
Random Markov property for random walks in random

environments

Julien Allasia ∗ Rangel Baldasso † Oriane Blondel ‡ Augusto Teixeira §

June 10, 2025

Abstract

We consider random walks in dynamic random environments and propose a criterion
which, if satisfied, allows to decompose the random walk trajectory into i.i.d. increments,
and ultimately to prove limit theorems. The criterion involves the construction of a random
field built from the environment, that has to satisfy a certain random Markov property
along with some mixing estimates. We apply this criterion to correlated environments such
as Boolean percolation and renewal chains featuring polynomial decay of correlations.
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1 Introduction

Random walks in random environments have been a subject of intensive study since the 60s-70s,
when the first models motivated by applications in biophysics or chemistry were introduced [11,
27]. One of the main challenges in their study is that memory of the past trajectory of the
random walk can be conserved through the environment currently explored. A large part of the
literature on the subject focuses on the identification of conditions (on the random walk jumps
and the law of the environment) that imply memory loss in some sense.

One of the most prominent example in this direction is [26]. The environment is assumed
to be i.i.d., and the random walk to satisfy some ballisticity condition. This allows to build
regeneration times for the trajectory of the random walk. Let us note that it is natural to
request some kind of directional transience, since otherwise the random walk keeps revisiting
previously explored environment and there is no reason why it should forget what it saw (indeed
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in general it does not, see [25]). The i.i.d. assumption on the other hand is clearly non-optimal,
and later works have focused on relaxing it. A landmark paper in that direction is [12], where
the authors introduce a cone-mixing condition that the environment has to satisfy. It allows to
build a sequence of approximate regeneration times (which yield increments that are close to
being i.i.d.).

This has later been refined in various ways [7, 8], especially in the context of random walks
in dynamic random environments (RWDRE). In this case, one may consider the time direction
as the direction of transience of a random walk in dimension d+ 1 whose last coordinate deter-
ministically increases by 1 at each step. Ballisticity is then automatic, and the setting allows
to consider weaker decoupling properties on the environment. The main drawback of the cone-
mixing property is that is requires a uniform decoupling property, which many natural dynamic
environments do not satisfy.

In recent years, there has been a growing interest in studying RWDRE when the environment
has a non-uniform decoupling property [4], especially using renormalization techniques [9, 18,
5, 3, 2, 1, 6, 20]. What we propose in the present paper is to give a framework in which one
can build a sequence of regeneration times for the RWDRE, and use renormalization to control
the tails of these regeneration times in terms of decorrelation properties of the environment. We
can then apply standard limit results for sums of i.i.d. random variables to the trajectory of the
RWDRE.

It is worth mentioning that the same type of problems have been studied by means of
analyzing the environment seen from the particle [13, 14, 4].

Our strategy relies on the construction of a field η ∈ {0, 1}Zd+1
, which is model-dependent (see

examples in Section 5). η has to be built from the environment (and possibly extra independent
randomness) in such a way that it has the Random Markov Property which we define below
(Definition 1.1). Intuitively, the Random Markov Property says that, conditional on ηx = 1, the
future of a random walk trajectory going through x is independent of its past; this will allow
us to decompose the trajectory of the RWDRE into i.i.d. increments (Lemma 3.2), conditioning
on the event that η is 1 at the origin. Note that this step is less straightforward than it might
appear from the intuitive interpretation of the Random Markov Property. For instance, it
necessitates resampling the field η (Lemma 3.1) in order to erase irrelevant information. The
tail of the regeneration times is controlled by the decorrelation properties of η (see Definition 1.2
and Lemma 4.10), which in turn are inherited from those of the environment in our examples.
The tail estimates are proved through a renormalization procedure.

The paper is organised as follows. In Section 1.2, we give a short definition of the random walk
in dynamic random environment. In Section 1.3, we explain what we need from the auxiliary
field η, and in particular the Random Markov Property (RMP). We conclude Section 1 with
the statement of our main result Theorem 1.3. In Section 2 we give a formal construction
of our random walk and the surrounding objects. Section 3 is devoted to the construction of
regeneration times for the trajectory of the random walk, using the RMP and a resampling
procedure. Section 4 presents the renormalization strategy that allows to control the tails of the
regeneration times, and the proof of our main results is given in Section 4.5. We conclude in
Section 5 with examples of dynamic random environments for which we construct an appropriate
field η: Boolean percolation with polynomial tails for the radii, and independent renewal chains
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with polynomial tails for the interarrival distribution.

1.1 Notation

For x ∈ Zd and t ∈ Z, we see z = (x, t) as an element of Zd+1. We denote by | · | the L∞ norm on
Zd+1. Mind that depending on the context, 0 can mean the origin of Zd or Zd+1. For instance,
when we write (0, t) with t ∈ Z and a point in Zd+1 was expected, what we mean is 0 ∈ Zd.

N denotes the set of natural integers starting from 0. N∗ is N \ {0}. For any two integers
a < b, denote by Ja, bKd = [a, b]d ∩ Zd.

1.2 Random walk in dynamic random environment

We start by defining somewhat informally the environment and random walk that we consider.
In Section 2 we propose a formal construction of those objects.

Fix S a countable set and R a positive integer. We work with an environment ω =
(ωz)z∈Zd+1 ∈ SZd+1

that will be chosen with some fixed probability distribution P. We as-
sume throughout the text that S is endowed with a distance that makes it a Polish metric
space.

To define the random walk in random environment, for each state s ∈ S we choose a prob-
ability kernel p(s, ·) on J−R,RKd. For ω ∈ Ω, the random walk in the environment ω is the
process X = (Xt)t∈N such that X0 = 0 and, for t ∈ N, x ∈ Zd and y ∈ J−R,RKd,

Pω(Xt+1 = x+ y|Xt = x) = p(ω(x,t), y). (1.1)

We say that R is the range of X, and that X is finite-range.
We assume that X is uniformly elliptic, meaning that

min
y∈J−1,1Kd

inf
s∈S

p(s, y) = c0 > 0. (1.2)

Mind that although X has range R, we only ask for uniform ellipticipty for the jumps in J−1, 1Kd.
We see the trajectory of our random walk as a path in Zd+1 by considering Z = (Zt)t∈N,

where
Zt = (Xt, t). (1.3)

1.3 The field η: Random Markov Property and decoupling

Our main assumption is the existence of a random field η = (ηz)z∈Zd+1 : Zd+1 → {0, 1} on the
same probability space as ω, which will help us construct a renewal structure based on times
where the random walk hits a point where ηz = 1. Let us start by some technical assumptions.

Assumption 1. We ask ω and η to satisfy the following conditions.

1. (ω, η) is translation-invariant: for any z ∈ Zd+1, the law of (ωz+·, ηz+·) under P is the
same as that of (ω, η).
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2. There exists c1 > 0 such that
P(η0 = 1) ⩾ c1. (1.4)

3. There exists s⋆ ∈ S such that

∀z ∈ Zd+1, ηz = 1 ⇒ ωz = s⋆. (1.5)

The translation invariance is a natural requirement in our setting. The second assumption
will be used to ensure that the random walk often meets points where η is 1. The third assump-
tion is a technicality that helps us remove an extra condition in the construction of our renewal
times. Bear in mind that in our examples, η will be a non-local function of ω (and sometimes
extra randomness).

The crucial assumptions on η are given by two definitions that we present now. For z =
(x, t) ∈ Zd+1, let us define the future and past cones rooted at z.

C−
0

C+
0

x

t

Figure 1: Future and past cones rooted at the origin when d = 1 and R = 2.

C+
0 = {(x, t) ∈ Zd+1 : |x| ⩽ Rt},

C−
0 = {(x, t) ∈ Zd+1 : t ⩽ 0, |x| ⩽ R|t|},

C±
z = z + C±

0 .

(1.6)

Note that, if Xt = x, since X has range R, we have

Zt+s ∈ C+
(x,t) for all s ∈ N,

Zt−s ∈ C−
(x,t) for all s ∈ J0, tK.

(1.7)

Let us denote, for z ∈ Zd+1,

F−
z = σ

(
(ωz′ , ηz′); z

′ ∈ C−
z

)
,

F+
z = σ

(
ωz′ ; z

′ ∈ C+
z

)
.

(1.8)

Mind the subtlety in the definition of F−
z and F+

z : for the former, we look at both processes ω
and η in the past cone; for the latter, we only look at ω in the future cone.
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Definition 1.1 (Random Markov property). We say the field (ω, η) satisfies the Random
Markov property if, for any z ∈ Zd+1 and for any bounded random variable W measurable
with respect to F+

z ,
E[W |F−

z ] ηz = E[W |ηz] ηz. (1.9)

Remark 1. It is important to emphasize that F− depends on both ω and η in the past cone
C−, while F+ depends only on ω in C+. This is a crucial difference that makes the proof more
complicated in many places. In other words, it would have been much easier to prove a CLT
under the hypothesis (1.9) if F+ was allowed to depend on η as well. However, this would rule
out several possible applications of the model, as in the case of independent renewal chains that
we present below.

Additionally, we need a decoupling property for the field η. Let A ⊆ Zd+1. We say that A
is a box if it is of the form

∏d+1
i=1 Jai, biK with ai ⩽ bi integers. If A is a box, we define its spatial

diameter r(A) and height h(A) by

r(A) := max
i=1,...,d

(bi − ai),

h(A) := bd+1 − ad+1.
(1.10)

For A =
∏d+1

i=1 Jai, biK, A′ =
∏d+1

i=1 Ja′i, b
′
iK two boxes, we call sep(A,A′) their vertical separation

defined by

sep(A,A′) =


ad+1 − b′d+1, if b′d+1 < ad+1,

a′d+1 − bd+1, if bd+1 < a′d+1,

0, else.

(1.11)

Definition 1.2 (Decoupling property). Let α ⩾ 0. We say that η satisfies the α–decoupling
property if there exists c2 = c2(α) > 0 such that for any r ∈ N, for any boxes A,B ⊆ Zd+1

satisfying

r(A) ∨ r(B) ⩽ (2R+ 1)r, h(A) ∨ h(B) ⩽ r, sep(A,B) ⩾ r,

and for any f1 : {0, 1}A → {0, 1}, f2 : {0, 1}B → {0, 1}, we have

E[f1(ηA)f2(ηB)] ⩽ E[f1(ηA)] E[f2(ηB)] + c2r
−α.

Remark 2. In most cases, such as those presented in Section 5, η will satisfy a stronger decoupling
property that works for larger sets of boxes. We use the following vocabulary in that context.
Let ε : R3

+ → R+. We say that ε is a decoupling function for η if for any r, h, s ∈ N, for any
boxes A,B ⊆ Zd+1 such that

r(A) ∨ r(B) ⩽ r, h(A) ∨ h(B) ⩽ h, sep(A,B) ⩾ s, (1.12)

and for any f1 : {0, 1}A → {0, 1}, f2 : {0, 1}B → {0, 1}, we have

E[f1(ηA)f2(ηB)] ⩽ E[f1(ηA)] E[f2(ηB)] + ε(r, h, s).

Observe that, if there exists c2 > 0 such that ε((2R+ 1)r, r, r) ≤ c2r
−α for any r ∈ N, then the

environment satisfies the α–decoupling property.
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1.4 Main results

Our main theorem is a law of large numbers and an annealed central limit theorem, meaning
that it holds for the annealed law defined by P =

∫
Pω(·) dP(ω) (see Section 2).

Theorem 1.3. Assume that X is finite-range and uniformly elliptic and that Assumption 1 as
well as the Random Markov property and the α–decoupling property is satisfied.

1. Law of large numbers. If α > 1, then, as t goes to infinity, Xt
t converges P-almost surely

to a certain limit v ∈ Rd.

2. Central limit theorem. If α > 2, then, as t goes to infinity, Xt−vt√
t

converges in P-
distribution to a Gaussian random variable in Rd with zero mean value.

The proof of Theorem 1.3 is divided into two parts, following the road map of the renewal
method from [26]. The first one, namely Section 3, consists in defining a sequence of renewal
times (Tk)k∈N and show that conditioned on T0 = 0, the increments of the random walk along
this sequence of times is i.i.d. This is a consequence of the Random Markov property. In the
second part of the proof, namely Section 4, we need to control the moments of T1 conditioned
on T0 = 0. Here, the mixing behavior that we demand for η will be instrumental. The final
proof of Theorem 1.3 can be found in Section 4.5. A construction will be provided for a and the
variance of the limiting Gaussian distribution. In Section 5, we give examples of environments
that satisfy our assumptions.

Acknowledgements. The research of JA was supported by a doctoral contract and travel
funds provided by CNRS Mathématiques. RB has counted on the support of “Conselho Nacional
de Desenvolvimento Cient́ıfico e Tecnológico – CNPq” grants “Produtividade em Pesquisa”
(308018/2022-2) and “Projeto Universal” (402952/2023-5). The research of OB was partially
supported by the ANR grant MICMOV (ANR- 19-CE40-0012) of the French National Research
Agency (ANR). During this period, AT has also been supported by grants “Projeto Universal”
(406250/2016-2) and “Produtividade em Pesquisa” (304437/2018-2) from CNPq and “Jovem
Cientista do Nosso Estado” (202.716/2018) from FAPERJ.

2 Formal construction

Let us endow SZd+1
with the product topology and the subsequent Borel σ-algebra. Let (Ω, T ,P)

be a probability space and ω, η two random variables on (Ω, T ) taking values in SZd+1
and

{0, 1}Zd+1
respectively. Mind that we will also use notation ω to denote elements of Ω. We

denote by P̂ the probability distribution P conditioned on η0 = 1 (recall (1.4)), that is, P̂(A) =
P(A|η0 = 1).

We now assume that environment ω is fixed and provide a formal construction of the random
walk in ω. What we want to do, besides having equality (1.1) satisfied, is to couple random
walks starting from different points together. In order to do so, we use uniform random variables
to encapsulate the randomness needed for the jumps of the random walks and allocate them to
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points in Zd+1 instead of allocating them to the random walks themselves, depending on their
starting points.

For each s ∈ S, partition [0, 1] into (2R+1)d intervals (Iys )y∈J−R,RKd so that the length of Iys
is p(s, y). Set, for u ∈ [0, 1],

g(s, u) =
∑

y∈J−R,RKd
y1Iys (u). (2.1)

This is a measurable function from S × [0, 1] to J−R,RKd that will determine the jump of a
random walk if the state of the environment at its location is s.

Now, let (Uz)z∈Zd+1 be a collection of i.i.d. uniform random variables in [0, 1] defined on a
probability space (Ω′, T ′,P′). Let

Ω0 = Ω× Ω′, T0 = T ⊗ T ′, and P = P⊗P′ . (2.2)

We also set, for ω ∈ Ω,
Pω = δ{ω} ⊗ P′ . (2.3)

We have P(·) =
∫
Ω Pω(·) dP(ω). We also denote by P̂(·) =

∫
Ω Pω(·) dP̂(ω).

Define the random walk Zz started at z ∈ Zd+1 driven by the environment ω as a random
variable on (Ω0, T0) as follows:{

Zz
0 = z;

Zz
t+1 = Zz

t + (g(ωZz
t
, UZz

t
), 1), t ∈ N. (2.4)

We simply write Z for Z0, where 0 is the origin in Zd+1. Note that, with this construction, we
do have equality (1.1).

Finally, define a shifting operator by setting, for any field (Fy)y∈Zd+1 indexed by space-time

points and z, z0 ∈ Zd+1,
(F ◦ θz0)z = Fz0+z. (2.5)

3 Independent decomposition

The field η should be interpreted as a collection of amnesia traps for the random walk, i.e., places
that allow it to renew and completely forget the past environment ω that it visited. However,
it might be the case that the field η itself still carries information of the environment ω into the
future and keeps us from getting a decomposition of the walk into independent parts (notice
that, while F−

0 contains the information about η in the cone of the past C−
0 , the same is not

true for F+
0 and the restriction η|C+

0
, see Equation (1.8)). For this reason, we now introduce a

resampling operator that deals with this undesired possibility. The existence of this resampling
operator will be used below in Equation (3.6).

Recall that P̂ denotes the distribution P conditioned on η0 = 1. Let us now define the
resampling operator R. This operator uses the information about ω in the cone of the future and
some additional randomness to resample the value of the field η. More precisely, if Ũ is sampled
uniformly in [0, 1] and independently from ω ∼ P̂, thenR(ω, Ũ) =

(
R(ω, Ũ)z

)
z∈Zd+1 ∈ {0, 1}Zd+1

is a field such that
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1.
(
ω,R(ω, Ũ)

)
∼ (ω, η) under P̂,

2. There exists an
(
F+
0 ⊗ B[0, 1]

)
-measurable1 function R̃ such that R(ω, Ũ) = R̃(ω, Ũ) for

P̂-almost every (ω, Ũ).

Recall the shift operator introduced in (2.5). We write Rz(ω, u) = R(ω ◦ θz, u) ◦ θ−z for the
resampling operator that uses the cone fixed at z ∈ Zd+1.

Let us note that, although it is not immediately clear that the operator above is always
well-defined, this is a consequence of the existence of regular conditional probabilities, as stated
in the next lemma.

Lemma 3.1. Assume that the space Ω is enriched to allow for the definition of an independent
random variable Ũ uniformly distributed in [0, 1]. In this case the operator (ω, Ũ) 7→ R(ω, Ũ) is
well defined for P̂-almost every ω and Ũ .

We postpone the proof of this lemma to the end of this section and define now a sequence
of random times for the walk starting at z. In the following we enlarge our probability space
to allow for an additional collection of independent uniform random variables (Ũz)z∈Zd+1 that
will be used in combination with the resampling operator introduced above. Define now the
sequence (T z

k )k⩾0 as

T z
0 = T z

0 (ω) = inf
{
t ⩾ 0, ηZz

t
= 1

}
,

T z
k+1 = T z

k+1(ω) = inf
{
t > T z

k , RZz
Tz
k

(
ω, ŨZz

Tz
k

)
Zz
t
= 1

}
, for all k ∈ N, (3.1)

where the infimum of the empty set is taken to be +∞. We will often write simply Tk without
the upper script z to refer to the times T 0

k associated with the random walk starting at the
origin. Observe that when η0 = 1, we have T0 = 0.

We also set, for k ∈ N,

Yk =

{
ZTk

if Tk < ∞;
∞ otherwise.

(3.2)

We set Yk+1 − Yk = +∞ if Tk+1 = +∞.
The next lemma is quite general and does not require any decoupling assumption on η.

Lemma 3.2. Let n ⩾ 0 and let f0, . . . , fn be bounded measurable functions on Zd+1. We have

E
[
1Tn+1<∞ f0(Y1 − Y0) · · · fn(Yn+1 − Yn)

∣∣ η0 = 1
]

=
n∏

k=0

E[1T1<∞ fk(Y1) | η0 = 1]. (3.3)

In particular, under P
(
· |η0 = 1

)
, if T1 < ∞ almost surely, then the (Yk+1 − Yk)k⩾0 are i.i.d.

and have the same distribution as Y1 = (XT1 , T1).

We will see in Lemma 4.10 that whenever α > 0, the α-decoupling property implies that
T1 < ∞ almost surely, so the second part of the statement will hold.

1Here, B[0, 1] denotes the Borel σ-algebra on the interval [0, 1].
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Proof. We first need to strengthen the Random Markov Property. Let

Gz = F−
z ∨ (Uy)y∈C−

z \{z} (3.4)

denote the σ-algebra generated by F−
z and the collection of random variables (Uy)y∈C−

z \{z}.

Note that for any bounded measurable function f on (S × [0, 1]2)C
+
z , we have

E
[
f
(
(ωy, Uy, Ũy)y∈C+

z

)∣∣∣Gz

]
ηz

= E
[
f
(
(ωy, Uy, Ũy)y∈C+

z

)∣∣∣F−
z

]
ηz

=

∫
([0,1]2)C

+
z

E
[
f
(
(ωy, uy, ũy)y∈C+

z

)∣∣∣F−
z

]
ηz

∏
y∈C+

z

duydũy

=

∫
([0,1]2)C

+
z

E
[
f
(
(ωy, uy, ũy)y∈C+

z

)∣∣∣ηz] ηz ∏
y∈C+

z

duydũy

= E
[
f
(
(ωy, Uy, Ũy)y∈C+

z

)∣∣∣ηz] ηz
= E

[
f
(
(ωy, Uy, Ũy)y∈C+

z

)∣∣∣ηz = 1
]
ηz.

The first equality uses that (Uy)y∈C−
z \{z} is independent of F−

z and (ωy, Uy, Ũy)y∈C+
z
. In the

second and last equalities, we used that (Uy, Ũy)y∈C+
z
is independent of ω and F−

z . In the third
equality, the Random Markov property was used.

Let us now show an auxiliary identity. Let f be a bounded measurable function on Zd+1

and g a bounded measurable function on (S × [0, 1]2)C
+
0 . Under η0 = 1, define T̃ = inf{t >

0, ηZt(ω) = 1} and Ỹ = ZT̃ . Mind that, although (Ỹ , T̃ ) and (Y1, T1) have the same law, they
may differ, since the latter is defined using a resampled environment. We have

E
[
1T1<∞ f(Y1) g

(
(ω,U, Ũ) ◦ θY1 |C+

0

)∣∣∣η0 = 1
]

= E
[
1T̃<∞ f(Ỹ ) g

(
(ω,U, Ũ) ◦ θỸ |C+

0

)∣∣∣η0 = 1
]

=
∑

z∈Zd+1

f(z)E
[
1T̃<∞ 1Ỹ=z g

(
(ωy, Uy, Ũy)y∈C+

z

)∣∣∣η0 = 1
]

=
∑

z∈Zd+1

f(z)E
[
1T̃<∞ 1Ỹ=z E

[
g
(
(ωy, Uy, Ũy)y∈C+

z

)∣∣∣Gz

]∣∣∣η0 = 1
]

=
∑

z∈Zd+1

f(z)E
[
1T̃<∞ 1Ỹ=z E

[
g
(
(ωy, Uy, Ũy)y∈C+

z

)∣∣∣ηz = 1
]∣∣∣η0 = 1

]
= E

[
1T̃<∞ f(Ỹ )

∣∣∣η0 = 1
]
E
[
g
(
(ωy, Uy, Ũy)y∈C+

0

)∣∣∣η0 = 1
]

= E [1T1<∞ f(Y1)|η0 = 1] E
[
g
(
(ω,U, Ũ)|C+

0

)∣∣∣η0 = 1
]
.

(3.5)

In the first and last equalities, the equality in distribution between (Ỹ , T̃ ) and (Y1, T1) is used.
The third equality relies on the fact that {η0 = 1}, T̃ and Ỹ are Gz-measurable. In the fourth
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equality, we used the strengthened Random Markov property, while the fifth equality follows
from translation invariance.

We now verify (3.3) by induction in n. It is obvious when n = 0. Suppose that (3.3) is
satisfied for n − 1 with some n ⩾ 1. Let f0, . . . , fn be bounded measurable functions on Zd+1

and notice that there exists a bounded measurable function g as in (3.5) such that

1Tn+1<∞ f1(Y2 − Y1) · · · fn(Yn+1 − Yn) = g
(
(ω,U, Ũ) ◦ θY1 |C+

0

)
. (3.6)

This is where the resampling operator comes in handy. Indeed, here we are using that the
sequence (Yk+1−Yk)k≥1 is measurable with respect to the environment in the cone of the future
at Y1, which is due to the fact that the resampling uses only information about the future
environment in order to redefine the field η.

Applying (3.5) with f = f0 and g, we get the result after noticing that under η0 = 1, we
have

g
(
(ω,U, Ũ)|C+

0

)
= 1Tn<∞ f1(Y1) · · · fn(Yn − Yn−1)

and applying the induction assumption.
Assume now that P(T1 < ∞| η0 = 1) = 1 and apply (3.3) with n ∈ N and f0 = · · · = fn = 1

to get P(Tn+1 < ∞| η0 = 1) = 1. Therefore, (3.3) becomes

E [f0(Y1 − Y0) · · · fn(Yn+1 − Yn) | η0 = 1] =
n∏

k=0

E[fk(Y1) | η0 = 1], (3.7)

for any bounded measurable functions f0, . . . , fn. This concludes the proof of lemma.

We end this section with the proof of Lemma 3.1.

Proof of Lemma 3.1. Recall that F+
0 = σ

(
ωz, z ∈ C+

0

)
. Since ω takes values in a Polish space,

the regular conditional probability K(ω, ·) = P̂( · |F+
0 )(ω) is well defined for P̂-almost every ω2

(see for example [15, Theorem 5.1.9]).
Although we kernel K allows us to sample pairs (ω̃, η̃), we only need the latter and use the

variable Ũ (which is available by enlarging the probability space) to sample a field η̃ ∈ {0, 1}Zd+1

from K(ω, ·), thus defining R(ω, Ũ) = η̃. This can be done, for example, by first generating
a field of uniform random variables with correlation structure equal to that of η given the
restriction of ω to C+

0 and then using this field to sample η̃ for the marginal distribution of
K(ω, ·), one vertex at a time. For the first property of the resampling operator, simply notice
that

P̂
(
η̃ ∈ A

)
= Ê

[
K(ω, {η ∈ A})

]
= Ê

[
P̂
(
η ∈ A

∣∣F+
0

)]
= P̂

(
η ∈ A

)
, (3.8)

for any measurable set A ⊂ {0, 1}Zd+1
.

2This means that K(ω,A) is a transition kernel that satisfies

1. A 7→ K(ω,A) is a probability measure on T for P̂-almost every ω.

2. For every A, ω 7→ K(ω,A) is a P̂ -version of P̂(A|F+
0 ).
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Let us now verify the second property. Notice that, from the definition of the kernel K(·, ·),
for every finite-dimensional set A ⊂ {0, 1}Zd+1

, there exists a set GA ⊂ Ω with P̂(GA) = 1
such that K(ω, {η ∈ A}) = P̂({η ∈ A}|F+

0 ) in GA. Consider now G = ∩AGA (the intersection
runs over all finite-dimensional sets) and notice that an application of Dynkin’s π − λ Theorem

yields that, for any measurable set B ⊂ {0, 1}Zd+1
, K(ω, {η ∈ B}) = P̂(η ∈ B|F+

0 ) in G. By
further restricting the set G, we may assume that, for all ω ∈ G, B 7→ K(ω,B) is a probability
measure. In particular, in G, the function ω 7→ K(ω, ·), that maps configurations to probability
measures, is measurable with respect to F+

0 . The last ingredient missing is to note that, given
Ũ , the sampling of R is measurable with respect to the regular conditional probability kernel
K(ω, ·). In particular, in the set G, R(ω, Ũ) coincides with an

(
F+
0 ⊗B[0, 1]

)
-measurable function

P̂-almost surely, concluding the verification of the second property.

4 Renewal tails

4.1 Threatened points

Throughout this section we consider the random walk Zz on top of the random environment ω,
governed by the law Pω defined in (1.1).

We fix a collection of traps Σ ⊆ Zd+1 and estimate the time it takes for the random walk to
hit one of these traps. More precisely, consider the stopping time

T z = inf{t > 0;Zz
t ∈ Σ}. (4.1)

The dependence of quantities such as T z on the set Σ will be omitted through the section, since
Σ is considered fixed.

Later, when we are going to apply the results of this section to our random walk, the set
Σ will be chosen as {z ∈ Zd+1; ηz = 1}, so that conditioned on η0 = 1, the stopping time T z

will coincide with T z
1 introduced in (3.1). However, the results of this section work for any set

Σ ⊆ Zd+1 and they are not constrained to being given by the times where we can construct a
decoupling of ω’s past and future (as in the definition of η).

Our goal is to give conditions under which the random walk falls on some trap sufficiently
quickly. In the definition below, we denote by πd+1 : Zd+1 → Z the projection in the (d + 1)-
coordinate and by π̄d : Zd+1 → Zd the projection in the first d coordinates, so that a point in
Zd+1 can be written as x = (π̄d(x), πd+1(x)) ∈ Zd × Z.

Definition 4.1. Let a < b ∈ N. We say that a path σ : Ja, bK → Zd+1 is an R-allowed path if

• πd+1(σ(s)) = s, for every s ∈ Ja, bK: “d+ 1 is time”;

• π̄d ◦ σ is R-Lipschitz in the | · |∞ norm, meaning that

|π̄d ◦ σ(x)− π̄d ◦ σ(y)|∞ ≤ R|x− y|, for all x, y ∈ Ja, bK. (4.2)

We call b− a the length of the allowed path σ. By construction, the sample paths of the random
walks Zz on any time interval are R-allowed paths.
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Definition 4.2. For H ⩾ 1, we say that a point z = (x, t) ∈ Zd+1 is H-threatened (with respect
to Σ) if there exists a 1-allowed path σ : Jt, t + HK → Zd+1 such that σ(t) = z and σ passes
through some point z′ ∈ Σ.

Observe that we require the points z and z′ to be connected through a 1-allowed path instead
of an R-allowed path. The reason behind this is that we intend to use the uniform ellipticity
provided by (1.2), which guarantees that our random walk has a positive probability to follow
the exact steps of any 1-allowed path. Therefore, whenever z = (x, t) is H-threatened with
respect to Σ, we have, for every ω,

Pω (there exists s ∈ Jt, t+HK such that Zz
s ∈ Σ) ⩾ cH0 , (4.3)

which can be deduced from (1.2) by instructing the random walk to follow step-by-step the
1-allowed path from Definition 4.2.

We now define the number of threats along a given path.

Definition 4.3. Given an R-allowed path σ : Ja, bK → Zd+1 and H ⩾ 1, let

M(σ,H) :=
∣∣∣{t ∈ Ja, bK : σ(t) is H-threatened and πd+1(σ(t)) ∈ HZ

}∣∣∣. (4.4)

Observe that we only count a threat if it is encountered at a time which is a multiple of H,
this is done in order to keep the attempts to fall into different traps independent.

The connection between threats and the desired estimates on the tail of T z are made evident
in the following result.

Lemma 4.4. For every ω ∈ Ω and H,J ∈ N∗,

Pω
(
T 0 > JH

)
⩽ (1− cH0 )MJ , (4.5)

where MJ = MJ(Σ) is given by

MJ := inf
{
M(σ,H);σ : J0, JHK → Zd+1 R-allowed path starting at 0

}
.

Before we provide the proof of the lemma, let us explain the simple intuition behind it. Note
that the path σ′ given by the random walk (Z0

t )t∈J0,JHK itself is an R-allowed path starting at
zero, therefore M(σ′, H) ⩾ MJ . In other words, independently of what the random walk does,
it will be threatened MJ times and in well separated locations. Also, in each of these threatened
times, by (4.3), there is a chance of at least cH0 that the walk falls into the corresponding trap.
The proof below makes the above intuition rigorous.

Proof. We follow an induction argument on MJ , but in order to set this up, we need to introduce
a more general version of MJ that includes alternative starting points for the path. Given
z = (x, jH) ∈ Zd × (HZ) with j ∈ J0, J − 1K, define

MJ(z) = inf
{
M(σ,H);σ : JjH, JHK → Zd+1 starts at z and is R-allowed

}
, (4.6)

12



0

. . .

S

(J − 1)H

MJ(z) ⩾ m

MJ(Z
z
H) ⩾ m

MJ(Z
z
S) ⩾ m

MJ(Z
z
S+H) ⩾ m− 1

Figure 2: An illustration of the proof of Lemma 4.4. The horizontal dashed lines rep-
resent times that are multiple of H. The filled dots along the random walk trajectory
represent threatened points, while the crosses represent traps in Σ. Note how the lower
bound on MJ drops from m to m− 1 after crossing the first threat.

which depends solely on Σ. Recall the definition of T z from (4.1). Our objective is to prove
that, for all Σ,

for every z = (x, jH) (with j = 0, . . . , J − 1), for every ω and m ⩾ 1

if MJ(z) ⩾ m, then Pω(T z > (J − j)H) ⩽ (1− cH0 )m.
(4.7)

Note that (4.7) is enough to establish Lemma 4.4 if we apply it to z = (0, 0) and m = MJ . We
now turn to the proof of (4.7) by using induction on m.

It is clear that the claim is valid for m = 0 and from now on we suppose that m > 0 and
(4.7) is valid for m− 1. Take then an arbitrary point z = (x, jH) with j ∈ {0, . . . , J − 1} such
that MJ(z) ⩾ m and we turn to the proof of (4.7). Define first the stopping time (with respect
to the filtration σ(Zz

s , s ⩽ t) on the space of random walk trajectories)

S = inf
{
s ∈ {0, H, 2H, . . . };Zz

s is H-threatened
}
, (4.8)

which is smaller than or equal to (J − j − 1)H almost surely because MJ(z) ⩾ m ⩾ 1. We then
estimate, using the Strong Markov Property twice (at times S and S +H, see Figure 2),

Pω(T z >(J − j)H) = Eω
[
Pω

(
T z > (J − j)H

∣∣Zz
0 , . . . , Z

z
S

) ]
⩽ Eω

[
Pω

(
TZz

S > (J − j)H − S
) ]

⩽ Eω
[
Pω

(
TZz

S > H,TZz
S+H > (J − j − 1)H − S

) ]
⩽ Eω

[(
1− cH0

)
sup

z′ ; MJ (z
′) ⩾ m− 1

Pω
(
T z′ > (J − j − 1)H − S

)]
⩽

(
1− cH0

)m
.

(4.9)

13



Notice that, in the estimate above, the supremum is taken over all points z′ = (x, (j+1)H +S)
such that MJ(z

′) ⩾ m − 1, which allows for the direct application of the induction hypothesis.
This concludes the proof of (4.7) and consequently the lemma.

4.2 Finding traps on intervals

This section is dedicated to proving that long intervals are very likely to intersect a trap. This
is done using a renormalization technique that is inspired by [9]. We start defining the sequence
of scales

Lk := 4k, ℓk =
⌊ Lk

2dk2

⌋
. (4.10)

Given integers a < b, we introduce the event

F (a, b) :=
{
η(0,a) = η(0,a+1) = · · · = η(0,b−1) = 0

}
. (4.11)

We want to show that
qk := P

(
F (0, Lk)

)
, (4.12)

decays fast enough. To that end, we first establish a recursive inequality between qk+1 and
qk, (4.14). This inequality has the desirable property that, if qk ≤ cL−α

k for some large k, the
estimate propagates to higher k’s; this induction step is the proof of Lemma 4.6. The missing
ingredient is then a triggering property, which consists in finding a suitable k to initiate the
recursion; this is done with the help of Lemma 4.5.

Observe that
F
(
0, Lk+1

)
⊆ F

(
0, Lk

)
∩ F

(
3 · Lk, Lk+1

)
. (4.13)

From (4.13), applying the α–decoupling property (recall Definition 1.2) and translation in-
variance,

qk+1 ⩽ q2k + c2L
−α
k . (4.14)

Recall the constant c1 from (1.4). The next lemma shows that qk decays with k.

Lemma 4.5. Under the α–decoupling property, there exist c3 = c3(α, c1, c2) ∈ (0, 1) and c4 =
c4(α, c1, c2) ∈ (0, 1) such that

qk ⩽ c4c
k
3, for every k ⩾ 0. (4.15)

Proof. We first fix a constant c3 = c3(α, c1) ∈ (0, 1) such that

c3 > 4−α/2 and c23 ⩾ P
(
η(0,0) = 0

)
. (4.16)

Note that this is possible using (1.4). Choose also an integer k0 = k0(α, c1, c2) ⩾ 1 such that

c24
−α

(
k0− 1

2

)
⩽ 1− c3. (4.17)

We want to prove by induction in k ⩾ 2 that

qk0+k ⩽ ck3, (4.18)
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which is sufficient to establish (4.15).
Taking k = 2, observe that

qk0+2 = P
(
F (0, Lk0+2)

)
⩽ P

(
η(0, 0) = 0

) (4.16)

⩽ c23, (4.19)

so that (4.18) holds for k = 2.
Assuming now the validity of (4.18) for a certain value of k ⩾ 2, we get

qk0+k+1

ck+1
3

(4.14)

≤
q2k0+k + c2L

−α
k0+k

ck+1
3

(4.18)

≤ ck−1
3 + c2

L−α
k0+k

ck+1
3

(4.16)

⩽ ck−1
3 + c24

−α(k0+k)+α(k+1)/2
(4.17)

⩽ 1.

(4.20)

This finishes the proof of (4.18) and we can bootstrap it into (4.15) by choosing c3 sufficiently
close to one.

Note that the decay obtained from the above lemma is slow, this will be improved in the
next lemma.

Lemma 4.6. Under the α–decoupling property, there exists c5 = c5(α, c2, c1) such that

qk ⩽ c5L
−α
k , (4.21)

for every k ⩾ 0.

Proof. Using Lemma 4.5, we can obtain k0 = k0(α, c2, c1) ⩾ 1 such that

qk0+1 ⩽
1

2
L−α
1 and 2c24

−α(k0−1) ⩽
1

2
. (4.22)

We are going to prove by induction that,

qk0+k ⩽
1

2
L−α
k , for every k ⩾ 1. (4.23)

Note that the case k = 1 is covered in the left hand side of (4.22). Suppose that (4.23) holds
for a certain k ⩾ 1 and estimate

qk0+k+1

(1/2)L−α
k+1

(4.14)

⩽ 2
q2k0+k + c2L

−α
k0+k

L−α
k+1

(4.23)

⩽ 2 · 1
4
· L−2α

k Lα
k+1 + 2c2L

−α
k+k0

Lα
k+1

⩽
1

2
4−α(k−1) + 2c24

−α(k0−1)
(4.22)

⩽
1

2
+

1

2
= 1.

(4.24)

This finishes the proof of (4.23) by induction. Estimate (4.21) now follows from (4.23) by
properly choosing c4 = c4(k0) = c4(α, c2, c1) to adjust the exponent for k > k0 and to cover the
remaining cases.
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Corollary 4.7. There exists c6 = c6(α, c2, c1) such that, for any positive integer L

P(F (0, L)) ⩽ c6L
−α. (4.25)

Proof. The proof is a simple interpolation: fix L and k such that Lk ⩽ L < Lk+1 and note that

P(F (0, L)) ⩽ qk ⩽ c5L
−α
k ⩽ c54

αL−α
k+1 ⩽ c54

αL−α, (4.26)

proving the result.

With the uniform ellipticity (1.2), this implies that the probability that every point in a large
box of Zd be threatened is large (recall Definition 4.2). This will be useful in the next section
where we show that every allowed path meets many threatened points with high probability.

Corollary 4.8. There exists c7 = c7(α, c2, c1) such that for any w ∈ Zd+1, for any integer L,

P(∃z ∈ w + J0, L− 1Kd × {0} s.t. z is not L–threatened) ⩽ c7L
−α. (4.27)

Proof. If L is odd, let us call x0 = (⌊L/2⌋, . . . , ⌊L/2⌋) ∈ Zd the middle point of J0, L − 1Kd. If
there is a trap on w + {x0} × J⌊L/2⌋, LK, by construction, every point in w + J0, L− 1Kd × {0}
is L–threatened. We then use translation invariance and apply Corollary 4.7. If L is even, we
have, using translation invariance and a union bound,

P(∃z ∈ w + J0, L− 1Kd × {0} s.t. z is not L–threatened)

⩽ P(∃z ∈ w + J0, L− 1Kd × {0} s.t. z is not (L− 1)–threatened)

⩽ 2d P(∃z ∈ w + J0, L− 2Kd × {0} s.t. z is not (L− 1)–threatened)

⩽ 2dc(L− 1)−α.

The result follows by choosing c7 accordingly.

4.3 Number of threats on allowed paths

Having established that, with high probability, one can find threatened points on segments, this
section moves on to prove that it is very likely that every allowed path finds many traps along
its way.

For k ∈ N, H ⩾ 1 and w ∈ Zd+1, we introduce the box and its centered base:

Bk = J−RLk, (R+ 1)Lk − 1Kd × J0, Lk − 1K ⊆ Zd+1;

Rk = J0, Lk − 1Kd × {0}.

We also define the event that an allowed path with too few threats:

Ak,H(w) =

{
there exists an R–allowed path σ of length Lk − 1

starting in w +Rk such that M(σ,H) < k2

}
, (4.28)

and Ak,H = Ak,H(0).
The goal of this section is to show that the above event is unlikely:
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Lemma 4.9. For every β < α, there exist c9 = c9(α, β, c2, c1) > 0 and two integers k0 =
k0(α, β, c2, c1) and H = H(α, β, c2, c1) satisfying, for every k ⩾ k0,

P(Ak,H) ⩽ c9L
−β
k . (4.29)

The proof of this lemma relies on a renormalization strategy, similar to what we did in
Section 4.2, but slightly more involved (recall the discussion after (4.12)).

4.3.1 Renormalization argument

For now, H is just a fixed parameter; it will be chosen in Section 4.3.2. In this section, we
establish a recursive inequality between P(Ak+1,H) and P(Ak,H).

The core of the argument is the following. Fix k ⩾ 3, H ∈ N∗ and suppose that Ak+1,H

occurs. We are therefore given an R–allowed path σ : J0, Lk+1 − 1K → Zd+1 starting in Rk+1

such that M(σ,H) < (k+1)2. Recalling (4.4), this means that there are at most (k+1)2 times

t ∈
{
0, H, . . . ,

⌊
Lk+1−1

H

⌋
H
}
such that σ(t) is H-threatened.

Since σ is an R–allowed path starting in Rk+1, by construction it takes values in Bk+1. Let
Ck be the subset of Bk+1 of cardinality 4d+1 satisfying⋃

w∈Ck

(w +Rk) = Bk ∩ (Zd × LkZ). (4.30)

Our R–allowed path σ can be divided into four disjoint R–allowed paths σ1, σ2, σ3, σ4 of length
Lk−1, starting respectively in w1+Rk, w2+Rk, w3+Rk and w4+Rk, where w1, w2, w3, w4 ∈ Ck.

Let us assume by contradiction that we cannot find three among these four allowed paths σi
satisfying M(σi, H) < k2. This implies that we can find at least two i’s such that M(σi, H) ⩾ k2.
Therefore,

M(σ,H) =
4∑

i=1

M(σi, H) ⩾ 2k2 ⩾ (k + 1)2,

since k ⩾ 3. This contradicts the assumption we made on σ.
Therefore, for three i’s the event Ak,H(wi) occurs. Now, Ak,H(wi) is measurable with respect

to η restricted to the box wi + Bk. In particular two events Ak,H(wi) supported by boxes that
are Lk-separated in time occur. Also note that by choice of the scale Lk = 4k there are at most
4d+1 possible choices for each of these two boxes (since wi ∈ Ck). Noting that the invariance of
η implies that P(Ak,H(w)) does not depend on w, the previous argument and the decorrelation
hypothesis lead to

P(Ak+1,H) ⩽ 16d+1(P(Ak,H)2 + c2L
−α
k )

= 16d+1 P(Ak,H)2 + c8L
−α
k , (4.31)

where c8 > 0.

17



4.3.2 Triggering

In this section we see how to tune the parameter H so that (4.29) is satisfied for some fixed
scale Lk.

Let k ∈ N and β < α. Let us set Hk = ⌊Lk/k
2⌋ and define C ′

k to be a minimal subset of Bk

satisfying ⋃
w∈C′

k

(w + J0, Hk − 1Kd × {0}) = Bk ∩ (Zd ×HkZ).

The cardinality of C ′
k satisfies |C ′

k| ⩽ c k2(d+1). Then, by Corollary 4.8,

P(Ak,Hk
) ⩽ P

(
∃w ∈ C ′

k, ∃z ∈ w + J0, Hk − 1Kd × {0}, z is not Hk–threatened
)

⩽ ck2(d+1)c7H
−α
k

⩽ cc7k
2(d+1−α)L−α

k .

At the end of the day, there exists c9 = c9(α, β, c2, c1) > 0 such that

P(Ak,Hk
) ⩽ c9L

−β
k . (4.32)

4.3.3 Induction

Here we check that, if (4.29) holds for a fixed large enough k, the estimate propagates to higher
values of k, thus concluding the proof of Lemma 4.9.

We fix k0 = k0(α, β, c2, c1) ∈ N satisfying

16d+1c94
−β(k0−1) + 4βc8c

−1
9 4−(α−β)k0 ⩽ 1. (4.33)

We fix H = Hk0 = ⌊Lk0/k
2
0⌋. By (4.32) we have

P(Ak0,H) ⩽ c9L
−β
k0

.

Suppose that P(Ak,H) ⩽ c9L
−β
k for some k ⩾ k0. Then, using (4.31), we have

P(Ak+1,H)

c9L
−β
k+1

⩽ 16d+1 P(Ak,H)2c−1
9 Lβ

k+1 + c8L
−α
k c−1

9 Lβ
k+1

⩽ 16d+1c94
−β(k−1) + 4βc8c

−1
9 4−(α−β)k

⩽ 16d+1c94
−β(k0−1) + 4βc8c

−1
9 4−(α−β)k0

⩽ 1,

using (4.33). This concludes the proof of Lemma 4.9 via induction.
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4.4 Moments of T1

We can now combine Lemmas 4.4 and 4.9, choosing Σ = {z ∈ Zd+1, ηz = 1}, to obtain bounds
on the moments of T1 (recall its definition in (3.1) and the line underneath).

Recall that P̂ denotes the law of the random walk together with the environment conditioned
on η0 = 1.

Lemma 4.10. If α > 0, and p ∈ (0, α), then

Ê[T p
1 ] < ∞. (4.34)

In particular, T1 is P̂-almost surely finite.

Proof. The first observation is that

Lk ⩽ JH =⇒ Ac
k,H ⊆ {MJ ⩾ k2}, (4.35)

since in that case all paths of length JH starting at 0 (which enter in the definition of MJ)
contain a path σ of length Lk − 1 starting in Rk with M(σ,H) ⩾ k2.

Set β ∈ (p, α), fix J ∈ N, and H as chosen in Lemma 4.9. Let us choose k ∈ N such that
Lk ⩽ JH < Lk+1; in particular k ⩾ ln J+lnH

ln 4 − 1 ⩾ c ln J for some universal constant c > 0.
Now, note that conditioned on η0 = 1, T1 is equal to T 0 associated to Σ = {z ∈ Zd+1, ηz = 1}.
Therefore, using Lemma 4.4, we have

P̂(T1 > JH) ⩽
1

P(η0 = 1)
E
[
(1− cH0 )MJ

]
by Lemma 4.4

⩽ c−1
1

(
E
[
(1− cH0 )MJ1Ac

k,H

]
+ E

[
(1− cH0 )MJ1Ak,H

])
by (1.4)

⩽ c−1
1 (1− cH0 )k

2
+ c−1

1 P(Ak,H) by (4.35)

⩽ c−1
1 (1− cH0 )(c ln J)2 + c−1

1 c9(H/4)−βJ−β by Lemma 4.9

⩽ cJ−β.

The result follows from the fact that β > p and

Ê[T p
1 ] =

∫ ∞

0
P̂
(
T1 ⩾ x1/p

)
dx, (4.36)

finishing the proof of the lemma.

4.5 Proof of Theorem 1.3

With the tools we developed in the previous sections (decomposition of the trajectory into
independent pieces and estimates on the length of the pieces), the proof of Theorem 1.3 is
essentially standard. We detail it here for completeness.
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4.5.1 Law of large numbers

We now assume α > 1 and we study the almost sure convergence of Zt/t. For t ⩾ 0, set

Kt = min
{
k ⩾ 0, Tk ⩾ t

}
. (4.37)

We then write, for t > 0,
Zt

t
=

YKt

Kt

Kt

TKt

TKt

t
+

Zt − YKt

t
. (4.38)

Note that, since α > 1, Lemma 4.10 yields

Ê[|ZT1 |] ⩽ R Ê[T1] < ∞. (4.39)

Therefore, by Lemma 3.2, under P̂, (Yk+1 − Yk)k⩾0 is an i.i.d. sequence of integrable random
variables with distribution ZT1 .

Notice also that Lemma 3.2 implies that P̂-almost surely, Tk −→
k→∞

∞. Therefore Kt −→
t→∞

∞

as well. At the end of the day, the strong law of large numbers implies that, P̂-almost surely,

YKt

Kt
−→
t→∞

Ê[ZT1 ]. (4.40)

In particular, since Zt = (Xt, t), it follows from the above that’, P̂-almost surely,

TKt

Kt
−→
t→∞

Ê[T1]. (4.41)

Note now that
TKt
t = 1 +

TKt−t

t , where
TKt−t

t ⩽
|Zt−YKt |

t . Therefore, the only thing left to

do is study the convergence of the last term in (4.38), that is,
Zt−YKt

t . Now, if we fix ε > 0 and
β = 1+α

2 , Markov’s inequality yields

P̂
(
|Zt − YKt |

t
⩾ ε

)
⩽ P̂(TKt − t ⩾ εt/R)

⩽ P̂(T1 ⩾ εt/R) ⩽ c Ê
[
T β
1

]
t−β,

which is summable in t, since β ∈ (1, α) and Ê
[
T β
1

]
< ∞, by Lemma 4.10. Therefore, using

Borel-Cantelli’s lemma, P̂-almost surely,

Zt − YKt

t
−→
t→∞

0. (4.42)

Putting all the convergences together in (4.38), we obtain that P̂-almost surely,

Zt

t
−→
t→∞

Ê[ZT1 ]

Ê[T1]
. (4.43)

From now on, we let

v =
Ê[ZT1 ]

Ê[T1]
∈ Rd+1. (4.44)
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It remains to show that P-almost surely, Zt
t −→

t→∞
v. First note that if T0 < ∞, for any t > T0,

we have
Zt

t
=

Zt − ZT0

t− T0

t− T0

t
+

ZT0

t
,

where P-almost surely, 1T0<∞
t−T0
t −→

t→∞
1 and 1T0<∞

ZT0
t −→

t→∞
0.

Now, 1T0<∞(ZT0+t−ZT0)t⩾0 under P has the same distribution as (Zt)t⩾0 under P̂. Therefore,
P-almost surely,

1T0<∞
Zt − ZT0

t− T0
−→
t→∞

v. (4.45)

Finally, since T0 ⩽ T1 < ∞ almost surely, we obtain the result.

4.5.2 Central limit theorem

For the central limit theorem, we strongly rely on [22], following ideas of [24]. Mind that
Theorem 1.4 in [22] is stated for real-valued processes, but it can easily be generalized to higher
dimensions; when the proof refers to Anscombe’s theorem, we use Theorem 3.1 in [17], that can
easily be stated and proven in dimension d.

We assume that α > 2. All assumptions of Theorem 1.4 in [22] (considering multidimensional
processes) are satisfied (note that we need to apply the theorem with the probability measure
P̂), namely:

• (Zt)t∈N has regenerative increments over (Tn)n∈N, which means that the

(Zt − ZTk
, 0 ⩽ t ⩽ Tk+1 − Tk)k∈N

are i.i.d. Note that this requirement is slightly stronger than Lemma 3.2, but it is clear
that it is also satisfied, with the same arguments as in the proof of Lemma 3.2.

• The three quantities Ê[T1], Ê[ZT1 ] and Cov(ZT1−vT1|η0 = 1) (where v is defined in (4.44))
are finite, since α > 2 (recall Lemma 4.10).

• P̂
(

sup
0⩽t⩽T1

|Zt| < ∞
)
= 1, which is clear since |Zt| ⩽ Rt and T1 < ∞ almost surely.

Therefore, we have the following convergence in distribution, under P̂:
Zt − tv√

t
⇀

t→∞
N (0,Σ), (4.46)

with Σ =
Cov(ZT1 − T1v|η0 = 1)

Ê[T1]
. In order to conclude, we use the same strategy as for the law

of large numbers, by writing, when T0 < ∞ and t > T0,

Zt − tv√
t

=
Zt − ZT0 − (t− T0)v√

t− T0

√
t− T0

t
+

ZT0 − T0v√
t

. (4.47)

Under P, we have 1T0<∞
Zt−ZT0

−(t−T0)v√
t−T0

⇀N (0,Σ), 1T0<∞

√
t−T0
t

a.s.−→ 1, and 1T0<∞
ZT0

−T0v√
t

a.s−→
0. It follows from Slutsky’s theorem that the convergence in (4.46) also holds under P, which
proves the result.
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5 Examples

Let us now collect examples of environments where our main result can be applied. In each case,
this amounts to constructing an appropriate field η, and verifying that it satisfies the Random
Markov Property (1.9) and the decoupling condition from Definition 1.2.

5.1 Boolean percolation

Start with a Poisson point process Φ in Rd+1 × (0,+∞) with intensity Leb(dx)⊗ ν(dρ), where
ν is a fixed distribution in (0,+∞) that satisfies

ν[ρ,∞) ⩽ c10ρ
−β, (5.1)

for some β > 0, and define the occupied set as the collection of open balls (in the Euclidean
norm)

O =
⋃

(x,ρ)∈Φ

B(x, ρ) ⊆ Rd+1. (5.2)

The environment ω = (ωz)z∈Zd+1 is now given as

ωz =

{
1, if z ∈ O,

0, if z /∈ O.
(5.3)

As we check below, our results apply to this environment, depending on the exponent β that
tunes the decay of correlations in this model.

Application 1. If X is a finite-range and uniformly elliptic random walk in environment ω,
the conclusions of Theorem 1.3 apply for α = β − 2d− 2.

In order to prove this, let us first define the field η = (ηz)z∈Zd+1 , consider, for z ∈ Zd+1, the
event

Az =
{
No ball B(x, ρ) with (x, ρ) ∈ Φ intersects both C+

z and C−
z

}
, (5.4)

and set ηz = 1Az . Notice that ηz = 1 immediately implies ωz = 0, which verifies (1.5). Further-
more, the collection (ωz, ηz) inherits the shift invariance property from Boolean percolation.

Let us now verify that this construction yields a field that satisfies the Random Markov
Property (1.9).

Lemma 5.1. The field (ω, η) =
(
(ω, η)z

)
z∈Zd+1 defined as above satisfies the Random Markov

Property (1.9).

Proof. Let z ∈ Zd+1 and let W be an F+
z -measurable random variable. We need to prove that,

for every E ∈ F−
z ,

E
[
Wηz1E

]
= E

[
E[W |ηz]ηz1E

]
. (5.5)
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Define now the disjoint sets

A+ = {(x, t) ∈ Rd+1 × [0,+∞) : B(x, t) ∩ C+
z ̸= ∅ and B(x, t) ∩ C−

z = ∅},
A− = {(x, t) ∈ Rd+1 × [0,+∞) : B(x, t) ∩ C−

z ̸= ∅ and B(x, t) ∩ C+
z = ∅},

A± = {(x, t) ∈ Rd+1 × [0,+∞) : B(x, t) ∩ C+
z ̸= ∅ and B(x, t) ∩ C−

z ̸= ∅},
(5.6)

and notice that W is determined by Φ ∩ (A+ ∪ A±), E is determined by Φ ∩ (A− ∪ A±) and
ηz = 1Φ∩A±=∅. Furthermore, since the sets above are disjoint, Φ ∩ A+, Φ ∩ A−, and Φ ∩ A±

are all independent. Note also that on the event that Φ ∩ A± = ∅ (that is, ηz = 1), W can be
replaced by f(Φ ∩A+) where f is a measurable function. This then implies

E
[
Wηz1E

]
= E

[
W1Φ∩A±=∅1E

]
= E

[
f(Φ ∩A+)1Φ∩A±=∅1E

]
= E

[
E

[
f(Φ ∩A+)

]
1Φ∩A±=∅1E

]
= E

[
E

[
f(Φ ∩A+) | ηz = 1

]
1Φ∩A±=∅1E

]
= E

[
E

[
W |ηz = 1

]
ηz1E

]
= E

[
E

[
W

∣∣ηz]ηz1E].

(5.7)

In the third equality, we used that Φ ∩ A+ is independent of Φ ∩ (A− ∪ A±). In the fourth
equality, we used that Φ ∩A+ is independent of η. This concludes the proof.

To prove Application 1, it only remains to verify that the field η satisfies the decoupling
property with the correct exponent α.

Proposition 5.2. There exists c11 = c11(β, d) > 0 such that the function defined by

ε(r, h, s) = c11r
dhs−β+d+1 (5.8)

is a decoupling function for η defined as above (recall Remark 2). In particular, the α–decoupling
property holds for α = β − 2d− 2.

In order to prove the proposition above, we need a preliminary lemma which requires some
additional notation. Given s > 0, define

As
z =

{
No disk B(x, ρ) with (x, ρ) ∈ Φ and d(x, z) < s

2
intersects both C+

z and C−
z

}
, (5.9)

and set ηsz = 1As
z
. Notice that ηsz is completely determined by the Φ restricted to the set(

z +
(
− s

2 ,
s
2

)d+1)× [0,+∞). We now prove the following lemma

Lemma 5.3. Assume β > d. There exists a constant c12 = c12(β, d) > 0 such that, for any
s > 0 and z ∈ Zd+1,

P
(
ηz ̸= ηsz

)
⩽ c12s

−β+d+1. (5.10)
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Proof. Assume without loss of generality that z = 0 and notice that

P
(
η0 ̸= ηs0

)
⩽ P

(
Bs

)
, (5.11)

where

Bs =

{
There exists a disk B(x, ρ) with (x, r) ∈ Φ and |x| > s

2
that intersects both C+

0 and C−
0

}
. (5.12)

In order to bound the probability of Bs, we further introduce the event

B̃s =

{
There exists a disk B(x, ρ) with (x, ρ) ∈ Φ,

x ∈ [0,+∞)d+1 and |x| > s
2 that intersects C−

0

}
, (5.13)

and notice that rotation invariance implies

P
(
Bs

)
⩽ 2d+1 P

(
B̃s

)
. (5.14)

We now notice that the distance between a point x ∈ [0,+∞)d+1 and C−
0 is lower bounded

by the distance from x to the set {(x, t) ∈ [0,+∞)d × (−∞, 0] : |x| = −Rt}, which yields the
bound

d(x,C−
0 ) ⩾ c13|x|, (5.15)

for some c13 > 0. From this is follows immediately that

P
(
B̃s

)
⩽

∫
[0,+∞)d+1\B

(
0,
s
2

) ν[d(x,C−
0 ),+∞) dx

⩽
∫
[0,+∞)d+1\B

(
0,
s
2

) ν[c13|x|,+∞) dx

⩽
∫
[0,+∞)d+1\B

(
0,
s
2

) c10c−β
13 |x|−β dx

⩽ c10c
−β
13 c

∫ +∞

c′
s
2

u−β+d du

⩽ c̃s−β+d+1,

(5.16)

concluding the proof.

We are now ready to prove Proposition 5.2.

Proof of Proposition 5.2. Let A =
∏d+1

i=1 Jai, biK and B =
∏d+1

i=1 Ja′i, b
′
iK be two boxes satisfying

(1.12) and f1 : {0, 1}A → {0, 1}, f2 : {0, 1}B → {0, 1}. Consider now the events

GA =
{
ηz = ηsz, for all z ∈ A

}
,

GB =
{
ηz = ηsz, for all z ∈ B

}
,

(5.17)

and notice that GA and GB are determined by Φ restricted to the sets
∏d+1

i=1

(
ai − s

2 , bi +
s
2

)
×

[
0,+∞

)
and

∏d+1
i=1

(
a′i − s

2 , b
′
i +

s
2

)
×

[
0,+∞

)
, respectively. Due to the assumption that
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sep(A,B) ⩾ s, these two sets are disjoint and thus the configurations ηsz in the boxes A and B
are independent. This then yields

E[f1(ηA)f2(ηB)] ⩽ E
[
f1
(
ηsA

)
f2(η

s
B)

]
+ P(GA) + P(GB)

= E
[
f1
(
ηsA

)]
E
[
f2
(
ηsB

)]
+ P(GA) + P(GB)

⩽ E[f1(ηA)] E[f2(ηB)] + 2P(GA) + 2P(GB).

(5.18)

To conclude, observe that union bound together with Lemma 5.3 implies

P(GA) ⩽ c12r
dhs−β+d+1. (5.19)

An analogous bound is satisfied by P(GB), concluding the proof.

5.2 Independent renewal chains

We now assume that the environment ω is composed of independent copies of a renewal chain
than we introduce now. Fix an aperiodic3 reference distribution µ on the non-negative integers
with finite expectation. For each x ∈ Zd, the environment ω(x, · ) will be given by an independent
copy of a renewal process, defined as the Markov chain with transition probabilities p(k, k−1) =
1, if k ⩾ 1, and p(0, k) = µ(k). We call µ the interarrival distribution of the renewal chain and
assume that the initial state ω(x, 0) is such that each of these chains is stationary. This amounts
to taking ω(x, 0) with distribution µ̂ defined as

µ̂(k) =
1

E[ξ] + 1
P(ξ ⩾ k), with ξ ∼ µ. (5.20)

Let us note for future reference that, if ξ ∼ µ, ξ̂ ∼ µ̂ and E(ξ1+β) < ∞ for some β > 0, then

E[ξ̂β] < ∞. (5.21)

Let us also recall the following theorem from [23].

Theorem 5.4 ([23]). Let Pν,ν′
µ denote the distribution of two independent renewal chains X and

X̃ with independent initial distributions ν and ν ′ and same interarrival distribution µ. Denote
the coupling time of these chains by

T = inf{n ⩾ 0 : Xn = X̃n = 0}. (5.22)

1. If µ is aperiodic and has finite 1+β moment for some β > 0, and both ν and ν ′ have finite
β moment, then Eν,ν′

µ

[
T β

]
< ∞.

2. If µ is aperiodic and has finite 1+β moment for some β ⩾ 0, and both ν and ν ′ have finite
1 + β moment, then Eν,ν′

µ

[
T 1+β

]
< ∞.

3We say that µ is aperiodic if gcd{k ∈ Z+ : µ(k + 1) > 0} = 1.
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Our control of the correlations in the environment will be based on this theorem. In partic-
ular, it depends mostly on the exponents β for which (5.21) holds.

Application 2. Assume4 that µ is such that

γµ := inf
k : µ̂(k)>0

µ(k)

µ̂(k)
> 0. (5.23)

If X is a finite-range and uniformly elliptic random walk in environment ω, and µ has a finite
moment of order 1 + β > 1 + 2 + 2d the conclusions of Theorem 1.3 apply for α = β − 2− 2d.

We now propose an explicit construction of the environment ω that will allow us to construct
an appropriate field η encoding the fact that ω sometimes “forgets its past”, by looking for times
at which it couples well with an independent stationary version of itself.

5.2.1 Graphical construction

Assume γµ > 0. Consider three i.i.d. independent collections (Ŵ x
t )x∈Zd,t∈Z, with distribution

µ̂, (Zx
t )x∈Zd,t∈Z, with distribution Ber(γµ), and (Y x

t )x∈Zd,t∈Z, with distribution5 1
1−γµ

(µ− γµµ̂).
Note that the latter is indeed a probability measure on the non-negative integers, thanks to the
definition of γµ. We now define

W x
t := Zx

t Ŵ
x
t + (1− Zx

t )Y
x
t . (5.24)

The W x
t are i.i.d. with distribution µ. Also note, that if Zx

t = 1, W x
t is equal to a random

variable with stationary distribution µ̂ independent from the past of the chain at x.
We aim to construct (ω(x, t))x∈Zd,t∈Z such that

• the processes (ω(x, ·))x∈Zd are independent;

• for all x ∈ Zd, (ω(x, t))t∈Z is a stationary renewal chain that uses the collection W x to
determine its jumps, i.e. ω(x, t) = W x

t if ω(x, t− 1) = 0.

By independence, it suffices to fix x ∈ Zd and construct (ω(x, t))t∈Z satisfying the second
property. For K ∈ N, define X(K) as the renewal chain started from 0 at time −K whose jumps
are determined by W x: for t ⩾ −K,

X
(K)
−K = 0,

X
(K)
t+1 =

{
X

(K)
t − 1 if X

(K)
t ⩾ 1,

W x
t+1 if X

(K)
t = 0.

(5.25)

Lemma 5.5. If µ is aperiodic and has finite moment of order 1 + δ, for some δ > 0,

1. for any t ∈ Z, ω(x, t) := limK→∞X
(K)
t exists a.s.;

4There are non-trivial distributions for which γµ = 0 (take µ(0) = 0 or µ(2k) ∝ 2−k, µ(2k + 1) ∝ k−2). On
the other hand, notice that any non-trivial µ for which γµ > 0 is necessarily aperiodic.

5γµ < 1 unless µ = δ0; in the latter case the distribution of Y is irrelevant and can be chosen arbitrarily.
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2. the process ω(x, ·) thus obtained is a stationary renewal chain whose jumps are determined
by W x.

Proof. Since our construction is invariant under time translations, it is enough to prove the first
item for t = 0. We claim that there exists c ∈ R+ such that

P(X
(K)
0 ̸= X

(K+1)
0 ) ⩽ cK−(1+δ). (5.26)

Indeed, let T := inf{k ⩾ 0: X
(K)
−K+k = X

(K+1)
−K+k} denote the coupling time of the chains started at

time −K from 0 and from X
(K+1)
−K = W x

−K . Note that, up to time T , the chains (X
(K)
−K+t)t⩾0 and

(X
(K+1)
−K+t )t⩾0 are independent (they are constructed using disjoint sets of independent variables).

By Theorem 5.4, T has finite 1 + δ moment. Also note that the distribution of T does not
depend on K.

It remains to notice
P
(
X

(K)
0 ̸= X

(K+1)
0

)
⩽ cK−(1+δ). (5.27)

Indeed, let T := inf{k ⩾ 0: X
(K)
−K+k = X

(K+1)
−K+k} denote the coupling time of the chains started at

time −K from 0 and from X
(K+1)
−K = W x

−K . Note that, up to time T , the chains (X
(K)
−K+t)t⩾0 and

(X
(K+1)
−K+t )t⩾0 are independent (they are constructed using disjoint sets of independent variables).

By Theorem 5.4, T has finite 1+ δ moment. Furthermore, distribution of T does not depend on
K.

It remains to notice that

P
(
X

(K)
0 ̸= X

(K+1)
0

)
⩽ P(T > K) (5.28)

and to apply Markov’s inequality.

To show that (X
(K)
0 )K converges almost surely, let us now estimate

P({∃K0 s.t. ∀K ⩾ K0, X
(K)
0 = X

(K0)
0 }c) ⩽ P(∀K0, ∃K ⩾ K0 s.t. X

(K)
0 ̸= X

(K+1)
0 )

⩽ inf
K0

∑
K⩾K0

P(X
(K)
0 ̸= X

(K+1)
0 )

⩽ c inf
K0

∑
K⩾K0

1

K1+δ
= 0,

since δ > 0. The first item is proved.
It is now immediate to check that ω(x, ·) is a renewal chain whose jumps are determined by

W x: by our construction, if (X
(K)
t0

)K⩾K0 is constant, so is (X
(K)
t )K⩾K0 for any t ⩾ t0. Therefore,

for all t0 ∈ Z there exists a random K s.t. (ω(x, t))t⩾t0 = (X
(K)
t )t⩾t0 .

To show that ω(x, 0) ∼ µ̂, consider X̂(K) the (stationary) chain started at time −K from an

independent variable X̂
(K)
−K ∼ µ̂ and using the W x variables as jumps. Then

P
(
ω(x, 0) ̸= X̂

(K)
0

)
⩽ P

(
ω(x, 0) ̸= X

(K)
0

)
+ P

(
X

(K)
0 ̸= X̂

(K)
0

)
⩽ P

(
ω(x, 0) ̸= X

(K)
0

)
+ P(T̂ > K),

(5.29)

where T̂ denotes the coupling time between (X
(K)
t )t⩾−K and (X̂

(K)
t )t⩾−K . By Theorem 5.4, T̂

has finite moment of order δ, implying that the right-hand side above tends to 0 as K grows.
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5.2.2 Construction and properties of η

We now build η. For this, we look for space-time points so that, somewhere between the cones of
the past and future trajectories rooted at x, ω couples with a version of itself that is independent
from its past.

Let us fix (x0, t0) ∈ Zd × Z and construct η(x0, t0). Define the outer boundary of C−
(x0,t0)

as

∂C−
0 = {(x,−⌈|x|/R⌉+ 1), x ∈ Zd}, ∂C−

(x0,t0)
= ∂C−

0 + (x0, t0), (5.30)

and tx := −⌈|x|/R⌉ + 1. Consider the random times (recall the definition of the Zx
t from the

previous section)

T x = T x(x0, t0) := inf{t ⩾ t0 + tx : ω(x, t) = 0 and Zx
t+1 = 1}. (5.31)

We can now define η.

Definition 5.6. Let η(x0, t0) be the indicator function of the event

{∀x ∈ Zd \ {x0}, T x < t0 + |x− x0|/R, and T x0 = t0}. (5.32)

We now verify that, with this construction, (ω, η) satisfies the hypotheses of our theorem.
Note that η is not exactly measurable w.r.t. ω itself, but rather w.r.t. the random variables
which we use to sample ω. In other words, to apply Theorem 1.3, we need to consider that the
environment is given by (ω(x, t), Ŵ x

t , Z
x
t , Y

x
t )(x,t)∈Zd×Z.

Let us first estimate the probability that η(x0, t0) = 1.

Lemma 5.7. If µ is a non-trivial distribution with γµ > 0 (see (5.23)) and finite moment of
order 1 + β, for some β > d, then

P(η(x0, t0) = 1) > 0. (5.33)

Proof. By translation invariance we can assume x0 = t0 = 0. By independence of the renewal
chains at different sites,

P(η(0, 0) = 1) = P(T 0 = 0)
∏
x ̸=0

P(T x < |x|/R)

⩾ P(T 0 = 0)
∏

|x|⩽R/2
x ̸=0

P
(
T x <

|x|
R

) ∏
|x|>R/2

P
(
T x − tx < 2

|x|
R

− 1
)
.

(5.34)

Let us reformulate the distribution of T x − tx. Let (Zi)i∈N, (Yi)i∈N, Ŵ be independent random
variables, with Zi ∼ Ber(γµ), Yi ∼ 1

1−γµ
(µ− γµµ̂), Ŵ ∼ µ̂. Let S = inf{i ⩾ 1: Zi = 1}. Then

T x − tx ∼ Ŵ +

S−1∑
i=1

(Yi + 1). (5.35)

In particular, T x − tx has finite moment of order β.
Since β > d, by Markov inequality, the last product converges, and it is not difficult to check

that every term in the (finite) remaining product is positive, concluding the proof.
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We now need to check that η satisfies the decoupling property in 1.2. To that end, we proceed
as in the case of Boolean percolation, by introducing finite range approximations of η. For any
integer s ⩾ 1, let ηs(x0, t0) be the indicator function of the event

{∀x ∈ Zd \ {x0} s.t. |x− x0| ⩽ s, T x < t0 + |x− x0|/R, and T x0 = t0}. (5.36)

Lemma 5.8. Assume that µ is a non-trivial distribution with γµ > 0 and finite moment of
order 1 + β, for some β > d + 1. There exists c14 > 0 such that, for any integer s ⩾ 1 and
(x, t) ∈ Zd × Z+,

P
(
η(x, t) ̸= ηs(x, t)

)
⩽ c14s

d−β+1. (5.37)

Proof. By translation invariance we can assume x0 = t0 = 0. By union bound, for s > R/2,

P
(
η(x, t) ̸= ηs(x, t)

)
⩽

∑
|x|>s

P(T x ⩾ |x|/R) (5.38)

⩽ c
∑
|x|>s

1

|x|γ
⩽ c′

∑
k>s

1

kβ−d
⩽ c′′sd−β+1, (5.39)

where we used Markov inequality and (5.35) in the second inequality. It then remains to adjust
the value of c14 to accommodate s ⩽ R/2.

In order to verify the decoupling property, we an analogous result that holds for one-
dimensional renewal chains. The proof is basically the same as that of [19, Lemma 2.1].

Lemma 5.9. Assume µ is a non-trivial distribution with γµ > 0 and finite moment of order 1+β,
for some β > 0. Consider a stationary renewal process (Xn)n∈Z with interarrival distribution
µ. There exists a positive constant c15 such that, for all m ∈ Z, n ∈ Z+ and any pair of events
A and B with

A ∈ σ(Xk : k ⩽ m) and B ∈ σ(Xk : k ⩾ m+ n), (5.40)

it holds that
P(A ∩B) ⩽ P(A) P(B) + c15n

−β. (5.41)

We are now in position to prove the decoupling property for η.

Proposition 5.10. Assume that µ is a non-trivial distribution with γµ > 0 and has finite
moment of order 1 + β, for some β > d + 1. There exists a positive constant c16 such that the
function

ε(r, h, s) = c16(r + s)dhsd−β+1, (5.42)

is a decoupling function for the field η (see Remark 2).
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Proof. Let A =
∏d+1

i=1 Jai, biK and B =
∏d+1

i=1 Ja′i, b
′
iK be two boxes satisfying (1.12) and consider

two measurable functions f1 : {0, 1}A → {0, 1}, f2 : {0, 1}B → {0, 1}. Assume without loss of
generality that bd+1 ⩽ a′d+1.

Lemma 5.8 implies

P
(
f1(η|A) ̸= f1(η

s/3
|A )

)
⩽ P

(
ηx,t ̸= η

s/3
x,t , for some (x, t) ∈ A

)
⩽ c143

−d+β−1rdhsd−β+1.
(5.43)

Observe now that f1(η
s/3
|A ) depends only on the fields ω and W restricted to the set A′ =∏d+1

i=1 Jai − s
3 , bi +

s
3K. Similarly,

P
(
f2(η|B) ̸= f2(η

s/3
|B )

)
⩽ c143

−d+β−1rdhsd−β+1, (5.44)

and f2(η
s/3
|B ) depends only on the fields ω and W restricted to B′ =

∏d+1
i=1 Ja′i − s

3 , b
′
i +

s
3K. In

particular, by successive conditioning, Lemma 5.9 yields

E
[
f1(η

(s/3)
|A )f2(η

(s/3)
|B )

]
⩽ E

[
f1(η

(s/3)
|A )

]
E
[
f2(η

(s/3)
|B )

]
+ c153

β(r + s)ds−β. (5.45)

This, when combined with (5.43), implies

E[f1(η|A)f2(η|B)] ⩽ E[f1(η|A)] E[f2(η|B)]

+ c153
β(r + s)ds−β + 4c143

−d+β−1rdhsd−β+1, (5.46)

concluding the proof.

It remains to prove that the field satisfies the Random Markov Property (1.9).

Proposition 5.11. If µ is a non-trivial distribution with γµ > 0 and finite moment of order
1 + β, for some β > d, the field (ω, η) satisfies the Random Markov Property (1.9).

Proof. Fix z ∈ Zd × Z+, a F+
z -measurable function f(ω|C+

z
) and an event E ∈ F−

z . Our goal is
to prove that

E
[
f(ω|C+

z
)ηz1E

]
= E

[
E[f(ω|C+

z
)|ηz]ηz1E

]
(5.47)

By space-time translation invariance, we may and do assume z = 0. We also assume that f
has finite space support: there exists Λ ⊂ Zd such that f depends only on ω restricted to
C+
0 ∩ (Λ×Z). The general claim follows from this particular case through standard arguments.
Let us introduce some notation. For x ∈ Zd, t ∈ Z, let

Gx
t = σ

(
Ŵ x

s , Z
x
s+1, Y

x
s ; s ⩽ t

)
, (5.48)

and notice that T x(= T x(0, 0)) defined in (5.31) is a finite stopping time for the filtration (Gx
t )t.

Let Gx
Tx be the associated stopped σ-algebra and G = ⊗x∈ZdGx

Tx . Finally, we define

L = {(x, T x), x ∈ Λ}, (5.49)
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on the event η0 = 1, and L = ∅ else. Let L be the set of possible non-empty values for L.
For L = {(x, tx), x ∈ Λ} ∈ L, we define GL := (⊗x∈ΛGtx) ⊗ (⊗x∈ΛcGx

Tx), and HL =

⊗x∈Λσ
(
Ŵ x

s , Z
x
s+1, Y

x
s ; s > tx

)
.

The following claims imply (5.47):

1. η0 =
∑

L∈L 1L=L;

2. for L ∈ L, {L = L} is GL-measurable;

3. for L ∈ L, on {L = L}, 1E coincides with a GL-measurable variable GL;

4. for L ∈ L, on L = L, ω|C+
0 ∩(Λ×Z) coincides with a HL-measurable random variable ωL

whose distribution does not depend on L.

Let us check that we reach the desired conclusion before proving the claims.

E[f(ω|C+
0
)η01E ] =

∑
L∈L

E[f(ω|C+
0
)1L=L1E ] (5.50)

=
∑
L∈L

E[f(ωL)1L=LG
L] (5.51)

=
∑
L∈L

E[f(ω|C+
0
)] E[1L=L1E ] (5.52)

= E[f(ω|C+
0
)] E[η01E ], (5.53)

where the first claim was used in the first and last lines, the other claims in the second line. In
the third line, we made use of the independence of GL and HL as well as the third and fourth
claims. By taking E as the whole sample space above we get

E[f(ω|C+
0
)|η0 = 1] = P(η0 = 1)−1 E[f(ω|C+

0
)1η0=1]

= P(η0 = 1)−1 E[f(ω|C+
0
)η0]

= P(η0 = 1)−1 E[f(ω|C+
0
)] E[η0]

= E[f(ω|C+
0
)],

(5.54)

so that, since E[f(ω|C+
0
)|η0]η0 = E[f(ω|C+

0
)|η0 = 1]η0,

E[E[f(ω|C+
0
)|η0]η01E ] = E[f(ω|C+

0
)] E[η01E ]. (5.55)

Let us now prove the claims. The first and second ones are clear from the definition of
L and GL, let us focus on the third one. Let L = {(x, tx), x ∈ Λ} ∈ L. 1E is a function of
(ωz, ηz)z∈C−

0
. By definition of L, ωz is GL-measurable for z ∈ C−

0 . Let us check that ηz coincides

with a GL-measurable random variable for z = (x0, t0) ∈ C−
0 . Let T̃ x = T x(x0, t0) as in (5.31).

Since T̃ x ⩽ T x for any x ∈ Λc, {T̃ x < t0 + |x − x0|/R} is Gx
Tx-measurable. For x ∈ Λ, either

tx ⩾ t0+|x−x0|/R, in which case {T̃ x < t0+|x−x0|/R} is Gtx-measurable; or tx < t0+|x−x0|/R
and on L = L the events {T̃ x < t0 + |x− x0|/R} and {T̃ x < tx} coincide since T̃ x ⩽ T x.
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Finally, it remains to verify the fourth claim. On {L = L}, ω|C+
0
coincides with the process

started from the Ŵ x
Tx+1 on {(x, T x+1), x ∈ Λ} which uses (W x

t ) with (x, t) ∈ {(x, t) : x ∈ Λ, t >
T x + 1} as jumps. This process is stationary and, in particular, its distribution in C+

0 does not
depend on L. It is also clearly HL-measurable.

This concludes the proof of the claims, and thus of the Random Markov Property.

6 Open problems

We finish the paper with two simple examples of dynamics for which the techniques presented
have not proved sufficient to establish a CLT. Namely, we explain in detail Finitary Factors
of i.i.d. fields and Kinetically Constrained Models. Other interesting open problems are: the
Renewal Contact Process [16] and Gaussian Fields with fast decaying covariances [5].

Finitary factors of i.i.d. A random environment (ωz)z∈Zd+1 is said to be a factor of i.i.d. if

there exists a measurable function f : [0, 1]Z
d+1 → S such that ωz = f(V ◦ θz), for all z ∈ Zd+1

where V = (Vz′)z′∈Zd+1 is an i.i.d. field of uniform [0, 1] variables and θz stands for the shift by z.
One way to further improve its mixing conditions is to impose that it be a finitary factor

of i.i.d. (ffiid). Intuitively speaking, we say ω is a ffiid if for every v ∈ [0, 1]Z
d+1

, there exists a
finite (and random) coding radius ρ < ∞, such that knowing the values of the uniform variables
inside the ball B(0, ρ), fully determines the value of f . See [21] for a very interesting application
of this definition on the subject of proper colorings of Zd.

Assuming that the coding radius ρ has light tails, can we prove a CLT for the random walk
on top of a ffiid field? Our attempts to find an appropriate definition of η that would satisfy
Definition 1.1 have failed.

Kinetically constrained models Kinetically constrained models (KCM) are a class of inter-
acting particle systems whose non-equilibrium study poses many challenges. They evolve under
(reversible) Glauber dynamics, subject to a constraint that forbids any update unless a certain
neighborhood is free of particles. We refer to [10] for a general definition. The most emblematic
example of such systems is the East model, which in dimension 1 can be defined through its
generator

Lf(σ) =
∑
x∈Z

(1− σ(x+ 1))(p(1− σ(x)) + (1− p)σ(x)) [f(σx)− f(σ)] , (6.1)

where p ∈ (0, 1) is a density parameter and σx denotes the configuration σ ∈ {0, 1}Z flipped
at x.

KCM provide a class of environments that display fast, but non-uniform mixing. For instance,
the East model is exponentially mixing in L2(µp) at any density (µp being the product Bernoulli
measure with density p), but the constraint makes it non-uniformly mixing. They are also
generically non-attractive. As a result, few criteria implying limit theorems for RWRE apply to
them, although it is expected that at least LLN and CLT should follow from the fast mixing.
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In [4], law of large numbers and CLT were proved for random walks on KCM with exponential
mixing (e.g. the East model at any density), but only in a perturbative regime where the jumps
rates of the random walker are close to rates that would make the environment seen from the
walker stationary w.r.t. µp. The results in [9, 2] show LLN for random walks on the one-
dimensional East model assuming only finite-range jumps. However, this is still limited to
dimension 1, and does not yield a CLT.

Can one prove a CLT for random walks on top of the East Model over all range of parameters?
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