TD 2. Fonction Gamma

Exercice 2.1. Soit $B_n(r)$ la boule de rayon r dans l'espace \mathbb{R}^n et soit $v_n(r)$ son volume. Montrer que $v_n(r) = r^n v_n(1)$ et que

$$v_n(1) = 2v_{n-1}(1) \int_0^1 (1-t^2)^{\frac{n-1}{2}} dt = \frac{\pi^{n/2}}{\Gamma(n/2+1)}.$$

Exercice 2.2. Pour tout n, on définit $J_n =]-(n+1), -n[$. On sait d'après le cours que la fonction Γ admet un unique extremum sur J_n , noté x_n . Montrer que la suite $(x_n + n)$ est monotone. On pourra utiliser le fait que la dérivée logarithmique $\psi = \Gamma'/\Gamma$ de la fonction Γ est strictement croissante sur chaque J_n et que ψ vérifie une certaine équation fonctionnelle découlant de celle satisfaite par Γ (voir (\star) plus bas).

Exercice 2.3. On pose $a = (1+i)\sqrt{\frac{\pi}{2}}$ et $g(z) = \frac{e^{-z^2}}{1+e^{-2az}}$

- a) Calculer a^2 et montrer que $g(z) g(z+a) = e^{-z^2}$.
- b) Montrer que les pôles de g sont les nombres de la forme $(k+\frac{1}{2})a$ pour $k \in \mathbb{Z}$ et calculer le résidu de g en $\frac{a}{2}$.
- c) Pour r > 0, on note C_r le bord du parallélogramme de sommets -r, r, r + a, -r + a, parcouru dans le sens direct. Calculer

$$\oint_{C_r} g(z) \mathrm{d}z$$

- d) Montrer que l'intégrale de g sur les côtés non horizontaux du parallégramme tend vers 0 lorsque r tend vers l'infini.
- e) En déduire la valeur de l'intégrale

$$\int_{-\infty}^{+\infty} e^{-x^2} \mathrm{d}x,$$

puis celle de $\Gamma(\frac{1}{2})$.

Exercice 2.4.

a) Soit $T = \{z \in \mathbb{C} : \operatorname{Re} z > 0\}$. Démontrer que

$$(\star)$$
 $\forall z \in T$, $\Gamma(z+1) = z\Gamma(z)$

- b) Montrer que si g est une fonction holomorphe (méromorphe) non-constante et 1-périodique sur \mathbb{C} , alors $g\Gamma$ vérifie la même équation fonctionnelle. Construisez une telle fonction g. Cela montre que l'équation fonctionnelle (\star) ne caractérise pas la fonction Γ .
- c) Soit $S = \{z \in \mathbb{C} : 1 \leq \text{Re}\, z < 2\}$. Montrer que Γ est bornée sur S.
- d) Soit une fonction holomorphe F sur T qui est bornée sur S et vérifie (\star) . Montrer que $v = F a\Gamma$ avec a = F(1) admet un prolongement holomorphe sur \mathbb{C} .

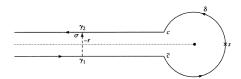


Figure 1 – Contour d'intégration pour l'intégrale de Hankel

- e) Montrer que $q: z \mapsto v(z)v(1-z)$ est une fonction holomorphe sur $\mathbb C$ 2-périodique et que q(z+1)=-q(z).
- f) Montrer que v est bornée sur $S_0 = \{z \in \mathbb{C} : 0 \le \operatorname{Re} z \le 1\}.$
- g) En déduire que q est identiquement nulle, puis que $F = a\Gamma$.

Exercice 2.5. (Hankel's loop integral) Le but de cet exercice est de donner une représentation intégrale de la fonction Γ qui soit valable sur $\mathbb{C} \setminus (-\mathbb{N})$. Cette formule est appelée intégrale de boucle de Hankel.

a) Montrer que pour tout z = x + iy et $w \in \mathbb{C}^- = \mathbb{C} \setminus \mathbb{R}^-$,

$$|w^{-z}e^w| \le e^{\pi|y|}|w|^{-x}e^{\operatorname{Re} w}.$$

b) On fixe un nombre s > 0 et $c \in \partial B_s(0) \setminus \{s, -s\}$. Soit S une bande verticale $[a, b] + i\mathbb{R}$. Soit $\gamma = \gamma_1 + \delta + \gamma_2$ le contour orienté représenté sur la figure 1. Montrer que $\lim_{t\to\infty} |t-c|^q e^{-\frac{t}{2}} = 0$ pour tout $g \in \mathbb{R}$. En déduire qu'il existe $t_0\mathbb{R}$ tel que

$$\forall z = x + iy \in S, \forall w = \gamma_2(t) = c - t, t \ge t_0, \quad |w^{-z}e^w| \le e^{\pi|y|}e^{-\frac{t}{2}}.$$

- c) Déduire de la question précédente que l'intégrale $\frac{1}{2i\pi} \oint_{\gamma} w^{-z} e^{w} dw$ converge absolument et uniformément sur tout compact de \mathbb{C} et donc définit une fonction holomorphe h sur \mathbb{C} .
- d) Montrer que h vérifie h(1) = 1 et h(-n) = 0 pour tout $n \in \mathbb{N}$.
- e) Montrer que $z\mapsto h(z)e^{-\pi|\mathrm{Im}\,z|}$ est bornée sur S.
- f) On introduit la fonction F définie par $F(z)=\pi\frac{h(1-z)}{\sin(\pi z)}$ pour tout $z\in\mathbb{C}\smallsetminus(-\mathbb{N})$. Montrer que F s'étend en une fonction holomorphe sur \mathbb{C} .
- g) Montrer que F satisfait (\star) de l'exercice précédent.
- h) Montrer que pour tout $z=x+iy\in\mathbb{C},\ |2\sin z|\geq e^{|y|}-e^{-|y|}$. En déduire qu'il existe une constante A telle que pour $z=x+iy,\ 1\leq x<2$ et $y\neq 0$,

$$|F(z)| \le \frac{A}{1 - e^{-2\pi|y|}}.$$

i) Conclure que pour tout $z \in \mathbb{C} \setminus (-\mathbb{N})$,

$$\Gamma(z) = \frac{1}{2i\sin \pi z} \oint_{\gamma} w^{z-1} e^{w} dw.$$