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Abstract

We consider random walks in dynamic random environments given by Markovian dynamics on 74 We
assume that the environment has a stationary distribution p and satisfies the Poincaré inequality w.r.t. u.
The random walk is a perturbation of another random walk (called “unperturbed”). We assume that also the
environment viewed from the unperturbed random walk has stationary distribution p. Both perturbed and
unperturbed random walks can depend heavily on the environment and are not assumed to be finite-range.
We derive a law of large numbers, an averaged invariance principle for the position of the walker and a
series expansion for the asymptotic speed. We also provide a condition for non-degeneracy of the diffusion,
and describe in some details equilibrium and convergence properties of the environment seen by the walker.
All these results are based on a more general perturbative analysis of operators that we derive in the context
of L2- bounded perturbations of Markov processes by means of the so-called Dyson—Phillips expansion.
© 2017 Elsevier B.V. All rights reserved.
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1. Introduction

Random motion in random media has been the subject of intensive studies in the physics and
mathematics literature over the last decades. The main motivation to our work is the analysis of
rather general continuous-time Random Walks (RWs) on Z¢, whose transition rates are given as
a function of an underlying (autonomous) Markov process playing the role of a dynamic random
environment.

A number of results (as LLN, CLT, large deviation estimates) have been obtained in the
past under various conditions that allow some control on the strong dependence between
the trajectories of the random walk and the environment. We mention space and/or time
independence assumptions on the environment (see e.g. [7] for quenched CLT of perturbation of
simple random walks using cluster expansion, [9] for diffusive bounds by using renormalization
techniques, [33] for quenched invariance principles by analyzing the environment as seen
by the walk, [5] for a law of large numbers and a high-dimensional quenched invariance
principle by constructing regeneration times) and balanced conditions (cf. [12] for averaged
invariance principles under reversibility of the environment as seen by the walker, [14] and [27],
respectively, for quenched diffusive statements for balanced walks and for zero-mean doubly-
stochastic walks). When allowing non-trivial space—time correlation structures, in [3] for some
uniformly elliptic walks and in [13] for non-elliptic ones, laws of large numbers via regeneration
times have been established by assuming mixing conditions on the environment that are uniform
on the initial configuration (i.e. adaptation of cone-mixing conditions borrowed from [11] for
static random environments). In a similar setting, a quenched CLT has been established in [16],
and a quite general asymptotic analysis has been pursued in the recent [35], again by using a
uniform mixing condition expressed in terms of a coupling. When dealing with poorly-mixing
environments, some progress has been recently achieved by using highly model dependent
techniques [4,18,19].

In this work, we require that the environment satisfies an exponential L*>-mixing hypothesis
(namely, the Poincaré inequality w.r.t. an invariant distribution p) and that the random walk is
“close to nice”, in the sense that it is a perturbation of a random walk such that u is an invariant
distribution for the environment viewed by the walker. We stress that even though we are in a
perturbative setting, the reference unperturbed random walk is allowed to depend strongly on
the environment. Moreover, unlike most of the references above, we do not require finite range
for the jumps of the walk. As discussed in Section 2, we establish several results for the RW
and for the environment seen from it. For the latter, we show that there exists a unique invariant
distribution absolutely continuous w.r.t. u, we analyze convergence to this invariant measure
and ergodicity, we derive an expansion of its density w.r.t. & and show that the effect of the
perturbation on the density is sharply localized around the origin, and we derive an exponential
L?-mixing property similar to the Poincaré inequality (see Theorems 1, 2, 3). For the random
walk itself, we prove a LLN and an averaged invariance principle, as well as the non-degeneracy
of the diffusion matrix under suitable conditions (see Theorems 1, 4). We point out that we do
not derive quenched CLTs. Even by quenching only on the initial configuration, the problem
becomes much harder and further uniform and/or balanced assumptions might be necessary.
Also for our unperturbed walk (when present) in Eq. (5), it is not immediate to obtain quenched
statements in this generality, e.g. the reference in [27] might be used for the latter but still under
their further technical assumptions.

One of the basic tools for the above results is the so-called Dyson—Phillips expansion,
which we use to derive a series expansion for the semigroup of the environment seen from
the walker. This perturbative analysis is very general, and indeed in Section 3 it is carried
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on for a generic Markov process stationary w.r.t. some invariant and ergodic distribution ©
and satisfying the Poincaré inequality. We assume that the generator of the perturbed Markov
process is (roughly speaking) obtained by a L?(u)-bounded perturbation of the generator of the
original, unperturbed, Markov process. In Theorem 5 we prove that the perturbed process admits
a unique invariant distribution absolutely continuous w.r.t. ;& (which is also ergodic), write a
series expansion for its density w.r.t. i and for the perturbed Markov semigroup, and estimate
the convergence to equilibrium for the latter. In addition, in Corollary 1 and Proposition 3.6, we
state a law of large numbers and an invariance principle for additive functionals of the perturbed
Markov process, respectively.

Let us further comment on some closely related works with perturbative techniques. In [3]
the Dyson—Phillips expansion has also been used in a similar fashion in one of the main results
therein, but the authors only focus on the law of large numbers for the walk and work under the
more restrictive sup-norm instead of the L?-norm. In [26] the authors work with hypotheses
very similar to our own for Theorem 5 (even allowing more general perturbations), but the
obtained results present some differences. In particular, in [26] the uniqueness of the invariant
distribution for the perturbed process is proved inside the smaller class of distributions whose
density w.r.t. u is bounded in L?(i). In addition, in Theorem 5 we derive information on the
exponential convergence of the perturbed semigroup (which is relevant to get the invariance
principle in Proposition 3.6), while in [26] the exponential convergence of the perturbed densities
is derived. For more detailed comments on the relation between [26] and our Theorem 5 we refer
to Remark 3.4. We point out that the main goal in [26] is to establish the Einstein relation for
the speed of the walker, hence we have not focused on this issue since already treated there.
Finally, we mention the recent work [32], where the author considers perturbations of infinite
dimensional diffusions with known invariant measure (not necessarily reversible), satisfying the
log-Sobolev inequality (which is stronger than the Poincaré inequality). The invariant measure
for the perturbed process is analyzed and its density is expressed in terms of a series expansion
similar to (28), (33).

Finally, we mention that the results we present herein can be pushed to obtain more
detailed information when dealing with explicit examples of random walks in dynamic random
environments. This path has been pursued in [1], where we consider one-dimensional examples
in which the dynamic environments are given by kinetically constrained models.

QOutline of the paper. In Section 2 we present our main results concerning random walks
in dynamic random environments, i.e. Theorem 1, 2, 3 and 4. The main results concerning
perturbations of more general Markov processes, i.e. Theorem 5, Corollary 1 and Proposition 3.6,
are stated in Section 3. The other sections, from 4 to 12, are devoted to the proofs of the above
statements. In particular, in Section 8 we present a coupling construction allowing to compare
perturbed and unperturbed walkers which is independent of the small perturbation assumption.
Finally, in the Appendix we derive some simple but useful analytic results.

2. Random walks in dynamic random environment

In this section we start with a stochastic process (o;),>0, called dynamic random environment,
with state space {2 = SZd, S being a compact Polish space and {2 being endowed with the
product topology. We assume it has cadlag paths in the Skorohod space D[R ; §2). We will
then introduce two random walks (X,),>o and (X;s)),zo, on Z4, whose jump rates depend on
the dynamic environment. The random walk (X 5‘9)),20 will be thought of as a perturbation of
(X:)i>0 and the parameter & will quantify the perturbation. More precisely, we give conditions
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in terms of Markov generators ensuring that the process “environment viewed from the walker
X; ) (ie. T (E)Jt) is a perturbation of the process “environment viewed from the walker X,”
(i.e. Tx,01). In the above notation, t, denotes the translation operator on {2 such that 7, n(y) =
n(x+y)forx,y e Z% ne .

In Section 2.1 we introduce the main mathematical objects under investigation and our
assumption. In Section 2.3 we present our main results concerning random walks in dynamic
random environments, while in Section 2.2 we discuss examples and collect some comments.

2.1. Processes and assumptions

Assumption 1. The dynamic random environment is a Feller process and is stationary w.r.t. a
probability measure p on (2. Moreover, u is translation invariant.
We denote by (Sen(1)),., the Markov semigroup in L*(u) associated with the dynamic

random environment, and by Leyy @ D(Leny) C L?() — L?(w) the corresponding generator.
In particular, given f € L*(u), it holds (Seny(1) f)(0) = ES™[ f(07)] p-a.s., where ES™ is the
expectation for the dynamic random environment starting at o .

Assumption 2. The dynamic random environment commutes with translations, i.e.

Senv()(f 0 Tx) = (Senv(1) f) © Ts, VfeL ), 1>0. ()
Moreover, the generator L., satisfies the Poincaré inequality, i.e. there exists y > 0 such that
VIFI? < —i(fLenf) VS € D(L) with u(f) =0, @)

We point out that (2) is equivalent to the bound || Seny(2) f — ()l < e V|| f — wn(f)|l for all
t>0and f € L>(u), | - || being the norm in L?(u) (see Lemma A.3 in the Appendix).

We now want to introduce two random walks on Z¢, whose jump rates depend on the dynamic
random environment. To this aim, we require the following:

Assumption 3. There are given continuous functions r.(y,-), r(y,-) and 7.(y,-) on {2,
parametrized by y € Z?. These functions are zero for y = 0, r,(y, -) and (y, -) are nonnegative
and r.(y, -) can be decomposed as

rs(y")iz”()’a‘)‘F;s(y,')- (3)
We also require that, for some n > 1, the above functions have finite nth moment:

> Iyl sup r(y. ) < oo, 3yl suplfe(y. ml < oo @)

yezd nes? yezd nes?

Let now (X,);=0 be the continuous time random walk on Z¢ jumping from site x € Z to site
x 4+ y e Z¢ at rate r(y, 7,n), given that the dynamic random environment is in state n € 2.
Due to dependence on the environment, such a random walk is not Markovian itself, but the joint
process (o;, X;)r>0 on state space {2 x Z¢ is a Markov process with formal generator'

Lewre f 01, %) = Len f (. 2)0) + D r(y, te)[f (0, x + y) = f(n, )],
yezd (5)
(n,x)e 2 x7.

! The notation Lyyre is thought to stress that we are referring to the joint process describing both the random walk and
the random environment.
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We do not insist here with a precise description of the generator, since it will not be used in
the sequel. On the other hand, below we will discuss carefully the generator of the process
“environment viewed from the walker”. Due to (4), no explosion takes place and therefore the
random walk (X,);>o is well defined (a universal construction is given in Section 8). In what
follows we write P, for the law on the cadlag space D(R,; 2 x Z<) of this joint process
starting at (7, x).

As in the construction of the joint Markov process in (5), we define a new joint Markov
process (o7, X §5)),20 on state space {2 x Z< with formal generator:

LEf(1.%) = Leny f(. X)) + > re(y. e[ f (. x + ) = f(n. )],
yezd (6)

(n,x)e 2 x74.

In what follows we write Pﬂ for the law on the cadlag space D(R_; £2 x Z%) of this joint process
starting at (1, x). We refer to this new walker (Xﬁs)),zo as the perturbed walker.

One of the most common approaches to study random motion in random media is to analyze
the so called environment seen by the walker. In our case, we are interested in the Markov
processes on {2 given by tx,0; and Ty 07, where (o7, X/)i>0 and (o7, X;E)),Zo are the joint
Markov processes defined above. '

We write C({2) for the space of real continuous functions on {2 endowed with the uniform
norm. Since, by assumption, the dynamic random environment is a Feller process, it has a well
defined Markov semigroup on C({2), and we denote by’ Loy : D(Leny) C C(2) — C(2)
the associated Markov generator. We define Liump /(1) = Y, czar(y. M| f(ryn) — f(n)] for

feC@and L, f(n) = Y, pafe(y. M f(zym)— f ()] for f € C(R2). Then, by Assumption 3,
the operators Lijump, L, : C({2) — C({2) are well posed and bounded.

Assumption 4. The environment seen from the unperturbed walker (‘L'XI o,) =0 and the one seen

from the perturbed walker (tx@)at) .~ are Feller processes on {2 with generators on C({2) given

respectively by Leny + Liump and Leny + Liump + £®, both having domain D(Lepy).

The above assumption is typically satisfied in all common applications:

Proposition 2.1. Suppose that Le,, is the closure of a Markov pregenerator L as in
[29, Det.2.1, Chp.1], satisfying the criterion in [29, Prop.2.2, Chp.I]. Then L + Lijymp and L +
ﬁjump—i—ﬁ(a) are Markov pregenerators, whose closures are Markov generators of Feller processes
(cf- [29, Det.2.7, Chp.l]). The resulting Markov generators are given respectively by the
operators Leny + Lijump and Leny + Liump + L®, both having domain D(Leny).

The proof of the above proposition is similar to the proof of [15, Lemma 2.1]. The interested
reader can find the proof of Prop. 2.1 in [2, Appendix A].

Assumption 5. The environment seen by the unperturbed walker (thUt)t>0 has invariant
distribution . -

Remark 2.2. Due to Assumption 1, Assumption 5 is equivalent to the fact that pu(Lijump /) = 0
forany f € C({2) (or for any f in a dense subset of C({2), since Ljump is a bounded operator due
to (4)).

2 We denote consistently with curved £ generators on C({2) and with straight L their version living in L2(1).
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We can state our last main assumption, which is indeed related to the perturbative approach.
Consider the operator L, : L*(u) — L*(u) defined as

Lefay= Y r.m[f@m—rfm].  feLw. ™

yezd

It is indeed a bounded operator in L?(u). For example, by Schwarz inequality and by
Assumption 3, given f € L%(jt) we can write

i ([LerT) = [0 suplier ml | D suplfey, minlf 5y = 1),
yezd 7

yezd 7

and by the translation invariance of @ we conclude that

ILell <2 suplic(y. m)l - ®)
y n

Assumption 6. The operator is has norm ¢ = ||i€|| satisfying ¢ < y, where y has been
introduced in Assumption 2.

2.2. Examples

We give here some explicit examples of environments, unperturbed walks and perturbed walks
for which our results apply.

Dynamic environments: Natural examples of environments satisfying our assumptions are
given by Interacting Particle Systems (IPSs) with state space 2 = {0, I}Zd. A first class of
such IPSs is that of translation invariant stochastic Ising models in a “high-temperature” regime
(see [30, Thm.4.1] and [29, Thm.4.1, Chp.I]), among which, the simplest case is the independent
spin-flip dynamics. The latter is the Markov process with generator Leny f(0) = ¥,y f(0¥) —
f(o), where y > 0, and o* is the configuration obtained by ¢ € {2 by flipping the spin at x. As
a variant of these processes, one could consider some Kawasaki dynamics superposed to a high-
noise spin-flip dynamics. When the exponential convergence of the Markov semigroup holds in
the stronger L*-norm one could also apply [3, Sec. 3] to derive some of the results presented
here (as the existence of the limiting velocity). On the other hand, several of our results have not
been derived in the existing literature, even under the assumption of L°-convergence; moreover,
there are several models where the Poincaré inequality holds while the log-Sobolev inequality is
violated or has not been proved. One of the motivations which prompted the present study is to
consider the class of so-called Kinetically Constrained Spin Models (KCSMs), for which (2) was
proved in great generality (in the ergodic regime) in [10]. Their generator is given by Leny f(0) =
Y rezlx(@)p(l—o @)+ (1 —p)o(x) [f(c*) — f(o)] with p € (0, 1) and c, encodes a kinetic
constraint which should be of the type “there are enough empty sites in a neighborhood of x”.
We refer to [10] for precise conditions that the constraints need to satisfy and identification
of the regime where (2) is satisfied. Examples of constraints include the FA-jf model, where
(o) = IZ‘WX(lfa(y))Zj with j < d, or generalized East processes c,(0) = 1 — ]—[lecr(x +e;)
with (el-),-:l,iwd the canonical basis of R?. The presence of the constraint gives rise to a number
of difficulties as for instance the lack of attractivity. Consequently, most of the general existing
results, as e.g. [3,5,7,9,16,33,35], do not apply to this class.

Unperturbed walks: We give here three simple cases of different nature. Let us emphasize
that the unperturbed walk is in general an auxiliary process subject to Assumptions 3, 4 and 5.
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In particular, it does not need to be effectively present, and this is our first simplest case: that
is, r(y,:) = Oforall y € 74, and hence environment and environment from the unperturbed
walker coincide and the above mentioned assumptions are trivially satisfied. As a second case,
we can consider unperturbed walks whose rates do not dependent on the environment, as for
example a simple symmetric random walk, that is, 7(y,-) = 1/2 for y = =£1 and O else, for
which it is immediate to check the above assumptions. The third and most delicate case is when
the unperturbed walk is present and depends effectively on the environment, for which, in order
to check the crucial Assumption 5, the specific choice of the environment is essential. To give
an example of recent interest in the physics literature, we mention environments given by a
KCSM as in [20] and [6], for which, it is straight-forward to check that e.g. in dimension one the
unperturbed walk with nearest-neighbor jumps and defined by (%1, n) = (1 —n(0))(1 —n(£1))
satisfies the required assumptions.

Perturbed walks: By considering any of the environments and of the unperturbed walks
just discussed, our results apply to arbitrary perturbed walks essentially provided the small-
perturbation Assumption 6 is in force. We mention that in case the unperturbed walk is a simple
symmetric random walk, an interesting example is for r.(y, n) = £e(2n(0) — D)1=+ for
which the resulting walk has the tendency to stick to the space—time interfaces between empty
and occupied regions in the environment. A more detailed analysis of this walk on the East
model, mainly based on the results in this work, can be found in [1]. In case of an unperturbed
walk effectively dependent on the environment, as mentioned above, it is necessary to specify
the environment. For an interesting example of perturbed walk in this setup, we mention again
environments given by KCSM, as in [20], one could consider a probe particle driven by a
constant external field (as perturbed walk) in the KCSM started from a stationary distribution
w left invariant by the non-driven probe (as unperturbed walk). In the one-dimensional case one
possibility is r(£1,7) = (I — n(0)(1 — n(xD), re(£1, ) = (1 — n0)(1 — n(ED))re(xD),
re(1) =2/(1 + e7%) = e°r.(—1), the other rates are zero and ¢ is small enough.

2.3. Main results

In the rest of this section, we suppose Assumptions 1, ...,6 to be satisfied without further
mention.

Concerning the environment seen by the walker (tx,0:);>0, we denote by P, its law on
DR; £2), and by E, the associated expectation, when the initial distribution is v (if v = §,,, we
simply write [P, and IE,,). We denote by S(¢) its Markov semigroup on L*(w), i.e. SHHM) =
E, ( f (n,)) u-a.s., and we write L., for its infinitesimal generator. For the perturbed version
(er@)at),Zo we use analogously the notation ]P’gf), ng) for the law and the expectation. Moreover,

we define (S (t)),=o as the semigroup in L2(11) with infinitesimal generator LE) = Loy, + L, (see
Section 9.1 for a detailed discussion). As proved in Section 9.1, (S:(#) f)(n) = Eﬁf)(f(n,)) L-a.s.
at least for bounded continuous functions f.

Given t > 0 we define iteratively the operators S™(¢) as SO(r) = S(t), S" V() =
fot S(t — s)L.S"™(s)ds. These operators enter in the Dyson expansion S.(t) = > 00 S™(r)
discussed in detail in Section 3.

Theorem 1 (Asymptotic Perturbed Stationary State and Velocity).

(i) The environment seen by the perturbed walker admits a unique distribution p, on {2 which
is invariant and absolutely continuous w.rt. . Whenever the environment seen by the
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perturbed walker has initial distribution absolutely continuous w.r.t. w, its distribution at
time t weakly converges to L. ast — 00. Moreover, |, is ergodic w.r.t. time-translations
and

n=nH+ Y [ u(LsOer)ds, g et ©)
n=0

where [ | (LeS6)f ) [ds < /vy 1F = w(hlL
(i) If the additional condition

ry,m) >0 = r(y,n>0 (10)

is satisfied, then u and . are mutually absolutely continuous.
Alternatively, if there exist subsets V, V, C 72 such that

@ r(y,n)>0iff yeV,
(b) 7:(y,n) > 0iff y € V,,
(c) each vector in V can be written as sum of vectors in V.,

then w and . are mutually absolutely continuous.

(i) If (4) holds with n = 2, then defining v(e) = wu.(j©) with j© () = Zyezdyr,g(y, n),n €

02, it holds

X(e)
(OFET r_ —
rim = 0) =1

for we-a.e. n and for 1 varying in a set of u-probability larger than 1 — €2 /(y — €)% If |

and e are mutually absolutely continuous as in Item (ii), then (11) holds for jt-a.e. n.
(iv) The asymptotic velocity v(g) can be expressed by a series expansion in € as

00 )
v(e) = pn(i)+ ) / W(LeS(s)j)ds. (12)
n=0 0
Moreover, ;L(isSé")(s)j(E))| < 8”“6’}’%”||j(£)||oo/n!f0r alln > 0.

Remark 2.3. Further properties on the distribution u, and on the semigroup S, (¢) are stated, in
a more general context, in Section 3 (see in particular Proposition 3.3 and formulas (30), (31),
(32), (33) and (36) in Theorem 5).

The proof of Theorem 1 is given in Section 9.

Theorem 2. Suppose that ju has the following decorrelation property: given functions f, g with
bounded support, we have

‘ llim Cov,(f,7.8)=0. (13)
X|—>00
Then, for any local function f, it holds

‘Xlli_{nw me(Tx f) = u(f). (14)

The proof of Theorem 2 is given in Section 10.

Under stronger conditions, we can estimate the decay of |u.(7, f) — n(f)|. To this aim we
fix some notation and terminology. Given x € Z? and £ > 0, we introduce the uniform box
Bx,0)={yeZ: |x —y|le <}.Ifx =0, we simply write B(£).
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Definition 2.4. The stationary process dynamic random environment with generator L.,, and
initial distribution u has finite speed of propagation if there exists a function & : Ry — R,
vanishing at infinity (i.e. lim,_, ,car(#) = 0) and a constant C > 0 such that

[EIXY] = ESMIXIESMY]| < a(d(4, 4) o

for any pair of random variables X, ¥ bounded in modulus by one and for any pair of sets A, A" C
Z4, such that (for some 7 > 0) X is determined by (n,(x) : 0 <s < ¢, x € A), Y is determined
by (ns(x) :0<s<t xe€ A’), and d(A, ') = min{|x —x'| : x € A, x’ € A’} > Ct.

The above property is satisfied for example by many interacting particle systems on Z¢, in
particular it is fulfilled if the transition rates are bounded and have finite range, as can be easily
checked from the graphical construction (see e.g. [29, Chap. III, Sec. 6], [30, Sec. 3.3]).

Theorem 3 (Quantitative Approximation of . by  at Infinity). In addition to our main
assumptions, assume the following properties:

(i) translation invariance of the unperturbed dynamics, i.e. S (t)( fo tx) = (S(t) f ) o Ty, for
any local function f, x € 7% and t > 0,
(1) the stationary process with generator Leny has finite speed of propagation with o(u) < e
for some 6 > 0,
(iii) r, 7. have finite range, i.e. 3R > 0 such that r(z,-) = 0 and r.(z,-) = 0if z ¢ B(R) and
such the support of r(z, -) and F¢(z, -) is included in B(R).

—Ou

Then there exists ' > 0 (depending on ¢ and y ) such that, for any local function f : 2 — R, it
holds

(T f) = (] < C(f 6, y)e M (16)
where C(f, €, y) is a finite constant depending only on f, ¢, y.
Remark 2.5. One could prove Theorem 3 without Assumption (i), and also its analogue for

different decays in the finite speed propagation property, but the treatment would become very
technical. Hence we have preferred to restrict to the above simpler case.

The next lemma gives a sufficient condition for Assumption (i) in Theorem 3:
Lemma 2.6. Assume (1) and that the unperturbed random walk is decoupled from the

environment, 1.e.r(y, n) does not depend on n for any y € 7Z4. Then the assumption in Item
(i) of Theorem 3 is satisfied.

The proofs of Theorem 3 and Lemma 2.6 are given in Section 10.

Our next result focuses on Gaussian fluctuations of the random walk:

Theorem 4 (Invariance Principle for the Perturbed Walker). (i) Suppose that (4) holds
with n = 2. Then there exists a symmetric non-negative d x d matrix D, such that, under
[ 1e(d n)P;i)), as n — oo the rescaled process

X _ yemt
Jn

converges weakly to a Brownian motion with covariance matrix D,.

a7
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(i) Suppose in addition that Le,, and Ly are self-adjoint in L,(1), equivalently that Leyy is
self-adjoint and r satisfies

r(y,m =r(=y, ym). (13)
Moreover, assume that (4) holds with n = 4. Then the limiting Brownian motion has non-
degenerate covariance matrix for B(g) small enough, where’

B(e) =Y Iyl suplie(y, n)l. (19)

yezd K

The proof of Theorem 4 is given in Sections 11 and 12.

3. L*-perturbation of stationary Markov processes

As already mentioned, the derivation of the results presented in Section 2 is based — between
others — on a perturbative approach. In this section, starting from the Dyson—Phillips expansion of
the Markov semigroup, we derive some results on perturbations of stationary Markov processes
satisfying the Poincaré inequality. We will focus on the perturbed invariant distribution, the
perturbed Markov semigroup, the LLN and invariance principle for additive functionals of the
perturbed process. We have stated these results in full generality, while at the beginning of
Section 9 we explain how the random walks in dynamic random environments analyzed in
Section 2 fit into this general scheme.

We fix a metric space {2, which is thought of as a measurable space endowed with the o-
algebra of its Borel sets. We consider a Markov process with state space {2 and with cadlag paths
in the Skorokhod space D(R,; £2). We write (1;),er, for a generic path, denote by PP, the law
on D(R; £2) of the process with initial distribution v, and by E, the associated expectation. If
v =4§,,n € 2, we simply write P, IE,. We suppose the process to have an invariant distribution
w on §2. Then the family of operators S(t) f(n) = E, [ f (r],)], t € R,, gives a contraction
semigroup in L2(u), which is indeed strongly continuous® in L?(u) (see Lemma A.2 in the
Appendix). We write L for its infinitesimal generator (in L?(1)) and D(L) for the corresponding
domain. In what follows we denote by || - || the norm in L?(1) and by u(f) the u-expectation of
an arbitrary function f. We assume that L satisfies the Poincaré inequality, i.e. for some y > 0

VISP < —u(fLf)  Yf eDL)with u(f) =0. (20)

Note that the above Poincaré inequality is equivalent to the bound (cf. Lemma A.3 in the
Appendix)

IS@f —w(HI < e IILf =)l Vi=0, feL . 21

If u is reversible w.r.t. L, then (20) corresponds to requiring that L has spectral gap bounded by
y from below.

Next, for a given fixed parameter ¢ > 0, we consider a new Markov process on {2 and call
P¢®) its law on D(R,; §2) when starting with distribution v, and E(*) the associated expectation.
In the sequel we refer to this new Markov process as the perturbed process. Since typically u
is not an invariant distribution for the perturbed process, the map n — Ing)( f (n,)) can be not
well defined p-a.s. for f € L?(u). In particular, there is no naturally defined Markov semigroup

3 Note that by (8), a small S(¢) implies that ¢ is small.
4 Strongly continuous semigroup are often called Co-semigroups.
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in L?(u) associated with the perturbed process and therefore the same holds for the associated
infinitesimal generator in L?(u). To overcome this difficulty and also to benefit of the existing
theory of perturbations of strongly continuous semigroups, we will introduce a semigroup in
L?(1) obtained by perturbing (S(t)),>¢ in a purely analytical way. Afterwards we will assume
(cf. Assumption 7) that for nice functions f the action of the semigroup at time ¢ on f leads to the
new function E(*’")( f (n,)) which belongs to L?(i). Thanks to Lemma 3.2, in many applications
this assumption will be automatically satisfied.
We introduce a bounded operator 2,8 s L2(w) — L*(w), with e == ||ig I, and set

L.=L+L,, D(L,) = D(L). (22)

It is known (cf. [17, Thm. 1.3, Chp. III]) that the operator L, = L + is with domain
D(L;) = D(L) is the generator of a strongly continuous semigroup (S¢(t));=0 on L2(i).
Moreover, it holds S.(f) = e'l¢, where the exponential of the operator L, is defined in
[22, Ch. IX, Sec. 4] (cf.Problem 49 in [36][Ch. X]).

We fix our basic assumptions:

Assumption 7. The unperturbed Markov process has invariant and ergodic distribution .
The generator L of the L?(u)-semigroup S(¢), t € R, satisfies the Poincaré inequality (20).
Moreover, considering the semigroup S, (-) with generator L, = L+L, and the perturbed Markov
process, it holds

S fm =ED(f)), wm—as., VfeCy), (23)

where we denote by C,({2) the space of bounded continuous real functions on (2.

Remark 3.1. The above ergodicity of 1 has to be thought w.r.t. time translations, i.e. any Borel
set A C D(R,, 2) which is left invariant by any time translation® 6, has IP,-probability equal to
0 or 1. Due to Theorem 6.9 in [41] (cf. also [38, Chapter IV]), this is equivalent to the following
fact: u(B) € {0, 1} if B is a Borel subset of {2 such that 15(no) = 1(n;) P,-a.s. for any t > 0.
Note that for such a subset B it holds S(¢)1 3 = 13 w-a.s. This observation allows to deduce the
ergodicity of u from the bound (21), since we assume that S(-) satisfies the Poincaré inequality.
Hence, the explicit hypothesis of u ergodic could be removed from Assumption 7.

In the following lemma we discuss a case, useful in applications, where the above property
(23) is fulfilled (the proof is postponed to Section 4). The lemma covers numerous applications,
e.g. interacting particle systems (cf. [29], in particular Chp. IV.4 there):

Lemma 3.2. Suppose that (2 is compact and that the perturbed Markov process is Feller on
C(£2) endowed with the uniform norm. Consider the induced Markov semigroup S'S(t), t e Ry,
on C(2): Se()f(m) = EO(f(y)) for f € C(). Call L, : D(Ly) C C(2) — C(R) its
infinitesimal generator. Suppose that L, has a core C; C D(L.) N D(L,) such that L, f = L, f
for all f € C,. Then identity (23) is satisfied.

5 Time translation 6, : D(Ry, £2) — D(R., £2) is defined as (6;1)y = 14s-
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We recall, cf. [17, Cor. 1.7 and Eq. (IE*), Chp. III], the so called variation of parameters
formula: for any f € L?(u) it holds

&Mf=SMf+/SO—®&&GUw
0 24)

=St f +/ S.(s)L.S(t — ) fds,
0

where the above integrals have to be understood in L?(u).
Given t > 0 we define iteratively the operators S™(¢) as

SO = 8r), S"D@) = / S(t — )L S™(s)ds = f S™(s)L.S(t — s)ds .  (25)
0 0

The equivalence of the two forms of Sé"*l) in (25) can be checked by induction (see [2, App. A]).
As explained in [17, Chp. III], S¢(-) is a continuous function from R to the space £(L*(1)) of
bounded operators in L?(j1). Moreover, the Dyson—Phillips expansion holds:

Sy=>_s"w), 1>0, (26)

n=0

where the series converges in the operator norm of L(L*(w)), even uniformly as ¢ varies in a
bounded interval.

By means of the Poincaré inequality, we can derive more information on the Dyson—Phillips
expansion and on the semigroup (S¢(#));>0:

Proposition 3.3 (Dyson—Phillips Expansion). Let ¢ < y, for any f € L*(i) and t > 0 it holds

1S:(0).f — ZW%mwmm% )w wHIL Vk=1 27)

n=0
The above proposition is proven in Section 5.

Theorem 5 (Invariant Measure). Let Assumption 7 be satisfied and let ¢ < y. Then there exists
a probability measure . on {2 with the following properties:

(i) Consider the perturbed Markov process with initial distribution v absolutely continuous
w.rt. . Then its distribution at time t weakly converges to |L, ast — oQ.
(ii) Foreach f € L*(w) it holds

muv=uu3+féﬂmu(L$anym, (28)
where "~

/ i (£eSP01) lds < /vy ILf = w(PI - 29)
Moreover, for t > 0, the following estimates hold:

IS00f = WSO = e IF = p(l (30)

|1L(Se() ) — pe( )] < S*V%M w(HIl (31)
mxﬂ—MUNS;j;w—uqm. (32)
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(iii) pe is the unique distribution which is both absolutely continuous w.r.t. i and invariant for
the perturbed Markov process. The Radon—Nikodym derivative h, = du./du belongs to
L?(w) and admits the expansion®

S 0
he=T1+)" / H"(1)1dt, (33)
n=1 0
where Hg(”)(t) = [Sé"_l)(t)]*l:j, n > 1, are bounded operators on L*(1) satisfying the
recursion:
t t
H"D(1) = / ds H™(5)S*(1 — s)L* = / ds S*(t — s)L* H™(s). (34)
0 0

Moreover, it holds ||h, — 1| < V‘E_E.
(iv) Suppose that for any t > 0 and for any measurable B C {2 it holds

nw({ne B : PP, € B)y=0and P,(n, € B) > 0}) =0. (35)

Then also 1 is absolutely continuous w.r.t. [Le.
(v) Forany f € L*(w) it holds

1ot f = me(H)lle < (ﬁ)me—%”nf —w(Plloo, 120, (36)

where || - ||e, || - loo denote the norm in L*(u,) and L™®(1) respectively.
(Vi) g is ergodic w.r.t. time-translations, as in Remark 3.1.

The proof of the above theorem is given in Section 6.

Remark 3.4. Theorem 5 presents some intersection with [26, Thm. 2.2 and Thm. 4.1]. There the
authors consider also unbounded perturbations satisfying some sector condition and the analysis
is not based on the Dyson—Phillips expansion. In particular, in [26] the content of Theorem 5-(i)
is obtained only for v <« u with dv/du € L?(u) (while here the last condition is absent). The
existence of a unique invariant distribution u, < u for the perturbed process is obtained also
in [26] and our expansion (33) is equivalent to the expansion (4.5) in [26], see [2, Appendix B]
for more details. In Theorem 5 we have collected information on the exponential convergence of
semigroups (which is relevant to get the invariance principle in Proposition 3.6), while in [26]
the exponential convergence of densities is derived.

Remark 3.5. Let i, be the Radon—Nikodym derivative of w, wrt. u. Let A C {2 be a
Borel set such that u.(A) = 0. Since 0 = u.(A) = wu(A) + wu(th, — 1H1,), we have
w(A) = pu((1 = ho)L,) < |1 — he|lu(A)"/. Hence, by Theorem 5-(iii)

ne(A) =0 = u(A) <&’/(y —e)’. (37)

This implies that any property that holds w.-a.s. holds also u-a.s. if © < u. and anyway, in the
general case, holds for all € £2 with exception of a set of u-measure bounded by £2/(y — ¢).

We now concentrate on additive functionals for the perturbed process. As an immediate
consequence of Birkhoff ergodic theorem, Theorem 5 and (37) in Remark 3.5, we get:

6 We denote by A* the adjoint of the operator A on L2(i).



L. Avena et al. / Stochastic Processes and their Applications 128 (2018) 3490-3530 3503

Corollary 1 (Law of Large Numbers). Let Assumption 7 be satisfied, let ¢ < y and let
f i 2 — R be a measurable function, nonnegative or in L'(j1,) (e.g. bounded or in L*(w)).
Then

1 t
lim — /0 fo) =we(f),  PY —as. (38)

t—oo f
for pe-a.e. n (recall Remark 3.5).

We conclude this general part with an invariance principle:

Proposition 3.6 (Invariance Principle for Additive Functionals). Suppose that {2 is a Polish
space and that the perturbed process on §2 is Feller. Let Assumption 7 be satisfied, let ¢ < vy and
let f: 2 — R be a function in C,({2). Given n € N, define the process

" f(ns) - /Ls(f)ds
0 Vv ’

Then there exists a constant o> > 0 such that under ijz the process (B,(") )

B™(f) = reR,.

reR, weakly converges

to a Brownian motion with diffusion coefficient o>.

Proposition 3.6 is proved in Section 7, where a characterization of o' is given.

4. Proof of Lemma 3.2

We first note that the semigroup 5 () is well defined since C(f2) = Cb(Q) due to
compactness. Let us prove the lemma. We claim that D(L,) C D(L,) and that L ef = Lof
forall f € D(L,). To prove our claim fix f € D(L,). By definition of core, there exists f, € C,

with f, Il fand L efn I L.f. The convergence holds also in L?(u), while by assumption
fn € Cc € D(L;) and L/f,, = L. f,. Using that the operator L, is closed in L?(11) (being an
infinitesimal generator), we get that necessarily f € D(L.) and L. f = L. f, thus proving our
claim. Let again f € D(L )- Then (cf. [17, Lemma 1.3, Chapter 2]) S.(t)f € D(L,). By the
above claim we get that S, of e D(L yand L, S, (t)f L.S:(t)f. Since (cf. [17, Lemma 1.3,
Chapter 2]) lims_.¢ M f= L S @t f =L, S (t) f in uniform norm, the same must hold
in L%(n) (ift = 0, the above limit has to be taken with § | 0). Collecting the above observations
we get that the function ¢(z) : [0, +00) > ¢ — S.(1) f € L*(u) has values in D(L,) and satisfies
the Cauchy problem ¢’(t) = L.¢(¢), ¢(0) = f, where ¢’(0) has to be thought as right derivative.
Since also the function @(z) : [0, +00) 3 t > S.(t)f € L?*(1) satisfies the same properties, by
the uniqueness of the solution of the Cauchy problem (cf. [22, end of page 483]) we conclude
that S (¢) f = Sc(¢) f, i.e. we get (23) for f € D(L,). To extend (23) to any f € C(£2) its enough
to take f, € D(L¢) with || f — full — 0. Thenalso || f — f,|| — 0. At this point it is enough to
take the limit » — oo in the identity S.(¢) f, = S¢(¢) f,, and use that S.(¢) is a bounded operator
in C({2), while S,(¢) is a bounded operator in L?(w).

5. Preliminary estimates on Dyson—Phillips expansion

In this section we prove Proposition 3.3 and the bound in (30). Let us first state a simple
remark (whose proof is omitted since it is standard) that will be frequently used:

Remark 5.1. Since u is a stationary distribution for the unperturbed process and the Poincaré
inequality (21) is satisfied, we have that (i) S(t) f = f for all r > 0 iff f is a constant function,
(i) 0 is a simple eigenvalue of L, (iii) u(S(t) f) = u(f) for any f € L?(j). Moreover, since L,
is a Markov generator, it must be L, f = 0for f constant.
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In the next proposition, by means of the Poincaré inequality, we improve known general
bounds concerning the Dyson-Phillips expansion. In what follows, given f € L*(u), we
abbreviate (recall (25)) :

gn(t) = Sé"_l)(t)f, foranyn > 1, 39)
so that the Dyson—Phillips expansion in Eq. (26) reads as
oo
S{f =Y gut).  feLXw). (40)
n=1

Proposition 5.2. For each f € L*(jv) and n > 1 it holds
( )n 1

18 (@) — 1(gn (NI = e_’”( Y ILf = O, 41)
n—1
1(Lega()] < ee7" (( 2 Sl = RO “2)
(g1 ] = (e/¥)'IILf — m(NII.- (43)
Moreover, 1(g1(t)) = u(f) and, for eachn > 1,
tim jaCgri ) = [ lEogn(6)ds. (44)
—00 0
the integral being well posed due to (42). More precisely, it holds
|M(gn+1(t))—f0 1(Lega())ds| < I f —u(f)ll/ SE*W%M- (45)

Proof. To prove (41) we bound
lgn1(t) = n(gnr @) = | fo S — ) Lega(s)ds — u( /0 - $)Legn(s)ds) |
< /Ot |SG = 5)Legn(s) = 1(SG = $)Lega(s)) | ds
< /0 e Egas) — 1) s < /0 eI £ (o) ds

=/ e | Ly (gals) — igals)) | ds 5/ e "I Lo ||| gals) — 12(ga(s))] ds,
0 0

where the second inequality follows from Item (iii) in Remark 5.1 and from the L2-exponential
decay (21), the third one uses that || f — u(f)|| < || f|l for any f € L*(w). With this established,
we can check (41) inductively, noticing that for n = 1, the inequality is just a consequence of the
L?-exponential decay (21) and Item (iii) in Remark 5.1.

To prove (42), by Remark 5.1 we can bound |14(Leg,(5))| by |i(Le(8u(s) — n(ga()))] <
||lA,(E Ign(s) — r(gn(s))|l. At this point the thesis follows from (41).

To prove (43) we write ©u(g,+1(t)) as fol u(l:sgn(s))ds. By (42) the last integral can be
bounded by (nETnl)!llf —u(OI foo ~vss"=1ds, thus leading to (43).

The identity w(gi(t)) = wu(f) follows from Remark 5.1. As in the proof of (42),
[ |u(i5gn(s))|ds < [Fdse emvs e | f — u(f)ll, which goes to zero as t — oo. Hence,

(n—1)!
(gna1(2)) has limit (44), which is finite, and also (45) holds. [
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We have now the tools to prove some assertions of Section 3:

Proof of Proposition 3.3 and (30). Due to (41) and (43) we can bound the L.h.s. of (27) by
— _, (1) = =
If - /x(f)II{Z;e‘”T(s/V)” + Y @/} < = mHOI2Y (& /y),
n= n=k n=k
thus leading to (27).
Due to the Dyson—Phillips expansion, we can bound || S¢(¢) f — u(S(¢) f)| by anl llgn(t) —
w(gn (1), and (30) follows immediately from (41). [

6. Proof of Theorem 5

Let us denote by I'(f) the r.h.s. of (28). We first observe that by (42) the integral and series
in the r.h.s. of (28) are absolutely convergent, hence I'(f) is well defined. Moreover, always by
(42), we get [T(N)] < (v/(v — &) I fIl.

Due to the Dyson—Phillips expansion, it holds u(Se(¢) f) = >_,.u(g.(¢)). Hence, one easily
derives (31) with . (f) replaced by I'(f) from (45). As a byproduct with (30) proved at the end
of Section 5, we conclude that

Tim S.(0f = T(HI =0,  feLw, (46)

6.1. Proof of item (i)

Consider now the perturbed Markov process with initial distribution v as in Item (i) and call
vé’) its distribution at time ¢. Take f € C,({2). We claim that

d d
W) = w(GBOG @) = w8 0F) 2 T S e G )

(note that the first identity is trivial, while the second follows from (23)). To this aim it is enough
to prove this equivalent claim: for an; diverging sequence #, /' oo there exists a subsequence

t,, such that u(j—;[Sg(tnk)f —I'(H]) = 0ask — oo. Since S.(t,)f — I'(f) — 0in L*(w),

there exists a subsequence #; such that Sy(#,,)f — I'(f) — 0 p-a.s. Hence [S:(t,,) f — I'(f)]
is a function bounded by (1 + y /(y — &))|| f |l (recall (23)) and converging to zero p-a.s. The
equivalent claim then follows by the dominated convergence theorem.

We know that I' : L?(u) — L*(u) is a bounded linear operator. By Riesz representation
theorem, there exists 4, € L?(u) such that I'(f) = u(h, f) for each f € L%(j1). We observe
that i, > 0 p-a.s. since I'(f) > 0 for any f € Cp 4 ({2) (cf. Lemma A.1-(ii)). Let us define the
nonnegative measure U, as du, = h.du. By (47) we conclude that u.(1) = 1, hence i, is a
probability measure. Using that I'( f) = u.(f), by (47) we get Item (i).

6.2. Proof of item (ii)

Since u.(f) = I'(f), by the definition of I'( ) we get (28). We have already proved (30) at
the end of Section 5, while at the beginning of this section we have shown that (31) holds with
I'(f) instead of u.(f). Since these two values are indeed equal, we get (31) and therefore Item
(ii). (29) and (32) are a simple consequence of (28) and (42).
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6.3. Proof of item (iii)

By construction, ¢, <« wn with Radon—-Nikodym derivative h.. By (46) and since I'(f) =
whe f) = we(f) for any f € L*(u), we have that pu.(f) = lim,_oous(S:(t)f) for any
f € L*(£2). Forany g € C,({2), we use this once with f := S,(s)g and another time with f = g.
We conclude that 1. (S:(s)g) = we(g) by using the semigroup property S.(t +s)g = S:(t)S:(s)g
to identify the two limits. By Assumption 7 this implies that . (E®[g(n,)]) = w.(g) for any
g € Cp(£2), hence the invariance of u. for the perturbed Markov process. The uniqueness
assertion follows from Item (i).

To derive the expansion (33), note first that for n > 0, and any f € L*(w), we have

(LeST () f) = m(([SVGOVFLIL) f) = w((H D)D) f), (48)

and the recursions in (34) easily follow. By (42) and (48), we then get ||H£(”)(s)]1 I < 56’”%.
It then follows that the integrals and the series in the r.h.s. of (33) are absolutely convergent in
L?(11), and therefore, by (28) and (48), the expansion (33) holds.

From (33) and the bound ||[H(s)1]| < se_”% we get |, — 1| < S5

6.4. Proof of item (iv)

Some of the ideas are taken from [26] although we show that some assumptions there can
indeed be avoided.

We know that u, < u (see Item (vi)). We call A, the u-support of h, = du./du. We only
need to prove that ;t(A¢) = 0. By stationarity of p, w.r.t. the perturbed dynamics, we have

0= pe(AD) = pe (Se(lag) = /M(dn)hs(n)ﬂ”ﬁf’ [n € A¢] . (49)

Hence, u({n € A, : P®[n, € AS] > 0}) = 0. By condition (35) we conclude that
u({n € Ae : Py[n, € AS] > 0}) = 0. This implies that the function n +— P,[n, € A¢] =
S()L4c(n) € [0, 1] is zero on A, pu-a.s., hence 0 < S(#)14¢ < 14c p-a.s. Suppose by absurd
that u({n : S(H)Lc(n) < Lse(m)}) > 0. Then we would conclude that u(S(#)1ac) < p(ll,¢), in
contradiction with the stationarity of u w.r.t. S(¢). Hence, it must be S(#)1 4¢ = N 4¢ pu-a.s. Since
this holds for each ¢, by the ergodicity of © we conclude that ((A¢) € {0, 1}. If w(Ag) = 1, then
he = 0 p-a.s., while w(h,) = 1. It remains the case w(Ag) = 0, which implies that pu < pt,.

6.5. Proof of item (v)

Let Cp+(£2) = {f € Cp(£2) : f > 0} and Li(()) = {f € L*(n) : f > 0 p-as.). By
Assumption 7 we have Sg(t) f > 0 u-as. for any f € Cp (§2). Since Cp (£2) is || - ||-dense
in Li((}), as immediate consequence of Lemma A.1-(i), we conclude that S.(#) f > 0 pu-a.s.
for any f € L3 (w). Since || flloc — f € L3(1) and S;()l flloo = || f llos, We then conclude
that S.(t) f < || flleo n-a.s. for any f € L°°(u). By applying the last bound to — f, we get

1Se()f| = I f lloo p-a.s. forany f e L*=(w).
The above considerations and Schwarz inequality imply for any f € L°(u) that

IS0 f = me(OIZ = 1e(1Se() f = () < I = pe(Flloorslhe|Se(@) f — Ms(f)l()so)
= = sl lloollell - 1S (@) f = e (O
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By (32) in Item (ii) we have || f — ue(fllo < I1f — (lloo + 10(f) — (] < ﬁ“f -
u(f)ll - By Item (iii) we have ||k, || < y/(y — &) and by Item (ii) we have ||S;(¢) f — ue(HIl <
[v/(y —&)le "= f — u(f)|. Hence the conclusion.

6.6. Proof of item (vi)

Recall Remark 3.1. Let B C {2 be a Borel set satisfying 1(n,) = 1p(10) Pfg—a.s. for all
t > 0. By Lemma A.47 we then have S,(t)13 = 13 u.-a.s. Then, by (36), we conclude that
15 = pe(B) pe-a.s., thus implying that u.(B) € {0, 1}.

7. Proof of the invariance principle in Proposition 3.6

Given h € L*(u,), we introduce the functional A,(h) = fot h(ns)ds defined on the path space
D(R,, {2). By Schwarz inequality and stationarity of w, for the perturbed process, we can bound

’ 1/2
A 2 (p10) = ES[Ah)?]"" < tlh]. . (51)

The family of operators S, (¢)h(n) = ng) [h(n,)], t € R4, is a well defined strongly continuous
contraction semigroup in L?(u,) for t € R, (see Lemma A.2 and its proof). We write
L. : D(L,) C L*(ue) — L%(u,) for its infinitesimal generator. Do not confuse the above
operators S, (1), £, with the previously defined S,(z), L, which live in L?(x1). On the other hand,
by (23), given h € C,({2) it holds S.(t)h = S.(t)h u-a.s. and therefore p.-a.s. (since p, < W).
Let f € Cp(§2), as in the theorem. Since along the proof ¢ is fixed, at cost of replacing f by
f — wne(f) we assume that u.(f) = 0. Due to (36) and the previous observations, we can bound

/ 1S, fdtl, = f 1S. () fdille =« < 0o (52)
0 0

Hence, g = fooo S.(t)fdt is a well defined element of L*(u,). Since S.(r)g — g =
— for S(t) fdt and since S,(t) f — f in L?(u.) as ¢t | 0, by definition of infinitesimal generator
we getthat g € D(L,)and —L.g = f.

As a consequence we can write A,(f) = M, + R;, where

M; = g(n) — g(no) —/0 Legns)ds , (53)

Ry = —g(n:) + gmo) - (54)
By (52), we get that

[l R: <2. (55)

L2®))

In what follows, we apply the invariance principle for martingales as stated in [25, Thm. 2.29,
Chp. 2], which holds for cadlag martingales w.r.t. filtrations satisfying the usual conditions. To
this aim, we take the augmented filtration (F;),>¢ W.r.t. IP’(S) of the natural filtration (F;),>0, where
Fri=0( :0<s <t)[21, Chp.2]. Since we have assumed that the perturbed process is Feller,
then this filtration satisfies the usual condition w.r.t. IP’ifs) [21][Prop. 7.7, Chp. 2]. It is known
(cf. [25, Chp. 2]) that (M,);>¢ is a martingale w.r.t. the augmented filtration (f,),zo. Below we
work with the cadlag modification of (M,),>o (cf. [21, Thm. 3.13, Chp. 1]), that we still call M,
with some abuse of notation.

7 In the proof of Lemma A.4 we use Theorem 5 but not Item (vi).



3508 L. Avena et al. / Stochastic Processes and their Applications 128 (2018) 3490-3530

We split the rest of the proof in two parts. First we show an invariance principle for the
martingale M,, afterwards we prove that the rest R, is negligible (cf. Lemmas 7.1 and 7.2).

Lemma 7.1. For anyt > 0, define M,(") = Aj"l ,n € N. Then, under IP’(S) the rescaled process
(M,(") )ier, weakly converges to a Brownian motion with diffusion constant o2 = E;fg)(Mlz) > 0.

Proof. The martingale M, is square integrable w.r.t. Pffg) According to [25, Thm. 2.29, Chp. 2]
we only need to prove that (M) /k converges to E{)(M 2) both P)-a.s. and in LI(IP’/(fz). To this
aim we write (M), = ZI;;(I)((M)J-H — (M) ;) and we point out (cf. [25, chp.2]) that

(M)js1 — (M); = (M)106; P)-as.

Moreover, we have E¢) ((M),) = E)(M}) < oo
At this point the thesis follows from the a.s. and the L'-Birkhoff ergodic theorem and the
ergodicity of ]P’Efs) w.r.t. time translations. [J

In the following lemma we give a bound to control the trajectories of the error R, (cf. (54)).
The proof of the lemma is based on a simple block-decomposition argument in the spirit of [34].

Lemma 7.2. We have
. Supth | Rt |
lim ————

T—o00 ﬁ

Since, as shown in (53), we can write B™(f) = M™ + If/’ﬁ, Proposition 3.6 follows from
Lemmas 7.1 and 7.2.

=0 in Pffz—probability . (56)

Proof of Lemma 7.2. Given a positive integer j, letm; == [ j*37and ¢; = [j!/3]. Consider the
partition of the time interval [0, j]in m; sub-intervals Ik] =[kl;,(k+ 1)), k=0,...,m; -1,
of measure £; (for simplicity of notation we assume that m;£; = j). From the decomposition
A(f) = M, + R, we can bound

SpIRI < max (Rug,+ _ max supldy(f) = Aue, (/)

t<j =0,1,..., k=0,1,....0m vel)

(57)
+ max sule,, _Mklj| = Cl’j+C2,j+C3,j

k=0,1,..., mj—] el
u
k

e Step 1. We first control the term

Cs, = max sup|M, — ng |
k=0,1,..., mj— 1 lj

Due to Lemma 7.1 and the fact that for standard Brownian motion W;, and any C, T > 0, it
holds P(sup,.7|W;| = C) < exp{—C?/2T}, we have lim;_, o ,[P')(C3 ; > 6/)) =

e Step 2. Let us now consider the term C; ; := manz(),L___’mlekgjL By a union bound,
Markov inequality and the uniform bound in (55), for any § > 0, we can estimate

PﬁjQ( _max |ng|>5[)

.....

o', (58)

o Step 3. We control the remaining term

Coji= _ max sup|A,(f) = Axg, (f).

- J
uelk
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First we observe that

[Au(f) = Ake; ()] = /.If(m)lds < 1 flleot; s Vuell, k<m;— L
1

Thus, C,; > 84/ implies that || f]|e[j/°1 > 84/J. In particular,

PE(Cyy > 21/j) =0 (59)
for j large enough.

We can now conclude the proof. We consider a generic 7 > 1 and let j be such that
j<T < j+1.Since
sup,<r |Ril _ sup, <411 Rel 7+ T
VT T Ji+T Vi

from (57), the arbitrariness of § together with the three steps above, we get

Tim (7712 sup|R,| > 5) =0

t<T

for any § > 0, and therefore the thesis. [

Remark 7.3. The above proof is an extension to the non-reversible case of the classic Kipnis—
Varadhan approach. Lemma 7.1 is standard, but the control of the rest R; provided in Lemma 7.2
does not follow from the estimates in [24] (note in particular that Lemma 1.4 there requires
reversibility). We mention that an alternative strategy in the non-reversible setting is given by
[25, Thm. 2.32, Chp. 2], which on the other hand would require additional assumptions on the
Markov process. For what concerns extensions to the non-reversible case of the classic Kipnis—
Varadhan approach, we refer to [25,31,40] and references therein.

8. A coupling

In this section we describe a coupling between the dynamic random environment, the
unperturbed random walk and the perturbed random walk. To this aim we define A :=
SquZyezd (r(y, n) + max{0, 7.(y, 17)}), which is finite due to (4) in Assumption 3. For each
n € {2 we fix two partitions

[0, 11 = (Uyeza I (y. ) UJ(). [0, 1] = (Uyezale(y. m)) U Je(n),
where 1(y, 1), J(n), I.(y, n), J:(n) are Borel sets such that

[y, =r(y,n/Ar, [ (y, )| = re(y, /A,

[1(y, n) N L(y, m| = [r(y. n) + min{0, 7(y, n)}]/A

(above |I| denotes the measure of the set I). The above partitions are chosen with the property
that the characteristic function (a, n) + 1 (a € I(y, n)) is measurable for any y € Z9, where
(a,n) € [0, 1] x £2. The same must be valid for I.(y, n).

Let IP";”“V be the law of the dynamic random environment, i.e. the process with generator Lepy
starting at 1. We denote by (0;),er, a generic trajectory of this process. We build a Poisson
point process T := {t; < 1, < ---} C R, with intensity A on a suitable probability space with
probability measure PPOs*°" We then build a sequence U := (Uy)i>; of i.i.d. uniform variables
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taking value in [0, 1] on another probability space with probability measure P""™ We then
consider the product probability space with probability measure P, := P& @ pFeisson g puniform,

We now consider the function F' ((a,),eR T, Z/{) with value in D(R, ; Z%) associating with
(@)iery, T ={ti <ty <---},U = (Up)k=1 the path (x;);er, defined as follows. We set x; = 0
for all s € [0, #;). Suppose in general that x, has been defined for any ¢ € [0, #), with jump
times f1, % ..., 1. Set z = x;,_ and ¢ = oy _. If Uy € I(y, t;¢) for some y € 74, then
we set x, = z + y for any ¢t € [f, tx+1), otherwise set x, := z for any ¢t € [f, tx+1). Since
lim,,_, ot, = 00 Py-a.s., the definition of F is well posed P,-a.s. By construction, sampling
((o,),eR+, T, Z/I) according to P,, the random path ((a,),ER+, F ((Ut)feRJr, T, Z/l)) is the joint
Markov process given by the dynamic random environment and the unperturbed random walk. In
particular, sampling ((a,)teR LT U ) according to P,, the random path tz(;yo; has law IP,, where
F(¢) stands for the process F ((o,),E]R T, Z/{) evaluated at time ¢. If in the above definitions,
we replace “Uy € I(y, 1;¢)” by “Uy € I.(y,1,¢)”, we get a new function F, and, sampling
((61)rer,.. T, U) according to P,, the random path Tf, (0, has law P

In the sequel, we denote by &, the expectation corresponding to P,, and we adopt the

convention that (X;);>0 == F ((o,)teR T, L{) denotes the walker process in the unperturbed
setting, while (X,(s)),zo = F, ((or),ER o T, Z/I) refers to the walker process in the perturbed
setting. Given v probability measure on {2 we define P, = [ v(dn)P, and we write &, for

the expectation w.r.t. P,,.

9. Proof of Theorem 1 (asymptotic stationary state and velocity)

9.1. Connection with L*-perturbation of Markov processes discussed in Section 3

The operator Ly, : D(Leny) C L2(n) — L*(uw) is the closure in L2(11) of the Markov
generator Leyy : D(Leny) C C(2) — C(§2), shortly (Lem,,D(Lem,)) = (EenV,D(EenV)) (see
e.g. the proof of [29, Prop.4.1, Chp.IV]). Recall the definition (7) of the operator IA‘S and set
Lijumps [ = Zyezd’"(% n)[f(ryn) - f(n)]. As done for L, one can easily prove that Ljymp i a
bounded operator on L%(w).

Due to the previous observations, the L2(u)-generator L, of the environment seen by the
unperturbed walker is the closure of the associated C({2)-generator Leny + Ljump With domain
D(Leny)- In particular, we have

Lewf = Lenvf + Ljumpf ’ f € D(Lew) = D(Leny) - (60)
We introduce the operator LE) : D(L®) C L?(u) — L?(u) defined as

LE) = Lew+Le,  DLE) :=D(Lew) = D(Leny)- 61)

As already observed (Leny, D(Leny)) is the closure in L2(w) of (Leny, D(Leny)). From this
property it is simple to check that (L), D(Lésva)) is the closure in L?(u) of the C({2)-generator
(Eenv+£jump+ﬁ(5), D(Leny)) of the Feller process given by the environment seen by the perturbed
walker (cf. Assumption 4). Recall that S.(t) denotes the semigroup in L*(1) generated by L{).
By applying Lemma 3.2 with C, := D(L.ny), we get that S,(¢) satisfies the identity (23).

Due to the following proposition, we are in the setting of Section 3. Indeed, the unperturbed
Markov process in Section 3 is the environment viewed from the unperturbed walker X,, and
L§) can be thought of as the perturbed form of Ley:
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Proposition 9.1. Assumption 7 is satisfied when the operators LE) and Ley, play the role of L,
and L in (22), respectively.

Proof. By Assumption 5, p is stationary for the environment seen by the unperturbed walker.
For what concerns the Poincaré inequality, we observe that for any f € D(Ley) it holds

- (fv LCWf);l. = _(fv Lenvf)u - (fv Ljumpf)u > _(fv Lenvf)u = yVarM(f) s (62)

since

1 , -y, Ty
— (f L = 5 3. / @™ ””;( 2O e — fa] = 0.
y

Due to Remark 3.1, p is ergodic for the unperturbed environment viewed from the walker.
Finally, as already pointed out, identity (23) is satisfied. [

Having Theorem 5, Proposition 9.1 and Proposition 5.2, Items (i) and (iv) of Theorem I
become trivial (for Item (iv) apply in particular (28) and (42)). Below we prove Items (ii) and (iii).

9.2. Proof of Theorem 1-(ii)

By Item (i) we know that u, < @. We prove that u© < . by means of the criterion given in
Theorem 5-(iv). Fix n € £2,¢t > 0 and B C {2 measurable. Recall (cf. Section 3) that IE”ff) [P,]
is the law of the environment viewed from the perturbed [unperturbed] walker, and P;™ is the
law of the dynamic environment. Given t = (#;,t, ..., ) wWithO <t <t <--- < <t and

Y =1 Y2, .-, Vi) We set

k
At ) = B [ty ig0r € B) - [ [ e Tyt 03
i=1
and we define A(z, X) similarly, with r(-, -) instead of r(, -).
By the construction of the process given in Section 8 we have

00 e—At(At)k ¢ ‘ ,
IP’(,;?)(nr € B) = Z ! Z / dt / dt - / dn Ac(t, X)’ (63)
k=0 ’ Y12y V0 1 1

and a similar formula relates P,(n, € B) to A(z, y).

We first assume that (10) is satisfied. If IE”ff)(nt_e B) = 0, then by (63) A(z, y) = 0 for almost
every choice of 71, .. ., t; and for each choice of yj, ..., y. Then the same holds for A(t, y) and
by the analogous of (63) in the unperturbed case we conclude that P, (n, € B) = 0. Hence the
criterion given by Theorem 5-(iv) is satisfied and p << ..

Let us suppose now that there are subsets V, V, satisfying properties (a), (b), (c) in Item
(ii). If P,(n, € B) > 0, by the analogous of (63) in the unperturbed case we conclude that
there exist t = (t,t, ..., %) and y = (y1, ¥2, ..., yx) such that A(z, y) > 0. In particular,
YisY2,---5 Yk € V and P‘;"V(tyal _E B) > 0 where y = ¥ —+ .. _|__yk For SlmphCIty of
notation we take k = 1 (the argument can be easily generalized). By condition (c) we can write
y1 =2z1 + -+ + z, with z; € V.. By condition (b) and since Pf’“v(rya, € B) > 0, we conclude
that A.((#1, ..., %), (21,...,2)) > O for each choice of (#, 1, ..., t,). This together with (63)
implies that ]P’(,f)(r;, € B) > 0, hence by Theorem 5-(iv) we get u < [Le.
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9.3. Proof of Theorem 1-(iii)

We refer to the construction of the random walk (X ,(E)),Zo given in Section 8. It is convenient
here to identify the Poisson point process 7 = {t; < f, < f3 < ---} with the Poisson
process N = (N,);>0 having 7 as set of jump times. Moreover, also for later uses, it is
convenient to enlarge the random sequence (Uy)r>1 by adding Uy, with (Uy)r>o i.i.d. Further,
we define the function V : Ry — [0, 1] by setting V; := U for s € [, tr+1), with the
convention 7y := 0. Without loss of generality we can assume that the product probability
measure P, introduced in Section 8 (with the modification due to Uy) is defined directly on the
product measure space © = D(R; 2) ® D(R,; [0, 1]) ® D(R,; N), whose generic element
is given by (o;, Vi, N;)i>0. Next, for (a, o) € [0, 1] x {2 we introduce the measurable functions
hgf)(a, o):=1(a € I(y,0)) fory € Z¢, and h'(a,0) := ) yhg,a)(a, o).

Consider the filtration F;, t > 0, on © defined by

YEZ

Fi=o0(og:5s >0)Vvo(V, Ng:s el0,t]). (64)

Due to [8, Thm. T25, App.A.2], (F;);>0 is a right continuous filtration. We denote by (.7:",),20
its completion w.r.t. P,, i.e. F; = F; VN where N is the o-algebra of all events on @ with
‘P,-zero measure. Due to [8, Thm. T25, App.A.2] (]:",)tzo is right continuous, and therefore it is
a filtration satisfying the so-called usual conditions.

Setting 71, = Ty() Oy, the construction presented in Section 8 implies that

t
X© = / WOW,, 0 )dN,, V120,  Pras. (65)
0
We claim that

t
M, =X\ — / jOmods,  1=0, (66)
0

is a vector-valued martingale w.r.t. to the filtered probability space (6, (F;);>0. Pp). Indeed, this
follows from [23, Theorem 9.12] since F,(t), m, there are simply 1 — e/, and j® (recall
that Zy oy fot |y|re(y, -) is uniformly bounded by our assumptions, and this allows to check the
hypothesis of [23, Theorem 9.12]).

Note that, due to Assumption 3, j®(n) = Y yr.(y, n) is a well defined bounded function.

Claim 1. P,-a.s. it holds limHooMt/t =0, for u¢-a.e. n.

Before proving the above claim, we conclude the proof of Theorem 1-(iii). Recall that
the trajectory (1, := Tr,)01)i=0 sampled according to P, has law P®). We know that P")-
a.s.t”! fot ds j®)(n,) converges to . (j©) (cf. Corollary 1 and Theorem 1-(i)). Hence for i,-a.e.
n we have that 1= [ ds j©(n,) — w.(j®) w.r.t. P,. This limit together with the above claim
and with (66) allows to conclude that X\¥'/t — 11.(j©) P,%—a.s.

Proof of Claim 1. We fixi € A{l, ...,d} and let M,(i) be the ith coordinate of M,. We point out
that M, (and therefore also M,(')) is a square integrable martingale. This follows from (66): since

2
we have assumed that (4) holds with n = 2, it is simple to check that &,(| X ,(8)| ) < +oo for any
t > 0, while j(g)(-) is uniformly bounded.



L. Avena et al. / Stochastic Processes and their Applications 128 (2018) 3490-3530 3513

Due to (4) with n = 2, the functions m® () = >, vire(y, n) and V() = Z‘,yl re(y, 1)
are uniformly bounded. Then, by [23 Theorem 9 14] (note that F,(s) and A(f) in
[23, Theorems 9.12, 9.13] are given by 1 — ¢=** and fo j®(n,)ds, respectively), we have that

t
W), = [ s,
0

As the dynamic environment is an ergodic process, P,-a.s. it holds (M®),/t — u,(v®) €
(0, +00) (use (4) with n = 2). At this point, by applying the LLN for square integrable
martingales (cf. [28, Thm.1]), we conclude that M,(')/t — 07Py-as. for pg-ae. 1.

10. Proof of Theorem 2, Theorem 3 and Lemma 2.6
10.1. Proof of Theorem 2
Define G, as the o-algebra on {2 generated by (1, : |x|, < n). Then the smallest o-algebra

containing each G, is the standard Borel o -algebra G on {2.
Let h € L'(n). By Lévy’s upward theorem (cf. [42][page 134]), as n — oo it holds

w(h|G,) — w(h|G) = hin L'(w). (67)
We then claim that, for any local function f, it holds
Jim u(hr, f) = ). (68)

To prove our claim, we need to show that lim, |, .ot (A7 [ f — £(f)]) = 0. Equivalently we need
to show that lim,|, o (AT, f) = 0 if w(f) = 0. In particular, we can restrict the proof to the
case f local function with zero mean. We can write

ulhte f) = plh — wh|G)lte ) + 1 (uh|Ga)te f) - (69)

By (67), given ¢ > 0 we can find n large enough that u(|h — w(h|G,)|) < e. Fix such n.
Note that since p is translation invariant we have u(z, f) = w(f) = 0, which implies that
w (u(h|G)Ty f) = Cov, (u(h|Gy), Ty ). Then (69) gives

(e O < | flloopt(h — u(h1GD) + |Cov,(i(h|Gn), To £

< N1 fllsce + [Covyu(u(hlGa), 7 £)] -
At this point, using (13), we conclude that

(70)

limsup|p(ht, ) < || flloos.

[x]—>o00

By the arbitrariness of ¢ we get our claim.
Having the above claim, Theorem 2 becomes immediate. Indeed, it is enough to take & =
dug/dup. Then (68) becomes equivalent to (14).

10.2. Proof of Lemma 2.6

Recall the coupling introduced in Section 8. Since the rates r(-, n) do not depend on 7, for
n € {2, under P,, X. and o. are independent. Therefore, fixed a local function f,t e R;, n € £2,
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we have
W@l =Y & lxmy f(Teyo)] = Y Py(Xy = DELS (Tr4y00)]
yezd yezd
= > PyX, = PE[f(ry00)]
yezd
= Y Eeallx=y f(100)] = Eepy [F ()]
yezd

10.3. Proof of Theorem 3

Recall the definition of the functions in (25) and that [E, denotes the expectation for the
environment seen by the unperturbed walker starting from n, that is, the Markov process with
generator (60). To shorten the notation, we set f, := f o 1, forall x € Z4.

The proof of Theorem 3 is based on the following technical result:

Lemma 10.1. If S(¢)(g o 7,) = (S(t)g) o T, holds for any g local, t > 0, x € Z¢, then for all
n>0, f: 2 — Rlocal function and n € {2, it holds

Lstwso= [ an [Can. [Tan Y p
0 0 0

zeB(R)"F!, §e(0,1)+!

(71)

n+1
X En [(l_[ ;8 (Zia T(S-z)[,'l]nt—lil)> f(S-Z)[nJrl] (77!):| >

i=1
where |8| = Z”H(l 8i), 8-y =0b1z1+---+6;zi, 620 =0and ty =t.

Formula (71) has to be thought with no time integration in the degenerate case n = 0.
Proof. For simplicity of notation, as in (39), we set g,+1(¢) := S;”)(t) f(m),n > 0. The proof is

done by induction on n and relies on the following two identities (based on the definition of L.,
gn41(t) and Assumptions (i)® and (iii) in Theorem 3):

Legim) = Y Polz, ME, [f(xn) — f1)] (72)
zeB(R)
Legrnm =3 Fe(zo.m) / dn By [Legatn) (zam—r) = Legat)) ()| - 73)
20€B(R) 0

Trivially (72) corresponds to (71) for n = 0. Let us now assume (71) holds for n — 1, where
n > 1, and deduce that it holds for n. By the induction hypothesis we get

, [Lega(t) (x:0mr) / s / drs.. / n Y Y
ZEB(R)”5601

xE [ T2 M-ty [(l_[ Te\Zis T(é-Z)u—untlffi))ﬂﬁ-z)[n] (nfl)]]' (74)

i=1

8 Note that Assumption (i) can be restated as [E, ( [y r],)) =E;,; ( f (11,)) for any local function f and x € Z¢.
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By Assumption (i) in Theorem 3 and the Markov property applied at time ¢ — ¢;, we can rewrite
the expectation in the r.h.s. of (74) as

n
En [Em—rl [(H Pe (Zi > Too+@-2)pi—1y Tt —1; )) fzo+(8-z)[n] (ﬂt1 )]]
i=1

n

= [En [(l—[ ;S (Zi > Too+@S-2)p—1y Me—1; )) fzo+(5-z)[n1 (nt)]] .

i=1

If we set (2},25...,2,,) = (20,21,-..,24) and (8,8, ...,8,,) = (1,81,82,...,8),
recalling the convention #; := ¢ we can write

n

7 (20, 77)(1_[ T (Zi » T2o+@-2)i—1) nt—ti))fzo+(8-z)[n] (771)

i=1
n+1
A ’
= 1_[ Te (Zi’ 7(5’-z’)[,-71]’7f—ti71) S ey (nf) .
i=1

Coming back to (74) the above observations imply that

t
Z 7e(20, 77)/0 dn E, I:ilegn(tl) (Tzontftl)jl

z0€B(R)

is given by the r.h.s. of (71) where the sum among § is restricted to § € B(R)"*! with §; = 1. By
the same arguments, we get that

Z ;:a(ZOs U)A dn En I:I:sgn(tl) (UHI)]

z0€B(R)

is given by the r.h.s. of (71) where the sum among § is restricted to § € B(R)"*! with §; = 0. To
get the thesis is now enough to invoke (73). U

We can now get our estimates for the convergence. To simplify the notation, in what follows
we write |-| for the uniform norm |-|,,. Unless otherwise stated, the constants do not depend

on f.

Claim 2. It is enough to show that for all n, t, x,
(Ct)n

' e B2 lxI+0s1 (75)
n!

‘u(isSi")(t)fx)

for some 6, > 0, 65, C, Co(f) € Ry not depending on n, t, x (possibly depending on €, y ).

< Co(f)

Proof of Claim 2. We need to show that
o0
> / dr p(LeSP 0 £:)
n>0 0

since the L.h.s. equals u.(f;)—u(f) by (9). Notice that, in addition to (75), by (42) we can bound

Gty
n!

< Ci(fe ", (76)

[ (Lesw )| < e I£1. (77)
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‘We can estimate

> /O Carn(Lsoor)|

n>0

< Co(f) Z/Ooodr (%e—%‘)"%’) A (e—yfﬂ), (78)

n!
n>0

where Co(f) = Co(f) Vv (e]l fI)- Let @ € (0, 6,/(C + 03)). The sum in the right-hand side above
can be estimated by

olx| 00
Z/ dt ﬂe_ezlxl"'eﬂ + Z/ dte= V! (e1)"
0 ! —

n alx| n!

n>0 n>0

n n+1
C((Ol—tfll))‘ 6792\x|+93a\x| + /OO dt e*(l/*s)t
n . o

n>0 x|

1

o~ (r—onlxl
y—e
Therefore we can indeed choose 6’ > 0 as in (76). [

< ief(ezfothan)\xl 4

We now move to prove (75). We claim that, in view of Lemma 10.1, it is enough to show
that there exist 6, > 0,C,6; € R, suchthatVn > 1,Vt =ty >t > --- > t,,Vz € B(R)",
Vzu+1 € B(R), V8 € {0, 1}, we have:

n+1

’EM [(1_[ Fe (Zi’ T 2i—1 n’_ti—l)) (fx-&-(B/»z)[n]-&-z,Hl (m) - fx+(6’-z)[,,] (m))] ‘

i=1

(79)
< C/(f)cne—Qz\xH-O:;t .

To see why this is enough, consider the sum indexed by the (n + 1)-uples § € {0, 1}**!
appearing in (71) and reindex it by gathering together the two terms sharing the same first n
coordinates. To use (79), we set &’ to be the corresponding n-coordinate vector. The integrals and
sums contribute at most a factor ’n—",(Z(ZR + 1)?)"*! and therefore we get (75) from (79) (changing
the value of C). A

In order to prove (79), we abbreviate

n+l1

I = 1—[ Te (Zia T(&z)[[_]]ntft,v_])’ Afe = fx+(8-z)[n]+z,,+1 (77:) - fx+(8-z)[n] (771)-
i=1
To conclude we need to show that E, [IIA f,] < C'(f)Cre talxI+0st,

Let B(x) = |x|/5. Given o € {0, I}Zd we write ¢ for the configuration obtained from o by
periodizing o restricted to the box B(28(x)) (for simplicity of notation we assume B(x) to be
integer). Recall that in Section 8 we have built the random walk X. as a function F (0., T, U)
of the environment trajectory o., Poisson times 7 (with parameter 1) and uniform random
variables U/ (these last objects defined on a probability space with probability measure P,,).
Let (f(s)szo =F ((&S)SeRJr, T, Z/{) and let N be the cardinality of 7 N [0, ¢]. By the definition
of F and since the jump rates have finite range R and support of size R, we have for any u < ¢
that | X,| < NR and X, = F (0., 7,U) depends on o. only through (GS‘B((NH)R)) Note

s€[0,¢]°
that N is a Poisson variable with parameter At and in particular P(N > k) < e ktHe=DM Hence,
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taking k = B(x)/R — 1, for x large enough it holds P,(G) > 1 — ee PW/RHE=DM yhere
G = {X, =X, € B(B(x)) Vs <1}.
Let us set

n+1

1= 1_[ Te (Zi’ T -1+ Xy U’—li—l)’

i=1

fo = fx+(6~z>[n1+zn+1+)?, (Gt) - fx+(5-z)[,11+)~(t (Ut)

and let us introduce the event B = {f(,_,l, R f(,_,n, X, € B(B(x))}. Since G C B it holds
,PM(B) > 1— eefﬂ(x)/R+(€71))\t_

Since II, Af,, 1, ﬂx are bounded uniformly in x (respectively by R"*!, 2| flle0, R"*1,
2|l f llso), Writing X = (f(,_,l, e, )?,_,n, f(,) and yo = 0, we can estimate

B, [HAf ]| < |EJIAf gl + C(f)R"H e PO/ Rte=Dt
— &L T AT G| + C(f)R" =PI/ Rte= it
< |E,LTT AT, Lg]| + 2C(f)R™! =P Rte=Die
= ‘ Z EJIT Afdg ]| 4 2C(f)R" e PO/ RteDM
yeB(BCoyH

| Y EMIALPUE =yl0)2)
yeB(B(x)" 1
+ ZC(f)RrH—le—ﬂ(x)/R-‘r(e—l)At
| Y EMAR Y TR&=0omlen)|
Yn+1€B(B(x)) YEB(B(x))"

+ zc(f)Rn+le—ﬂ(x)/R+(e—l)lt ,

where

n+l1
II = 1_[ rg(Zj, 7(5-2)[i71]+yi7101*ﬁ—1) )
i=1

Afe = fer@Dmtanst (Ut) = fx4 G-t (Ur) ’

and C(f) = 2e|l flo-
By definition, X depends only on (os)s;<, restricted to B(28(x)) (and therefore the same
holds for PM()~( = y|(05)s<t))s n depends only the process restricted to B((n + 1)R + B(x))
and Af, on B(x,(n + )R + L + B(x)) C B(x,(n + DR + 2B(x)) (for x large, where
B(x,r) = x + B(r)). We note that B(x, (n + 1)R + 28(x)) and B((n + 1)R + 28(x)) have
uniform distance |x| —48(x) —2R(n + 1), so that by finite speed propagation of the environment

process, if |x| — 48(x) — 2R(n + 1) > «t (where « is the constant appearing in the definition of
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finite speed propagation),
E,[HAf.] < ( > E;""[Afx]EZ"V[ > TP.X=. yn+1)|(os)sgz)]‘
Yn+1€B(B(x)) YEB(B(x))"
+ 2C(f)Rn+1e—ﬁ(x)/R+(e—1)xt + (2B(x) + 1)Rn+lC(f)e—é(lx\—4ﬂ(x)—2R(n+l)) (80)
— 2C(f)Rn+1e*ﬂ@)/R‘HE*l)A[ + (zﬂ(x) + 1)Rl‘l+1C(f)679(\x|74/3()6)721?(114’1))
< zc(f)Rn+1e*lX\/SR#»(efl))nt + CReZR@C(f)(RezRe)n679|x\/6 ,

where the equality follows from IECHV[A fx] = 0 (since u is translation invariant), we have
estimated ||Zy€B(ﬁ(x)),,HP (X = (¥, Ynt+)|(05)s<t)]lo by R" and the constant ¢ is such that
Qu/5 + 1)e /5 < ¢=0u/6,

On the other hand, if |x| — 48(x) — 2R(n 4+ 1) < kt, we can estimate

ETAf] <20 fllooR™" = 21| fllo R*FVR™HD

x|—4B(x (81)
< 2| fllo RO R—E55

In both cases (80) and (81), we find an estimate of the form (79), which concludes the proof.

1
+xt < 2”f||DOR2(R2)n€7‘X|%+tK1nR .

11. Proof of Theorem 4-(i)

Recall the notation of Sections 8 and 9.3. We introduce the probability measure P, =
[ 1e(dn)P, on the space ©. We write Q for the image of P,, induced by the map 6 >
(04, Vi, Ni)iso = (t <s)c7,, Vi, Ni)i=o € 6. Note that the projection of Q along the first
coordinate is simply ]P’(S) To stress this property, we write (1,, V;, N;);>0 for a generic element
of probability space (6 Q) since usually we set 77, := 7, 0;.

Given ¢t > 0, we define H; = a(ng, Vi, Ny : s € [0, It]) as o-algebra on ©. Then we write
H, for the augmented filtration w.r.t. Q following [21, Def.7.2, Sec.2.7]. Since (15, Vi, Ny)i>0 18
a strong Markov process, by [21, Prop.7.7, App.A] the filtration (7-_[,),20 on (O, Q) satisfies the
usual conditions.

By the martingale representation in (66) and since v(g) = p.(j®) (cf. Theorem 1-(iii)), the
position of the walker centered with its asymptotic velocity can be written as

X —v(e)y = M, + / ds [[O0s) — (G = M, + A(f), (82)
0

where (A;I,),zo is a martingale w.r.t. (O, (7-_[,),20, Q) and A,(f) is the additive functional
introduced in Section 7 associated with the function f(1) = j® (1) — u.(j®). Note that, by
Assumption 3, the vector-valued function f is a bounded continuous function on {2 with u.(f) =
0. In particular, following the proof of Proposition 3.6, for each coordinate i =1, ..., d, we can
find g € D(L,) such that f/ = —L,g', thus leading to the decomposition

t . )
/0 fimods = M" + R, (83)

where M = gi(n,)—gi(no)—fé ds L.g'(n,) is a martingale and R! = —g'(1,)+g' (1) satisfies
the conclusion of Lemma 7.2. As a consequence, we have that
d
X0 —ver =Y MOe+ R, M= N+ M, (84)
i=1
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Due to Lemma 7.2, to get the thesis we only need to apply [25, Thm. 2.29, Chp. 2], which
will show the invariance principle for the martingale term. Due to the definition of M,, M, (see
also (65) and (60)), the martingale clearly has stationary increments on (€@, Q) and is square
integrable (see the discussion after (66)). It remains to show that for any i, j = 1,...,d,
(MD MDY, /n converge as. and in L' to D,(i, j) = E[Mf’)ij)], denoting by E the
expectation w.r.t. Q. By the parallelogram identity, it is enough to show that (M© + M), /n
converge a.s. and in L' to Effs)[(MY) + Mf’))z].
To this aim we set M, := M,(i) + M,(j) and observe that

MT+S:MZ+MSOQS Vt,szoy (85)

where 6; is the time-translation on @ at time s. Due to the martingale property, we have
E[M,, = M}IH,] = E[(Myy; — M)*1H,] = E[M}|Ho] 06, . (86)

By the definition of M, it follows easily that E[M?2|H,] is o(no)-measurable. To simplify
the notation, we write Fy(ng) for E[M?I?-_lo], thus allowing to write E[/\/l%ﬂ — M?I?—L] =
F;(n;). On the other hand, by [37, Thm. (31.2), Chp. VL.6.31], (M), is the limit of X§ in
the weak (L)) topology of L'(6, Q) as the mesh of the partition S goes to zero, where
X = Z,’-':IE[M?’_ - M,2i,1|7‘_lt,-_1] for a partition § = {to =0 < t; < --- < t, = t}.]

By what we just proved, we can write X = > '_ F,_,._,(1,_,). As a byproduct, we deduce
that, given ¢, s > 0, it holds

Mg = M)+ (M);06,  Q-as. (87

Moreover, we get that (M), depends only on (7;,)s<,, more precisely that (M), = E[(M),|G]
where G, is the o-algebra on © generated by {n, : s € [0, t]}. Indeed, by definition of weak
limit and since X is G;-measurable, we have

E[(M);€] = lim E[ 54¢] = lim E[SEL¢ | G,1] = E[(M),EL€ | G11]. (88)

for any bounded random variable £ on ©. Since E[(M),E[§|G/]] = E[E[(M)|G]¢].
we conclude that E[(M),&] = E[E[(M),|G]€] for any & as above, thus implying that
(M>t = E[(MMQ,]

At this point, one can deduce that (M), /n converges a.s. andin L' to E (M%) = E}fs) [(M ()£
M,(j))*] by the same arguments used in the proof of Lemma 7.1.

Remark 11.1. Note that for 1 <i # j < d, the martingales M,(i) and M,(j ) have common jumps
if the rate r.(y, -) is positive for some y € Z< of the form y = Z?zlcie,- with ¢; # 0 # c;.
Hence, in general, they are not orthogonal, resulting into a non-diagonal diffusion matrix D,.

12. Proof of Theorem 4-(ii)

It remains to show the non-degeneracy of D, under the extra hypotheses that L.,y and L.y
are self-adjoint in L,(u), and that (4) holds with n = 4. We refer to the notation introduced

9 [37, Thm. (31.2), Chp. VI.6.31] is stated for the compensator of submartingale of class (D), on the other hand for
any fixed T > 0 the process M?AT is uniformly integrable and therefore it is a submartingales of class (D) (combine
[23, Thm. 7.32] and [37, Lemma (29.6), Chp. V1.6.29]).
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in the previous section and in Section 8. One consequence of the previous proof is that
limt_mo%Varﬂs [X,(’“’) el = lim,_mo%é'ﬂg((M, - e)?), where Var,, denotes the variance w.r.t.

P,... On the other hand, it holds £, (M, - €)*) = £,.((M - €),) = t{e, D.e) (for the last identity
see the conclusion of the previous section). Hence, to prove the non-degeneracy of D, it is enough

to show that lim;_, o, % Var,, [X ,(8) . e] is bounded away from zero.

Along this proof we will heavily use the coupling and the notation introduced in Section 8.
‘We further define nl(g) = Ty()0 and n; == Tx,0;.

Denote by (H,;),>0 the filtration on © with H; = o(ns, Vs, Ny : s € [0,t]) as in Section 9.3.
Fixed a vector e € R?\ {0} and an integer T > 0, define the discrete-time martingale (M )o<p<r
as (cf. (66))

M =€, [X;f) : eI'H,,] - & [X(;) . e]

T—n T
=X e+ / S:()j Py ds — / Se(5)j(n) ds,
0 0

with j(n) = 3 za(y - @re(y, m), n € 2. Since
Var,,, [X(TE) . e] =&, (Varl(fg) [X(TE) e ‘ Ho]) + Var,, (EMS [X(TE) . e‘ HO]) ,

by using the above martingale, the stationarity of the perturbed process under p., and the
semigroup property, we can estimate

T
2
&) (¢) (&)
Var,, [X{) | = &, [(XT ce—& [ X -e]) } - 2_1:5”5 [(M] — mP_)]
T—n T—n+1 2
Epe [(Xif’ e+ /O Se()j ) dr — /O Se(t)jf)(n)dt> } (89)

r 2
=&, [(A(f) +5,) } ,

n=1

Il
g

1
AP =X e - / Se()j Oyt
’ (90)

T—n
BY, = / dr (5.0 ) — B [$:0j0 )] )
0
Note that in the derivation of the last equality in (89) we have used that
Se(a+ D00 =B [S.0j0 ™).

We want to show that A(f) and Bgfln are “e-close” to their unperturbed counterparts A; and
By_, defined as

1
A= Xy e / S(t) ()t
T—n ’ O
By, = /0 dt (S()je(m) — By [S@)jo(n)])
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where

jemy =Y (y-eor(y,m, new, 92)

yezd

is the unperturbed analogous of the function j®) in Theorem 1. Note that due to Assumption (4)
with n = 4 it holds || j.||l.c < +00. Having (89) the rest of the proof is divided in three main
steps:

Claim 3. There exists §(¢) going to zero as $(g) — 0 (recall (19)) such that

2
&, [(A(f) + B?ﬂn) } > &, [(Ar + Br_n)?] — 8(e) (93)
forany T, n.

Claim 4. There exists a positive constant C such that
e

Epe [(A1+ Br_y)?] = € [(A1 + Br—)*] - Co— (94)
forany T,nand e < y.
Claim 5. It holds
& [(Xr -] = (€, 1X7 - e))”)
lim > 0. 95)
T—+00 T

We postpone the proof of the above claims to Sections 12.1, 12.4 and 12.5, and explain how
to conclude. First we note that, as in the derivation in (89), for the unperturbed processes we can
write

T

> & (A + Br)?] = &, [(XT e —& X7 - e])z] . (96)

n=1

Therefore, by combining (89), Claims 3 and 4, we get that

Var,, [X;” ~e] > &, [(Xr-e?]—n ((5,, (X7 -e])z) —(Ce/(y —e)+8(eNT. (97

Thus, by using (97) together with Claim 5 and choosing B(¢) small enough, the non-
degeneracy of the diffusion matrix is proven.

Before moving to the proofs of the above three claims we collect some technical facts that
will be repeatedly used below.

Lemma 12.1. There exists a function F(c, n,t), where ¢ > 0, n is a positive integer and t > 0,
n
such that sup, . o€, (|X§”| ) < Fle,n, 0)if Yy cpalyI"sup,core(y, m) < c.

Proof. We consider the extended Markov process on 2 x Z¢ x R, with Markov generator

Lof,%,0):=Len f(1. 5,0+ Y re(y, e[ f (0. x + 3, £+ |y) = £(1.x, 0]

ye 7d

(98)
+ Y Asup re(y, ©) — re(y, T f (0, x, £+ |yD) = f(n, x, 0)].
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Note that £, acts as L) on functions f depending on 7, x only, while on functions f = f(£)

itreads L, f(€) = Zng(v)[f(ﬁ +v) — f(f)], where v varies in V := {|y| : y € Z%} and
Re(v):= Y supre(y, ).

Hence, the extended Markov process with generator £, gives a coupling between the joint
process with generator nggre and a jump process (Z;);>o on R} with jump probability rates
R.(-). Moreover, by construction, Z, > |X,(8)| for any time ¢ if Zy > |X((f) |. Starting the extended
Markov generator at (17, 0, 0), we conclude that &, (|X,(£)|n) <EzZ".

It remains to bound E(Z!). To this aim we define A, := ) R.(v) < c and take a sequence
Uy, Uy, ... of i.i.d. random variables taking value in V with P(U; = v) = R.(v)/X.. Our main
hypothesis implies that E[U]'] < Z},EZ[[ |yI"sup,cre(y, n) < c. Taking an independent Poisson
process (N;);>o of parameter A, and setting S, := U, 4 - - + U, the process Z; can be written as
Sw, - In particular, we have E(Z]") = Z,ZOIP’(M = k)E[(U; + - - - + Uy)"]. By Holder inequality,
itholds (U +---+Up)" < k"’l(Uf +---+U}). Hence, we conclude that E(Z}') < E[U]']E[N/']
leading to the thesis. [J

Since the positivity of D, has to be proved for ¢ small enough, in the rest of this section we
assume ¢ < y /2 so that the term 1/(y — ¢) is uniformly bounded.

Lemma 12.2. The expected values £, [Aﬂ, Ene [Aﬂ, EI(LES)[(A(IS))A‘] are bounded from above
uniformly in €. The expected values €,[By_, ] €..[Bi_,]. E/i)[(B(Tginy] are bounded from

above uniformly in e, T, n.

3

Proof. The term &, [Aﬂ is bounded since fol S(t)j.(n)dt is bounded in uniform norm (as j, is
bounded in uniform norm), and since £, [(X 1 ~e)4] is bounded (as application of modified version
of Lemma 12.1 with a suitable choice of the rates and due to our condition (4)). Similarly, one
gets that £, [A4] and &,,, [(A®)"] are bounded from above uniformly in &.

‘We now consider the term SM[Bﬁfn] = EAB;HI]. To this aim we first observe that, given
k > 1 and generic numbers a, as, ..., ax, by Schwarz inequality it holds (Zf:la,-)z <
chzlizaiz, where ¢ = 221%2 By applying twice the above inequality we conclude that
(XF_ )" < X %2, This implies that

i=

k k
(Y @) < ACsup lai)? Y i%? (99)
i=1 I=isk i=1
Let us come back to Br_,. Note that in the definition of Br_, we can replace j. by j o=
Je — 1(je). Since j, is uniformly bounded, we have sup,.o[|S(#)jllc < o0. By applying (99)

then we have
EM[B;_H] <cC Ti: iﬁEM[ [/ | (S(r)j(m) —E, [S(r)j(m)])dz]2 } . (100)
i=l1 =

Above and in what follows, C, C’ denote positive universal constants (not depending from
T, n, ¢) that can change from line to line. By applying Schwarz inequality we have

T—n

rhes. of (100) < CZiﬁEﬂ{fil<S(t)f(n1))2dt—i—filIEn[(S(t)]_’(m))z]dt]. (101)
i=1 = =
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By stationarity and by the spectral gap of L.y in L?(w) (cf. (62)), we then conclude that

T—n i T—n i
rhs. of (101) < C2i6/u(dn){/ I(S(t)f(n))zdt] - cZi6/ 1||S(z)j||2
i=1 - i=1 =

I (102)

T—n i T—n
< C’Zi6/ e dr < 'Y %D < 400,
=1 Vi~l i=1
By combining (100), (101) and (102) we get the thesis, i.e. E, [B;fn] is bounded from above
uniformly in 7" and n.
By similar arguments, considering now the perturbed process, one can prove that E() [(BY in)4]
is bounded from above uniformly in 7', n and ¢.
We now consider E,,, [B%fn]. By (32) and since both wu(f) and || f — w(f)|| are bounded by
| £l for any f € L*(u), we can estimate

B[] = e (B [B,) = (1 + IR B ]I

By Schwarz inequality, we have [[E.[BZ_, || < [u@nE,[B7_,] = EM[(BT_n)4]. Hence
to conclude we invoke that EH[(BT,H)A‘] is bounded from above uniformly in 7,n as just
proven. [

12.1. Proof of Claim 3

Let us start with a simple computation showing that, to get (93), it is enough to prove that
there exists 6(g) — 0 as B(¢) — O such that

EMS[(A(I‘E) _ Al)z] < 8%(e), (103)
Eﬂg[(Bfln — BT_H)Z] < 82e). (104)

Below C will denote a positive constant, independent from n, T, €.
Since a?> — b = (a — b)(a + b) we can bound

2
(A7 +B2,) = A1+ Br)?

< [|a¥ - 4|+ |2, - Br

] : ‘A(f) +BY A +Br,| .

Using the above bound and Schwarz inequality we conclude that

Eu. [(A0+BE,) = (41 + Br)’|

X 172 X 12
<c& [P —a| " el B, - Br?]
1

-
| ]2. Due to Schwarz inequality and Lemma 12.2

where ¢ = &, [|A(f) + B;fln + Ay + Br_,
we conclude that ¢ is bounded uniformly in 7', n, €. In particular, to get Claim 3 it is enough to
have (103) and (104).

Let us now prove (103). We set c(¢) := supnzylfg(y, n)| and

E,={n =n, Yk <nandt, €[0,1]}, forn > 1. (105)

Tk
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We then observe that, writing ¢ = n(s) it holds'®

Poniy # 0| Ea) = Y Py(Un € L(y. AI(y. 0))

yezd
< D (LG O+ Ol =201, ) N (. DD (106)
yezd
=17 Y 1RGOl S A7 ee)
yEZ"

Hence we can estimate
c(8) —
Py (35 € [0, 1]s.t. 1 # n,) ZP (i, # 1oy | EnYPy(En) < —= X_;PH(E,»

(&) « ( ) B
== ;7’ )t € [0, 1]) = —5 (T N0, 11) = c(e). (107)

In particular, P, (X f) # X1) < c(e). By Schwarz inequality and Lemma 12.1, which allows with
(4) to bound the fourth moments of X © X, uniformly in ¢ (for X; one has to slightly change
the notation in the lemma), we get

Eu [ (X = X?] = Cet)'”. (108)

We point out that [|j — jello < sup, > |y[17e(y, )| < B(e). Note that c(¢) < (). Hence,
given ¢t € [0, 1], using (107) we get

5.0 = S| = | [1061 = o ]|

< BEP (17 = 0) + U Nloo + e o) Py (1 # 1:) < C Ble). (109)

In particular, by (108) and (109), the Lh.s. of (103) is bounded by CB(g) + Cc(e)'/?. This
concludes the proof of (103).

In order to get (104) we abbreviate
b =800 (0F) . b= Sje(m)-

Then B;fln = OT "B — ﬁf)(bﬁs)))dt and Br_, = fOT_n(b, — E,(b,))dt. In particular we can
bound
© :
Sl’«s |:(BT€n - BT—") i|

T—n i
ey i f di€,, [(bﬁ” —EY [67] - (b - E, [b,]))z} : (110)
=1 Yi7l

At this point, to get (104) it is enough to show that there exists a constant w(¢e) going to zero as
B(e) goes to zero such that

2 y—¢
Ene [(bf) —-E® [bﬁs)] — (b, —En[b,])) ] < (yu_)%e*Tﬂ Vi>0.  (111)

10" A denotes the symmetric difference, i.e. AAB := (A\ B)U (B \ A).
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Since given any a, b > 0 it holds min(a, b) < +/ab, it is enough to show that the Lh.s. of (111)
is bounded from above both by w?(e)/C and by Ce~" =" /(y — ¢)3. We start with the latter.

12.2. The Lh.s. of (111) is bounded from above by Ce=" =" /(y — &)

We observe that
£, [(bf” —E® [bﬁ”])z] <26, [(bﬁ” - us(jf)))z]
+ 26, [ (G~ EO[5]) ]
= 21 (807 = i) ) 20 (8.0 10— i)

. . Y o\3 e
§4||Je<a>—u£(1§a>)||§o(m) e

(112)

where the equality follows from the semigroup property implying that ng) (b?s)) = S.(t + D(n)
and from the invariance of u, for the environment viewed by the perturbed walker. Moreover,
the last inequality follows from (36).

On the other hand, we have
Eue [ (b = By 100)°] = 20jell oy, [[b0 = By 1B1][] = 2 ellootte (1), (113)

where f(n) = En“bt -E, [bt] |] Now, thanks to (32), we can bound

v

e sl 2 y B 29172
R T LA [ R )l
In particular, we conclude that
C 172
Eu [ (b =By )] = & (b By )] (114)

Reasoning as in (112) (now using directly (21) instead of (36)) we get that the square of the last
factor in (114) is bounded by 4|| j, [|>¢~2"". In particular, (114) can be refined to

c
uc [0 =By )] =~ e (115)

As a byproduct of (110), (112) and (115) we get that the L.h.s. of (111) is bounded from above
by Ce™ =" /(y —¢).

12.3. The Lh.s. of (111) is bounded from above by o(1)

We say that a quantity is o(1) if it goes to zero as S(g) goes to zero. Let us write
b = b =[50 (n") = 5@ (1) ] + [0 (n7) = srje () ]

(116)
+[s@je (1) = swje ]
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Let us deal with the first term in the r.h.s. We can bound

ng[(S 0O (n) = ) (n @)) ] ((S 1)j = S1)j®) )
< 1 ootte (18008 = 0@ )
= Cu(18:0] = SO0 ) + Cety = o7 15.0) = SO D],

<C'y — ) I1S:(1)j® — SO0, < Ce(y — &)™ = 0(1).

Indeed, the first identity follows from the invariance of (nﬁs)),zo under p., the second inequality
follows from (32) and (25), the third one from Schwarz inequality and the last one from (27)with
k=1.

We move to the second term which is bounded in uniform norm by [|S()(j{) — jo)lleo <
||](£) — Jelloo < B(&) = o(1). On the other hand, using that ||S(¢) j.|| oo is uniformly bounded in ¢

and using (107), the £, -second moment of the third term in the r.h.s. of (116) can be estimated
by CP,(m # n) < Cc(e) = o(1).

As a byproduct of the above observations we conclude that £, [(bl(g) - b,)z] = o(1). This
also implies that

- [ (50 [5] -, [b,])z] —&,. [(5,, b bt]ﬂ

= & (&0 —b0?]] = & [0 = 00?] = 01,

By Schwarz inequality we then conclude that the 1.h.s. of (111) is bounded from above by o(1).

12.4. Proof of Claim 4

Let fra(n) = & (A1 + Br_s)’] Then (94) reads pe(fr) = n(fr) = Ce/y = )
This follows from (32) if we prove that pu( sz,”) is bounded from above uniformly in 7', n. By
Schwarz inequality, it is enough to bound from above £,[A}] and &,[B7_, ] uniformly in T, n.
This follows from Lemma 12.2.

12.5. Proof of Claim 5

By standard techniques [12,39] we have the following variational characterization of the
diffusion coefficient of a symmetric walker in reversible environment:

(e, Do) = 3int] =20 (L $) + Y (v e+ e = fl’) ) iy

yezd

where the infimum is taken over local functions f on {2 and where e is any vector of the canonical
basis.

In (117), by definition of the spectral gap, the first term is bounded from below by 2y Var,,(f).
On the other hand, using the inequality (a + b)*> > Ba’® — %bz for B < 1, we get

w(roomly-e+ r@m = rl)
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= B, M- € = T (vl Fem - FoT)

> Bu(r(y, N - €)* — 4supr(y, n)
n

B
—p Var,(f).
Injecting this in (117) and choosing B < 1 so that

2y — st > supr(y,m =0,
I=p =
YEZ

we get (e, Dpe) > 0. Hence, we conclude that (cf. [12, Eq. (2.43)])

1
lim ?@[(XT -6)2] = (e, Doe) > 0. (118)

T—+o00

We claim that
sup i ((5,, X7 - e])z) < 400. (119)
T>0

For simplicity we restrict the proof to 7" integer (indeed, to our final aim this would be enough,
anyway one could extend the thesis to the general case). Due to the Markov property, we get

) [Xr ] = &[S et e~ X o)

=&, [Ti £ (X1 - e)] - TZ_:I &, [snk(xl : e)] . (120)
k=0 k=0

Consider now the function f(n) = &£,(X; - e).
Since S(t) f(n) = &, [5,7, (X, - e)], from (120) we get that

T-1
& Xr -] = kZ_; S()f ().

Note that u(f) = 0 by reversibility and that f € L?*(u) by Lemma 12.1 adapted to the
unperturbed process and by condition (4). By the Poincaré inequality (21) we conclude that
IS fIl < e '] fIl. At this point we have

2 T—-1 5 T-1 T—1 )
(B[ Xr-e] ) = u[ (X swron) | =13 swri? < (3 Iswri)
k=0 k=0 k=0

(121)

S VA &
< 2( —yk) e
<IFPQQ_e™) =15
k=0
thus concluding the proof of (119). Trivially, Claim 5 follows as a byproduct of (118) and (119).
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Appendix. Miscellanea

Lemmas A.l and A.2 have a standard derivation and therefore we omit their proof. Detailed
proofs can be found in [2, Appendix A].

Lemma A.1. Let {2 be a metric space and let v be a Borel probability measure on 2. Then:

(i) The subset C,(12) of bounded continuous functions f : {2 — R is dense in L*(v).
(ii) Let h be a function in L*(v) such that v(hf) > 0 for any f € Cp (2) = {g € Cp(f) :
g > 0}. Then, h > 0 v-a.s.

Lemma A.2. The semigroup S(t), t € R, defined at the beginning of Section 3 is strongly
continuous.

Lemma A.3. In the same setting of Section 3, given a positive constant y > 0, (20) is equivalent
to (21).

The above lemma is usually proven in the reversible case. We give the proof to stress that it
holds even without reversibility.

Proof. For any f e D(L) the map [0, +00) 3 t — S(t)f € L*(u)is C', S(t)f € D(L) and
%S(t)f = LS(¢)f [17, Chap. II, Sec. 1]. In particular, taking f € D(L), by differentiating one
gets

d
EIIS(I)J‘II2 = (LSO f, S)f) + (SO f, LS(@) f) = 2(S@) f, LS@) f) (122)

where (-, -) denotes the scalar product in L?(u) (note that we have used the symmetry of the
scalar product: (g, g') = (g, g))-

We first assume Poincaré inequality (20) to be satisfied and take f € D(L) with u(f) = 0.
By (122) and the Poincaré inequality, one gets

d
EIIS(t)fIIZ =2(SO)f, LS@) f) < =2y IS fII>.

Note that we have used the stationarity of u, implying that u(S(¢)f) = wu(f) = 0. Gronwall
inequality then leads to ||S() f|| < e~*| f]. In particular, (21) holds for any f € D(L) with
u(f) = 0, and therefore for any f € D(L) (observe that constant functions are left invariant by
S(t)). By density of D(L) in L?() one gets (21) for any f € L*(uw).

We now assume (21) to be satisfied and fix f € D(L) with u(f) = 0. By (122) we
have |S)fI?> = |IfI> — 2t(f, —Lf) + o(t) as t | 0. On the other hand, e=2"| f|> =
I £1I7 =2yt f1I> + o(t) as t | 0. Hence the Taylor expansion of (21) implies (20). [

The following lemma extends the probabilistic interpretation of the semigroup S.(¢) given
in (23).

Lemma A.4. Consider the same assumptions of Theorem 5. Then, given f € L*(w), it holds

Se() f(n) =EL(f (1)) pe- as.
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Proof. By Lemma A.1 there exists a sequence (f;,),>1 in Cp({2) with || f,, — f]l = Oasn — oo.
Since S,(¢) is a bounded operator in L?(i1), we get that || S,(t) f, — S.(t) f]| — 0 asn — oo. In
particular, at cost to extract a subsequence, we have S.(¢) f,,(n) — S.(¢) f (n) for u-a.e. n. Since
e < p (by Theorem 5), we conclude that

Se(1) fa(n) = Se(t) f(n) for pe-a.e.n. (123)
On the other hand, by the stationarity of 1, for the perturbed dynamics, we have

e[ [E (fun)) = B (£@0)| ] = e [E (1 fum = £0D)]
= B0 fu(n) — f@l]

d
=umﬂ—fn=u[“

E|f—f|:|<||%||'||f—f||—>0
du " T du " ’

We have shown that the map ]E_(E)( f,,(n,)) converges to the map E?s)( f (n,)) in L'(u,). Hence, at
cost to extract a subsequence, the convergence holds also pt.-a.s. The thesis is then a byproduct
of the last observation, of (123) and the identity (23) applied to f,, € Cp({2) instead of f (which
holds p-a.s. and therefore u-a.s. since p, < @). U
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