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Abstract. In this note we analyze the performance of a simple root-finding algorithm in uniform attachment
trees. The leaf-stripping algorithm recursively removes all leaves of the tree for a carefully chosen number of
rounds. We show that, with probability 1− ε, the set of remaining vertices contains the root and has a size

only depending on ε but not on the size of the tree.

1. Introduction

The problem of localizing the root vertex in various random tree models goes back to Haigh [9] and recently
has been intensively studied; see [3–6, 10, 12, 13, 16, 17].

In this paper we are interested in root-finding algorithms for random recursive trees (also known as uniform
attachment trees). A random recursive tree Tn of size n is defined as follows. T1 consists of a single vertex
with label 1. Then, we inductively obtain Ti+1 from Ti by connecting a new vertex labelled i + 1 to an
independently and uniformly chosen vertex v ∈ [n]. An equivalent way of viewing this tree is as uniformly
chosen increasing tree of size n: these are rooted trees with vertex set [n] whose labels increase along any
path from the root to a leaf (see, e.g., [2] or [8, Example II.18]).

Write Tn for the set of all unrooted trees with vertex set [n]. A root-finding algorithm for trees of size n is
a function A : Tn → 2[n] which is invariant to relabeling: if T, T ′ ∈ Tn and T ′ can be obtained from T by
a permutation of vertex labels, then A(T ) = A(T ′). Its error probability is P{1 ̸∈ A(Tn)}, where we abuse
notation and write A(Tn) to mean A(T ) where T is the unrooted tree corresponding to Tn. The size of A is
max(|A(T )| : T ∈ Tn). The set A(T ) is often called a confidence set for the root vertex.

The paper [4] showed that there exist root finding algorithms with low error probability whose size is
independent of n; more precisely, there exists c > 0 such that for all ε ∈ (0, 1/e), for all n ≥ 1, there exists a
root-finding algorithm A for trees of size n with error at most ε and size at most exp(c log(1/ε)/ log log(1/ε)).
This result is proved via a rather delicate analysis of the maximum likelihood root-finding algorithm, which
first lists nodes in decreasing order of their likelihood of being the root (given the shape of the tree but not
its label information), then returns the k most likely nodes, for a suitable value of k. In [4] a simpler method
was also analyzed that ranks vertices according to their Jordan centrality, defined by the size of the largest
component of the forest obtained by removing the vertex from the tree. This method is guaranteed to output
a confidence set whose size is at most (11/ε) log(1/ε) and contains the root vertex with probability 1− ε.

The purpose of this paper is to show that a different algorithm which we term leaf-stripping, which is very
simple to describe and easy to implement, also yields root finding algorithms with small error probability and
with size independent of n. The algorithm proceeds as follows. For n ∈ N define

mn =
⌈
e log n− 3

2
log log(n+ 1)

⌉
; (1)

then for k ∈ N, define the leaf-stripping algorithm Rk(Tn) as follows.

Algorithm 1. Let T (0) = Tn. For 1 ≤ i ≤ mn − k, let T (i) be the tree obtained from T (i−1) by removing all
its leaves. Then let Rk(Tn) be the vertex set of T (mn−k).
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2 LEAF STRIPPING ON UNIFORM ATTACHMENT TREES

We have defined the algorithm only for Tn since that is the only tree we apply it to. Note that the
algorithm succeeds if and only if there are at least two edge-disjoint paths of length at least mn − k starting
from vertex 1 in Tn. Equivalently, 1 ∈ Rk(Tn) if and only if 1 has at least two children u, v in Tn such that
the subtrees rooted at u and v have height at least mn − k− 1. This observation allows us to explain the role
of the constant mn; it is known from [1] that the expected height of Tn of size n is mn +O(1), and that the
height is exponentially concentrated around mn. Therefore, stripping leaves mn times will erase most or all
of the tree. We instead strip mn − k times for a suitably chosen k = kε, to ensure that on one hand, the
resulting set is not too large, and on the other hand, the root is not likely to be removed. Our main results
state that leaf-stripping yields a family of root-finding algorithms for which the size and the error probability
are polynomially related.

Theorem 1. There exist c, γ > 0 and c′ > 0 such that for all ε ∈ (0, 1), setting k = ⌈c log(2/ε)⌉, for all n
sufficiently large, Rk(Tn) satisfies

P
{
1 ∈ Rk(Tn) and |Rk(Tn)| ≤ ε−γ

}
≥ 1− ε .

Theorem 1 shows that the performance of the leaf-stripping algorithm does not deteriorate as the size n of
the tree grows and the size of the confidence set Rk(Tn) may be bounded by a function of the probability of
error only. Note however, that the dependence on the probability of error is inferior to that of the maximum
likelihood mentioned above. In particular, while ranking vertices by their likelihood of being the root produces
a confidence set that is smaller than any power of 1/ε, Theorem 1 only implies a bound that is polynomial
in 1/ε. Theorem 2 below implies that this polynomial dependence is necessary (though we do not claim
optimality of the obtained exponents).

Theorem 2. There exists γ′ > 0 such that for all ε > 0 sufficiently small, for all n sufficiently large, for all
k ∈ N for which P{1 ∈ Rk(Tn)} ≥ 1− ε, we also have P{|Rk(Tn)| ≥ ε−γ′} ≥ 1− ε.

Remarks.

• In Theorem 1 the size |Rk(Tn)| is not deterministically bounded, but we may easily modify the
leaf-stripping algorithm to obtain an algorithm for which both the size and error probability are
bounded. Specifically, consider the algorithm R′

k defined by setting R′
k(Tn) = Rk(Tn) if Rk(Tn) ≤ ε−γ

and setting R′
k(Tn) = ∅ otherwise. Then R′

k has size at most ε−γ and error probability less than ε.

• Sreedharan, Magner, Grama, and Szpankowski [18] address the problem of (partially) recovering the
labeling of a Barabási-Albert preferential attachment graph. The first step of the procedure analyzed
in [18] is a “peeling” algorithm whose aim is to recover the root. When the graph is a tree, peeling
is equivalent to the leaf-stripping method analyzed here. In [18] (Lemma 6.1 in the supplementary
material) it is claimed that peeling deterministically finds the root vertex, which is not the case. In
this note we offer an analysis of the peeling algorithm for uniform attachment trees. The analogous
problem for preferential attachment trees – and more generally for preferential attachment graphs –
remains a challenge for future research.

• Navlakha and Kingsford [14] proposed a general framework for recovering the past of growing
networks from a present-day snapshot. As a general principle, they propose greedy likelihood for
root reconstruction. Greedy likelihood, at each step, deletes the vertex which is most likely to have
been added most recently, breaking ties uniformly at random. In a uniform attachment tree, greedy
likelihood deletes a uniformly random leaf at each step. This method is closely related to but not
equivalent to leaf stripping. We conjecture that greedy likelihood has similar performance to that of
leaf stripping, though we do not see an easy way to extend the analysis of this paper to an analysis
of the greedy likelihood algorithm.

1.1. Notation. Given a rooted tree t and a node v ∈ t, we denote its distance from the root by ht(v). We
further denote the height of t by ht(t) := maxv∈t ht(v); the subtree of t rooted at v by tv,↓ (defined as the
subtree containing all vertices u ∈ t for which the path between u and the root contains v); and the parent of
v by par(v). Some more general notation includes: for any set A, let A0 = ∅. The set of positive integers
is denoted by N, and we write [n] = {1, . . . , n} for any n ∈ N. We omit ceilings and floors for legibility
whenever possible.
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2. Preliminaries

2.1. Embedding in the Ulam–Harris tree. We introduce another representation for increasing trees that
relies on the Ulam–Harris tree U [15]. This is the infinite ordered rooted tree with node set

⋃∞
j=0 N

j (root ∅
and nodes on level j of the form n1 · · ·nj) and edges from n1 · · ·nj to n1 · · ·njn for all j ≥ 0 and n ∈ N; see
Figure 1.
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Figure 1. The Ulam–Harris
tree U , with zones 1 through 4
in different colours.

An ordered rooted tree can be canonically embedded in U . Similarly, an increasing tree can be embedded
in U by ordering vertices according to their labels: given an increasing tree t on [n], we define a map
φ = φt : [n] → U by

φ(1) = ∅, (2a)

φ(v) = n1 · · ·njnj+1 =⇒ φ−1(n1 · · ·nj) = par(v) < v, (2b)

φ(v) = n1 · · ·njn, n > 1 =⇒ φ−1(n1 · · ·nj(n− 1)) < v. (2c)

Condition (2a) ensures that the root of t is mapped to the root of U ; (2b) ensures that parent-child relations
in t are preserved in U , which in particular implies that ht(φ(v)) = ht(v) for all v ∈ t; and (2c) ensures that
for any node in U , its left sibling is a vertex in t with a smaller label. Then {φ(i)}i∈[n] is a size-n subtree of
U , and clearly t can be recovered from the map φ; we sometimes refer to t as the increasing tree encoded by
φ. See Figure 2 for an example increasing tree and its embedding into U .

We define the zone of a node u = n1 · · ·nj ∈ U , u ̸= ∅, to be z(u) = n1 + · · ·+ nj . A node being in zone
z + 1 corresponds to it being either the first child of a node of zone z or the next sibling of a node in zone
z. In particular, the number of nodes of U in zone z is |{u ∈ U : z(u) = z}| = 2z−1. See Figure 1 for an
illustration of zones 1 – 4 of the Ulam–Harris tree.

We now embed the random recursive tree Tn on [n] into U via φTn . This embedding helps us analyze the
sizes of subtrees. Indeed, note that due to the Pólya urn structure of the subtree sizes of Tn, we have that for
vertices v ∈ [n] in zone z(φTn

(v)) = z,

|T v,↓
n | d

= ⌊· · · ⌊⌊nU1⌋U2⌋ · · ·Uz⌋, (3)

where U1, . . . , Uz are i.i.d. Uniform[0, 1] random variables. Indeed, for zone 1, the unique vertex with
z(φTn

(v)) = 1 is v = 2. Since the two sets of vertices that respectively connect to vertex 1 and vertex 2

have sizes distributed according to a Pólya urn with two colours, we have |T 2,↓
n | d

= ⌊nU⌋ (see for instance [11,

p. 177]). The general result follows straightforwardly by induction using the fact that 1− U
d
= U .

In particular, (3) implies that the subtree sizes of two nodes in the same zone have the same distribution.

2.2. Tail bounds on the height of random recursive trees. In order to prove our main result, we use
exponential tail bounds on ht(Tn), see e.g., [1] or [7, Theorem 6.32], which we state as follows: there exist
α > 0 and 0 < α′ < 1/(2e) such that for all n ∈ N sufficiently large and for all k ∈ N,

P{|ht(Tn)−mn| ≥ k} ≤ αe−α′k. (4)

3. Proof of Theorem 1

Recall from (1) that mn = ⌈e log n− 3
2 log log n⌉. Recall that Rk(Tn) is the vertex set of the tree obtained

from Tn after performing mn − k rounds of leaf stripping. For simplicity, we write Rk ≡ Rk(Tn).
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Figure 2. An instance of an increasing tree on {1, . . . , 14} and its
embedding via φ into the Ulam–Harris tree.

3.1. Detection of the root. First, we need to make sure that leaf stripping will “detect” vertex 1, that is,
we show that P{1 ∈ Rk} ≥ 1− ε.

Lemma 3. There exist c, c′ > 0 such that such that for all ε > 0, for all n ∈ N, if k ≥ c log(c′/ε), then
P{1 ̸∈ Rk} ≤ ε.

Proof. Recall that T 2,↓
n is the subtree of vertex 2, and let T 2,↑

n be the tree Tn with T 2,↓
n removed, i.e., the

subtree of vertex 1 excluding vertex 2 and its descendants. It is straightforward to see that, conditionally given
their sizes, both T 2,↑

n and T 2,↓
n are distributed as random recursive trees and are (conditionally) independent.

Then, we have the following lower and upper bounds:

P{1 ̸∈ Rk} ≥ P{ht(T 2,↑
n ) < mn − k} (5)

and

P{1 ̸∈ Rk} ≤ P{ht(T 2,↑
n ) < mn − k or ht(T 2,↓

n ) < mn − k}

≤ 2P{ht(T 2,↑
n ) < mn − k},

(6)

where the second inequality comes from a union bound, and the fact that T 2,↑
n and T 2,↓

n are identically
distributed when seen as rooted unlabelled trees. Therefore

P{1 ̸∈ Rk}
P{ht(T 2,↑

n ) < mn − k}
∈ [1, 2]. (7)

From this we see that controlling (6), that is, controlling P{ht(T 2,↑
n ) < mn − k}, is sufficient to prove the

lemma. From (3) we have that |T 2,↑
n | = n− |T 2,↓

n | d
= ⌊nU⌋ d

= Unif(1, . . . , n− 1) and since T 2,↑
n is distributed

as a random recursive tree conditioned on its size,

P{ht(T 2,↑
n ) < mn − k} =

n−1∑
j=1

1

n− 1
P{ht(Tj) < mn − k}

≤ 1/ek/3 +
1

n− 1

n∑
j=n/ek/3

P{ht(Tj) ≤ mn − k}.

For j ≥ n/ek/3 we have |mn −mj − e log(n/j)| ≤ 1+ o(1); so, using the upper tail bound from (4), we obtain
that

P{ht(Tj) ≤ mn − k} ≤ P{ht(Tj) ≤ mj + 2− k(1− e/3)} ≤ αe−α′k (8)

for some α, α′ > 0. Thus,

P{ht(T 2,↑
n ) < mn − k} ≤ e−k/3 + αe−α′k

and therefore

P{1 ̸∈ Rk} ≤ c′e−α′k

for some 0 < c′ ≤ 4α. The result follows by taking k = c log(c′/ε), where c = 1/α′. □
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Figure 3. Image of the tree on {1, . . . , 14} from Figure 2 under the
tree flipping involution ℓ−1 ◦ f2 ◦ ℓ, i.e., flipping up to zone z = 2.

3.2. Size of the confidence set. We must now prove that |Rk| is small, with high probability.

Lemma 4. For any c, c′ as in Lemma 3, there exists γ > 0 such that for all ε > 0, for all n ∈ N, if
k = c log(c′/ε), we have P{|Rk| > ε−γ} ≤ ε.

Proof. We use the embedding of Tn into U by φ = φTn ; recall from (3) that under this embedding, if for

v ∈ Tn, z(φTn
(v)) = z, then |T v,↓

n | d
= ⌊· · · ⌊nU1⌋ · · ·Uz⌋.

Let S = {v ∈ [n] : z(φTn
(v)) = 4k, ht(T

v,↓
n ) ≥ mn−k} be the set of vertices of Tn in zone 4k with subtrees

of height ≥ mn − k. Note that if S is empty, then Rk only includes vertices in zones 1, . . . , 4k − 1, so

|Rk| =
4k−1∑
z=1

|{v ∈ [n] : z(φTn
(v)) = z}| ≤ 1 +

4k−1∑
z=1

2z−1 = 24k−1, (9)

and k = c log(c′/ε) suffices for |Rk| = ε−γ , where γ ≥ 4c log 2 > 8e log 2.
On the other hand, if S is non-empty, then since the height of Tn is at least ht(v) +mn − k for all v ∈ S,

we have

P {ht(Tn) ≥ mn + k | S ̸= ∅} ≥ P {∃v ∈ S : ht(φTn(v)) ≥ 2k | S ̸= ∅} . (10)
The heart of the proof then lies in the following claim:

P {∃v ∈ S : ht(φTn
(v)) ≥ 2k | S ̸= ∅} ≥ 1

2
. (11)

We complete the proof that |Rk| is likely to be small before proving (11). Using (11), we have the following:

P{|Rk| ≥ 24k} ≤ P{S ̸= ∅}
≤ 2P{ht(Tn) ≥ mn + k | S ̸= ∅} ·P{S ̸= ∅}
≤ 2P{ht(Tn) ≥ mn + k}

≤ c′e−k/c,

where the first inequality is due to (9), the second is by multiplying by 1 ≤ 2P{ht(Tn) ≥ mn + k | S ̸= ∅}
using (10) and (11), and the fourth is due to the lower tail bound from (4), with c and c′ as in Lemma 3.
Therefore, assuming (11) we have that P{|Rk| > ε−γ} ≤ c′e−k/c = ε, which proves the lemma. □

In order to prove (11), we define an involution on increasing trees which, intuitively, flips vertices in zone
4k at large heights ht(φTn(v)) to lower heights, while preserving their subtree structure. See Figure 3 for
an illustration of the involution applied to the tree from Figure 2 (where for clarity we illustrate it flipping
vertices in zone 2 rather than in a zone 4k for k ∈ N); note how the heights of vertices 3 and 5 are swapped,
while their subtrees are preserved. We formalize the involution below.

We first define the child-sibling bijection ℓ : U 7→
⋃∞

k=0{0, 1}k by ℓ(∅) := ∅ and, for n1, . . . , nj ∈ Nj ,

ℓ(n1 · · ·nj) = 10n1−110n2−1 · · · 10nj−1. (12)

This corresponds to the classic bijection between an ordered rooted tree and its child-sibling binary tree
representation: ℓ relabels each node according to its identifying path in the binary tree. For instance, ℓ(1) = 1
and ℓ(12) = 110; see Figure 4. Note that under the image of ℓ, all non-root nodes in U have first coordinate
in the child-sibling bijection equal to 1. Also, note that the zone z(v) of any v ∈ U \ {∅} is the length of ℓ(v).
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Figure 4. The Ulam–Harris tree (left) and its corresponding child-
sibling binary tree (right) given by the bijection ℓ in (12), both with
zones 1 through 4 illustrated in different colours.

For each j ≥ 2, we now define the tree flipping involution which “exchanges the roles of child and sibling
for all nodes in the first j zones in the child-sibling encoding, and preserves the subtrees of nodes in zone j”.
Formally, define fj :

⋃∞
k=0{0, 1}k →

⋃∞
k=0{0, 1}k by fj(∅) = ∅, fj(1) = 1, and

fj(i1i2 · · · ij−1ijij+1 · · · ik) = i1i2 · · · ij−1ijij+1 · · · ik, (13)

where i = 1− i for i ∈ {0, 1}. See Figure 5 for an illustration for j = 3.
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Figure 5. Illustration of f3: the second and third coordinates are
flipped for every node. Notice that for each node in zone 3, its subtree
remains identical under the map.

Then, the final involution b : U → U that we consider is

b := ℓ−1 ◦ f4k ◦ ℓ, (14)

and, given an increasing tree t on [n], we define a function φ = φt : [n] → U by

φt(v) = b(φt(v)). (15)

The following lemma ensures that we indeed obtain a involution between increasing trees. See Figure 3 for an
illustration of the involution applied to the tree from Figure 2, with f2 rather than f4k for clarity.

Lemma 5. For t an increasing tree on [n], the map φt encodes an increasing tree on [n].

Proof. We check the conditions (2a), (2b) and (2c) for φ = φt. Since b(∅) = ∅, (2a) is satisfied, and since
b(u) ̸= ∅ for u ̸= ∅, 1 < b(φ(v)) for all 1 ̸= v ∈ [n]. Then, for (2b) and (2c), it suffices to show that, for any
w ∈ [n− 1] with φ(w) = n1 · · ·nj for some j ≥ 1, for any v, v′ ∈ [n],

i) if φ(v) = n1 · · ·nj1 then w < v;

ii) if φ(v′) = n1 · · ·nj−1(nj + 1) then w < v′.
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Note that by definition, ℓ(φ(u)) = f4k(ℓ(φ(u))) for any u ∈ [n]. First, suppose n1 + · · · + nj + 1 ≤ 4k. If
v, v′ ∈ [n] satisfy (2b) and (2c), then since

ℓ(φ(w)) = 10n1−1 · · · 10nj−1 , ℓ(φ(v)) = 10n1−1 · · · 10nj−11 and ℓ(φ(v′)) = 10n1−1 · · · 10nj−10,

we have
ℓ(φ(w)) = 11n1−101n2−1 · · · 01nj−1,

ℓ(φ(v)) = 11n1−101n2−1 · · · 01nj−10 = ℓ(φ(w))0, and

ℓ(φ(v′)) = 11n1−101n2−1 · · · 01nj−11 = ℓ(φ(w))1.

That is, φ(v) and φ(v′) are respectively the right sibling and the first child of φ(w) in U . Therefore, by (2c)
and (2b) for φ, we have w < v and w < v′, as required.

Now, if n1+· · ·+nj+1 > 4k, by expanding analogously, we have ℓ(φ(v)) = ℓ(φ(w)1 and ℓ(φ(v′)) = ℓ(φ(w))0.
Then, φ(v) and φ(v′) are respectively the first child and the right sibling of φ(w) in U , so w < v, v′. □

We can now apply this function to the random recursive tree Tn. We denote by Tn the increasing tree

encoded by φ := φTn
. Let S = {v ∈ [n] : z(φ(v)) = 4k, ht(Tn

v,↓
) ≥ mn − k} be the set of vertices in zone 4k

that have tall subtrees after applying φ. The involution φ has the following properties:

Lemma 6. Let Tn be a random recursive tree and write φ = φTn
. Then, the random tree Tn encoded by the

map φ := φTn
, and the set S satisfy the following properties:

i) For all v ∈ [n], z(φ(v)) = z(φ(v)), i.e., the zone of all vertices stays the same,

ii) For all v ∈ [n] with z(φ(v)) = 4k, Tn
v,↓

= T v,↓
n , and S = S.

iii) For all v ∈ [n] with z(φ(v)) = z ∈ [4k], ht(φ(v)) + ht(φ(v)) = z + 1. In particular, if z(φ(v)) = 4k
and ht(φ(v)) ≤ 2k + 1 then ht(φ(v)) ≥ 2k.

Proof. For (i), recall that for v = n1 · · ·nj ∈ U , z(v) = n1 + · · ·+ nj . Also, ℓ(v) is a string of length z(v) for
all v ∈ U . The statement then holds since f4k does not change the length of the string ℓ(φ(v)).

For (ii), we argue similarly to the proof of Lemma 5. Let v ∈ [n] such that z(φ(v)) = 4k. For any w ∈ T v,↓
n ,

we can write φ(w) = φ(v)n1 · · ·nk for some k ≥ 1. Then, ℓ(φ(w)) = ℓ(φ(v))10n1−1 · · · 10nj−1. Since ℓ(φ(v))
has length 4k, writing ℓ(φ(v)) = f4k(ℓ(φ(v))), we have

f4k(ℓ(φ(w))) = f4k(ℓ(φ(v)))10
n1−1 · · · 10nj−1 = ℓ(φ(v))10n1−1 · · · 10nj−1.

Therefore φ(w) = φ(v)n1 · · ·nk, i.e., w is mapped to a node in the same relative position in U with respect

to v. As this holds for all w ∈ T v,↓
n , we have Tn

v,↓
= T v,↓

n . Combined with (i), this also implies that S = S.
For (iii), notice that ht(φ(v)) is the number of 1’s in ℓ(φ(v)), which has total length z. Then, applying f4k

and noting that the first coordinate stays fixed, we see that ℓ(φ(v)) has 1 + z − ht(φ(v) 1’s. □

Armed with φ and the properties established in Lemma 6, we complete the proof.

Proof of (11). Since b is an involution on the set of increasing trees on [n], and due to property (ii) from
Lemma 6, we have that

(φ, S)
d
= (φ, S) = (φ, S); (16)

in particular, φ also encodes a random recursive tree. Furthermore, due to (iii), if S ≠ ∅, then either S
contains some v ∈ [n] with ht(φ(v)) ≥ 2k, or S contains some v ∈ [n] with ht(φ(v)) ≥ 2k. That is, letting
ES = {∃v ∈ S : ht(φTn

(v)) ≥ 2k} and ES = {∃v ∈ S : ht(φ(v)) ≥ 2k}, we have (ES ∪ ES) ∩ {S ̸= ∅} =
{S ̸= ∅}. Therefore, we have

P{ES ∪ ES , S ̸= ∅} = P{S ̸= ∅}. (17)

Also, (16) implies that

P{ES , S ̸= ∅} = P{ES , S ̸= ∅} = P{ES , S ̸= ∅},
so (17) can be rewritten as

2P{ES , S ̸= ∅} ≥ P{S ̸= ∅},
proving (11). □
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4. Proof of Theorem 2

Proof. First, let f(k) : N → R+ be any non decreasing function and consider n′ = ⌊n/f(k)⌋. For any k ∈ N,
for n sufficiently large, we have n′ ≥ n/(2f(k)), so P{|T 2,↑

n | ≤ n′} ≥ 1/(2f(k)). Also, for fixed k we have
|mn −mn′ − e log f(k)| ≤ 1 + o(1) as n → ∞, so from (4), for n large enough,

P{ht(Tn′) ≥ mn − k} ≤ P{ht(Tn′) ≥ mn′ + e log f(k)− 2− k} ≤ αe−α′(e log f(k)−k) (18)

and

P{ht(Tn′) ≥ mn − k} ≥ P{ht(Tn′) ≥ mn′ + e log f(k) + 2− k}. (19)

Recalling from (5) that P{1 ̸∈ Rk} ≥ P{ht(T 2,↑
n ) < mn−k}, it follows that for all k ∈ N, for all n sufficiently

large we have

P{1 ̸∈ Rk} ≥ P{ht(T 2,↑
n ) < mn − k | |T 2,↑

n | ≤ n′}P{|T 2,↑
n | ≤ n′}

≥ P{ht(Tn′) < mn − k}(2f(k))−1

≥ (1− αe−α′(e log f(k)−k))(2f(k))−1. (20)

Setting f(k) ≡ 2, (20) yields that for all k > 0,

lim inf
n→∞

P{1 ̸∈ Rk(Tn)} > 0.

Let

ε0 = min
(
lim inf
n→∞

P{1 ̸∈ Rk(Tn)} : 1 ≤ k ≤ log(2α)/(α′(e− 1))
)
;

we hereafter assume that ε ∈ (0, ε0). Since the theorem only makes an assertion about values k for which
P{1 ̸∈ Rk(Tn)} < ε, we can thus also assume that k ≥ log(2α)/(α′(e− 1))) from now on. Taking f(k) ≡ ek,
this then implies that the lower bound in (20) is at least e−k/4. Therefore, we must take k ≥ log(1/(4ε)) to
ensure P{1 ̸∈ Rk} < ε.

We now prove the polynomial lower bound on |Rk(Tn)| for any k ≥ log(1/(4ε)).
Fix δ > 0. Set K = ⌈(1 + δ)k/4⌉ and n′ = ⌊n/(1 + δ)k⌋ ∼ n/(4K), i.e., f(k) = (1 + δ)k. Let TK be the

subtree of Tn consisting of vertices [K] and consider the K subtrees TK,1
n , . . . , TK,K

n , where TK,i
n is the tree

containing vertex i in the forest obtained by removing edges between vertices in [K]. The vector of subtree
sizes (|TK,1

n |, . . . , |TK,K
n |) is distributed as a standard Pólya urn with n balls of K colours. Therefore,

P

{
#
{
i ∈ [K] : |TK,i

n | > n′} <
K

4

}
≤

(
K

K/4

)
(1/4)3K/4 ≤ 2−K/4 ≤ 2−(1+δ)k/16 ≤ ε/2,

where the final inequality holds provided ε > 0 is sufficiently small, using that k ≥ log(1/(4ε)). Next, using
that log f(k) = k log(1 + δ), we have from (19) that

P{ht(Tn′) ≥ mn − k} ≥ P{ht(Tn′) ≥ mn′ + ek log(1 + δ) + 2− k} ≥ 1/2

for δ > 0 such that log(1 + δ) < 1/e, and for ε sufficiently small, since med(ht(Tn′)) = mn′ +O(1).
To combine these bounds, let S = {i ∈ [K] : |TK,i

n | > n′}. On the event {|S| ≥ K/4}, since
the events ({ht(TK,i

n ) ≥ mn − k})i∈[K] are independent conditioned on the subtree sizes, we have that

#
{
i ∈ [K] : ht(TK,i

n ) ≥ mn − k
}
⪰st Bin(K/4, 1/2). We have

P

{
#{i ∈ [K] : ht(T k,i

n ) ≥ mn − k} <
K

8

}
≤ P

{
#{i ∈ [K] : ht(T k,i

n ) ≥ mn − k} <
K

8
∩
(
|S| ≥ K

4

)}
+P

{
|S| < K

4

}
≤ P

{
Bin

(
K

4
,
1

2

)
<

K

8

}
+ ε/2

≤ exp(−K/32) + ε/2 ≤ exp(−(1 + δ)k/128) + ε/2 ≤ ε

for sufficiently small ε > 0, where we again used that k ≥ log(1/(4ε)). On the other hand, if #{i ∈ [K] :
ht(T k,i

n ) ≥ mn − k} ≥ K/8, there are at least K/8 vertices in [K] with large subtree height, which are all
then included in Rk, so |Rk| ≥ K/8 = c′′ε− log(1+δ) for some c′′ > 0. This proves the theorem. □
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