𝑢

+
𝑛∑︁

𝑗=𝑖+1

∫
𝐴−
𝑖

(𝑋𝑖+1 −𝐺 (𝑢) + 𝑋 𝑗 − 𝑋𝑖+1)1{𝑢 ∈ 𝐶 𝑗 }d𝑢

=

𝑖∑︁
𝑗=1

[ ∫
𝐴−
𝑖

(𝐺 (𝑢) − 𝑋𝑖)1{𝑢 ∈ 𝐶 𝑗 }d𝑢 + 𝜆1 (𝐶 𝑗 ∩ 𝐴−
𝑖 ) (𝑋𝑖 − 𝑋 𝑗 )

]
+

𝑛∑︁
𝑗=𝑖+1

[ ∫
𝐴−
𝑖

(𝑋𝑖+1 −𝐺 (𝑢))1{𝑢 ∈ 𝐶 𝑗 }d𝑢 + 𝜆1 (𝐶 𝑗 ∩ 𝐴−
𝑖 ) (𝑋 𝑗 − 𝑋𝑖+1)

]
. (4)

Exploiting the fact that the function 𝐺 is 𝐾-Lipschitz continuous and 𝐺 (𝑢𝑖) = 𝑋𝑖+𝑋𝑖+1
2 , we have that for

𝑢 ∈ 𝐴−
𝑖
∪ 𝐴+

𝑖
, 𝑋𝑖+𝑋𝑖+1

2 − 𝐾 |𝑢𝑖 − 𝑢 | ⩽𝐺 (𝑢) ⩽ 𝑋𝑖+𝑋𝑖+1
2 + 𝐾 |𝑢𝑖 − 𝑢 |. Thus,

𝑖∑︁
𝑗=1

∫
𝐴−
𝑖

(𝐺 (𝑢) − 𝑋𝑖)1{𝑢 ∈ 𝐶 𝑗 }d𝑢 +
𝑛∑︁

𝑗=𝑖+1

∫
𝐴−
𝑖

(𝑋𝑖+1 −𝐺 (𝑢))1{𝑢 ∈ 𝐶 𝑗 }d𝑢
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⩾
𝑖∑︁
𝑗=1

∫
𝐴−
𝑖

( 𝑋𝑖 + 𝑋𝑖+1

2
− 𝐾 (𝑢𝑖 − 𝑢) − 𝑋𝑖

)
1{𝑢 ∈ 𝐶 𝑗 }d𝑢

+
𝑛∑︁

𝑗=𝑖+1

∫
𝐴−
𝑖

(
𝑋𝑖+1 −

( 𝑋𝑖 + 𝑋𝑖+1

2
+ 𝐾 (𝑢𝑖 − 𝑢)

))
1{𝑢 ∈ 𝐶 𝑗 }d𝑢

=

𝑛∑︁
𝑗=1

∫
𝐴−
𝑖

( 𝑋𝑖+1 − 𝑋𝑖
2

− 𝐾 (𝑢𝑖 − 𝑢)
)
1{𝑢 ∈ 𝐶 𝑗 }d𝑢

=

∫
𝐴−
𝑖

( 𝑋𝑖+1 − 𝑋𝑖
2

− 𝐾 (𝑢𝑖 − 𝑢)
)
d𝑢

=
(𝑋𝑖+1 − 𝑋𝑖)2

4𝐾
− 1

2
(𝑋𝑖+1 − 𝑋𝑖)2

4𝐾

=
(𝑋𝑖+1 − 𝑋𝑖)2

8𝐾
. (5)

Combining this inequality with (4) yields∫
𝐴−
𝑖

|𝐺 (𝑢) −𝑇 (𝑢) |d𝑢 ⩾ (𝑋𝑖+1 − 𝑋𝑖)2

8𝐾

+
𝑖−1∑︁
𝑗=1

𝜆1 (𝐶 𝑗 ∩ 𝐴−
𝑖 ) (𝑋𝑖 − 𝑋 𝑗 ) +

𝑛∑︁
𝑗=𝑖+1

𝜆1 (𝐶 𝑗 ∩ 𝐴−
𝑖 ) (𝑋 𝑗 − 𝑋𝑖+1).

Employing the same technique for 𝐴+
𝑖
, we obtain∫

𝐴+
𝑖

|𝐺 (𝑢) −𝑇 (𝑢) |d𝑢 ⩾ (𝑋𝑖+1 − 𝑋𝑖)2

8𝐾

+
𝑖−1∑︁
𝑗=1

𝜆1 (𝐶 𝑗 ∩ 𝐴+𝑖 ) (𝑋𝑖 − 𝑋 𝑗 ) +
𝑛∑︁

𝑗=𝑖+1

𝜆1 (𝐶 𝑗 ∩ 𝐴+𝑖 ) (𝑋 𝑗 − 𝑋𝑖+1).

So, letting 𝐴𝑖 = 𝐴−
𝑖
∪ 𝐴+

𝑖
and using the fact that 𝑋ℓ+1 ⩾ 𝑋ℓ for all ℓ ⩽ 𝑛 − 1, we are led to∫

𝐴𝑖

|𝐺 (𝑢) −𝑇 (𝑢) |d𝑢 ⩾ (𝑋𝑖+1 − 𝑋𝑖)2

4𝐾

+
𝑖−1∑︁
𝑗=1

𝜆1 (𝐶 𝑗 ∩ 𝐴𝑖) (𝑋 𝑗+1 − 𝑋 𝑗 ) +
𝑛∑︁

𝑗=𝑖+2

𝜆1 (𝐶 𝑗 ∩ 𝐴𝑖) (𝑋 𝑗 − 𝑋 𝑗−1). (6)

Now, let 𝑢ℓ1−1 ∈ [0,1] be such that𝐺 (𝑢ℓ1−1) =
𝑎+𝑋ℓ1

2 . With a slight abuse of notation, define 𝐴−
ℓ1−1 =

[𝑢ℓ1−1 −
𝑋ℓ1−𝑎

2𝐾 , 𝑢ℓ1−1] and 𝐴+
ℓ1−1 = [𝑢ℓ1−1, 𝑢ℓ1−1 +

𝑋ℓ1−𝑎
2𝐾 ]. Then, using the same method as above, one
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easily shows that, for 𝐴ℓ1−1 = 𝐴
−
ℓ1−1 ∪ 𝐴

+
ℓ1−1,

∫
𝐴ℓ1−1

|𝐺 (𝑢) −𝑇 (𝑢) |d𝑢 ⩾
(𝑋ℓ1 − 𝑎)2

4𝐾

+
ℓ1−1∑︁
𝑗=1

𝜆1 (𝐶 𝑗 ∩ 𝐴ℓ1−1) (𝑎 − 𝑋 𝑗 ) +
𝑛∑︁

𝑗=ℓ1+1

𝜆1 (𝐶 𝑗 ∩ 𝐴ℓ1−1) (𝑋 𝑗 − 𝑋ℓ1 ).

In a similar fashion, for 𝑢ℓ2 ∈ [0,1] such that 𝐺 (𝑢ℓ2 ) =
𝑋ℓ2+𝑏

2 and, with a slight abuse of notation,

letting 𝐴ℓ2 = [𝑢ℓ2 −
𝑏−𝑋ℓ2+1

2𝐾 , 𝑢ℓ2 +
𝑏−𝑋ℓ2+1

2𝐾 ], we obtain

∫
𝐴ℓ2

|𝐺 (𝑢) −𝑇 (𝑢) |d𝑢 ⩾
(𝑏 − 𝑋ℓ2 )2

4𝐾

+
ℓ2−1∑︁
𝑗=1

𝜆1 (𝐶 𝑗 ∩ 𝐴ℓ2 ) (𝑋ℓ2 − 𝑋 𝑗 ) +
𝑛∑︁

𝑗=ℓ2+1

𝜆1 (𝐶 𝑗 ∩ 𝐴ℓ2 ) (𝑋 𝑗 − 𝑏).

Accordingly, ∫
𝐴ℓ1−1∪𝐴ℓ2

|𝐺 (𝑢) −𝑇 (𝑢) |d𝑢 ⩾
(𝑋ℓ1 − 𝑎)2

4𝐾
+
(𝑏 − 𝑋ℓ2 )2

4𝐾

+
ℓ1−2∑︁
𝑗=1

𝜆1 (𝐶 𝑗 ∩ 𝐴ℓ1−1) (𝑋 𝑗+1 − 𝑋 𝑗 )

+ 𝜆1 (𝐶ℓ1−1 ∩ 𝐴ℓ1−1) (𝑎 − 𝑋ℓ1−1)

+
𝑛∑︁

𝑗=ℓ1+1

𝜆1 (𝐶 𝑗 ∩ 𝐴ℓ1−1) (𝑋 𝑗 − 𝑋 𝑗−1)

+
ℓ2−1∑︁
𝑗=1

𝜆1 (𝐶 𝑗 ∩ 𝐴ℓ2 ) (𝑋 𝑗+1 − 𝑋 𝑗 )

+ 𝜆1 (𝐶ℓ2+1 ∩ 𝐴ℓ2 ) (𝑋ℓ2+1 − 𝑏)

+
𝑛∑︁

𝑗=ℓ2+2

𝜆1 (𝐶 𝑗 ∩ 𝐴ℓ2 ) (𝑋 𝑗 − 𝑋 𝑗−1). (7)

Let 𝐵 =
⋃ℓ2
𝑖=ℓ1−1 𝐴𝑖 , and observe that the target integral can be decomposed in the following way:

∫ 1

0
|𝐺 (𝑢) −𝑇 (𝑢) |d𝑢 =

∫
𝐵

|𝐺 (𝑢) −𝑇 (𝑢) |d𝑢 +
∫
𝐵𝑐

|𝐺 (𝑢) −𝑇 (𝑢) |d𝑢. (8)



8

Inequalities (6) and (7) provide a lower bound on the first term on the right-hand side of (8). Let us
now work out the second term. To this aim, observe that∫

𝐵𝑐
|𝐺 (𝑢) −𝑇 (𝑢) |d𝑢 ⩾

ℓ1−1∑︁
𝑗=1

∫
𝐵𝑐

|𝐺 (𝑢) − 𝑋 𝑗 |1{𝑢 ∈ 𝐶 𝑗 }d𝑢

+
𝑛∑︁

𝑗=ℓ2+1

∫
𝐵𝑐

|𝐺 (𝑢) − 𝑋 𝑗 |1{𝑢 ∈ 𝐶 𝑗 }d𝑢

⩾
ℓ1−2∑︁
𝑗=1

∫
𝐵𝑐

(𝑋ℓ1−1 − 𝑋 𝑗 )1{𝑢 ∈ 𝐶 𝑗 }d𝑢

+
∫
𝐵𝑐

(𝑎 − 𝑋ℓ1−1)1{𝑢 ∈ 𝐶ℓ1−1}d𝑢

+
∫
𝐵𝑐

(𝑋ℓ2+1 − 𝑏)1{𝑢 ∈ 𝐶ℓ2+1}d𝑢

+
𝑛∑︁

𝑗=ℓ2+2

∫
𝐵𝑐

(𝑋 𝑗 − 𝑋ℓ2+1)1{𝑢 ∈ 𝐶 𝑗 }d𝑢.

Exploiting 𝜆1 (𝐶 𝑗 ) = 1
𝑛

for 𝑗 ∈ {1, . . . , 𝑛}, we see that∫
𝐵𝑐

|𝐺 (𝑢) −𝑇 (𝑢) |d𝑢 ⩾
ℓ1−2∑︁
𝑗=1

(1
𝑛
−

ℓ2∑︁
𝑖=ℓ1−1

𝜆1 (𝐶 𝑗 ∩ 𝐴𝑖)
)
(𝑋 𝑗+1 − 𝑋 𝑗 )

+
(1
𝑛
−

ℓ2∑︁
𝑖=ℓ1−1

𝜆1 (𝐶ℓ1−1 ∩ 𝐴𝑖)
)
(𝑎 − 𝑋ℓ1−1)

+
(1
𝑛
−

ℓ2∑︁
𝑖=ℓ1−1

𝜆1 (𝐶ℓ2+1 ∩ 𝐴𝑖)
)
(𝑋ℓ2+1 − 𝑏)

+
𝑛∑︁

𝑗=ℓ2+2

(1
𝑛
−

ℓ2∑︁
𝑖=ℓ1−1

𝜆1 (𝐶 𝑗 ∩ 𝐴𝑖)
)
(𝑋 𝑗 − 𝑋 𝑗−1). (9)

Thus, using identity (8) together with inequalities (6), (7), and (9), we are led to∫ 1

0
|𝐺 (𝑢) −𝑇 (𝑢) |d𝑢 ⩾

(𝑋ℓ1 − 𝑎)2

4𝐾
+
(𝑏 − 𝑋ℓ2 )2

4𝐾

+
ℓ1−2∑︁
𝑗=1

(1
𝑛
−

ℓ2∑︁
𝑖=ℓ1−1

𝜆1 (𝐶 𝑗 ∩ 𝐴𝑖) +
ℓ2∑︁

𝑖=ℓ1−1

𝜆1 (𝐶 𝑗 ∩ 𝐴𝑖)
)
(𝑋 𝑗+1 − 𝑋 𝑗 )

+
(1
𝑛
−

ℓ2∑︁
𝑖=ℓ1−1

𝜆1 (𝐶ℓ1−1 ∩ 𝐴𝑖) +
ℓ2∑︁

𝑖=ℓ1−1

𝜆1 (𝐶ℓ1−1 ∩ 𝐴𝑖)
)
(𝑎 − 𝑋ℓ1−1)
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+
ℓ2−1∑︁
𝑖=ℓ1

(𝑋𝑖+1 − 𝑋𝑖)2

4𝐾

+
(1
𝑛
−

ℓ2∑︁
𝑖=ℓ1−1

𝜆1 (𝐶ℓ2+1 ∩ 𝐴𝑖) +
ℓ2∑︁

𝑖=ℓ1−1

𝜆1 (𝐶ℓ2+1 ∩ 𝐴𝑖)
)
(𝑋ℓ2+1 − 𝑏)

+
𝑛∑︁

𝑗=ℓ2+2

(1
𝑛
−

ℓ2∑︁
𝑖=ℓ1−1

𝜆1 (𝐶 𝑗 ∩ 𝐴𝑖) +
ℓ2∑︁

𝑖=ℓ1−1

𝜆1 (𝐶 𝑗 ∩ 𝐴𝑖)
)
(𝑋 𝑗 − 𝑋 𝑗−1).

So, ∫ 1

0
|𝐺 (𝑢) −𝑇 (𝑢) |d𝑢 ⩾

(𝑋ℓ1 − 𝑎)2

4𝐾
+
ℓ2−1∑︁
𝑖=ℓ1

(𝑋𝑖+1 − 𝑋𝑖)2

4𝐾
+
(𝑏 − 𝑋ℓ2 )2

4𝐾

+
∑︁

𝑗∈{1,...,ℓ1−2}∪{ℓ2+1,...,𝑛−1}

𝑋 𝑗+1 − 𝑋 𝑗
𝑛

+ 1
𝑛
(𝑎 − 𝑋ℓ1−1)

+ 1
𝑛
(𝑋ℓ2+1 − 𝑏).

Since 𝐾 ⩾ 𝑛 max
𝑖=1,...,𝑛−1

(𝑋𝑖+1 − 𝑋𝑖), we have
𝑋 𝑗+1−𝑋 𝑗

𝑛
⩾

(𝑋 𝑗+1−𝑋 𝑗 )2

𝐾
, and thus

(𝑋ℓ1 − 𝑎)2

4𝐾
+ 1
𝑛
(𝑎 − 𝑋ℓ1−1) ⩾

1
4𝐾

(
(𝑋ℓ1 − 𝑎)

2 + 4(𝑎 − 𝑋ℓ1−1) (𝑋ℓ1 − 𝑋ℓ1−1)
)

=
1

4𝐾
(
(𝑋ℓ1 − 𝑎)

2 + 4(𝑎 − 𝑋ℓ1−1) (𝑋ℓ1 − 𝑎
)

+ 4(𝑎 − 𝑋ℓ1−1)2)
⩾

(𝑋ℓ1 − 𝑋ℓ1−1)2

4𝐾
. (10)

Similarly,

(𝑋ℓ2 − 𝑏)2

4𝐾
+ 1
𝑛
(𝑋ℓ2+1 − 𝑏) ⩾

(𝑋ℓ2+1 − 𝑋ℓ2 )2

4𝐾
.

Using once again the assumption on 𝐾 , we conclude that∫ 1

0
|𝐺 (𝑢) −𝑇 (𝑢) |d𝑢 ⩾

𝑛−1∑︁
𝑖=1

(𝑋𝑖+1 − 𝑋𝑖)2

4𝐾
.

To complete the proof, it remains to show that 𝐺★
𝐾

and 𝐺★
𝐾
◦ 𝑆 are the only minimizers of (1) (Main

Document). Returning to inequality (10), we see that if the function 𝐺 does not visit each data points,
then ∫ 1

0
|𝐺 (𝑢) −𝑇 (𝑢) |d𝑢 >

𝑛−1∑︁
𝑖=1

(𝑋𝑖+1 − 𝑋𝑖)2

4𝐾
.
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Also, according to (5), for the function 𝐺 to be optimal it needs to go at speed 𝐾 between each obser-
vation. Finally, with equation (3), we have that an optimal 𝐺 must be such that

𝜆1
(
{𝑢 ∈ [0,1] : |𝐺 (𝑢) − 𝑋𝑖 | ⩽ |𝐺 (𝑢) − 𝑋 𝑗 |, 𝑗 = 1, . . . , 𝑛}

)
=

1
𝑛
,

a property satisfied by 𝐺★
𝐾

and 𝐺★
𝐾
◦ 𝑆 according to (4) (Main Document). We conclude that 𝐺★

𝐾
and

𝐺★
𝐾
◦ 𝑆 are the unique minimizers of Problem (1) (Main Document) as they are the only functions

satisfying these three conditions.

6. Proof of Proposition 3.3

The first statement is a straightforward consequence of Deheuvels (1984, Theorem 2). Regarding the
second statement, we know from Theorem 3.2 that, for all 𝐾 ⩾ 𝐾1,

𝑊1 (𝐺★𝐾♯𝑈 , 𝜇𝑛) = inf
𝐺∈Lip𝐾 ( [0,1],R)

𝑊1 (𝐺♯𝑈 , 𝜇𝑛) =
1

4𝐾

𝑛−1∑︁
𝑖=1

(𝑋(𝑖+1) − 𝑋(𝑖) )2.

Therefore,

𝑊1 (𝐺★𝐾♯𝑈 , 𝜇𝑛) ⩽
∑𝑛−1
𝑖=1 (𝑋(𝑖+1) − 𝑋(𝑖) )2

𝑛max𝑖=1,...,𝑛−1 (𝑋(𝑖+1) − 𝑋(𝑖) )

⩽
1
𝑛

𝑛−1∑︁
𝑖=1

(𝑋(𝑖+1) − 𝑋(𝑖) )

=
1
𝑛
(𝑋(𝑛) − 𝑋(1) )

⩽
𝐵 − 𝐴
𝑛

.

Recalling that 𝑊1 (𝜇, 𝜇𝑛) = O (𝑛−1/2) in probability (Fournier and Guillin, 2015, Theorem 1), the con-
clusion follows from the triangle inequality.

7. Proof of Proposition 4.1

The result is a consequence of the following lemma:

Lemma 7.1. For each 𝐺 ∈ Lip𝐾 ( [0,1],R𝑑), there exists a sequence of functions (𝐺𝑚)𝑚∈N in
Lip𝐾 ( [0,1],R𝑑) such that each 𝐺𝑚♯𝑈 is nonatomic and𝑊1 (𝐺𝑚♯𝑈 , 𝜇𝑛) →𝑊1 (𝐺♯𝑈 , 𝜇𝑛) as 𝑚→∞.

Proof. Let 𝐺 ∈ Lip𝐾 ( [0,1],R𝑑) and 𝑚 ∈ N. We define 𝐺𝑚 by slightly modifying 𝐺 on each interval
where it is constant. More precisely, let I be the set of all non degenerated connected components of
𝐺−1 ({𝑦 ∈ R𝑑 : 𝜆1 (𝐺−1 (𝑦)) > 0}). This set is at most countable and, since 𝐺 is continuous, it contains
only disjoint closed intervals, i.e.,

I = {[𝑎ℓ , 𝑏ℓ ] : ℓ ∈ L},
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where L ⊂ N and 0 ⩽ 𝑎ℓ < 𝑏ℓ ⩽ 1. Let 𝐾𝑚 = min(𝐾,1/𝑚), 𝑒1 = (1,0, . . . ,0) ∈ R𝑑 , and

𝐺𝑚 (𝑢) =
𝐺 (𝑎ℓ ) + 𝐾𝑚

( 𝑏ℓ − 𝑎ℓ
2

−
��𝑎ℓ + 𝑏ℓ

2
− 𝑢

��)𝑒1 if 𝑢 ∈ [𝑎ℓ , 𝑏ℓ ] for some ℓ ∈ L
𝐺 (𝑢) otherwise.

It is easy to see that 𝐺𝑚 ∈ Lip𝐾 ( [0,1],R𝑑). Moreover, 𝐺𝑚 is not constant over any non degenerated
interval. Thus, the distribution 𝐺𝑚♯𝑈 is nonatomic. In addition, ∥𝐺𝑚 − 𝐺∥∞ → 0 as 𝑚 → ∞. In
particular, for any continuous bounded function 𝑓 : R𝑑 → R, ∥ 𝑓 (𝐺𝑚) − 𝑓 (𝐺)∥∞ → 0, so that𝐺𝑚♯𝑈 →
𝐺♯𝑈 weakly, as 𝑚 tends to infinity. As the 𝐺𝑚♯𝑈’s have supports included in the same compact set,
we conclude by Villani (2008, Theorem 6.9) that lim𝑚→∞𝑊1 (𝐺𝑚♯𝑈 , 𝐺♯𝑈) = 0. But, by the triangle
inequality, ��𝑊1 (𝐺𝑚♯𝑈 , 𝜇𝑛) −𝑊1 (𝐺♯𝑈 , 𝜇𝑛)

��⩽𝑊1 (𝐺𝑚♯𝑈 , 𝐺♯𝑈),

from which lim𝑚→∞𝑊1 (𝐺𝑚♯𝑈 , 𝜇𝑛) =𝑊1 (𝐺♯𝑈 , 𝜇𝑛) follows, as desired.

8. Proof of Proposition 4.2

Assuming that such a transport map 𝑇★ ∈ H 𝑤★ exists, we write 𝑤★
𝑇★ (𝑥 ) instead of 𝑤★

𝑖
whenever

𝑇★(𝑥) = 𝑋𝑖 , 𝑖 ∈ {1, . . . , 𝑛}. Let 𝜑 : R𝑑 → R be the 1-Lipschitz map defined by

𝜑(𝑥) = ∥𝑥 −𝑇★(𝑥)∥ − 𝑤★
𝑇★ (𝑥 ) .

Since 𝑇★(𝑋𝑖) = 𝑋𝑖 for all 𝑖 ∈ {1, . . . , 𝑛}, we have in particular that 𝜑(𝑥) − 𝜑(𝑇★(𝑥)) = ∥𝑥 − 𝑇★(𝑥)∥.
Then, denoting by

𝜕𝜑 := {(𝑥, 𝑦) ∈ R𝑑 ×R𝑑 : 𝜑(𝑥) − 𝜑(𝑦) = ∥𝑥 − 𝑦∥}

the superdifferential of 𝜑 (Villani, 2008, Definition 5.7), the graph of 𝑇★ is included in 𝜕𝜑. Therefore,∫
R𝑑×R𝑑

∥𝑥 −𝑇★(𝑥)∥d𝜈(𝑥) =
∫
R𝑑×R𝑑

(𝜑(𝑥) − 𝜑(𝑇★(𝑥)))d𝜈(𝑥)

=

∫
R𝑑
𝜑(𝑥)d𝜈(𝑥) −

∫
R𝑑
𝜑(𝑦)d𝜇𝑛 (𝑦)

≤𝑊1 (𝜈, 𝜇𝑛).

We conclude that 𝑇★ is an optimal transport map.

9. Proof of Proposition 5.1

Let us first show that, for all 𝑖 ∈ {1, . . . , 𝑛 + 𝑘 − 1} and 𝑗 ∉ {𝜎(𝑖), 𝜎(𝑖 + 1)},

[𝑉𝑖 + 𝜑(𝜎(𝑖)),𝑉𝑖+1] ∩𝐺★−1
𝐾 (Vor( 𝑗)◦) = ∅.

Suppose on the contrary that there exists 𝑡 ∈ (0,1) such that𝑌𝑖 := 𝑋𝜎 (𝑖) + 𝑡 (𝑋𝜎 (𝑖+1) −𝑋𝜎 (𝑖) ) ∈ Vor( 𝑗)◦.
Then

𝑋 𝑗 ∈ 𝐵◦ (𝑌𝑖 , ∥𝑋𝜎 (𝑖) −𝑌𝑖 ∥) ∩ 𝐵◦ (𝑌𝑖 , ∥𝑋𝜎 (𝑖+1) −𝑌𝑖 ∥),
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where 𝐵◦ (𝑥, 𝜀) stands for the open ball centered at 𝑥 of radius 𝜀. Observe that for 𝑡 ⩽ 1/2,

𝐵◦ (𝑌𝑖 , ∥𝑋𝜎 (𝑖) −𝑌𝑖 ∥) ⊆ 𝐵◦
( 𝑋𝜎 (𝑖) + 𝑋𝜎 (𝑖+1)

2
,
∥𝑋𝜎 (𝑖+1) − 𝑋𝜎 (𝑖) ∥

2

)
,

whereas for 𝑡 ⩾ 1/2,

𝐵◦ (𝑌𝑖 , ∥𝑋𝜎 (𝑖+1) −𝑌𝑖 ∥) ⊆ 𝐵◦
( 𝑋𝜎 (𝑖) + 𝑋𝜎 (𝑖+1)

2
,
∥𝑋𝜎 (𝑖+1) − 𝑋𝜎 (𝑖) ∥

2

)
.

Consequently,

𝑋 𝑗 ∈ 𝐵◦
( 𝑋𝜎 (𝑖) + 𝑋𝜎 (𝑖+1)

2
,
∥𝑋𝜎 (𝑖+1) − 𝑋𝜎 (𝑖) ∥

2

)
.

We deduce that ⟨𝑋𝜎 (𝑖) − 𝑋 𝑗 , 𝑋𝜎 (𝑖+1) − 𝑋 𝑗⟩ < 0 (notation ⟨·, ·⟩ means the scalar product), and so

∥𝑋𝜎 (𝑖+1) − 𝑋𝜎 (𝑖) ∥2 > ∥𝑋𝜎 (𝑖+1) − 𝑋 𝑗 ∥2 + ∥𝑋𝜎 (𝑖) − 𝑋 𝑗 ∥2.

However, such an inequality is impossible by definition of 𝜎. We conclude that, for all 𝑡 ∈ [0,1/2],

𝑋𝜎 (𝑖) + 𝑡 (𝑋𝜎 (𝑖+1) − 𝑋𝜎 (𝑖) ) ∈ Vor(𝜎(𝑖))

and, for all 𝑡 ∈ [1/2,1],

𝑋𝜎 (𝑖) + 𝑡 (𝑋𝜎 (𝑖+1) − 𝑋𝜎 (𝑖) ) ∈ Vor(𝜎(𝑖 + 1)).

Let us now turn to the computation of𝑊1 (𝐺★𝐾♯𝑈 , 𝜇𝑛). First, by definition of 𝜑(𝑖), for 𝑖 ∈ {1, . . . , 𝑛},
we have ∑︁

𝑗∈𝜎−1 (𝑖)
𝜆1

( [
𝑉 𝑗 ,𝑉 𝑗 + 𝜑(𝑖) +

∥𝑋𝜎 ( 𝑗+1) − 𝑋𝑖 ∥
2𝐾

] )
+ 𝜆1

( [
𝑉 𝑗−1 + 𝜑(𝜎( 𝑗 − 1)) +

∥𝑋𝜎 ( 𝑗−1) − 𝑋𝑖 ∥
2𝐾

,𝑉 𝑗−1 + 𝜑(𝜎( 𝑗 − 1)) + ∥𝑋𝜎 ( 𝑗−1) − 𝑋𝑖 ∥
] )

=
∑︁

𝑗∈𝜎−1 (𝑖)

(
𝜑(𝑖) +

∥𝑋𝜎 ( 𝑗+1) − 𝑋𝑖 ∥
2𝐾

+
∥𝑋𝜎 ( 𝑗−1) − 𝑋𝑖 ∥

2𝐾

)
=

1
𝑛
.

This shows that 𝜆1 (𝐺★−1
𝐾

(Vor(𝑖))) = 1
𝑛

, 𝑖 ∈ {1, . . . , 𝑛}—or, said differently, that the function𝐺★
𝐾

spends
a total time 1/𝑛 in each Voronoi cell. Now, introduce 𝑇★ : R𝑑 → {𝑋1, . . . , 𝑋𝑛} defined 𝐺𝐾♯𝑈-almost
everywhere by 𝑇★(𝑥) = 𝑋𝑖 if 𝑥 ∈ Vor(𝑖). Then, clearly, 𝑇★ ∈ H 0, where we recall that

H 0 =
{
𝑇 : R𝑑 → {𝑋1, . . . , 𝑋𝑛} : ∀𝑥 ∈ Vor(𝑖),𝑇 (𝑥) = 𝑋𝑖

and ∀𝑥 ∈ Γ0
𝑗1... 𝑗𝑝

,𝑇 (𝑥) ∈ {𝑋 𝑗1 , . . . , 𝑋 𝑗𝑝 }
}
.

Arguing as in the proof of Lemma 7.1, one shows that there exists a sequence of functions (𝐺★𝑚)𝑚∈N ⊂
Lip𝐾 ( [0,1],R𝑑) such that each 𝐺★

𝑚♯𝑈
is nonatomic, 𝑊1 (𝐺★𝑚♯𝑈 , 𝜇𝑛) → 𝑊1 (𝐺★𝐾♯𝑈 , 𝜇𝑛) as 𝑚 → ∞,
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and, for all 𝑚 large enough, 𝜆1 (𝐺★−1
𝑚 (Vor(𝑖))) = 1

𝑛
, 𝑖 ∈ {1, . . . , 𝑛}. According to Proposition 4.2, we

have

𝑊1 (𝐺★𝑚♯𝑈 , 𝜇𝑛) =
∫ 1

0
∥𝐺★𝑚 (𝑢) −𝑇★(𝐺★𝑚 (𝑢))∥d𝑢.

By dominated convergence, we obtain𝑊1 (𝐺★𝐾♯𝑈 , 𝜇𝑛) =
∫ 1

0 ∥𝐺★
𝐾
(𝑢) −𝑇★(𝐺★

𝐾
(𝑢))∥d𝑢, so that 𝑇★ is an

optimal transport map from 𝐺★
𝐾

to 𝜇𝑛. Finally,

𝑊1 (𝐺★𝐾♯𝑈 , 𝜇𝑛) =
∫ 1

0
∥𝐺★𝐾 (𝑢) −𝑇

★(𝐺★𝐾 (𝑢))∥d𝑢

=

𝑛+𝑘−1∑︁
𝑗=1

∫ 𝑉𝑗+𝜑 (𝜎 ( 𝑗 ) )+
∥𝑋𝜎 ( 𝑗+1) −𝑋𝜎 ( 𝑗) ∥

2𝐾

𝑉𝑗

∥𝑋𝜎 ( 𝑗 ) −𝐺★𝐾 (𝑢)∥d𝑢

+
∫ 𝑉𝑗+𝜑 (𝜎 ( 𝑗 ) )+∥𝑋𝜎 ( 𝑗+1)−𝑋𝜎 ( 𝑗) ∥

𝑉𝑗+𝜑 (𝜎 ( 𝑗 ) )+
∥𝑋𝜎 ( 𝑗+1) −𝑋𝜎 ( 𝑗) ∥

2𝐾

∥𝑋𝜎 ( 𝑗+1) −𝐺★𝐾 (𝑢)∥d𝑢

=

𝑛+𝑘−1∑︁
𝑗=1

∫ 𝑉𝑗+𝜑 (𝜎 ( 𝑗 ) )+
∥𝑋𝜎 ( 𝑗+1) −𝑋𝜎 ( 𝑗) ∥

2𝐾

𝑉𝑗+𝜑 (𝜎 ( 𝑗 ) )
𝐾
(
𝑢 − (𝑉 𝑗 + 𝜑(𝜎( 𝑗)))

)
d𝑢

+
∫ 𝑉𝑗+𝜑 (𝜎 ( 𝑗 ) )+∥𝑋𝜎 ( 𝑗+1)−𝑋𝜎 ( 𝑗) ∥

𝑉𝑗+𝜑 (𝜎 ( 𝑗 ) )+
∥𝑋𝜎 ( 𝑗+1) −𝑋𝜎 ( 𝑗) ∥

2𝐾

𝐾 (𝑉 𝑗 + 𝜑(𝜎( 𝑗)) + ∥𝑋𝜎 ( 𝑗+1) − 𝑋𝜎 ( 𝑗 ) ∥ − 𝑢)d𝑢

=

𝑛+𝑘−1∑︁
𝑗=1

1
8𝐾

∥𝑋𝜎 ( 𝑗+1) − 𝑋𝜎 ( 𝑗 ) ∥2 + 1
8𝐾

∥𝑋𝜎 ( 𝑗+1) − 𝑋𝜎 ( 𝑗 ) ∥2

=
1

4𝐾

𝑛+𝑘−1∑︁
𝑗=1

∥𝑋𝜎 ( 𝑗+1) − 𝑋𝜎 ( 𝑗 ) ∥2.

10. Proof of Proposition 5.4

First note, since 𝜎 is a path with points that may be visited several times, that

𝐾2 ⩾
𝑛∑︁
𝑖=1

∑︁
𝑗∈𝜎−1 (𝑖)

1
2
(∥𝑋𝜎 ( 𝑗−1) − 𝑋𝑖 ∥ + ∥𝑋𝜎 ( 𝑗+1) − 𝑋𝑖 ∥)

⩾ inf
𝜏∈P𝑛

𝑛−1∑︁
𝑗=1

∥𝑋𝜏 ( 𝑗 ) − 𝑋𝜏 ( 𝑗+1) ∥, (11)

where P𝑛 stands for the set of permutations of {1, . . . , 𝑛}. But, according to Steele (1988), under the
conditions of the theorem, there exists a constant 𝐶 > 0 satisfying

lim
𝑛→∞

𝑛−1+1/𝑑 inf
𝜏∈P𝑛

𝑛−1∑︁
𝑗=1

∥𝑋𝜏 ( 𝑗 ) − 𝑋𝜏 ( 𝑗+1) ∥ =𝐶 a.s.
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This shows the first statement of the proposition.
We start the proof of the second statement by recalling that, according to Fournier and Guillin (2015,

Theorem 1), one has, in probability,

𝑊1 (𝜇, 𝜇𝑛) =
{

O ( log𝑛√
𝑛
) for 𝑑 = 2

O (𝑛−1/𝑑) for 𝑑 ⩾ 3.

Therefore, by the triangle inequality, it is enough to show that, for 𝑑 ⩾ 2, in probability,

𝑊1 (𝐺★𝐾♯𝑈 , 𝜇𝑛) = O (𝑛−1/𝑑).

According to Theorem 5.3, we only need to show that, in probability,

1
4𝐾

𝑛+𝑘−1∑︁
𝑗=1

∥𝑋𝜎 ( 𝑗+1) − 𝑋𝜎 ( 𝑗 ) ∥2 = O (𝑛−1/𝑑),

whenever 𝐾 ⩾ 𝐾2. But, by the very definition (12) (Main Document) of the pair (𝑘, 𝜎), we have

𝑛+𝑘−1∑︁
𝑗=1

∥𝑋𝜎 ( 𝑗+1) − 𝑋𝜎 ( 𝑗 ) ∥2 ⩽
𝑛−1∑︁
𝑗=1

∥𝑋𝜏 ( 𝑗+1) − 𝑋𝜏 ( 𝑗 ) ∥2,

where 𝜏 ∈ P𝑛 is a permutation that minimizes the length among the whole set of paths that visit only
once each data, i.e.,

𝑛−1∑︁
𝑗=1

∥𝑋𝜏 ( 𝑗+1) − 𝑋𝜏 ( 𝑗 ) ∥ ⩽
𝑛−1∑︁
𝑗=1

∥𝑋𝜏′ ( 𝑗+1) − 𝑋𝜏′ ( 𝑗 ) ∥, for all 𝜏′ ∈ P𝑛.

Therefore, since 𝐾 ⩾ 𝐾2, we have by inequality (11) ,

1
𝐾

𝑛+𝑘−1∑︁
𝑗=1

∥𝑋𝜎 ( 𝑗+1) − 𝑋𝜎 ( 𝑗 ) ∥2 ⩽

∑𝑛−1
𝑗=1 ∥𝑋𝜏 ( 𝑗+1) − 𝑋𝜏 ( 𝑗 ) ∥2∑𝑛−1
𝑗=1 ∥𝑋𝜏 ( 𝑗+1) − 𝑋𝜏 ( 𝑗 ) ∥

.

Now, under the additional condition on the density of 𝜇, we know by Yukich (2000, Theorem 1.3) that,
for each 0 ⩽ ℓ ⩽ 𝑑, there exists 𝐶 (ℓ) > 0 such that

lim
𝑛→∞

𝑛−1+ℓ/𝑑
𝑛−1∑︁
𝑗=1

∥𝑋𝜏 ( 𝑗+1) − 𝑋𝜏 ( 𝑗 ) ∥ℓ =𝐶 (ℓ) a.s.

By the above, we conclude that

1
4𝐾

𝑛+𝑘−1∑︁
𝑗=1

∥𝑋𝜎 ( 𝑗+1) − 𝑋𝜎 ( 𝑗 ) ∥2 = O (𝑛−1/𝑑) a.s.
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