Examen final du 15 mai 2017 (1^{re}session)

Durée : 1 heure 30 minutes. Tous documents, calculatrices, téléphones et autres objects connectés interdits. La qualité et la rigueur de la rédaction seront prises en compte.

1. Résoudre l'équation différentielle suivante sur $\mathbb R$ par la méthode de la variation de la constante

$$x' + 4t^3x = 2te^{-t^4}$$

Combien y a-t-il de solutions qui tendent vers 0 en $+\infty$? qui tendent vers 0 vers $-\infty$? qui valent 2 en $t = \sqrt{11}$?

- **2.** Soit la matrice $A = \begin{pmatrix} -7 & 9 \\ -4 & 5 \end{pmatrix}$.
 - a) Montrer que $v=\left(\frac{3}{2}\right)$ est vecteur propre de A pour une valeur propre que l'on précisera.
 - b) Trouver $d \in \mathbb{R}$ tel que le vecteur $w = \begin{pmatrix} 1 \\ d \end{pmatrix}$ tel que Aw = v w.
 - c) Montrer qu'il existe une matrice P inversible telle que $A = PTP^{-1}$ où T est la matrice triangulaire supérieure $T = \begin{pmatrix} -1 & 1 \\ 0 & -1 \end{pmatrix}$.
 - d) Calculer $\exp(tT)$, puis $\exp(tA)$ pour tout $t \in \mathbb{R}$.
 - e) Soit (S) le système différentiel suivant

$$(S) \quad \begin{pmatrix} x \\ y \end{pmatrix}' = A \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} 3e^{-t} \\ 2e^{-t} \end{pmatrix}.$$

Chercher une solution particulière où $\begin{pmatrix} x \\ y \end{pmatrix}$ est de la forme $t^n e^{-t} \begin{pmatrix} a \\ b \end{pmatrix}$ avec des constantes a, b et n que l'on précisera.

- f) Résoudre complètement le système (S).
- 3. Une masse m est suspendue à un ressort de constante de raideur k. Sa position verticale autour du point d'équilibre y satisfait l'équation différentielle :

$$(E_0) \quad my'' + ky = 0$$

On pose $\omega_0 = \sqrt{k/m} > 0$.

a) Résoudre l'équation (E_0) . Décrire qualitativement le mouvement de la masse.

1

- b) Montrer que si $y:t\mapsto y(t)$ est solution de (E) alors l'énergie mécanique $\mathcal{E}(t)=\frac{1}{2}my'(t)^2+\frac{1}{2}ky(t)^2$ est constante au cours du temps.
- c) On applique une force périodique à la masse de sorte que maintenant, l'équation différentielle satisfaite par y est

(E)
$$my'' + ky = \cos(\omega t)$$
.

Résoudre l'équation (E). On distinguera suivant si ω est différent ou égal à ω_0 .

d) On suppose maintenant qu'on n'applique plus la force périodique et que le ressort n'est plus parfait : il y a du frottement. L'équation différentielle vérifiée par y est

$$(E_1) \quad my'' + 2m\lambda y' + ky = 0$$

avec $\lambda > 0$. Montrer qu'alors l'énergie mécanique est strictement décroissante si sa valeur initiale est non nulle. Discutez suivant la valeur de λ l'ensemble des solutions de (E_1) et dessinez dans chaque l'allure des solutions.