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Abstract
We study the connected components in critical percolation on the Hamming hypercube {0, 1}m.

We show that their sizes rescaled by 2−2m/3 converge in distribution, and that, considered as metric
measure spaces with the graph distance rescaled by 2−m/3 and the uniform measure, they converge
in distribution with respect to the Gromov–Hausdorff–Prokhorov topology. The two corresponding
limits are as in critical Erdős–Rényi graphs.

1 Introduction

1.1 Main results

Fix λ ∈ R and consider the Erdős–Rényi graph G(n, 1+λn−1/3

n ), that is, the graph obtained from the
complete graph on n vertices by independently retaining each edge with probability 1+λn−1/3

n and erasing
it otherwise. Denote by (C1, C2, . . .) the connected components sorted in decreasing order according to
their sizes. A celebrated theorem of Aldous [9] states that n−2/3(|C1|, |C2|, . . .) → Zλ in distribution,
where Zλ = (|γ1|, |γ2|, . . .) are the lengths, sorted in decreasing order, of excursions above zero of the
process {W λ

t −mins∈[0,t]W
λ
s }t≥0 where W λ

t = Wt + λt− t2/2 and Wt is standard Brownian motion.
Our goal is to prove this for percolation on the hypercube, that is, the graph whose vertex set is {0, 1}m

and two vertices form an edge when their Hamming distance is 1. It is not clear for which p ∈ (0, 1) one
can expect such a scaling limit (p = 1/m does not work since it is in fact subcritical). We show that one
should choose p so that the expected component size containing a vertex matches in the two models.

Fix λ ∈ R and consider the Erdős–Rényi graph G(n, 1+λn−1/3

n ) and write κ(λ) := limn E|C(v)|/n1/3

where C(v) is the component containing vertex v (the limit exists by Corollary 3.9). We now turn to
percolation on the hypercube. We write V = 2m and since f(p) = Ep|C(v)| is an increasing polynomial
in p with f(0) = 1 and f(1) = V , we may set pc = pc(λ,m) to be the unique number in (0, 1) with

Epc |C(v)| = κ(λ)V 1/3 . (1)

Theorem 1.1. Fix λ ∈ R and let pc = pc(λ,m) ∈ (0, 1) defined by (1). Consider the ordered connected
components (C1, C2, . . .) of percolation on the hypercube with edge probability pc. Then

V −2/3(|C1|, |C2|, . . .)
(d)−→ Zλ , (2)

where the convergence is with respect to ℓ2.

This answers positively problem (3) in [51, Section 8] (reiterated in [38, Problem 13.3]). Next,
consider again G(n, 1+λn−1/3

n ) and denote by Mi the metric measure space endowed on the vertices of Ci
by the shortest path metric normalized by multiplying all distances by n−1/3, and the counting measure
multiplied by n−2/3. Addario-Berry, the second author and Goldschmidt [3] (see also [4]) proved that
(M1,M2, . . .)→Mλ in distribution, where Mλ is a sequence of random compact metric measure space
and convergence is in distribution with respect to the Gromov–Hausdorff–Prokhorov (GHP) distance on
metric measure spaces; see definitions below. Our second result is that this holds for critical percolation
on the hypercube.
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Theorem 1.2. Fix λ ∈ R and let pc = pc(λ,m) ∈ (0, 1) defined by (1). Consider the ordered connected
components (C1, C2, . . .) of percolation on the hypercube with edge probability pc and let Mi be the metric
measure space on the vertices of Ci with the shortest path metric multiplied by V −1/3, and the counting
measure on the nodes multiplied by V −2/3. Then,

(M1,M2, . . .)
(d)−→Mλ , (3)

where the convergence is with respect to the metric specified by

dist4GHP(A,B) =

(∑
i≥1

dGHP(Ai, Bi)
4

)1/4

, (4)

for sequences of metric measure spaces A = (Ai)i≥1 and B = (Bi)i≥1, and dGHP denotes the Gromov–
Hausdorff–Prokhorov (GHP) distance.

We present the definitions needed to parse Theorem 1.2, notably the GHP distance, in Section 2.1.
By now it is the standard topology of metric measure spaces strong enough to yield distributional limits
of essentially all large scale geometric quantities of the critical components. For example, Theorem 1.2
implies the convergence of the diameter of the i-th largest component, for any fixed i ≥ 1, of the typical
distance or the height seen from a random vertex (rescaled by V −1/3), to the corresponding continuous
random variables. See [3, 10] and also [2, 30, 44] where several constructions of the limit Mλ are given.
It is also strong enough to imply convergence of global quantities involving more than one component,
such as the maximum diameter of connected components, the length of the largest cycle, or the limiting
probability that the diameter of Ci is, say, twice as large as the diameter of Cj , and many more.

Since the results of Aldous [9] and of Addario-Berry, the second author and Goldschmidt [3, 2],
various inhomogeneous percolation models have been shown to exhibit scaling limits as in Theorems 1.1
and 1.2, see [18, 16, 19, 32, 15, 34, 40, 21, 22, 28, 29, 17, 14, 13, 23, 53, 31, 35, 20]. This paper is the
first time where such scaling limits are established in the classical setup of percolation on a deterministic
transitive graph that has a non-trivial geometry. This geometry poses a significant obstacle rendering
all the methods of the aforementioned papers ineffective. For example, the familiar BFS exploration
process is not Markovian in our setup and we cannot use the arsenal of tools from classical stochastic
processes to prove its convergence to Brownian motion with drift. In fact, the convergence of the BFS
process does not follow from our results and we do not know how to prove it. Instead, we provide a
novel method combining the theory of critical percolation in high dimensions with tools from the study of
inhomogeneous percolation. We outline this idea in Section 1.4 and believe that it will have numerous
further applications.

In the rest of this section we give a brief background (Section 1.2), provide a more general theorem
allowing to obtain the same results for critical percolation on other underlying graphs (Section 1.3) such
as high degree expanders of logarithmic girth, and conclude with an outline of the proof together with the
organization of the paper (Section 1.4).

1.2 Background

Percolation on the hypercube was first studied by Erdős and Spencer in 1979 [33]. The first result regarding
the percolation phase transition (the “appearance of a giant”) was obtained in the seminal paper of Ajtai,
Komlós, and Szemerédi [6] where it is shown that a linear size component appears with probability tending
to 1 as m → ∞ when p = 1+δ

m for any fixed δ > 0, see also the work of Bollobás, Kohayakawa and
Łuczak [24] for a detailed behavior in the supercritical phase. When p = 1−δ

m it is not hard to show that
all components are of size that is at most logarithmic in the number of vertices.

Thus, the phase transition occurs around the point 1/m, and it turns out that one can zoom-in
and obtain a much more precise behavior of the phase transition. We refer the reader to [26, 50, 51]
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for a comprehensive explanation of this critical phenomenon and give here only a very brief outlook.
When one fixes pc ∈ (0, 1) as the unique solution to Epc |C| = V 1/3, the critical scaling window is
p = pc(1 + λV −1/3) for λ ∈ R. Outside of this window we expect that the sizes of the largest connected
components should be concentrated. Furthermore, below the window the ratio of the sizes of the two
largest connected components should tend to one, while above the window it should tend to 0 with high
probability. Even though this picture has only been partially proved rigorously (in particular, concentration
is not fully established in the subcritical phase [39] and the second largest component is not understood in
the supercritical case [51]) we do not expect any interesting distributional limits in these regimes.

Inside the scaling window, Borgs, Chayes, van der Hofstad, Slade and Spencer [26] proved that the
largest connected components have size of order Θ(V 2/3) and Kozma and the third author [41] proved
that their diameter is of order Θ(V 1/3) (that is, the size of the largest component rescaled by V −2/3 is
a tight sequence and so is its inverse; similarly for the diameter rescaled by V −1/3). It is also not hard
to argue that the standard deviations of the diameter and the size are also of respective orders Θ(V 2/3)
for the size and Θ(V 1/3) for the diameter. Thus one expects non-trivial scaling limits of the connected
components sizes and metric space structure. The contribution of the present paper, namely Theorems 1.1
and 1.2, is to establish that these scaling limits are the same as the ones of the classical Erdős–Rényi
random graphs obtained in [9] and [3].

1.3 Other underlying graphs

We now describe the basic assumptions we need for the proofs in this paper to work. This yields a more
general class of graphs (that includes the hypercube) under which the conclusions of Theorem 1.1 and
Theorem 1.2 hold. In particular, the assumptions below hold for high degree expander graphs with girth
that is logarithmic in the volume, and for products of complete graphs, see [51, Section 1.5] as well as [51,
Theorem 1.4] and its proof. We conclude that the results of Theorems 1.1 and 1.2 hold for these graphs.

This class of graphs was first defined in [51] and is geometric (for example, not too many short cycles,
good expansion etc.) but is best described by certain random walk conditions that are usually easy to
verify. The non-backtracking random walk (NBRW) is just a simple random walk not allowed to traverse
back an edge it has just traversed. That is, in the first step it chooses uniformly between the m neighbors
of the initial vertex and at any later steps it choose uniformly among the m− 1 neighbors which are not
the neighbor visited in the previous step. We discuss this further in Section 2.3.

We write pt(u, z) for the probability that the non-backtracking random walk starting from u is at z
after t ≥ 0 steps. For any ξ > 0 we define the ξ-uniform mixing time Tmix(ξ) by

Tmix(ξ) = min
{
t : ∀x, y, pt(x, y) + pt+1(x, y)

2
≤ (1 + ξ)V −1

}
.

Theorem 1.3. Let {Hn}n≥1 be a sequence of transitive graphs with V →∞ vertices, degree m→∞
and let λ ∈ R be fixed and set pc = pc(m,λ) as in (1). Assume that there exists a positive sequence αm

with αm → 0 and αm ≥ m−1 such that if we set m0 = Tmix(αm), then m0 = O(V 1/15αm) and

1.

[pc(m− 1)]m0 = 1 +O(αm) , (5)

2. for any two vertices x, y

∑
u,v

m0∑
t1,t2,t3=0

t1+t2+t3≥3

pt1(x, u)pt2(u, v)pt3(v, y) = O(αm/ log V ). (6)

Then Theorem 1.1 and Theorem 1.2 hold for the graph sequence {Hn}.
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The conditions of Theorem 1.3 are verified for the hypercube H = {0, 1}m; we collect here the
relevant references from which Theorems 1.1 and 1.2 follows.

Proof of Theorems 1.1 and 1.2 assuming Theorem 1.3. We check that the assumptions of Theorem 1.3
hold for the hypercube: In [52] the lace expansion is employed to show that for any fixed λ > 0

pc(λ) =
1

m− 1
+O(m−3) , (7)

see also [50, Theorem 1.6] for an elementary proof. The fact that there is no m−2 term is crucial, since by
[51, Lemma 7.1] we have that Tmix(m

−1 logm) = O(m logm) so we take αm = m−1 logm and have
that m0 = O(m logm). This verifies (5) when Hn = {0, 1}n. Lastly, [51, Lemma 7.1] also verifies (6)
for the hypercube.

Remark 1.3.1. Theorem 1.3 does not include the case of the high-dimensional torus, i.e., G = (Zn)
d

where d is fixed and large (or any fixed d > 6 with a spread-out torus). In this case one expects that an
analogue of Theorems 1.1 and 1.2 holds at pc(Zd), that is, at the critical percolation probability of the
infinite lattice. Unfortunately, the approach and techniques used in this paper fail for the high-dimensional
torus in various locations in the proof. For instance, it is crucial for us that the degree tends to∞ and
that pc ∼ 1/m, also, that the triangle condition (15) or (6) are small. These facts are used throughout the
paper in numerous key estimates that are no longer true in the torus case. We plan to address the problem
of critical percolation on the torus in a future publication.

1.4 Outline of the proof and organization

We are led by the intuition that the critical clusters are formed by subcritical clusters coalescing so that the
rate of coalescence of two subcritical clusters is proportional to the product of their cardinality (that is,
according to Aldous’ “multiplicative coalescent” introduced in [9]). Hence we begin by studying large
clusters in the slightly subcritical phase in percolation on H . Recall the definition of (αm)m∈N from
Section 1.3. (In the hypercube we take αm = m−1 log(m).) We set

ps := pc(1− V −1/3α−1/3m ) , (8)

and consider the connected components of Hps . For technical reasons we would like to study only clusters
that are not too small. To that aim we set

Ms := V 2/3α4
m ,

and let Cps,Ms denote the set of components of Hps of size at least Ms. We remark that at ps the largest
clusters are of size Θ(V 2/3α

2/3
m logαm) [39] so Cps,Ms includes them. It will become evident later that as

the clusters “coalesce” the ones of size smaller than Ms do not contribute significantly to critical clusters,
so it is safe to ignore them.

Next we construct two auxiliary random graphs which both have Cps,Ms as their vertex set. The first
is what we call the multiplicative component graph G×. For a component A ∈ Cps,Ms we set weight

wA = |A|V −2/3 , (9)

and let the edge (A,B) in E(G×) be present with probability

qA,B := 1− e−qwAwB , (10)

independently of all other edges where q > 0 is set to be

q = qλ = V 1/3/χ(ps) + λ+ om→∞(1) , (11)
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where χ(p) = Ep|C(v)| is the expected size of the cluster containing v in Hp (by transitivity it does not
depend on v).

The random graph G× is an instance of Aldous’ multiplicative random graph which is a well studied
object. In Section 3, we apply Proposition 4 of Aldous [9], and Theorem 3.2 of Bhamidi, Broutin, Sen
and Wang [14], as black boxes, to obtain that the scaling limits of G×, properly scaled, are Zλ and Mλ, as
defined above Theorem 1.1. A delicate calculation that we perform (in Section 3) for that goal is a sharp
estimate on the second moment of the size of a subcritical cluster (see Lemma 3.7).

It is not clear that the components of G× should be close to critical percolation clusters of H . Note
that conditioned on Hps , the probability that there is a pc-open edge between two clusters A and B of
Hps is precisely

1−
(
1− pc
1− ps

)∆A,B

, (12)

where ∆A,B for the number of edges having one endpoint in A and the other in B. In the complete graph,
we always have ∆A,B = |A||B| so multiplicativity is inherently present in that setup. In the hypercube
it is reasonable to believe that ∆A,B is close to m|A||B|/V ; the latter is just the expectation of ∆A,B if
A and B were two independent uniformly drawn sets of size |A| and |B|. We are unable to prove this
uniformly over all A and B (as one has in the complete graph) but only in the ℓ2 sense, see Proposition 4.6.

Thus, it is natural to take the second random graph, again on vertex set Cps,Ms , with independent edge
probabilities defined by (12). However, at this point we know very little about the value of pc and cannot
argue that the two random graphs will be close. Instead we argue indirectly and take p′c = p′c(λ) ∈ (0, 1)
to be the unique number satisfying

log

(
1− p′c(λ)

1− ps

)
= − qλ

mV 1/3
, (13)

and set

pA,B := 1−
(
1− p′c(λ)

1− ps

)∆A,B

= 1− e−qλ∆A,B/(mV 1/3) . (14)

We now let GC be the random graph on vertex set Cps,Ms so that each edge (A,B) is independently
retained with probability pA,B and deleted otherwise. We call GC the sprinkled component graph.

In Section 4 we then prove, via a coupling between G× and GC that the components of GC converge
to Zλ and Mλ, as defined above Theorem 1.1. Note that the component sizes in GC have exactly the
same distribution as component sizes in Hp′c due to the way we chose pA,B in (14) (it does not follow,
however, that the the geometry of the two graphs is close; that is the purpose of Section 5). Thus the
component sizes of Hp′c converge to Zλ. This suggests that p′c and pc are close and in Section 4.4 we
show that indeed |pc − p′c| is of order o(m−1V −1/3). This means that pc and p′c correspond to the same
position in the scaling window, alternatively stated, one can choose the om(1) in the definition of q(λ)
above so that the values of pc (which depend only on m and λ) and p′c (which depend also on the choice
of q) are in fact equal. This already implies that component sizes of Hpc converge to Zλ, i.e., this proves
Theorem 1.1, see Section 4.5. Lastly, in Section 5 we perform a delicate coupling between GC and Hpc

yielding Theorem 1.2. As the argument in Section 5 is rather lengthy we omit its outline and refer the
reader to that section.
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1.5 Table of notations

Symbol Explanation Location
E ◦ F disjoint occurrence of event E and F Remark 2.2.2
x←→ y event that there exists an open path between x and y
x ↚→ y complement of x←→ y
E off A event that E holds after closing every edges adjacent to A
x↔ y only on A event that x←→ y holds but (x←→ y off A) does not
G(n, p) Erdős–Rényi random graph Section 1.1
H hypercube {0, 1}m or a graph with conditions of Theorem 1.3 Section 1.3
Hp bond percolation on H with probability p ∈ [0, 1]. Section 1.3
G× multiplicative component graph Section 3
GC sprinkled component graph Section 4
G

C̃
full component graph Lemma 5.8

dGHP Gromov–Hausdorff–Prokhorov distance Section 2.1
dGP Gromov–Prokhorov distance Section 2.1
d□ graph distance on Hpc(λ) Definition 5.4
dC graph distance on GC Definition 5.4
d× graph distance on G× Section 3
d
C̃

graph distance on G
C̃

Lemma 5.8
(C1, C2, . . .) connected components of Hp ordered by size Section 1.1
(CC1 , CC2 , . . .) connected components of GC Section 4
(C×1 , C

×
2 , . . .) connected components of G× Section 3

∆A,B number of edges between the sets A and B Section 1.4
pA,B probability that there is an edge between clusters A and B in GC (14)
qA,B probability that there is an edge between clusters A and B in G× (10)
̸=A,B event that there exists a self-avoiding path between A and B that is Section 4.2

present in one of G× or GC, but not in the other
|A| number of vertices in the set A Section 1.1
wA wA := V −2/3|A| Section 1.4
wt(C×i ) weight of C×i , that is,

∑
A∈C×i

wA Section 3
Zλ Zλ = (|γ1|, |γ2|, . . .) excursion lengths Section 1.1
Mλ sequence of limiting mm-spaces Section 1.1
(M1,M2, . . . , ) renormalized connected components of Hpc(λ) Section 1.1
V number of vertices in H Section 1.3
κ(λ) limn→∞ n−1/3Ep|C(V )| for G(n, p) with p = 1/n+ λn−4/3 Section 1.1
pc(λ) the unique p satisfying (13) Section 1.1
αm αm → 0 and αm ≥ m−1 Theorem 1.3
m0 m0 = Tmix(αm) and satisfies the conditions of Theorem 1.3 Section 1.3
ps ps = pc(1− V −1/3α

−1/3
m ) Section 1.4

Cps,Ms components of Hps of size at least Ms; the vertices of G× and GC Section 1.4
qλ qλ = V 1/3/χ(ps) + λ+ om→∞(1) (11)
p′c(λ) log((1− p′c(λ))/(1− ps)) = −qλ/(mV 1/3) (13)
pt(u, z) probability that NBRW from u is at z in t steps Section 2.3
pt(u, z; t1) same as pt(u, z) but backtrack at step t1 < t is allowed Section 2.3
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2 Preliminaries

2.1 Topological notions

We provide here the definition of GHP convergence required to parse (3) as well as various abstract
tools and definitions needed for the proof. Our space Xc is the space of compact metric measure spaces
(X, d, µ) where µ is a finite Borel measure on (X, d) and such spaces are identified in Xc if there is a
bijective isometry between them which also preserves the measure. We call the elements of Xc mm-spaces.
To define the GHP distance, recall first that the Hausdorff distance dH between two sets A,A′ ⊂ X is
defined by

dH(A,A
′) = max

{
sup
a∈A

d(a,A′), sup
a′∈A′

d(a′, A)
}
.

Next, for any A ⊂ X and ε > 0 we define Aε = {x ∈ X : d(x,A) ≤ ε}. If µ and ν are two finite Borel
measures on X , the Prokhorov distance dP between µ and ν is given by

dP(µ, ν) = inf{ϵ > 0 : µ(A) ≤ ν(Aϵ) + ϵ and ν(A) ≤ µ(Aϵ) + ϵ for any closed set A ⊂ X}.

Lastly, given two elements (X, d, µ) and (X ′, d′, µ′) of Xc the Gromov–Hausdorff–Prokhorov distance
between them is defined to be

dGHP((X, d, µ), (X ′, d′, µ′)) = inf
{
dH(ϕ(X), ϕ′(X ′)) ∨ dP(ϕ∗µ, ϕ

′
∗µ
′)
}
,

where the infimum is taken over all isometric embeddings ϕ : X → F , ϕ′ : X ′ → F into some common
metric space F . It is well known that (Xc, dGHP) is a Polish metric space [43, Sections 1.3 and 6] and [1,
Theorem 2.5] so the notion of convergence in distribution as in (3) is standard.

Gromov–Prokhorov and Gromov–Hausdorff–Prokhorov convergence. The structure of our proof relies
on a two-step argument similar to the decomposition of the uniform convergence for random functions
into the convergence of the finite-dimensional distributions first, and then a strengthening via a proof of
tightness. When the metric spaces are trees, this goes back to the seminal papers of Aldous [?, ]Section
3]AldousCRTIII, even though it is not phrased in these terms; this is extended to the case of metric spaces
in [36, 11].

Here, the weaker topology we will use relies on the Gromov–Prokhorov (GP) distance defined as
follows. For two elements of Xc denoted by (X, d, µ) and (X ′, d′, µ′) we define

dGP((X, d, µ), (X ′, d′, µ′)) := inf
S,ϕ,ϕ′

dP(ϕ⋆µ, ϕ
′
⋆µ
′) ,

where the infimum is taken over all metric spaces S and isometric embeddings ϕ : X → S, ϕ′ : X ′ → S
and ϕ⋆µ is the push-forward measure of µ under ϕ. In fact, dGP is only a pseudo-metric on Xc so we
actually consider it on the quotient space XGP

c obtained from Xc by identifying elements at GP distance 0.
We will use another convenient characterization of the GP topology which relies on convergence of

the law of distance matrices between random points: For every metric measure space X = (X, d, µ) let
(xi)i≥1 be a sequence of i.i.d. random variables with common probability distribution µ/µ(X) and let
MX := (d(xi, xj))i,j≥1. The following result is a straightforward extension of Theorem 5 of [36] to our
setting with finite Borel measures (rather than probability measures):

Lemma 2.1. Let (Xn, dn, µn)n≥1 and X = (X, d, µ) be mm-spaces. Then dGP(Xn,X)→ 0 as n→∞
if and only if MXn →MX in distribution and µn(Xn)→ µ(X).

It is immediate from the definition that the convergence for dGHP implies the convergence for
dGP. Conversely, the following tightness criterion allows us to strengthen a GP convergence to a GHP
convergence. It has been established by Athreya, Lohr and Winter in [11], see especially Theorem 6.1
there. For convenience, we adapt the formulation from Theorem 6.5 of [10]. In fact, [10] only deals with
one single mm-space, while the following result concerns joint convergence of several mm-spaces. The
proof is the same as Theorem 6.5 from [10], and is thus omitted.
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Lemma 2.2. For i ∈ N, let ((Xi
n, d

i
n, µ

i
n))n≥1, and (Xi, di, µi) be random mm-spaces and assume that

(i) For any finite S ⊂ N we have the joint convergence in distribution(
(Xi

n, d
i
n, µ

i
n)
)
i∈S

(d)−→
(
(Xi, di, µi)

)
i∈S

with respect to the GP topology.
(ii) For every i ∈ N and any δ > 0,

lim
ε→0

lim sup
n→∞

P
(

inf
x∈Xi

n

µi
n(B(x, δ)) ≤ ε

)
= 0.

(iii) For every i ∈ N, almost surely µi has full support on Xi.
Then for any finite S ⊂ N we have the joint convergence in distribution(

(Xi
n, d

i
n, µ

i
n)
)
i∈S

(d)−→
(
(Xi, di, µi)

)
i∈S

with respect to the GHP topology.

Theorem 1.2 concerns the convergence of a sequence of elements in Xc. In its proof, the core of
the argument will consist in verifying the convergence of the metric spaces Mi, i ≥ 1, for the Gromov–
Prokhorov in (i), while the tightness in (ii) to extend it to GHP will be quickly checked in Section 5.1 and
Section 5.3. It is also well known that the components of the limit Mλ in Theorem 1.2 have a measure
with full support. Indeed, by Theorem 3 (iii) of Aldous [7], the CRT has a measure with full support, and
the components of Mλ can be constructed by gluing points of a biased CRT (see [2, 3]), which preserves
this property.

Lastly, for sequences of metric spaces, we let L4 be the set of sequences X =
(
(Xi, di, µi)

)
i≥1 of

elements of Xc for which∑
i≥1

µi(Xi)
4 <∞ and

∑
i≥1

diam(Xi)
4 <∞ ,

where diam(X) = sup{d(x, y) : x, y ∈ X} is the diameter of (X, d). Recalling the distance dist4GHP

on sequences of elements of Xc defined in (4), the space (L4, dist
4
GHP) is Polish, and the strenghening

from a convergence in the product GHP topology to only boils down to verifying tightness of the real-
valued sequences of masses and diameters in ℓ4 = {(x1, x2, . . . ) :

∑
i≥1 x

4
i <∞} [4]. For the case of

Theorem 1.2, the tightness of (Mi)i≥1 in L4 is established in Section 5.3.

2.2 Percolation

In this section we recall some of the basic definitions and results regarding hypercube percolation, or on
any transitive finite graph sequence satisfying the conditions of Theorem 1.3. We provide only the bare
minimum that is required for the proofs in this paper and refer the interested reader to [26, 50, 51, 38] for
a detailed treatment regarding critical percolation in high dimensions on finite graphs.

Recall the setting of Theorem 1.3 or, alternatively, assume that Hn is the hypercube {0, 1}n and that
αm = m−1 logm and m0 = Θ(m logm); we remind the reader that the conditions of Theorem 1.3 were
verified for the hypercube in Section 1.3. The first consequence of the assumptions of Theorem 1.3 is that
the triangle condition holds for Hn. That is, [51, Theorem 1.3(a)] asserts that

sup
x,y

∑
z,w

Pp(x←→ z)Pp(z←→w)Pp(w←→ y) ≤ 1{x=y} + αm +
C(Ep|C|)3

V
, (15)

for any p ≤ pc(λ) and for some positive constant C = C(λ) ∈ (0,∞). The triangle condition was
introduced by Aizenman and Newman [5] and was first used by Barsky and Aizenman [12] to study
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critical percolation. Since then it was shown that many important estimates and critical exponents can be
derived from it, making it a fundamental tool in the study of critical percolation.

Before proceeding to describe the various implications of (15) that we use in this paper, let us remark
that most of them only apply when the triangle diagram is small, that is, when p0 = pc(λ0) for some
small enough but fixed λ0 ∈ R, that is, at the bottom of the critical window while we would like to study
percolation at pc(λ) for any fixed λ ∈ R, that is, in the entire critical window. We explain how to do this
at the end of this section, see Remark 2.2.1.

In [26, Theorem 1.3 (i)] it is shown that (15) implies that for some C ∈ (0,∞) we have

Pp0(|C| ≥ k) ≤ C√
k
, (16)

for all k ≥ 1, where |C| is the component containing the origin (or any other vertex). We remark that in
[26, Theorem 1.3 (i)] an upper bound on k is also assumed, but it is only used for the lower bound on
Pp0(|C| ≥ k); the upper bound stated in (16) is valid for all k.

Another useful consequence of the triangle condition (15) is that critical exponents governing the
intrinsic metric attain their mean-field value. Given a vertex x ∈ H , an integer r ≥ 1 and p ∈ (0, 1) we
write B(x, r) for the set of vertices in y ∈ H such that there exists an open path in Hp of length at most r
connecting x and y. We further write ∂B(x, r) for the set of vertices y ∈ H such that the shortest path in
Hp between x and y is of length precisely r. In [41, Theorem 1.2] it is proved that the triangle condition
(15) implies that for any r > 0

Ep0 |B(x, r)| ≤ Cr , (17)

and

Pp0(∂B(x, r) ̸= ∅) ≤ C/r . (18)

where C ∈ (0,∞) is a constant.
An additional ingredient that we will use is an exponential bound on the probability that there exists a

"long and thin” ball. In [46, Lemma 6.3] it is shown that if (17) and (18) hold for some p ∈ [0, 1], then
there exist C, c > 0 such that for any positive R,M satisfying

R ≥ cMV −1/3 and R ≥ c
√
M ,

we have

Pp(∃v |B(v,R)| ≤M and ∂B(v,R) ̸= ∅) ≤ C
( 1

R
∨ V −1/3

)
e−cR

2/M V

M
. (19)

We remark that [46, Lemma 6.3] is slightly weaker than (19), the event on the right-hand side has
|C(v)| ≤M (instead of |B(v,R)| ≤M ) however the proof of [46, Lemma 6.3] (including the proof of
[46, Lemma 6.2]) works verbatim if one replaces C(v) with B(v,R) and yields (19). We also use the fact
that (17) and (18) imply that the maximal diameter of any component in Hp0 (and hence to any pc(λ) by
Remark 2.2.1) divided by V 1/3 is tight, that is, for any ε > 0 there exists A ≥ 1 such that

Pp0(∃v diam(C(v)) ≥ AV 1/3) ≤ ε , (20)

which is shown in [46, Theorem 6.1].
Next, the triangle condition (15) provides good control in the subcritical phase. Let ε = ε(n) be a

non-negative sequence such that ε≫ V −1/3 but ε = o(1) and set p = p0(1− ε). Such p’s are outside of
the scaling window and are “slightly” subcritical. In [26, Theorem 1.2 (i)] it is shown that (15) implies

χ(p) = Ep|C(v)| = (1 + o(1))ε−1 , (21)
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and also [26, Theorem 1.2 (ii)] shows that (15) implies that with high probability

|C1| ≤ 2χ2 log(V/χ3) . (22)

Taking the right-hand side of the last equation as M and taking R = Cχ(ps) log(V/χ(ps)
3) and plugging

these inside (19) immediately gives a bound on the largest diameter (that is, largest distance between two
vertices) in the subcritical phase, namely,

max
i≥1

diam(Ci) ≤ Cχ log(V/χ(ps)
3) , (23)

holds with high probability. We remark that in [39, Theorem 1.6] it is proved that C can be taken to be
(1 + o(1)) but we will not use this fact in this paper.

Our last ingredient is special for the hypercube or the graphs addressed in Theorem 1.3; it does not
rely on the triangle condition rather on the assumption (5). Recall that m0 = Tmix(αm) (in the hypercube
one takes m0 = m logm and αm = m−1 logm). In [51, Lemma 3.13] (with ε = 0 and taking r →∞)
it is shows that (5) implies that for any λ ∈ R, when setting pc = pc(λ) as in (1), we have that for any
p ≤ pc and any two vertices x, y

Pp(x
≥m0←→ y) ≤ (1 +O(αm))χ(p)

V
, (24)

where x
≥m0←→ y is the event that there exists an open path of length at least m0 connecting x to y. The

sum over y of the above probability is (1− o(1))χ(p) when m0 is of smaller order than χ(p) (using (17)),
so (24) is sharp for most y’s. We remark that since the derivation of (24) does not rely on the triangle
condition, it is valid for all λ not just λ ≤ λ0 (and in fact for the supercritical phase as well, see [51]).

Remark 2.2.1. Fix some λ ∈ R and consider pc = pc(λ) as defined in (1). We explain now how can one
use (17) and (18) at pc rather than p0. We first argue that there exists some constant A = A(λ) ∈ (0,∞)
such that pc ≤ p0 +Am−1V −1/3. Indeed, this is a direct consequence by the definition of pc(λ) and of
[51, Theorem 1.3] part (b) stating that at p = p0 +Am−1V −1/3 as long as A→∞ we have that Ep|C| is
of order A2V 1/3. Note that the assumptions of Theorem 1.3 allow us to appeal to [51, Theorem 1.3]. We
may now apply [41, Theorem 1.2] and obtain that (17) and (18) hold as written but where the constant C
now may depend on λ.

Remark 2.2.2. Throughout the paper we use the classical van den Berg–Kesten inequality (BK inequality
henceforth) [49] valid for monotone events, as well as Reimer’s stronger version [47, 25] valid for all
events (BKR inequality henceforth, in order to indicate where Reimer’s Theorem is used). It states that
P(A ◦B) ≤ P(A)P(B) where A ◦B denotes the disjoint occurence of events A and B, see [47, 25].

2.3 Non-backtracking walk on the hypercube and percolation

The non-backtracking random walk (NBRW) is just a simple random walk not allowed to traverse back
an edge it has just traversed. That is, in the first step it chooses uniformly between the m neighbors of
the initial vertex and at any later steps it choose uniformly among the m− 1 neighbors which are not the
neighbor visited in the previous step.

We write pt(u, z) for the probability that the non-backtracking random walk starting from u is at z
after t ≥ 0 steps. For each integer t ≥ 0 we bound the number of simple paths in G between u and z by
m(m− 1)tpt(u, z) — this observation provides the link to percolation. For any p ∈ [0, 1] we have

Pp(u
m0←→ z) ≤

m0∑
t=1

ptm(m− 1)tpt(u, z) ,

10



and therefore whenever (5) holds for any p ≤ pc we have

Pp(u
m0←→ z) ≤ (1 + o(1))

m0∑
t=1

pt(u, z) . (25)

In contrary to what our notation suggests (we stick to it however due to its simplicity), the non-
backtracking walk is not a Markov process on the vertices rather on directed edges (see [45]), hence it
does not hold that

∑
z pt1(u, z)pt2(z, v) = pt1+t2(u, v). A very close inequality is proved in Lemma 7

of [45], however, we will only need crude bounds on such convolution sums which we now describe.
Let N(u, z; t) denote the number of non-backtracking paths from u to z of length t so that

pt1(u, z) =
N(u, z; t1)

m(m− 1)t1−1
pt2(z, v) =

N(z, v; t2)

m(m− 1)t2−1
.

Next we have that
∑

z N(u, z; t1)N(z, v; t2) equals the number of paths from u to v which are allowed
to backtrack only at step t1. The total number of such paths starting from u (which do not necessarily end
at v) is precisely m2(m− 1)t1+t2−2 and so we deduce that,∑

z

pt1(u, z)pt2(z, v) = pt1+t2(u, v; t1) , (26)

where the right hand side is the probability that a non-backtracking random walk starting from u which is
allowed to backtrack at step t1 and has total length t1 + t2, terminates at v.

3 Convergence of the component multiplicative graph G×

In this section we study the (component) multiplicative graph G× described in Section 1.4; we briefly
repeat here its definition. We set

ps = pc(1− V −1/3α−1/3m ) , Ms = V 2/3α4
m , (27)

and consider the set of components Cps,Ms of Hps of size at least Ms. Each component A is given weight
wA = V −2/3|A| as in (9) and edges are open independently with probability qA,B := 1− e−qwAwB where

qλ = V 1/3/χ(ps) + λ+ o(1) . (28)

For a connected component C× of G× we write |C×| (resp. wt(C×)) for the sum of sizes (resp.
weights) of its vertices, that is,

|C×| :=
∑
A∈C×

|A| ; wt(C×) :=
∑
A∈C×

wA .

We denote by C×1 , C
×
2 , . . . the connected components of G× in decreasing order of their sizes. Our goal in

this section is to show the following two propositions.

Proposition 3.1. For any fixed λ ∈ R set qλ as in (28). Then as m→∞ we have

(wt(C×1 ),wt(C×2 ), . . .)
(d)−→ Zλ.

where the convergence in distribution is for the ℓ2 topology and Zλ is defined above Theorem 1.1.

Let d×(·, ·) denote the shortest path metric on G×. For every i ≥ 1, let µ×i be the measure on C×i
defined by µ×i ({A}) = |A|/V 2/3 for every A ∈ C×i and finally let M×i be the mm-space

M×i = (C×i , χ(ps)V
−1/3 · d×, µ×i ) .
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Proposition 3.2. For any fixed λ ∈ R set qλ as in (28). Then as m→∞ we have

(M×1 ,M×2 , . . . )
(d)−→Mλ ,

where the convergence in distribution is with respect to the product GHP topology and Mλ is defined
above Theorem 1.2.

The component multiplicative graph G× is an instance of Aldous’ multiplicative graphs and the proof
of the two theorems above will follow by verifying the conditions of theorems by Aldous [9] and Bhamidi,
Broutin, Sen and Wang [14] regarding scaling limits of multiplicative graphs. We use these two results as
black boxes.

Let us introduce the general setup of multiplicative graphs. Let w = (w1, . . . , wn) be a positive real
vector and q > 0. Consider the random graph on {1, . . . , n} so that each edge {i, j} is present with
probability 1− exp(−qwiwj) independently of all other edges. A component C of the resulting graph has
weight wt(C) =

∑
i∈C wi and let C1, C2, . . . denote the components ordered in a weakly decreasing order

of their weights. For r = 1, 2, 3 define σr =
∑

iw
r
i .

Aldous [9, Proposition 4] showed that for any a fixed λ ∈ R, if

σ3
σ3
2

→ 1 q − 1

σ2
→ λ

maxiwi

σ2
→ 0 , (29)

then,

(wt(C1),wt(C2), . . .)
(d)−→ Zλ . (30)

Next, for each i ≥ 1 let Mi = (Ci, dCi(·, ·), µCi) be the mm-space on the vertex set Ci where dCi(·, ·)
is the shortest path metric, normalized so that every distance is multiplied by σ2, and µCi =

∑
j∈Ci wjδj .

Theorem 3.2 in [14] states that if (29) holds and there exist constants η0 > 0 and r0 > 0 such that

maxiwi

σ
3/2+η0
2

→ 0 and
σr0
2

miniwi
→ 0 , (31)

then,

(M1,M2, . . .)→Mλ . (32)

Hence, the proof of Propositions 3.1 and 3.2 will follow once we verify that with probability 1− o(1)
assumptions (29) and (31) hold.

Lemma 3.3. Consider the components Cps,Ms with ps,Ms defined in (27). Define the weights wA =
V −2/3|A| for any A ∈ Cps,Ms and set q = q(λ) as in (28). Then, with probability 1− o(1) the assertions
in (29) and (31) hold.

This will be done using the following lemmas whose proof is provided in the next subsection.

Lemma 3.4. Consider percolation on H with edge probability ps. Then for any A ≥ 1

P

(∣∣∣∣∣ ∑
j≥1

|Cj |≥Ms

|Cj |2 − V χ(ps)

∣∣∣∣∣ ≥ AV χ(ps)α
5/6
m

)
= O(A−2) .

Lemma 3.5. Consider percolation on H with edge probability p = (1 − ε)pc where ε ≫ V −1/3 and
ε = o(1). Let M(ε) be a sequence satisfying M(ε) = o(ε−2). Then with probability tending to 1 we have∑

j≥1
|Cj |≥M(ε)

|Cj |3 = (1 + o(1))V χ(p)3 .
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Proof of Lemma 3.3. By (21) we have that χ(ps) = (1 + o(1))V 1/3α
1/3
m . Then, by Lemma 3.4 with

A = α
−1/6
m →∞ together with our choice of weights (9), we obtain that with probability tending to 1

σ2 =
χ(ps)

V 1/3

(
1 +O(Aα5/6

m )
)
.

Since χ(ps) = Θ(V 1/3α
1/3
m ) and A = α

−1/6
m we deduce that 1/σ2 = V 1/3/χ(ps) + O(α

1/3
m ) with

probability 1− o(1). Hence with the choice of qλ as in (28) it follows that the second condition in (29)
holds. Next, by Theorem 1.2 of [26] (see (1.17) there) the maximal component size for percolation
on H at ps is at most O(χ(ps)

2 log(V/χ3(ps)) (this is in fact the right order, see [39]) which implies
that maxAwA = O(α

2/3
m log(αm)) while σ2 = Θ(α

1/3
m ) so the third condition in (29) holds. Lastly,

Lemma 3.5 and our choice of weights in (9), yield σ3 = (1+o(1))αm while σ2 = (1+o(1))V 1/3/χ(ps) =

(1 + o(1))α
1/3
m , so that the first condition in (29) holds.

For (31), since σ2 = O(α
1/3
m ) and maxAwA = O(α

2/3
m log(αm)), the first condition of (31) holds

with any choice of η0 ∈ (0, 1/6). Secondly, since minAwA ≥ V −2/3Ms = α4
m and σ2 = Θ(α

1/3
m ) the

second condition of (31) holds with any fixed r0 > 12.

For technical reasons we also need to show the following convergence in expectation, conditionally
on the graph Hps , or even just on the collection of weights {wA : A ∈ Cps,Ms}:

Lemma 3.6. For any fixed λ ∈ R set qλ as in (28). As m→∞, writing Zλ = (|γλ1 |, |γλ2 |, . . .),

E

[∑
i≥1

V −4/3|C×i |
2

∣∣∣∣∣ Hps

]
−→E

[∑
i∈N
|γλi |2

]
<∞, in probability.

3.1 Subcritical estimates for σ2 and σ3: Proofs of Lemmas 3.4 and 3.5

The proofs of Lemmas 3.4 and 3.5 rely on estimates for the expected values Ep|C(v)| and Ep|C(v)|2,
respectively, for p < pc. The first one is in (21), and we may proceed to the proof of Lemma 3.4.

Proof of Lemma 3.4. Write

Y =
∑
j≥1

|Cj |≥Ms

|Cj |2 =
∑
v

|C(v)|1{|C(v)|≥Ms} .

By (16), E|C(v)|1{|C(v)|≤Ms} = O(V 1/3α2
m). And since, by (21), χ(ps) = Θ(V 1/3α

1/3
m ), we deduce

EY = V χ(ps)(1−O(α5/3
m )).

To upper bound the second moment of Y we drop the requirement that |C(v)| ≥Ms and bound

EY 2 ≤
∑
u,v

E|C(v)||C(u)| =
∑
u,v

E|C(v)||C(u)|1u ↚→ v +
∑
u,v

E|C(v)||C(u)|1u←→ v .

We bound the first term by V 2χ(p)2 using the BK inequality. The second term equals
∑

v E|C(v)|3 =
V E|C(v)|3 which, by the tree-graph inequalities (see (6.94) in [37]), is at most O(V χ(p)5). Hence
Var(Y ) = O(V 8/3α7/3) = O(V 2χ(ps)

2α
5/3
m ) and the lemma follows by Chebychev’s inequality.

Before the proof of Lemma 3.5, we first obtain a sharp estimate on E|C(v)|2 in the subcritical phase:

Lemma 3.7. For any p = pc(1− ε) where ε≫ V −1/3 and ε = o(1) we have

(1− o(1))χ(p)3 ≤ E|C(v)|2 ≤ χ(p)3 .
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γz,y

γv,z

γz,x

v

yx

z

Cv = A

Cx = B

Cy

Figure 1: A representation of the event Ax,y,z . The paths γv,z , γz,x, γz,y are blue. The interior of the red
curves represents Cv, Cx, Cy which do not contain z.

Proof. The upper bound is just tree-graph inequalities, i.e., if v←→x and v←→ y, then there must exists
z such that {v←→ z} ◦ {z←→x} ◦ {z←→ y}, thus using the BK inequality and summing over x, y then
z gives the upper bound of χ(p)3. To prove the lower bound let x, y, z be three vertices such that v, x, y, z
are distinct vertices and write Ax,y,z for the event that (see Figure 1)

i) there exist three edge disjoint simple paths γv,z, γz,x, γz,y, between v and z, between z to x and
between z to y, respectively;

ii) the paths γv,z, γz,x, γz,y only intersect at z that is an endpoint of all three paths
iii) removing the vertex z separates v, x, y to three separate connected components in Gp.

We first claim that for any fixed x ̸= y both distinct from v, the events Ax,y,z, z ∈ V \ {v, x, y} are
disjoint. Indeed, assume that Ax,y,z1 and Ax,y,z2 occur where z1 ̸= z2 and write C(z1)v , C(z1)x , C(z1)y for the
connected components in Gp \ {z1} of v, x, y respectively. We reach a contradiction by examining to
which connected component z2 belongs to. If z2 ∈ C(z1)v , then we must have that both γz2,x and γz2,y use
the vertex z1, contradicting Ax,y,z2 . If z2 ∈ C(z1)x , then the path γv,z2 and γz2,y must both use the vertex
z1, again contradicting Ax,y,z2 , and similarly if z2 ∈ C(z1)y . Lastly, if z2 ∈ G \ C(z1)v ∪ C(z1)x ∪ C(z1)y , then
all three paths γv,z2 , γz2,x, γz2,y must use the vertex z1 and we obtain another contradiction.

Secondly, if Ax,y,z occurs for some z, then v←→x and v←→ y. We deduce that∑
x,y:|{x,y,v}|=3

P(v←→x, v←→ y) ≥
∑

x,y,z:|{x,y,v,z}|=4

P(Ax,y,z) . (33)

We now lower bound P(Ax,y,z). Let Cx denote the connected component of x in Gp\{z} when x←→ z
and let Cx := ∅ when x↮ z. Define similarly Cy, Cv. Given a set of vertices A such that z ̸∈ A, by
conditioning on the event Cv = A we mean that we condition on the status of all edges needed to determine
that Cv = A, that is, on all the open and closed edges between the vertices of A ∪ {z} (it must be that
these open edges span a connected graph on A and if v←→ z, then also on A ∪ {z}) and on all the closed
edges of the form {a,w} where a ∈ A and w ̸∈ A ∪ {z}. Note that in this conditioning it is possible that
some edges between the vertices of A and z are closed and some are open; in the case that v←→ z then at
least one such edge must be open.

For any two disjoint sets A and B we condition as above on Cv = A and Cx = B and get

P(Ax,y,z) =
∑

A,B:v∈A,x∈B
A∩B=∅,y ̸∈A∪B

P(Cv = A, Cx = B)P(z←→ y | Cv = A, Cx = B) .

Conditioned on Cv = A, Cx = B, as explained above, and given y ̸∈ A ∪ B, the event z←→ y occurs
if and only if there exists an open path from z to y that avoids any of the vertices in A ∪ B, or in other
words, z←→ y off A ∪B. Hence

P(z←→ y|Cv = A, Cx = B) = P(z←→ y off A ∪B) .
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This equals the probability that y is connected to z minus the probability that y is connected to z and any
open path connecting y to z visits A ∪B. Hence we bound from below using the BK inequality∑

x,y,z

P(Ax,y,z) ≥ S1 − S2 (34)

where
S1 =

∑
x,y,z

|{x,y,z}|=3

∑
A,B:v∈A,x∈B,
A∩B=∅,y ̸∈A∪B

P(Cv = A, Cx = B)P(z←→ y) ,

and
S2 =

∑
x,y,z

|{x,y,z}|=3

∑
A,B:v∈A,x∈B
A∩B=∅,y ̸∈A∪B

P(Cv = A, Cx = B)
∑

w∈A∪B
P(y←→w)P(w←→ z) .

We start by lower bounding S1. We claim that if A and B are two disjoint sets of vertices with v ∈ A
and x ∈ B, then P(Cx = B | Cv = A) = P(Cx = B off A). Indeed, to determine whether Cx = B off
A we need to observe all open edges between the vertices of B ∪ {z} and all closed edges of the form
{b, w} where b ∈ B and w ̸∈ A ∪B ∪ {z}. On the other hand, to determine Cv = A the set of edges we
observe, as explained above, is disjoint from the set of edges, that we just described, required to determine
Cx = B off A. Next, we have that∑

B:A∩B=∅,x∈B,y ̸∈B

P(Cx = B off A) ≥ P(x←→ z, y ↚→ z off A)

≥ P(x←→ z off A)− P(x←→ z, y←→x) .

We use the BK inequality to bound

P(x←→ z off A) ≥ P(x←→ z)−
∑
w∈A

P(x←→w)P(w←→ z) ,

and
P(x←→ z, y←→x) ≤

∑
w∈V

P(x←→w)P(w←→ z)P(w←→ y) .

Thus
S1 ≥ S

(a)
1 − S

(b)
1 , (35)

where

S
(a)
1 =

∑
x,y,z

|{x,y,z}|=3

P(z←→ y)
∑

A:v∈A,y ̸∈A
P(Cv = A)

[
P(x←→ z)−

∑
w∈A

P(x←→w)P(w←→ z)
]
,

and

S
(b)
1 =

∑
x,y,z,w
|{x,y,z}|=3

P(z←→ y)P(x←→w)P(w←→ z)P(w←→ y)
∑

A:v∈A,y ̸∈A
P(Cv = A) .

To lower bound S
(a)
1 we have by the BK inequality∑

A:v∈A,y ̸∈A
P(Cv = A) ≥ P(v←→ z, v ↚→ y)

≥ P(v←→ z)−
∑
w∈V

P(v←→w)P(w←→ z)P(w←→ y) ,
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and that∑
A:v∈A,y ̸∈A

P(Cv = A)
∑
w∈A

P(x←→w)P(w←→ z)

=
∑

w∈V \{z}

∑
A:v∈A,

w∈A,y ̸∈A

P(Cv = A)P(x←→w)P(w←→ z) ,

since z ̸∈ A. We upper bound this (since it appears with a negative sign) by∑
w ̸=z

P(v←→ z, v←→w)P(x←→w)P(w←→ z)

≤
∑

w ̸=z,u∈V
P(v←→u)P(u←→ z)P(u←→w)P(x←→w)P(w←→ z) ,

using the BK inequality. Putting all these together gives a lower bound of

S
(a)
1 ≥

∑
x,y,z

|{x,y,z}|=3

P(z←→ y)P(x←→ z)P(v←→ z)

−
∑

x,y,z,w
|{x,y,z}|=3

P(z←→ y)P(x←→ z)P(v←→w)P(w←→ z)P(w←→ y)

−
∑

x,y,z,w,u
|{x,y,z}|=3,w ̸=z

P(z←→ y)P(v←→u)P(u←→ z)P(u←→w)P(x←→w)P(w←→ z) .

To lower bound the first sum, we first sum over x ̸∈ {v, y, z}, then over y ̸∈ {z, v} and lastly over
z ̸= v. This gives a lower bound of (χ(p)− 3)(χ(p)− 2)(χ(p)− 1) which is (1− o(1))χ(p)3. To upper
bound the second we first sum over x and get a contribution of χ(p), then three terms over z ̸= y which
by the triangle condition in (15) is o(1), lastly the sum over w gives another χ(p); we get a total bound of
o(χ(p)2). To upper bound the third sum, we first sum over x and y and get a contribution of χ(p)2, then
over z ̸= w three terms and get again a o(1) factor by (15), lastly we sum over u and get another χ(p);
getting a total contribution of o(χ(p)3). We deduce that

S
(a)
1 ≥ (1− o(1))χ(p)3. (36)

Bounding from above S
(b)
1 is easier since we may just bound in its definition the rightmost sum over

A by P(v←→ z) so

S
(b)
1 ≤

∑
x,y,z,w

P(z←→ y)P(x←→w)P(w←→ z)P(w←→ y)P(v←→ z) = O(χ(p)2) , (37)

by summing first over x and getting a χ(p) factor, then over y, w and getting an O(1) factor by (15), lastly
the remaining sum over u is χ(p). We conclude from (35) and (36)− (37) that

S1 ≥ (1− o(1))χ(p)3 . (38)

Next we bound from above S2. We first change the order of summation and get

S2 =
∑

x,y,z,w
|{x,y,z}|=3,w ̸=z

P(y←→w)P(w←→ z)
∑

A,B:v∈A,x∈B,w∈A∪B
A∩B=∅,y ̸∈A∪B

P(Cv = A, Cx = B)
]
.
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Next we split the rightmost sum over A and B according to whether w ∈ A or w ∈ B. When w ∈ A we
upper bound ∑

A,B:v∈A,x∈B,w∈A
A∩B=∅,y ̸∈A∪B

P(Cv = A, Cx = B) ≤ P
(
{v←→ z, v←→w} ◦ {x←→ z}

)
,

and replacing in the above w ∈ A by w ∈ B we obtain the upper bound P({v←→ z}◦{x←→ z, x←→w}).
We use the BK inequality, then we use it again in the usual manner to deal with {v←→ z, v←→w} and
{x←→ z, x←→w}. This gives a bound

S2 ≤
∑

x,y,z,w,u
z ̸=w

P(y←→w)P(w←→ z)P(v←→u)P(u←→ z)P(u←→w)P(x←→ z)

+
∑

x,y,z,w,u
z ̸=w

P(y←→w)P(w←→ z)P(v←→ z)P(x←→u)P(u←→ z)P(u←→w) .

For the first part, we sum over x and y and get χ(p)2 contribution, then three terms over z ̸= w using (15)
and get an o(1) factor, lastly over w to get another χ(p); we get a total contribution of o(χ(p)3). The
second term is handled similarly, summing over y and x first, then over w, u using (15) and lastly over z.
This gives another o(χ(p)3) contribution. Therefore,

S2 = o(χ(p)3). (39)

Putting together (33), (34), (38) and (39) concludes the proof.

With Lemma 3.7 under our belt, we are now ready for the proof of Lemma 3.5, which is similar to
that of Lemma 3.4.

Proof of Lemma 3.5. Put

Y =
∑
j≥1

|Cj |≥M(ε)

|Cj |3 =
∑
v∈V
|C(v)|21{|C(v)|≥M(ε)} .

By (16), by Abel summation, we have E|C(v)|21{|C(v)|≤M(ε)} ≤ 2C
∑M(ε)

k=1 k1/2 = O(M(ε)3/2). Since
M(ε) = o(ε−2) this is o(ε−3) and so by Lemma 3.7 and (21) we obtain that EY = (1 + o(1))V χ(p)3.
For the second moment we bound

EY 2 =
∑
u,v

E
[
|C(v)|2|C(u)|2

]
=
∑
u,v

E
[
|C(v)|2|C(u)|21u ↚→ v

]
+
∑
u,v

E
[
|C(v)|2|C(u)|21u←→ v

]
.

The first term on the right-hand side we bound using the BK inequality by V 2χ(p)6. The second
term on the right-hand side equals

∑
v E|C(v)|5 which is O(V χ(p)9) by the tree-graph inequalities

(i.e., see (6.94) in [37]). The latter estimate is o(V 2χ(p)3) since χ(p) = o(V 1/3). We deduce that
EY 2 = (1 + o(1))V 2χ(p)6 and conclude the proof using Chebyshev’s inequality.

3.2 Convergence of the susceptibility for multiplicative graph: Proof of Lemma 3.6

Lemma 3.3 asserts that the conditions of [9, Proposition 4], repeated in (29), hold in probability. Hence,
to show Lemma 3.6, it suffices to prove that in the setting of Aldous [9, Proposition 4] one also has
convergence of the expectation of the ℓ2 norm of the vector of sizes. We emphasize the fact that, in
this entire section, the weights are deterministic as in [9]. For n ≥ 1, let w(n) = (w

(n)
1 , w

(n)
2 , . . . ) be a

sequence of non-negative weights, and let qn ≥ 0 be the associated time parameter.
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Proposition 3.8. Suppose that (29) holds for (w(n)
i )i≥1 and qn as n→∞. Then, as n→∞,

E

[∑
i≥1

wt(C(n)i )2
]
−→E

[∑
i≥1
|γλi |2

]
<∞.

Before proceeding, we mention the following corollary that we will later use to determine the position
within the critical window in Section 4.4. It is undeniably floklore, but we failed to find a reference. The
classical Erdős–Rényi random graph is also a multiplicative graph, and we obtain:

Corollary 3.9. For every λ ∈ R, in the Erdős–Rényi model G(n, 1/n+ λn−4/3), as n→∞, we have
E|C(v)|/n1/3 → κ(λ) := limn→∞ E[

∑
i∈N |γλi |2].

Proof. Fixing wi = n−2/3 for i = 1, . . . , n, we have σ2 = n−1/3, σ3 = n so that (29) is satisfied with
q = n1/3 + λ. The corresponding edge probability is 1 − exp(qn−4/3) = 1/n + λn−4/3 + o(n−4/3).
Proposition 3.8 then implies that n−4/3E

∑
i≥1 |Ci|2 → κ(λ) and since E[|C(v)|] = n−1E[

∑
i |Ci|2] the

claim follows.

Lemma 25 of [9] shows that E[
∑

i≥1 |γλi |2] < ∞. Furthermore, Proposition 4 of [9] shows that

(wt(C(n)i ))i≥1 converges in distribution to (|γλi |)i≥1 with respect to ℓ2. It follows in particular that the
ℓ2-norms converge in distribution, namely Sn :=

∑
i≥1wt(C(n)i )2 → S :=

∑
i≥1 |γλi |2 in distribution.

So proving Proposition 3.8 boils down to showing that (Sn)n≥1 is a uniformly integrable sequence. We
shall use the following criterion.

Lemma 3.10. Let (Xn)n≥1 be a tight sequence of non-negative random variables. Suppose that

K := sup
n≥1

{
E[X2

n]− 2E[Xn]
2
}
<∞ (40)

then (Xn)n≥1 is uniformly integrable.

Proof. First note that if (Xn)n≥1 is bounded in L1, then (40) implies that it is also bounded in L2; a
standard argument then shows that (Xn)n≥1 is uniformly integrable. So let us now prove that (Xn)n≥1 is
bounded in L1. The Cauchy–Schwarz inequality implies that for any α ≥ 0,

E[Xn1Xn≥α]
2 ≤ E[X2

n] · P(Xn ≥ α) ≤ E[X2
n] · sup

n≥1
P(Xn ≥ α) .

Since (Xn)n≥1 is tight, there exists α0 ≥ 0 large enough that supn P(Xn ≥ α0) ≤ 1/3. Now
Xn1Xn≥α0 ≥ Xn − α0, so either EXn ≤ α0, or E[Xn1Xn≥α]

2 ≥ (EXn − α0)
2. In the second

case we plug this into the left-hand side above and obtain that

3(E[Xn]− α0)
2 ≤ E[X2

n] ≤ 2E[Xn]
2 +K ,

where the second inequality is due to (40). We obtain that either EXn ≤ α0 or by rearranging that
E[Xn]

2 ≤ 6α0E[Xn] +K. This immediately implies that supn E[Xn] <∞ as desired.

The proof of the uniformly integrability of (Sn)n≥1 requires to control both the large and small
components. This requires different arguments which we perform separately.

Lemma 3.11. Suppose that (29) holds for (w(n)
i )i≥1 and qn as n→∞. Then, for all x ≥ 0 large enough,

we have lim supn P(wt(C(n)1 ) > x) ≤ 2e−x/2.
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The proof of Lemma 3.11 is based on the exploration process used by Limic in [42] (see also [48]),
which is more convenient than the one used by Aldous [9]. Define Y

(n)
t = −t +

∑
iw

(n)
i 1(E

(n)
i ≤ t),

where (E(n)
i )i≥1 is a collection of independent exponential random variables with respective rates qnw

(n)
i ,

and let Y (n)
t = inf{Y (n)

s : 0 ≤ s ≤ t} denote the infimum process. Then the lengths of the excursions of
the process (Y (n)

t )t≥0 strictly above its infimum process (Y (n)
t )t≥0 are distributed like the sum of vertex

weights of the connected components (wt(C(n)i ))i≥1 of the multiplicative graph ([42, Proposition 5] and
[29, Theorem 2.1]). In the following, we identify (wt(C(n)i ))i≥1 with the sorted lengths of the excursions.
Limic [42, Proposition 6] showed that, under the conditions in (29), the process (Y (n)

t /σ2)t≥0 converges
in distribution to Brownian motion with drift and deduced the convergence of the excursion lengths, and
hence of the weights of the connected components. Lemma 3.11 provides quantitative bounds, valid for
all large enough n, on the tail of wt(C(n)1 ).

During each excursion the infimum process Y (n)
t is constant and takes a single value. For each i ≥ 1

we let L(n)
i denote this value for the ith largest excursion. The following fact shows that the process

(|Y t|)t≥0 is an exact local time.

Lemma 3.12. Conditionally on (C(n)i )i≥1 the random variables (L(n)
i )i≥1 are independent exponential

random variables with respective rates (qnwt(C
(n)
i ))i≥1.

Proof. Recall that (C(n)i )i≥1 denotes the collection of connected components, in decreasing order of the
sum of the weights, breaking ties using the minimum label if necessary. Let k denote the number of
connected components. Set τ0 = 0, and let τ1 < τ2 < · · · < τk denote the increasing reordering of
the (L

(n)
i )i≥1. So (τi)i∈[k] are the values of |Y (n)

t | on each excursion, in increasing order. It will also be
convenient to know in which order the connected components arrive: for each i ∈ [k] let Ji = j if the
ith connected component to be discovered (at time inf{t ≥ 0 : |Y (n)

t | = τi}) is C(n)j . To prove the claim,
we shall verify that the collection of inter-arrival times and permutation of the connected components
(τi − τi−1, Ji)1≤i≤k have the correct joint distribution.

For each i let Ui denote the first discovered vertex of component C(n)Ji
, namely Ui = u if inf{t ≥

0 : |Y (n)
t | = τi} = E

(n)
u . We denote by Π(n) the partition of [n] induced by the connected components

(C(n)i )i≥1. By Theorem 3.2 of [29], for any fixed partition π of [n] having k parts denoted by C1, . . . , Ck,
in decreasing order of the sum of weights, breaking ties using minimum element, any t1, t2, . . . , tk ∈ R
and any (u1, u2, . . . , uk) ∈ Cj1 × · · · × Cjk we have

P(Π(n) = π, τi ∈ dti, Ui = ui, i ∈ [k]) = P(Π(n) = π) · 1t1<···<tk

∏
1≤i≤k

qnw
(n)
ui

e−qntiwt(Cji
)dt1 · · · dtk ,

where Cji is the component containing ui, or equivalently, the component whose corresponding excursion
started at time τi. It follows that the conditional distribution of (τi, Ji)i≥1 is specified by

P(τi ∈ dti, Ji = ji, i ∈ [k] | Π(n) = π) = 1t1<···<tk

∑
u1∈Cj1

,...,uk∈Cjk

∏
1≤i≤k

qnw
(n)
ui

e−qntiwt(Cji
) · dt1 · · · dtk

= 1t1<t2<···<tk

∏
1≤i≤k

qnwt(Cji)e
−qntiwt(Cji

)dt1 · · · dtk .

Changing variables to obtain the distribution of the inter-arrival times (τi − τi−1)i∈[k], we obtain, for
x1, x2, . . . , xk ≥ 0

P(τi − τi−1 ∈ dxi, Ji = ji, i ∈ [k] | Π(n) = π) =
∏

1≤i≤k
qnwt(Cji)e

−qn(x1+···+xi)wt(Cji
)dx1 · · · dxk

=
∏

1≤i≤k
qnwt(Cji)e

−xiqn(wt(Cji
)+···+wt(Cjk

))dx1 · · · dxk .
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It is a standard fact that this is the joint distribution of the inter-arrival times between independent
exponential random variables with rates (qnwt(Ci))i∈[k] and the corresponding permutation of the indices.
The claim follows.

We are now ready to prove Lemma 3.11.

Proof of Lemma 3.11. By Lemma 3.12

P(L(n)
1 > σ2 | wt(C(n)1 ) = x) = exp(−xqnσ2) ≤ e−x/2 , (41)

for all n large enough, since qnσ2 → 1 by the assumptions in (29).
Now consider the value of the exploration process (Y (n)

t )t≥0 at time x: observe that if L(n)
1 ≤ σ2 and

wt(C(n)1 ) > x, then Y
(n)
x ≥ −σ2. Indeed, either we have not yet discovered C(n)1 at time x, which implies

that Y (n)
x ≥ Y

(n)
x > −L(n)

1 ≥ −σ2, or we have, but then x belongs to this excursion interval, and hence
Y

(n)
x ≥ Y

(n)
x = −L(n)

1 . Together with (41), this implies

P(wt(C(n)1 ) > x) = P(n)(wt(C(n)1 ) > x,L
(n)
1 ≤ σ2|) + P(wt(C(n)1 ) > x,L

(n)
1 > σ2)

≤ P(Y (n)
x ≥ −σ2) + P(L(n)

1 > σ2 | wt(C(n)1 ) > x)

≤ P(Y (n)
x ≥ −σ2) + e−x/2 . (42)

Since Y (n)
x is a sum of independent terms, bounded by maxiw

(n)
i , and whose expected values are easy

to control, one easily obtains a bound on the first term above using a standard concentration inequality.
Indeed, routine bounds then the asymptotics in (29) yield, for all n large enough,

E[Y (n)
x ] =

∑
i≥1

w
(n)
i (1− exp(−xqnw(n)

i ))− x ≤ σ2x

(
qn −

1

σ2

)
− x2

4
q2nσ3 ∼ σ2

(
xλ− x2

4

)
.

Similarly, we have for all n large enough,

Var[Y (n)
x ] ≤

∑
i≥1

(w
(n)
i )2(1− exp(−xqnw(n)

i )) ≤ σ3xqn ∼ σ2
2x.

So for all x and n large enough (depending only on λ) by Bernstein’s inequality [27, Corollary 2.11] (with
v = σ2

2x and c = maxiw
(n)
i ),

P(Y (n)
x > −σ2) ≤ P(Y (n)

x − E[Y (n)
x ] > σ2x

2/16)

≤ exp

(
− σ2

2x
4/162

2σ2
2x+maxiw

(n)
i x2σ2

)
≤ e−x/2 ,

for all x and n large enough, using again (29). It follows that, for all x large enough, and all n large
enough, P(wt(C(n)1 ) > x) ≤ 2 exp(−x/2), which completes the proof.

Proof of Proposition 3.8. We shall now prove that (40) holds for the sequence (Sn)n≥1. We have

E[S2
n] = E

[∑
i≥1

wt(C(n)i )4
]
+ E

[∑
i ̸=j

wt(C(n)i )2wt(C(n)j )2
]

≤ E[wt(C(n)1 )4] + 2E

[∑
i ̸=j

wt(C(n)i )2wt(C(n)j )2
]
,
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where the inequality follows by bounding the first sum using the fact that, for i ≥ 2, we have wt(C(n)i )4 ≤
wt(C(n)i−1)

2wt(C(n)i )2. Moreover we may upper bound the right-most expectation above using the BK
inequality. Indeed, this expectation may be rewritten as

E

[∑
i ̸=j

wt(C(n)i )2wt(C(n)j )2
]
=
∑
a,b,c,d

w(n)
a w

(n)
b w(n)

c w
(n)
d P(a←→ b, c←→ d, a ↚→ c)

≤
∑
a,b,c,d

w(n)
a w

(n)
b w(n)

c w
(n)
d P(a←→ b)P(c←→ d) = E[Sn]

2 .

Since supn E[wt(C(n)1 )4] <∞ by Lemma 3.11, we have supn{E[S2
n]− 2E[Sn]

2} <∞. Therefore,
recalling that (Sn)n≥1 converges in distribution and is thus tight, Lemma 3.10 applies, and the proof is
complete.

4 Convergence of the sprinkled component graph GC

For m ∈ N, λ ∈ R, let p′c(λ) ∈ (0, 1) be the unique number satisfying

log

(
1− p′c(λ)

1− ps

)
= − qλ

mV 1/3
, (43)

where qλ := V 1/3/χ(ps) + λ+ o(1) is defined in (28).
We define the component graph GC to be the graph with vertex set Cps,Ms (components of size at least

Ms in Hps), and such that for every A ̸= B ∈ Cps,Ms , the edge (A,B) is in GC if and only if there exist
vertices a ∈ A and b ∈ B such that the edge {a, b} is open in Hp′c(λ)

. It is easy to check that conditioned
on Hps , independently for every distinct A,B ∈ Cps,Ms the edge {A,B} lies in GC with probability

pA,B := 1−
(
1− p′c(λ)

1− ps

)∆A,B

= 1− e−qλ∆A,B/(mV 1/3), (44)

where ∆A,B denotes the number of hypercube edges with one endpoint in A and the other in B. We write
CCi for the i-th largest component of GC. The goal of this section is to prove the following.

Proposition 4.1. For every λ ∈ R, as m→∞, with respect to the ℓ2 topology,

V −2/3(|CC1 |, |CC2 |, . . .)
(d)−→ Zλ.

We remark that we also obtain convergence of the expectation of the ℓ2 norm to κ(λ), see Lemma 4.17.
Next, we let dC(·, ·) denote the shortest path metric on GC and for every i ≥ 1, let µC

i be the measure on
CCi defined by µC

i ({A}) = |A|/V 2/3 for every A ∈ CCi and let MC
i be the mm-space

MC
i = (CCi , χ(ps)V −1/3 · dC, µC

i ) .

Proposition 4.2. For every λ ∈ R, jointly with the convergence of V −2/3(|CC
i |)i≥1 stated in Proposi-

tion 4.1, as m→∞ we have

(MC
1 ,M

C
2 , . . . )

(d)−→Mλ ,

with respect to the product GP topology.

These estimates are useful for the study of percolation on H at p′c(λ) which is defined in (43) and is
very explicit in terms of V,m, λ, ps, χ(ps); indeed in Lemma 4.4 we find an asymptotic expansion for
p′c(λ). However we are interested in the point pc(λ) and it is not a priori clear that they are related. Our
last result in this section, proved in Section 4.4, is that the two points p′c(λ) and pc(λ) correspond to the
same location in the scaling window.
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Proposition 4.3. For any choice of o(1) in the definition of qλ at (28) we have that

χ(p′c(λ)) = (1 + o(1))χ(pc(λ)) .

Furthermore, we can choose the sequence o(1) in (28) so that p′c(λ) = pc(λ).

Let us also derive a corollary of Proposition 4.3 that is interesting in its own right and that will also be
useful for us in the next section. We first observe that by elementary calculus we can write a very sharp
asymptotic expansion for p′c(λ) in which every term is explicit, except χ(ps).

Lemma 4.4. For every λ ∈ R, as m→∞, we have

p′c(λ) = ps +
1

m

(
1− ps
χ(ps)

+ λV −1/3 + o(V −1/3)

)
.

Proof. The definition of p′c(λ) in (43) can be rewritten as,

p′c(λ) = 1− (1− ps) exp(−qλ/(mV 1/3)) ,

where qλ = V 1/3/χ(ps) + λ+ o(1) is given by (28). Recall that we defined ps in (8) so that by (21) we
have χ(ps) ∼ V 1/3αm, and in particular qλ = o(mV 1/3). Since e−x ∼ 1−x+O(x2) as x→ 0 we have

p′c(λ) = ps +
qλ

mV 1/3
− psqλ

mV 1/3
+O(psq

2
λ/m

2V 2/3) .

Now qλ/mV 1/3 = m−1(χ(ps)
−1 + λV −1/3 + o(V −1/3)) and ps = Θ(m−1); plugging these into the

last displayed equality concludes our proof.

We may now state the aforementioned corollary which informally states that the scaling windows of
the Erdős–Rényi graph and of the hypercube are in fact asymptotically isometric.

Corollary 4.5. For any two real numbers λ2 > λ1 we have pc(λ2)− pc(λ1) ∼ (λ2 − λ1)/(mV 1/3) as
m→∞.

Proof. This is a direct consequence of Proposition 4.3 and Lemma 4.4.

4.1 Bounding the ℓ2 distance between the edge probabilities

The goal of this section is to prove the following estimate about the proximity of the collections of (local)
connection probabilities (pA,B) from (44) and (qA,B) from (11), governing the true component graph and
its multiplicative approximation, respectively.

Proposition 4.6. For every λ ∈ R, we have

Eps

[ ∑
A ̸=B∈Cps,Ms

(pA,B − qA,B)
2

]
= O(χ(ps)

3/V ).

Recall that qλ = V 1/3/χ(ps) + λ+ o(1). By the definitions in (10) and (11), each term of the sum in
left-hand side above is

(
pA,B − qA,B

)2
=
(
e−qλ|A||B|V

−4/3 − e−qλ∆A,B/(mV 1/3)
)2
≤

q2λ
V 2/3

(
|A||B|
V

−
∆A,B

m

)2

,

since x 7→ e−x is 1-Lipschitz on [0,∞). Observing that qλ ∼ V 1/3/χ(ps) ∼ α
−1/3
m since ps =

pc(1− α
−1/3
m V −1/3), proving Proposition 4.6 boils down to showing the following.
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Proposition 4.7. For every λ ∈ R, we have

Eps

[ ∑
A ̸=B∈Cps,Ms

(
∆A,B

mχ(ps)
− |A||B|

V χ(ps)

)2
]
= O

(χ(ps)3
V

+ αm

)
.

The proof consists of the following three lemmas (Lemmas 4.8, 4.9 and 4.10), each estimating one of
the three terms we obtain when expanding the square in the left-hand side.

Lemma 4.8. We have

Eps

[ ∑
A ̸=B∈Cps,Ms

|A|2|B|2
]
≤ V 2χ(ps)

2.

Proof. Dropping the condition on the sizes of the connected components in Cps,Ms , we obtain∑
A ̸=B∈Cp,M

|A|2|B|2 ≤
∑

u,v,x,y

1{u←→ v,x←→ y,u ↚→x} ≤
∑

u,v,x,y

1{u←→ v}◦{x←→ y} ,

where the events involving connectivity all refer to the percolated hypercube at level ps. Taking expectation
and using the BK inequality yields the desired upper bound.

Lemma 4.9. We have

Eps

[ ∑
A ̸=B∈Cps,Ms

|A||B|∆A,B

]
≥ V mχ(ps)

2
(
1−O

(χ(ps)3
V

+ αm

))
.

Proof. The expected value in the left-hand side equals∑
u∼u′,x,y

Pps(u←→x, u′←→ y, u ↚→u′, |C(u)| ≥Ms, |C(u′)| ≥Ms) , (45)

where the range of summation is on vertices u, u′, x, y such that u and u′ are neighbors in H .
We would like to bound this from below using Aizenman’s “off” method but for that we first want to

remove the events |C(u)| ≥Ms and |C(u′)| ≥Ms. To this end, by the BKR inequality we have to bound∑
u∼u′,x,y

Pps(u↔x, u′↔ y, u↮u′, |C(u)| ≤Ms) ≤
∑

u∼u′,x,y

Pps(|C(u)| ≤Ms, u↔x)Pps(u
′↔ y).

Then summing over all y yields a term at most χ(ps), then over all x yields a term |C(u)|. Thus,∑
u∼u′,x,y

Pps(u↔x, u′↔ y, u↮u′, |C(u)| ≤Ms) ≤ χ(ps)
∑
u∼u′

Eps [|C(u)|1|C(u)|≤Ms
] .

By our choice of ps and Ms, and by (16), the last expectation is O(
√
M) = O(α2

mV 1/3) = o(αmχ(ps)).
Then summing over all u ∼ u′ yields a term V m, so the left hand-side above is o(V mαmχ(ps)

2).
Hence, by the union bound, in order to prove the desired lower bound on (45), it suffices to show∑

u∼u′,x,y

Pps(u←→x, u′←→ y, u ↚→u′) ≥ V mχ(ps)
2
(
1−O

(χ(ps)3
V

+ αm

))
. (46)

To this end, we now conveniently apply Aizenman’s “off” method: By conditioning on C(u), we rewrite
the sum in the left-hand side of (46) as∑

u∼u′,x,y

∑
A:u,x∈A
u′,y′ ̸∈A

Pps(C(u) = A)Pps(u
′←→ y | C(u) = A) . (47)
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For the subsets A for which u, x ∈ A but u′ ̸∈ A we have

Pps(u
′←→ y | C(u) = A) = Pps(u

′←→ y off A) .

Observe that if one of y, u′ lies in A, then Pps(u
′←→ y off A) = 0 (also note that Pps(u

′←→ y | C(u) =
A) = 1 when y ∈ A). So in order to lower bound the sum in (47), we may drop the constraints that
u′ ̸∈ A and y′ ̸∈ A and replace the conditioning on C(u) = A with “off A”. We deduce from all this that
we may bound from below the left-hand side of (46) by∑

u∼u′,x,y

∑
A:u,x∈A

Pps(C(u) = A)Pps(u
′←→ y off A) .

Focusing on Pps(u
′←→ y off A), we have

Pps(u
′←→ y off A) ≥ P(u′←→ y)− Pps(u

′←→ y only on A) ,

where we recall the event {u′←→ y only on A} means that u′←→ y occurs but it does not occur off A.
When this latter event occurs, there must exist a z ∈ A such that {u′←→ z} ◦ {z←→ y}. Hence, by the
BK inequality, the sum in the left-hand side of (46) is at least∑
u∼u′,x,y

Pps(u←→x)Pps(u
′←→ y)−

∑
u∼u′,x,y

∑
A:u,x∈A

Pps(C(u) = A)
∑
z∈A

Pps(u
′←→ z)Pps(z←→ y) .

(48)
Summing first over x, y and then over u ∼ u′, we see that the first sum equals mV χ(ps)

2.
So we conclude by showing that the second sum is of smaller order. First, after changing the order of

summation, we see that, for fixed u, x, z, we have∑
A:u,x,z∈A

Pps(C(u) = A) = Pps(u←→x, u←→ z) .

If u←→x and u←→ z then there must exist a w such that {u←→w} ◦ {w←→x} ◦ {w←→ z}, so that
the BKR inequality implies that the second sum in (48) above is at most∑

u∼u′
x,y,w,z

Pps(u←→w)Pps(w←→x)Pps(w←→ z)Pps(u
′←→ z)Pps(z←→ y)

= χ(p)2
∑
u∼u′
w,z

Pps(u←→w)Pps(w←→ z)Pps(z←→u′) ,

by summing over x and y. Finally, summing this triple term over w, z is precisely the triangle diagram, so
by (15) the estimate (46) is proved and we conclude the proof.

Lemma 4.10. We have

Eps

[ ∑
A ̸=B∈Cps,Ms

∆2
A,B

]
≤ m2χ(ps)

2(1−O(αm)).

Proof. We have

Eps

[ ∑
A ̸=B∈Cps,Ms

∆2
A,B

]
=

∑
u∼u′,v∼v′

Pps(u←→ v, u′←→ v′, u ↚→u′, |C(u)| ≥Ms, |C(v)| ≥Ms) ,
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where it is understood that the range of summation is over vertices u, u′, v, v′ such that u ∼ u′ and v ∼ v′.
We split the above sum depending on whether or not the vertices are connected by a path of length at least
m0 where m0 = Tmix(αm) is defined in Theorem 1.3. We first bound∑

u∼u′,v∼v′
Pps(u

≥m0←→ v, u′←→ v′, u ↚→u′, |C(u)| ≥Ms, |C(v)| ≥Ms) ,

where by u
≥m0←→ v we mean that there exists an open path of length at least m0 connecting u to v. The

event above implies {u ≥m0←→ v} ◦ {u′←→ v′} so by the BK inequality, the above sum is at most∑
u∼u′,v∼v′

Pps(u
≥m0←→ v)Pps(u

′←→ v′).

We bound the first factor using (24) and pull the bound (1 +O(αm))χ(ps)V
−1 out of the sum. We then

sum over v′ to obtain a contribution of χ(ps), and finally over v and u ∼ u′ to get another contribution of
V m2; thus the last sum is bounded above by (1 +O(αm))m2χ(ps)

2. Hence it remains to show that∑
u∼u′,v∼v′

Pps(u
m0←→ v, u′←→ v′, u ↚→u′, |C(u)| ≥Ms, |C(v)| ≥Ms) = o(m2χ(ps)

2) .

We proceed as before, now spliting the sum according to the length of the shortest path between u′ and
v′. Consider first the case when the shortest path between u′ and v′ has length at least m0: using the BK
inequality, (24) then (17) we obtain∑

u∼u′,v∼v′
Pps(u

m0←→ v, u′
≥m0←→ v′, u ↚→u′, |C(u)| ≥Ms, |C(v)| ≥Ms)

≤ Cχ(ps)V
−1

∑
u∼u′,v∼v′

Pps(u
m0←→ v) ≤ Cm0m

2χ(ps) = o(m2χ(ps)
2) ,

since m0 = o(χ(ps)) by our assumptions in Theorem 1.3. Finally, it remains to show that∑
u∼u′,v∼v′

Pps(u
m0←→ v, u′

m0←→ v′, u ↚→u′, |C(u)| ≥Ms, |C(v)| ≥Ms) = o(m2χ(ps)
2) . (49)

We first claim that on the event in the left-hand side of (49), there must exist vertices z, z′ such that

{u m0←→ z} ◦ {z m0←→ v} ◦ {|C(z)| ≥Ms/m0} ◦ {u′
m0←→ z′} ◦ {z′ m0←→ v′} ◦ {|C(z′)| ≥Ms/m0} .

To see this, let P be an open path of length at most m0 between u and v and assume that |C(u)| ≥ M .
Then there must exist a vertex z ∈ P where |C(z)| ≥M/m0 in the graph where the edges P are erased.
So, from the BK inequality and (16), the left-hand side of (49) is at most

Cm0

Ms

∑
z,u∼u′

z′,v∼v′

Pps(u
m0←→ z)Pps(z

m0←→ v)Pps(u
′ m0←→ z′)Pps(z

′ m0←→ v′) ,

which by symmetry equals

Cm0

Ms

∑
u∼u′,v∼v′

[∑
z

Pps(u
m0←→ z)Pps(z

m0←→ v)

]2
. (50)

The remainder of the proof relies on the non-backtracking random walk. Using (25) we see that the
expression in (50) is bounded above by

Cm0

Ms

∑
u∼u′,v∼v′

[
m0∑
t1=1

m0∑
t2=1

∑
z

pt1(u, z)pt2(z, v)

]2
. (51)
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We use (26) in (51), and sum over u′, v′ to obtain a factor of m2. This yields an upper bound of

Cm0m
2

Ms

∑
u,v

m0∑
t1,t2,t3,t4=1

pt1+t2(u, v; t1)pt3+t4(u, v; t3) ,

where we recall that, for t < s, ps(u, v; t) denotes the probability that a non-backtracking walk which is
allowed to traverse back an edge at time t, starts at u and lies at v at time s (as defined below (26)). We
proceed crudely and bound pt3+t4(u, v; t3) ≤ 1 and

∑
v pt1+t2(u, v; t1) = 1. Summing over u gives a

factor of V , and the sum over t1, t2, t3, t4 gives another factor of m4
0. Hence (50) is upper bounded by

Cm5
0m

2V

Ms
= o(m2χ(ps)

2) ,

by our assumption in Theorem 1.3 that m0 = O(V 1/15αm). This concludes the proof.

4.2 Counting the number of bad pairs of vertices

We now show that thanks to Proposition 4.6 we can couple G× and GC so that they are close in a
sense we define now. We use the standard simultaneous coupling between the two random graphs: let
{UA,B}A,B∈Cps,Ms

be i.i.d. random variables distributed uniformly on [0, 1] and put the edge (A,B) in
GC or G× if and only if UA,B ≤ pA,B or UA,B ≤ qA,B , respectively.

The estimates in this section will be conditioned on the subcritical graph Hps , i.e., in the quenched
setup. To that aim we write P⋆(·) and E⋆(·) for P(·|Hps) and E(·|Hps), respectively. Also, for two
sequences (Xm)m∈N, (Ym)m∈N of real random variables, we say that Xm = OP(Ym) if (Xm/Ym)n∈N is
tight, and that Xm = oP(Ym) if (Xm/Ym)n∈N converges in probability to 0.

For A,B ∈ Cps,Ms we write ̸=A,B be the event that there exists a self-avoiding path between A and
B that is present in one of G× or GC, but not in the other.

Proposition 4.11. Under the coupling above

E⋆
[ ∑
A,B∈Cps,Ms

|A||B|1̸=A,B

]
= oP(V

4/3).

It will be convenient to use the following four square matrices with zero diagonal whose rows and
columns are indexed by Cps,Ms . For any A ̸= B in Cps,Ms we define

T×(A,B) := P⋆(A
G×←→ B) TC(A,B) := P⋆(A

GC←→ B)
TC ̸=×(A,B) := P⋆(̸=A,B) Ξ(A,B) := |qA,B − pA,B| .

The last piece of notation we use concerns the Frobenius norm of a matrix M = (mi,j)i,j∈I which is
denoted by ∥M∥ := (

∑
i,j∈I m

2
i,j)

1/2. We begin by estimating the norm of T×; this estimate involves
only the multiplicative graph (relevant notation, wA, qλ, σ2 is defined Section 3).

Lemma 4.12. We have ∥T×∥ = OP(V
1/3/χ(ps)).

Proof. Let A ̸= B ∈ Cps,Ms . If A
G×←→ B, then either the edge (A,B) is open in G× or there exists a

C ∈ Cps,Ms such that the edges (A,C) and (C,B) are open or there exists A′, B′ ∈ Cps,Ms , such that the

edges (A,A′), (B′, B) are open and A′
G×←→ B′ using a path avoiding these two edges. Using the BK

inequality we get

P⋆(A
G×←→B) ≤ qA,B +

∑
C

qA,CqC,B +
∑
A′,B′

qA,A′qB′,BP⋆(A′
G×←→B′)

≤ qλwAwB +
∑
C

wAwBw
2
Cq

2
λ +

∑
A′,B′

qλwAwA′qλwB′wBP⋆(A′
G×←→B′) ,
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where the second inequality follows from the fact that qA,B ≤ qλwAwB for any A ̸= B ∈ Cps,Ms . The
right-hand side above factorizes, yielding

P⋆(A
G×←→B) ≤ wAwB(qλ + q2λσ2 + q2λS). (52)

where
S :=

∑
A,B∈Cps,Ms

wAwBP⋆(A
G×←→B) .

We square this, sum over A,B and take a square root to obtain that

∥T×∥ ≤ qλσ2 + q2λσ
2
2 + q2λσ2S .

Now Proposition 3.8 which gives that ES = O(1) hence S = OP(1). Furthermore, qλ = O(V 1/3/χ(ps))
by definition in (28), and Lemma 3.4 gives that σ2 = OP(χ(ps)/V

1/3), concluding our proof.

Next we bound the norm of TC ̸=× by the norms of T×, TC and Ξ.

Lemma 4.13. We have ∥TC ̸=×∥ ≤ ∥Ξ∥(1 + ∥TC∥)(1 + ∥T×∥).

Proof. We claim that if the event ̸=A,B occurs, then there exists an edge (C,D) such that either (C,D) is
closed in G× but open in GC, or, open in G× but closed in GC and

{A GC←→ C} ◦ {D G×←→ B} ,

occurs disjointly. Indeed, if A and B are connected in GC but not in G×, then we consider the path
connecting them in GC and take (C,D) to be the last edge on this path that is not in G×. In the other case,
if A and B are connected in G× but not in GC, then we consider the path connecting them in G× and take
the first edge in this path that is not in GC. Hence, the union bound and BK inequality give

|P⋆( ̸=A,B)| ≤
∑

C,D∈Cps,Ms

P⋆(A
GC←→C) · |qC,D − pC,D| · P⋆(D

G×←→B) ,

for any A,B ∈ Cps,Ms . Note that the right-hand side is just the (A,B) entry of the matrix product
(Id+TC)Ξ(Id+T×). Thus, the triangle inequality and the sub-multiplicativity of the Frobenius norm
imply that

∥TC ̸=×∥ ≤ ∥(Id+TC)Ξ(Id+T×)∥
≤ ∥Ξ∥+ ∥TCΞ∥+ ∥ΞT×∥+ ∥TCΞT×∥
≤ ∥Ξ∥(1 + ∥TC∥)(1 + ∥T×∥).

This allows us to bound ∥TC∥.

Lemma 4.14. We have ∥TC∥ = OP(V
1/3/χ(ps)).

Proof. By the triangle inequality we have∣∣∥TC∥ − ∥T×∥
∣∣2 ≤ ∥TC − T×∥2 ≤

∑
A,B∈Cps,Ms

|P⋆(A
G×←→B)− P⋆(A

GC←→B)|2

≤
∑

A,B∈Cps,Ms

P⋆(̸=A,B)
2 ≤ ∥TC ̸=×∥2.

Hence by Lemma 4.13, ∣∣∥TC∥ − ∥T×∥
∣∣ ≤ ∥Ξ∥(1 + ∥TC∥)(1 + ∥T×∥) .
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Lemma 4.6 implies that ∥Ξ∥2 = OP(χ(ps)
3/V ) so ∥Ξ∥ = oP(χ(ps)/V

1/3) since χ(ps) = o(V 1/3).
Together with Lemma 4.12, this implies that ∥Ξ∥(1 + ∥T×∥) = oP(1), hence∣∣∥TC∥ − ∥T×∥

∣∣ = oP(1 + ∥TC∥) ,

which by the triangle inequality gives the desired result.

Proof of Proposition 4.11. We first note that by Cauchy–Schwarz’s inequality,

E⋆

[ ∑
A,B∈Cps,Ms

|A||B|1 ̸=A,B

]2
≤

∑
A,B∈Cps,Ms

|A|2|B|2 ×
∑

A,B∈Cps,Ms

P⋆( ̸=A,B)
2 .

Lemma 3.4 shows that the first factor is OP(V
2χ(ps)

2) and the second is just ∥TC ̸=×∥2. We bound the
latter using Lemma 4.13 together with Lemma 4.12, Lemma 4.14 and Lemma 4.6, yielding a bound
∥TC ̸=×∥ = oP(V

1/3/χ(ps)). Putting all these together gives

E⋆

[ ∑
A,B∈Cps,Ms

|A||B|1 ̸=A,B

]2
= oP(V

7/3χ(ps)) = oP(V
8/3) ,

since χ(ps) = o(V 1/3), concluding our proof.

4.3 Convergence of the sprinkled component graph

Proposition 4.11 is precisely what is necessary to transfer the known asymptotic properties from (C×i )i≥1
to (CCi )i≥1. We start with the convergence of the sizes.

Proof of Proposition 4.1. By Proposition 3.1 we have

V −2/3(|C×1 |, |C
×
2 |, . . .)

(d)−→ Zλ ,

where Zλ = (|γi|)i≥1 and (γi)i≥1 are the excursions of (W λ
t )t≥0 above its running infimum (see Section 1).

Next Proposition 4.11 together with Markov’s inequality implies that

V −4/3
∑
A,B

|A||B|1 ̸=A,B

(d)−→ 0 .

By Skorohod’s representation theorem, we may assume without loss of generality that the convergences
above both occur almost surely. Now for any fixed integer k > 0 and ε > 0 we denote by Ωk

ε the event

Ωk
ε =

{
|γi| ≥ |γi+1|+ ε ∀ i = 1, . . . , k − 1, and |γk| ≥ ε

}
. (53)

Since (|γ1|, . . . , |γk|) is absolutely continuous on Rk
+ we have that P(Ωk

ε) → 1 as ε → 0 and k fixed.
Thus, on Ωk

ϵ for all i ∈ [k − 1] and m large enough we have

|C×i | ≥ |C
×
i+1|+ εV 2/3/2 and |C×k | ≥ εV 2/3/2 . (54)

Assume now that Ωk
ε holds and that ε > 0 is arbitrarily small but fixed. We claim that for any

i = 1, . . . k there exists a unique j ≥ 1 (later we will prove j = i) such that

|C×i ∩ C
C
j | ≥

(
1− ε

8

)
|C×i | and |CCj \ C×i | ≤

ε

8
|C×i | . (55)

28



To show existence of such j we set xi,j = |C×i ∩ CCj |/|C
×
i | and observe that∑

A,B

|A||B|1̸=A,B
≥

∑
A,B∈C×i

|A||B|1
A

GC
↚→B

=
∑
j≥1

∑
A∈C×

i ∩CCj

|A| ·
∑

B∈C×i \CCj

|B|

=
∑
j≥1

∑
A∈C×

i ∩CCj

|A| · |C×i |(1− xi,j) ≥ |C×i |
2 ·
(
1−max

j
xi,j

)
.

Since |C×i | ≥ εV 2/3/2 and the left-hand side is o(V 4/3) we get that maxj xi,j → 1 for any i = 1, . . . k
and so there exists j such that the left-hand side of (55) holds. For this j the right-hand side of (55) must
hold as well, since otherwise |CCj \ C

×
i | ≥ ε|C×i |/8 implying that∑

A,B

|A||B|1̸=A,B
≥

∑
A∈C×i ,B∈CCj \C

×
i

|A||B| ≥ ε|C×i |
2 ≥ ε3V 4/3/64 ,

contradicting the fact that the left-hand side is o(V 4/3). This j is unique, since if there were two distinct
j’s satisfying (55), then the corresponding components in GC would intersect. We denote this unique j by
π(i). Note that similarly π is injective: if there were two i’s corresponding to the same j in (55), then the
corresponding components in G× would intersect.

We also deduce that there is some j ∈ {k, k + 1, . . .} for which |CCj | ≥ (1 − ε)|C×k | ≥
ε
4V

2/3 (by
(54)) when ε ≤ 1/2, hence |CCk | ≥

ε
4V

2/3. This allows us to repeat the same argument as above with the
components of GC rather than G×, and obtain that for any j ∈ {1, . . . , k} there exists i ≥ 1 such that

|CCj ∩ C×i | ≥
(
1− ε

8

)
|CCj | and |C×i \ C

C
j | ≤

ε

8
|CCj | , (56)

and similarly this i is unique. We denote this unique i by σ(j) and note that again σ is injective.
Now, if π(i) = j or σ(j) = i, then |C×i |/|CC

j | ∈ [1− ε/4, 1 + ε/4]. This and the fact that the sizes of
C×1 , . . . , C

×
k are separated by at least εV 2/3/2 by (54) imply that π(1) = 1; indeed, otherwise π(1) > 1

and we get that for all j = 1, . . . , π(1) we have |CCj | ≥ |C
×
1 | − εV 2/3/4 and so both j = 1, 2 must be

matched to i = 1 by σ, contradicting the fact that σ is injective. We deduce that π(1) = 1 and σ(1) = 1.
By induction it folllows that π(i) = i for all i ∈ [k].

Recalling that Ωk
ϵ occurs with arbitrary high probability by choice of ϵ, this also shows that, for every

natural number k,

V −4/3
k∑

i=1

∣∣∣|C×i | − |CCi |∣∣∣→ 0 in probability. (57)

It remains only to prove the tightness in ℓ2 of
∑

i≥1 |CCi |2. The triangle inequality implies that, for any
ϵ > 0 and for any k ≥ 1, if

∑
i>k |CCi |2 > ϵV 4/3, then one of the next events must occur: either

∑
i>k

|C×i |
2 >

ϵ

3
V 4/3, or

∣∣∣∣ k∑
i=1

(|C×i |
2 − |CCi |2)

∣∣∣∣ > ϵ

3
V 4/3, or

∣∣∣∣∑
i≥1

(|C×i |
2 − |CCi |2)

∣∣∣∣ > ϵ

3
V 4/3 .

However, the convergence of (V −2/3|C×i |)i≥1 in ℓ2 implies that for any η > 0, we can choose k large
enough that

lim sup
m

P
(∑

i>k

|C×i |
2 >

ϵ

3
V 4/3

)
≤ η/3 .

This value of k being fixed, the fact that the probability of the second event is no more than η/3 for all m
large enough is a consequence of (57). Finally, for the third event we have∣∣∣∣∑

i≥1
(|CCi |2 − |C×i |

2)

∣∣∣∣ = ∣∣∣∣ ∑
A ̸=B

|A||B|(1
A

GC←→B
− 1

A
G×←→B

)

∣∣∣∣ ≤ ∑
A ̸=B

|A||B|1̸=A,B
= o(V 4/3) ,

This concludes the proof of Proposition 4.1.
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We may now use Proposition 3.2 and Proposition 4.11 to deal with the asymptotics for the distances
in the component graph.

Proof of Proposition 4.2. We work on a probability space on which we have the almost sure convergence
of V −2/3(|CCi |)i≥1 and V −2/3(|C×i |)i≥1. Let dCi and d×i denote respectively the metrics in CCi and C×i .

By Proposition 3.2, (M×i )i≥1 →Mλ for the product-GP topology. Therefore, in order to prove the
joint convergence of the collection of metric spaces (MC

i )i≥1 with respect to the product GP-distance,
it suffices to prove that for every i ≥ 1 and every ℓ ≥ 1, there exists a coupling of random points
(ξ×j )

ℓ
j=1 and (ξCj )

ℓ
j=1 which are respectively i.i.d. with distribution proportional to

∑
A∈C×i

|A|δA and∑
A∈CCi

|A|δA, such that, in probability,

max
1≤j,k≤ℓ

{
|d×i (ξ

×
j , ξ

×
k )− dCi (ξ

C
j , ξ

C
k )|
}
→ 0 . (58)

Indeed, if (58) holds, then for every finite subset S ⊆ N, the union bound implies that the convergence
also holds if we further take the maximum over the indices i ∈ S. We are then left with the proof of (58)
for a single fixed i ∈ N.

We start by coupling the random points. Recall the event Ωk
ϵ from (53) in the proof of Proposition 4.1.

Fix a natural number k ≥ 1. Let η > 0 be arbitrary. Choose ϵ > 0 such that P(Ωk
ϵ ) ≥ 1− η/5. Then, let

m′ be large enough that first, on Ωk
ϵ , we have |C×i | ≥ ϵ/2 for all m ≥ m′, and second

P
(
min

{
|C×i ∩ CCi |
|C×i |

;
|C×i ∩ CCi |
|CCi |

}
≥ 1− η

5ℓ

∣∣∣∣ Ωk
ϵ

)
< η/5 .

Then, for all m ≥ m′, we may ensure that ξ×j = ξCj for all j ∈ [ℓ] with probability at least 1 − 3η/5.
Observe also, that on the same event we also have |C×i ∩ CCi | ≥ ϵV 2/3/3.

When we do have perfect coupling we write ξj for the common value of ξCj = ξ×j ; then the distances
d×i (ξj , ξk) and dCi (ξj , ξk) may only differ on the condition that there is a self-avoiding path between ξj
and ξk that exists in one of G× or GC, but not the other; this is precisely the event ̸=ξj ,ξk . Furthermore,
for a given pair j, k ∈ [ℓ], the conditional probability that the event ̸=ξj ,ξk occurs is

∑
A,B∈C×i ∩CCi

|A||B|1 ̸=A,B

|C×i ∩ CCi |2
.

Choose now δ > 0 small enough that 9ℓ2δ/ϵ2 < η/5, and finally, using Proposition 4.11 and Markov’s
inequality, m′′ ≥ m′ large enough that

P
(∑

A,B

|A||B|1 ̸=A,B
> δV 4/3

)
< η/5 .

Then, for m ≥ m′′, the union bound implies that

P
(

max
1≤j,k≤ℓ

{∣∣d×i (ξ×j , ξ×k )− dCi (ξ
C
j , ξ

C
k )
∣∣} > 0

)
≤ η .

Since η was arbitrary, this proves the claimed convergence in (58) and completes the proof.

4.4 Position in the critical window

The main goal of this section is to prove Proposition 4.3. Our proof is based on a comparison between the
susceptibility at p′c and in the sprinkled component graph which we may rewrite respectively as

V χ(p′c(λ)) =
∑

u,v∈{0,1}m
Pp′c(λ)

(u←→ v) ,
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u vx′

x
y

y′

A ∈ Cps,∞

|A| ≤ Ms

Figure 2: A representation from left to right of the events (a), (b), (c) of Lemma 4.15. There is a path
between u, v in Hpc crossing a small connected component A of Hps .

and, writing V⋆ :=
⋃

A∈Cps,Ms
A, as

E

[∑
i≥1
|CCi |2

]
=

∑
u,v∈{0,1}m

Pp′c(λ)

(
u
V⋆←→ v

)
.

It is thus natural to define, for any p ∈ [0, 1], the random variable N(p) counting the number of
(ordered) pairs of vertices connected in Hp, and such that every path between them goes through a
connected component in Hps of size less than Ms. In particular, N(p) includes the count of pairs of
vertices of the connected components of size less than Ms in Hps . Observe that N(p) is a random variable
measurable with respect to the simultaneous coupling described in Section 4.2.

We proceed by showing that EN(p) = o(V 4/3) whenever p is within (or below) the scaling window,
then conclude by showing that p′c(λ) is indeed inside the scaling window.

Lemma 4.15. For any Λ ∈ R we have E[N(pc(Λ))] = o(V 4/3) as m→∞.

Proof. For this proof we write pc = pc(Λ) for convenience. We bound N(pc) above by the number of
pairs of vertices u, v that are connected by a path γ in Hpc that goes through a connected component A in
Hps of size |A| < Ms. Given two vertices u, v our analysis depends on whether u ∈ A and v ∈ A or not.
Let us consider first the case that u ̸∈ A and v ̸∈ A. In this case, the path γ must contain the first edge
(x′, x) entering A so that x′ ̸∈ A and x ∈ A and last edge (y, y′) leaving A so that y ̸∈ A. These imply
that the following events occur disjointly: (see Figure 2)

(a) u and x′ are connected in Hpc ;
(b) (x, x′) and (y, y′) are closed in Hps but open in Hpc . Furthermore x, y both lie in a common

connected component of Hps of size less than Ms, namely A. (This event is determined by the
status of all the edges with at least one endpoint in A.)

(c) y′ and v are connected in Hpc .
By the union bound and the BKR inequality we bound the number of such u, v by∑

u,(x,x′),(y,y′),v

Ppc(u←→x′)P
(
(x, x′), (y, y′) satisfy (b)

)
Ppc(y

′←→ v).

Since H is transitive, we may sum over all u and over all v so the last quantity equals

χ(pc)
2

∑
(x,x′),(y,y′)

P
(
(x, x′), (y, y′) satisfy (b)

)
.

Next, given Hps , for every x, y there exist at most m edges (x, x′), (y, y′) that are closed in Hps , and each
one is independently open in Hpc with probability (pc − ps)/(1− ps). Thus we may bound the last term
above by

χ(pc)
2m2

(
pc − ps
1− ps

)2∑
x,y

P (x, y lie in a connected component of Hps of size at most Ms) ,
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which we may rewrite as

χ(pc)
2m2

(
pc − ps
1− ps

)2

V Eps [|C|1|C|≤Ms
].

We now apply (16) giving that Eps [|C|1|C|≤Ms
] = O(

√
Ms). Therefore, since ps := pc ·(1−V −1/3α−1/3m ),

and pc ∼ 1/m, we have (pc−ps)/(1−ps) ∼ V −1/3α
−1/3
m m−1. Together with our choice Ms = V 2/3α4

m,
we upper bound this sum by

O(V 2/3m2 · V −2/3α−2/3m m−2 · V · V 1/3α2
m) = O(V 4/3α4/3

m ) = o(V 4/3) .

The other cases are easier and follow a similar reasoning which we briefly describe. If u ∈ A and v ∈ A,
then v ∈ C(u) and |C(u| ≤ Ms, summing over u, v gives a contribution of V Eps [|C|1|C|≤Ms

] which is
o(V 4/3). Lastly, if u ̸∈ A but v ∈ A, a path connecting u to v has a first entry to A edge (x′, x), using the
same analysis as before and using the BKR inequality gives a contribution of at most

χ(pc)V m(pc − ps)Eps [|C|1|C|≤Ms
] = O(V 4/3mV −1/3m−1α−2/3m

√
Ms) ,

which again is o(V 4/3) concluding the proof.

We can now prove that p′c(λ) lies within the critical window.

Lemma 4.16. For every λ ∈ R, there exists Λ ∈ R, such that for every m large enough,

p′c(λ) ≤ pc(Λ).

Proof. Write Zλ = (|γλ1 |, |γλ2 |, . . .). By Proposition 4.1, the sum V −4/3
∑

i≥1 |CCi |2 converges in distri-
bution to

∑
i≥1 |γλi |2. Notably there exists M > 0 such that for every m large enough

Pp′c(λ)

(∑
i≥1
|CCi |2 ≥MV 4/3

)
≤ 1/3,

which we may rewrite as

Pp′c(λ)

(∑
i≥1
|Ci|2 −N(p′c(λ)) ≥MV 4/3

)
≤ 1/3. (59)

On the other hand, by [51, Theorem 1.3 (b)] if Λ > 0 is large enough, for every m large enough,

Ppc(Λ)

(∑
i≥1
|Ci|2 ≥ 2MV 4/3

)
≥ 2/3.

So by Lemma 4.15 and Markov’s inequality, if Λ > 0 is fixed large enough, then for every m large enough

Ppc(Λ)

(∑
i≥1
|Ci|2 −N(pc(Λ)) ≥MV 4/3

)
≥ 1/2. (60)

To conclude the proof, since the map p 7→
∑

i≥1 |Ci|2 − N(p) is increasing, comparing (59) and (60)
yields the desired result.

The last lemma was necessary to deduce the next result from Proposition 4.1.

Lemma 4.17. For every λ ∈ R, as m→∞, we have E[
∑

i≥1 |CCi |2] ∼ V 4/3κ(λ).
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Proof. We adapt the proof that we have already used in Section 3.2. Since the argument does not change,
we shall be faster. As we already have the weak limit in Proposition 4.1 it is enough to show that∑

i≥1 |CCi |2 is uniformly integrable. To do so, it suffices to show that as m→∞,

E

[(∑
i≥1
|CCi |2

)2
]
≤ O(1) + 2E

[∑
i≥1
|CCi |2

]2
.

And to this end, again by using the BK inequality, it is enough to prove that E[|CC1 |4] = O(1).
Observing that each connected component of GC is a subset of a connected component of the percolated
hypercube Hp′c(λ)

, it suffices to show Ep′c(λ)
[|C1|4] = O(V 8/3).

By the tree-graph inequality (see (6.94) in [37]) we have Ep′c(λ)
[|C1|4] = O(V χ(p′c(λ)

5)) thus the
desired result follows from Lemma 4.16.

We now have all the key elements to prove Proposition 4.3.

Proof of Proposition 4.3. We first take (qmλ )m∈N any sequence such that (28) holds. By Lemma 4.17
together with Lemma 4.15 and Lemma 4.16, for every λ ∈ R, as m→∞, we have

χ(p′c(λ)) ∼ V 1/3κ(λ).

On the other hand, by definition (1) for every λ ∈ R

χ(pc(λ)) = V 1/3κ(λ).

Since κ(·) is strictly increasing (see [9, Corollary 24]), it follows that for every λ1 < λ2 as long as m is
large enough,

p′c(λ1) < pc(λ2) and pc(λ1) < p′c(λ2).

Sandwiching pc(λ) between p′c(λ− ϵ) and p′c(λ+ ϵ), and taking the limit as ϵ→ 0, we apply Lemma 4.4
to obtain

pc(λ) = ps +
1

m
·
(
1− ps
χ(ps)

+ λV −1/3 + o(V −1/3)

)
,

so that pc(λ) and p′c(λ) have the same asymptotic behavior. Finally, by elementary calculus as in the proof
of Corollary 4.5, we obtain

−mV 1/3 log

(
1− pc(λ)

1− ps

)
=

V 1/3

χ(ps)
+ λ+ o(1) .

It follows that, if we chose qλ as the left-hand side above to get pc(λ) = p′c(λ) by (43), then (28) is still
satisfied, so that this choice is valid. This concludes the proof.

4.5 Proof of Theorem 1.1

The proof is similar to the proof of Proposition 4.1 and we provide it here briefly for completeness. By
Proposition 4.3 we may assume that pc(λ) = p′c(λ). We work on the simultaneous coupling that allows us
to consider Hpc and Hps under the same probability space. Recall (Section 4.4) that N = N(pc) denotes
the number of pairs of vertices {u, v} of H that are connected in Hpc and such that any path between
them visits a component of Hps of size less than Ms.

As usual we write (Ci)i≥1 for the connected components of Hpc in decreasing order of their sizes and
(CCj )j≥1 for the components of GC. We abuse notation and write CCi for ∪A∈CCi A, that is, each component
of GC will be considered here as a subset of vertices of H . In particular, since pc(λ) = p′c(λ), for every
j ≥ 1 there exists a unique Ij such that CCj ⊂ CIj .
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Then by Lemma 4.15, N(pc) = oP(V
4/3), and we may rewrite N(pc) as

N(pc) =
∑
i∈N

(
|Ci|2 −

∑
j∈N:Ij=i

|CCj |2
)
≤
∑
i∈N
|Ci|
(
|Ci| − max

j∈N:Ij=i
|CCj |

)
.

Hence, for every ε > 0, as long as m is large enough, for every i ∈ N with |Ci| ≥ εV 2/3 there exists a Ji
such that |Ci| − |CCJi | ≤ εV 2/3/4. Note that Ji is in this case unique.

Then as ε→ 0, by Proposition 4.1 with high probability the component sizes (|CCj |)1≤j≤k are separated
by at least 4εV 2/3 and larger than 4εV 2/3. It follows, by reproducing the inductive argument below (56),
that for every 1 ≤ a ≤ k we have Ia = a and Ja = a. Thus for every 1 ≤ i ≤ k, ||Ci| − |CCi || ≤ εV 2/3.
By Proposition 4.1 we deduce V −2/3(|C1|, . . . , |Ck|) converges in distribution to (|γ1|, . . . , |γk|) where
(γi)i≥1 are excursions of (W λ

t )t≥0 above its running infimum (see Section 1). Lastly, tightness follows as
usual since E

∑
i≥1 |Ci|2 = κ(λ)V 4/3.

5 Convergence of metric space in critical hypercube percolation

The goal of this section is to complete the proof of Theorem 1.2. We begin with some tightness estimates
proving first that the conditions of Lemma 2.2 hold, and second that the sequence of mm-spaces (Mi)i≥1
is tight for the L4 topology. It follows that it suffices to prove that the convergence in (3) holds with
respect to the product GP topology. By Lemma 2.1 this amounts to proving that the

(
k
2

)
rescaled distances

between every pair of k independent uniformly drawn vertices within finitely many connected components
converge to corresponding quantities in the limit sequence Mλ.

This joint GP convergence of multiple connected components is easily reduced to the case of a
single one. In Section 5.2 we present the main argument carrying out the comparison between one fixed
connected component of the component graph GC and the corresponding one in Hpc . We put everything
together in Section 5.3, where the proof of Theorem 1.2 is formally completed.

5.1 Tightness of the critical hypercube percolation

We will need the following tightness result to verify the second condition in Lemma 2.2 as well as in a
few other places in the proofs contained in this section.

Proposition 5.1. Consider percolation at pc(λ). We have for every η > 2,

lim
ε→0

sup
m

P
(
∃x ∈ V (H), δ ≤ 1 : ∂B(x, δV 1/3) ̸= ∅ and |B(x, δV 1/3)| ≤ εδηV 2/3

)
= 0 .

Proof. If there exists a vertex x and δ ≤ 1 such that

∂B(x, δV 1/3) ̸= ∅ and |B(x, δV 1/3)| ≤ εδηV 2/3 ,

then by taking the unique k ∈ N such that 2−k ≤ δ < 2−k+1 we deduce that there exists k ∈ N such that
the event

Ek := {∃x, ∂B(x, 2−kV 1/3) ̸= ∅ and |B(x, 2−kV 1/3)| ≤ ε2η−ηkV 2/3}

occurs. We upper bound P(Ek) by applying (19) with Rk = 2−kV 1/3 and Mk = ε2η−ηkV 2/3. We are
allowed to since η > 2 implies that 2−k−1V 1/3 ≥ cε2η−ηkV 2/3V −1/3 and 2−kV 1/3 ≥ c

√
ε2η−ηkV 2/3

hold for all k whenever ε is smaller than some fixed small positive constant. So for some C, c > 0,

P(Ek) ≤ C2kV 1/3e−c2
−2k+ηk/ε V

ε2η−ηkV 2/3
≤ ε−1C2k+ηke−c2

(η−2)k/ε
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Summing over all k, the probability of the desired event is at most

C
∑
k≥0

ε−12k+ηke−c2
(η−2)k/ε = O(ε−1e−c/ε) ,

which tends to 0 as ε→ 0.

Next, to deduce the convergence of Theorem 1.1 from the weaker convergence for the weak GHP
topology, it suffices to show the following result:

Lemma 5.2. Consider percolation at pc(λ) for some fixed λ ∈ R. For any fixed c > 0, we have

lim
k→∞

lim sup
m→∞

P

(∑
i≥k
|Ci|4 > cV 8/3

)
= 0 and lim

k→∞
lim sup
m→∞

P

(∑
i≥k

diam(Ci)4 > cV 4/3

)
= 0.

Proof. We focus on the second part as the first is simpler and can be proven similarly. We begin by
applying Proposition 5.1 with some fixed η > 2 to be chosen later

lim
ε→0

sup
m

P
(
∃i ≥ 1, δ ≤ 1 : diam(Ci) ≥ δV 1/3 and |Ci| ≤ εδηV 2/3

)
= 0 .

Hence when choosing δ = min{1, diam(Ci)/V 1/3} we obtain

lim
ε→0

sup
m

P
(
∃i ≥ 1 : |Ci| ≤ εmin

{
V 2/3, diam(Ci)ηV 2/3−η/3}) = 0 ,

or in other words, for any α > 0, as long as ε > 0 is small enough, with probability at least 1−α we have

∀i ≥ 1 |Ci| ≤ εV 2/3 =⇒ diam(Ci)4 ≤ ε−4/η|Ci|4/ηV 4/3−8/(3η) . (61)

On the other hand, for any β > 0 we have as usual

E

[∑
i≥1
|Ci|4/η1|Ci|≤βV 2/3

]
= V E

[
|C(v)|4/η−11|C(v)|≤βV 2/3

]
,

and, when η < 8/3 so that 4/η − 1 ∈ (1/2, 1), we can estimate the latter using (16), obtaining

V E
[
|C(v)|4/η−11|C(v)|≤βV 2/3

]
≤ V

∑
1≤k≤βV 2/3

k4/η−2P(|C| ≥ k) ≤ 8− 2η

8− 3η
Cβ

8−3η
2η V

8
3η .

By Markov’s inequality, it follows that with probability at least 1− α∑
i≥1
|Ci|4/η1|Ci|≤βV 2/3 ≤

8− 2η

8− 3η
Cα−1β

8−3η
2η V

8
3η .

Together with (61) this implies that with probability at least 1− 2α for all ε, β > 0 small enough,∑
i≥1

diam(Ci)41|Ci|≤min(ε,β)V 2/3 ≤
8− 2η

8− 3η
Cα−1ε−4/ηβ

8−3η
2η V 4/3 .

We now fix some η ∈ (2, 8/3), choose first ε > 0 small enough so that (61) holds, then choose β > 0
small enough (in terms of ε and α) so that the right-hand side of the above inequality is at most cV 4/3

(the constant c > 0 is from the statement). Lastly, since E
∑

i |Ci|2 = V χ(pc) = O(V 4/3) we obtain that
there exists a k such that with probability at least 1− α we have that |Ci| ≤ min(ε, β)V 2/3 for all i ≥ k.
With the above we conclude that with probability at least 1− 3α we have∑

i≥k
diam(Ci)4 ≤ cV 4/3 ,

finishing the proof.
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For the proofs in the next section, we will need the following consequence of Proposition 5.1.

Lemma 5.3. Consider percolation at pc = pc(λ), let r ∈ N and denote by {Uj}j∈N a sequence of i.i.d.
random variables which, given Hpc , are distributed as uniform vertices of Cr. Then for any ε > 0 and
δ > 0 there exists N = N(ε, δ) such that as long as m is large enough

Ppc

(
dH(Cr, {Uj}1≤j≤N ) ≥ δV 1/3

)
≥ 1− ε .

Proof. Conditionally on Hpc let {Vj}1≤j≤K be a maximal set of vertices so that the distance between any
two is at least δV 1/3/2. It suffices show that for large enough N (which may only depend on ε, δ) the
probability that for every j ∈ [K] there exists j′ ∈ [N ] such that d(Vj , Uj′) ≤ δV 1/3/2 is at least 1− ε.
For each N , by the union bound, conditionally on Hpc , the probability of the complement of this event is
at most ∑

1≤j≤K

(
1− |B(Vj , δV

1/3/2)|
|Cr|

)N

.

We write Br,δ = minv∈Cr |B(v, δV 1/3/4)| and note that K ≤ |Cr|/Br,ε since the balls B(Vj , δV
1/3/4)

are disjoint for 1 ≤ j ≤ K. Therefore

P(dH(Cr, {Uj}1≤j≤N ) ≥ δV 1/3 | Hpc) ≤
|Cr|
Br,δ

(
1−

Br,δ

|Cr|

)N

. (62)

Next let R > 0 and distinguish the right-hand side above depending on whether |Cr|/Br,δ ≤ R or not. By
taking the expectation in (62) we get

Ppc(dH(Cr, {Uj}1≤j≤N ) ≥ δV 1/3) ≤ R(1− 1/R)N + P(|Cr|/Br,δ > R) .

Proposition 5.1 shows that (V 2/3/Br,δ)m∈N is a tight sequence, which together with the fact that E|Cr|2 ≤
V χ(pc) = O(V 4/3) implies that (|Cr|/Br,δ)m∈N as is also tight. Hence we can choose R = R(ε, δ) <∞
large enough that the second term on the right-hand side above is at most ε/2 uniformly for all m large
enough. We then take N depending on R large enough so that the first term in the right-hand side above is
at most ε/2 and conclude the proof.

5.2 Convergence in the Gromov–Prokhorov distance

We begin with some preparations and notation. Recall that we are working with the simultaneous coupling
of Hps and Hpc , that is, we have i.i.d. random variables {Ue}E(H) uniform on [0, 1] and for any p ∈ [0, 1]
the graph Hp is just the collection of edges with Ue ≤ p. In this way Hps is a subgraph of Hpc . Recall
also that Cps,Ms is the set of connected components of the percolated hypercube Hps with size at least
Ms; it is the vertex set of the sprinkled component graph GC of Section 4 and the edges of GC are pairs
of components of Cps,Ms which are linked by an hypercube edge e with Ue ∈ (ps, pc]; indeed using
Proposition 4.3 we assume that p′c(λ) used in the definition of GC equals pc(λ). Also let dC be the shortest
path metric on GC. We define two distances on V (H)

Definition 5.4. For any two vertices u, v ∈ V (H)

• d□(u, v) is the length of the shortest path between u and v in Hpc ; we set d□(u, v) =∞ if u, v are
not connected in Hpc .

• dC(u, v) = dC(Cps(u), Cps(v)) where Cps(x) is the component of x in Hps ; we set dC(u, v) =∞
whenever Cps(u) and Cps(v) are not connected in GC.
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Notation. In the rest of this section we will often draw two random vertices U, V which conditioned on
Hpc are independently uniformly drawn vertices of Cr for some r ∈ N fixed. We will then claim that with
high/low probability some event occurs; our meaning is always about the probability in the space of the
simultaneous coupling described above, and not the conditional probability given Hpc .

The main goal of this subsection is to prove the following. In Section 5.3 we explain how this together
with some of the abstract theory presented in Section 2.1 completes the proof of Theorem 1.2.

Proposition 5.5. Fix r ∈ N and let U, V be two vertices that conditioned on Hpc are independently
uniformly drawn vertices of Cr. Then for any δ > 0, with probability tending to 1 we have

|d□(U, V )− dC(U, V )χ(ps)| ≤ δV 1/3 .

For the proof we denote by V⋆ = ∪A∈Cps,Ms
A the set of vertices that are in components of size at

least Ms in Hps . We have implicitly argued that a random vertex U drawn from the r-largest component
Cr will belong to V⋆ with high probability (see the first paragraph in the proof of Lemma 5.6 below), but it
is not clear that U, V are connected using only vertices of the connected components of Cps,Ms — indeed,
because we have removed small components (of size less than Ms), we have to rule out the possibility that
every path in Hpc between U and V visits such a small component. This is the content of the next lemma.

Lemma 5.6. Fix r ∈ N and let U, V be two vertices that conditioned on Hpc are independently uniformly
drawn vertices of Cr. Then with probability at least 1− o(1) we have that U, V ∈ V⋆ and dC(U, V ) <∞,
and the shortest path between U and V in Hps only uses vertices in V⋆.

Proof. Recall that ENpc = o(V 4/3) where Npc is the number of pairs of vertices connected in Hpc such
that every path between them goes through a vertex belonging to a connected component of Hps of size at
most Ms. In particular, the number of pairs of vertices in Cr where one of them does not belong to V⋆ is
oP(V

4/3). By Theorem 1.1 we have that |Cr| = ΩP(V
2/3) and so the first assertion of the lemma follows.

Next, set ℓ = V 1/3αm and apply (19) with M = Ms and R = ℓ (it is immediate to verify the
conditions for this choice of M and R) to obtain

P
(
∃v, |Cps(v)| ≤Ms,diam(Cps(v)) ≥ ℓ

)
= O(V/(ℓMs))e

−cR2/Ms = O(α−5m e−cα
−2
m ) = o(1). (63)

Let γ be a geodesic path from U to V in Hpc and denote by e1, . . . , ek its edges. Assume first that
k ≥ ℓ. By (23) it is the case that k ≤ AV 1/3 with probability at least 1 − ε for any ε > 0 as long as
A = A(ε) <∞ is large enough. The edges of γ are independently closed in Hps each with probability
1− ps/pc = V −1/3α

−1/3
m by our choice of ps in (8). Hence, conditionally on γ, the probability that there

exist two ps-closed edges of γ within distance ℓ is, by the union bound, at most kℓ(V −1/3α−1/3m )2 = o(1)
by our choice of ℓ and our upper bound on k. By a similar calculation, the conditional probability of
observing a ps-closed edge in γ within distance ℓ from either e1 or ek is 2ℓV −1/3α−1/3m = o(1). Thus,
with probability at least 1−O(ε) any vertex v of γ is such that diam(Cps(v)) ≥ ℓ, and so (63) yields that
the vertices of γ all belong to V⋆ with high probability.

Lastly, if k ≤ ℓ, then by the same calculation, the probability that any of γ’s edges are ps-closed is
o(1) hence with probability 1− o(1) the vertices U and V belong to same cluster in Hps , and U, V ∈ V⋆
so in particular dC(U, V ) = 0.

Lemma 5.7. Fix r ∈ N and let U, V be two vertices that conditioned on Hpc are independently uniformly
drawn vertices of Cr. Then for any δ > 0, with probability 1− o(1), there exists a self-avoiding path Γ in
GC between (the Hps components of) U and V of length L(Γ) satisfying

d□(U, V )− δV 1/3 ≤ χ(ps)L(Γ) ≤ d□(U, V ) + δV 1/3.
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x
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Figure 3: The edge (x, x′) is removed when loop erasing Γ′ in two ways: on the left case (i) and on the
right case (ii). The path γ is represented in thick black/blue line. Red blobs represent some connected
components of Hps . Blue paths have length at most L.

Proof. Let γ be a geodesic from U to V in Hpc and let e1, . . . , ek be its edges ordered from U to V . In the
entire proof, we use Lemma 5.6 and work on the event Ω of probability 1− o(1) on which all the vertices
of γ lie in V⋆; Since the maximal diameter of a component in Hps is at most Cχ(ps) log(V/χ(ps)

3) with
probability 1− o(1) by (23), we may further assume that this is the case on Ω.

On Ω, γ corresponds to a path Γ′ on GC: processing the edges ei sequentially, if ei is an edge between
two distinct connected components of Hps , then add the corresponding edge to the path in GC. Note that
Γ′ is not necessarily self-avoiding, so we loop erase it, that is, we erase every loop as it is formed when we
traverse Γ′ in its order of construction. We let Γ denote the loop erasure of Γ′.

Each ei that we added to the path in GC must correspond to an edge of the hypercube which is ps-
closed. Hence the length of Γ is at most the number of ps-closed edges in γ; as in the proof of Lemma 5.6,
this occurs independently with probability 1− ps/pc = (1 + o(1))χ(ps)

−1 by (21). Hence, towards the
upper bound on L(Γ): if k ≤ δV 1/3, then the upper bound is trivial, otherwise, by the aforementioned
independence and Chebyshev’s inequality we obtain that L(Γ) ≤ (1 + o(1))k/χ(ps), concluding the
upper bound since d□(U, V ) = OP(V

1/3).
To obtain a lower bound on L(Γ) matching the upper bound we shall subtract the number of edges

ei of γ that are ps-closed but that should not be counted in the upper bound above. These edges are the
ps-closed edges in γ that either (see Figure 3) (i) have their two endpoints in the same component of Hps

(and hence correspond to a self-loop in GC) or (ii) which correspond to an edge of Γ′ that lies a cycle in
GC. An edge (x, x′) counted in (i) must have a pc-open path π of length at most Cχ(ps) log(V/χ(ps)

3)
connecting x to x′ without using (x, x′), since this is the maximal diameter of a component in Hps by
assumption, and two disjoint paths connecting respectively U and V to π.

As for edges counted in (ii), by definition there must exist a connected component A ∈ Hps such that
γ visits A before and after going through the edge (x, x′). In other words there must exist a subpath γ̃ of
γ starting at a ∈ A and ending at b ∈ A that goes through the edge (x, x′). Since the maximal diameter
of components in Hps is at most Cχ(ps) log(V/χ(ps)

3), there is a ps-open path between a and b inside
C. Also, since γ is a geodesic, γ′ ⊂ γ also is, and so γ′ have length at most Cχ(ps) log(V/χ(ps)

3). We
conclude that (x, x′) is inside of a cycle of length at most 2Cχ(ps) log(V/χ(ps)

3). Additionally, U and
V connect to this cycle by two disjoint paths in Hpc .

We deduce from this discussion that the desired lower bound on L(Γ) will follow once we have bound
the number of such edges by oP(V

1/3/χ(ps)). For this denote by N the number of triplets u, v, (x, x′) of
two vertices u, v and an edge (x, x′) such that there exists vertices a, b so that the following events occur
disjointly:

• The edge (x, x′) is pc-open but ps-closed,

• {x L←→ a} ◦ {a L←→ b} ◦ {b L←→ x′} in Hpc ,

• {a←→u} ◦ {b←→ v} in Hpc ,
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where L = 2Cχ(ps) log(V/χ(ps)
3) = o(V 1/3). It suffices to prove that EN = o(V 5/3/χ(ps)): indeed,

we have that |Cr| = ΩP(V
2/3) by Theorem 1.1, so if there were Ω(V 4/3) pairs of vertices of vertices u, v

in Cr such that the number of such edges (x, x′) is Ω(V 1/3/χ(ps)), we would get a contradiction to the
o(V 5/3/χ(ps)) bound. We bound EN using the BKR inequality by∑

u,v,a,b,(x,x′)

(pc − ps)Ppc(x
L←→ a)Ppc(a

L←→ b)Ppc(b
L←→ x′)Ppc(a←→u)Ppc(b←→ v) . (64)

We first sum over u and v the last two terms and get a contribution of χ(pc)2 = O(V 2/3). Next for the
sum over a, b over the three terms, considering (x, x′) as fixed, we note that for any two vertices x, y and

integer L, and any 0 ≤ p1 ≤ p2 ≤ 1 we have Pp2(x
L←→ y) ≤ (p2/p1)

LPp1(x
L←→ y). Indeed, using our

simultaneous coupling, conditioned on the existence of a p2-open path of length at most L between x and
y, choose the lexicographical first such path, the probability that it remains p1-open is at least (p1/p2)L;

hence Pp2(x
L←→ y)(p1/p2)

L ≤ Pp1(x
L←→ y). We may thus take p2 = pc and p1 = pc(1− L−1) and

upper bound (64) by

CV 2/3(pc − ps)
∑
(x,x′)

∑
a,b

Pp1(x←→ a)Pp1(a←→ b)Pp1(b←→x′) ,

for some constant C (we have (p2/p1)
3L ≤ e3). By (21) we have that χ(p1) = (1 + o(1))L, and so (15)

implies that the sum over a, b is at most O(αm + L3/V ) = O(αm logα−1m ). We sum this over (x, x′)
getting a factor of V m, the factor pc−ps is as usual at most Cm−1V −1/3α

−1/3
m . Putting all these together

gives a bound of O(V 4/3α
2/3
m logα−1m ) which is indeed o(V 5/3/χ(ps)) since χ(ps) = O(V 1/3α

1/3
m ),

concluding the proof.

We note that the last lemma already gives the required upper bound on dC(U, V ) in Proposition 5.5,
the main obstacle is that the path Γ constructed in Lemma 5.7 is not necessarily the shortest path in GC.
However, we will soon prove (Lemma 5.10) that large components of GC do not have short cycles, so if
somehow dC(U, V ) is small, then in fact Γ is a shortest path between U and V in GC.

A technical difficulty which will unfortunately arise shortly forces us to consider now the small
components of Hps as well as the larger ones (in particular, the proof of Lemma 5.9 fails unless we work
with G

C̃
, see definition below). The reason is that we will need to make some rough comparisons between

d□ and dC that are valid for all vertices in V⋆ (not just random ones) — this is the contents of Lemma 5.8
and Lemma 5.9. When the vertices are not random, it may well be that a shortest path between them in
Hpc does not remain in V⋆ and traverses through the small components of Hps .

To overcome this we write G
C̃

for the graph whose vertex set consist of all components of Hps such
that two vertices are connected if there exists an hypercube edge e connecting the two corresponding
components such that Ue ∈ [ps, pc]. We call G

C̃
the full component graph. Of course GC is a subgraph

of G
C̃

so d
C̃
(u, v) ≤ dC(u, v) for any two vertices u, v ∈ V⋆. We remark that we cannot pull the proofs

of earlier sections (particularly that of Section 4) with G
C̃
; this occurs in various places, perhaps the

most significant one is that the statement in Proposition 4.7 would fail if we did not remove the small
components of Hps .

Lemma 5.8. For every ε, α > 0 there exists β > 0 such that with probability at least 1− ε,

∀u, v ∈ V⋆ d
C̃
(u, v) ≤ βV 1/3/χ(ps) =⇒ d□(u, v) ≤ αV 1/3 .

Proof. First by (23), we may consider λ′ < λ small enough such that the diameter of Hpc(λ′) is smaller
than αV 1/3 with probability at least 1−ε/2, and then set β = 1/(3(λ−λ′)). Assume now that there exist
vertices u, v ∈ V⋆ such that αV 1/3 ≤ d□(u, v) and d

C̃
(u, v) ≤ βV 1/3/χ(ps). Then there is a shortest

path γ from u to v in Hpc(λ) of length at least αV 1/3 with at most βV 1/3/χ(ps) edges closed in Hps .
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Conditioned on Hpc and Hps , the probability that each pc-open but ps-closed edge is also closed in Hp(λ′)

is
pc(λ)− pc(λ

′)

pc(λ)− ps
= (1 + o(1))(λ− λ′)α1/3

m ,

using Corollary 4.5, our definition of ps in (8), and the fact that pc(λ) ∼ 1/m. So the conditional
probability that γ stays open in Hp(λ′) is at least

1− βV 1/3χ(ps)
−1(λ− λ′)α1/3

m (1 + o(1)) = 1− (1 + o(1))β(λ− λ′) > 1/2 ,

by our choice of β. If this occurs, then clearly u and v remain connected in Hpc(λ′) and γ is also a shortest
path in Hpc(λ′) between u and v implying that the diameter of Hpc(λ′) is at least αV 1/3. Hence

P
(
∃u, v ∈ V⋆ : αV 1/3 ≤ d□(u, v) and dC(u, v) ≤ βV 1/3/χ(ps)

)
≤ 2P(diam(Hpc(λ′)) ≥ αV 1/3) ≤ ε ,

by our choice of λ′. This concludes the proof.

We will also need a converse of the last lemma, that is, we would like to show that a small d□ distance
implies small d

C̃
distance for all pairs u, v ∈ V⋆. It is the proof of this lemma that would be invalid if we

were to consider dC instead of d
C̃
.

Lemma 5.9. For every δ1 > 0 there exists δ2 > 0 such that with probability 1− o(1),

∀u, v ∈ V⋆ d□(u, v) ≤ δ2V
1/3 =⇒ d

C̃
(u, v) ≤ δ1V

1/3/χ(ps) .

Proof. Fix an arbitrary δ1 > 0 and let δ2 = δ2(δ1) > 0 be a small number that will be chosen at the end
of the proof; we also set r = 2δ2V

1/3.
If there exist vertices u, v ∈ V⋆ so that d□(u, v) ≤ r/2 and d

C̃
(u, v) ≥ δ1V

1/3/χ(ps), then the
shortest path between u and v in Hpc must induce a path of length at least δ1V 1/3/χ(ps) in G

C̃
. This

implies that there exists K ≥ δ1V
1/3/χ(ps) and a finite sequence of vertices A0, A1 . . . , AK of G

C̃
such

that u ∈ A0 and v ∈ AK and a shortest path in Hpc from u to v of length at most r/2 that goes through
the vertices of A0, . . . , AK successively without visiting any other vertices of G

C̃
. Note that we do not

require that the Ai’s be distinct since they do not necessarily form a shortest path in G
C̃
.

Since u, v ∈ V⋆ it must be the case that A0 and AK are both of size at least at least Ms, and by (23)
their diameter is o(V 1/3) with probability 1− o(1). Hence, any pair of vertices from A0 and AK can take
the role of u and v and that increases the length of this shortest path to at most r/2 + o(V 1/3) ≤ r. We
deduce that there are at least M2

s pairs of vertices u0, vK such that there exist vertices v0, . . . , vK−1 and
u1, . . . , uK such that vj and uj+1 are neighbors in H for all 0 ≤ j ≤ K − 1, as well as lengths {ℓj}Kj=0

of total sum at most
∑

0≤j≤K ℓj ≤ r, so that the next 2K + 1 events occur disjointly (see Figure 4):

1. For all j = 0, . . .K, uj is connected to vj in Hps by a path of length at most ℓj ,

2. For all j = 0, . . .K − 1 the edges (vj , uj+1) are ps-closed but pc-open.

We will bound the expected number of such pairs u0, vK . First we need to consider all the possible
collections of lengths ℓj’s but in order not to overcount too much, we enumerate them in logarithmic
scales starting from r/K. In particular, let L : {0, . . . ,K} → N be defined by

L(j) =

{
1, if ℓj ≤ r

K

i, if ℓj ∈
[
2i−1r
K , 2

ir
K

)
.

The range of L is in fact contained {1, . . . , ⌊log2K⌋ + 1} since ℓj ≤ r for all j. Furthermore, since
the total length

∑
0≤j≤K ℓj is at most r the number of j’s such that L(j) = i is at most 2K

2i
. Hence the

number of such possible L’s is at most

⌊log2 K⌋+1∏
i=0

(
K

⌊2K/2i⌋

)
≤
⌊log2 K⌋+1∏

i=0

(e2i)⌈2K/2i⌉ ≤ CK , (65)
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Figure 4: A path in Hpc with corresponding length K = 5 in GC̃ is represented. The red blobs represent
connected components of Hps . Paths in Hps are drawn in blue and edges of Hpc\Hps are drawn in black.

where C > 0 is some universal constant (in the first inequality we used that
(
a
b

)
≤ (ea/b)b).

We now bound the expected number of pairs u0, vK using the BKR inequality by

∑
u0,v0 ...,uK ,vK
(vj ,uj+1)∈E(H)

∑
L

(pc − ps)
K

K∏
j=0

Pps

(
uj

2L(j)r/K←→ vj
)
.

Given L, we sum first over u0 using (17) to obtain a factor of C2L(1)r/K. We then sum over v0 giving
a factor of m. We continue this way and get for each j ∈ {0, 1, . . . ,K} a factor of C2L(j)r/K and K
factors of m in total. The sum over the last vertex vK gives a factor of V . We obtain an upper bound on
the desired expectation of

V · (pcmV −1/3α−1/3m )K
∑
L

K∏
j=0

C2L(j)r/K .

Since 2L(j)−1r/K ≤ ℓj , we have that
∑

j 2
L(j)r/K ≤ 2r. Hence by the arithmetic–geometric mean

inequality we bound the product above by (2Cr/K)K+1. Since the number of maps L is at most CK by
(65), the expectation is at most

V · (pcmV −1/3α−1/3m )K(2C2r/K)K+1 .

We now plug in the values of r and the lower bound K ≥ δ1V
1/3/χ(ps) and recall that by (21) we have

χ(ps) ≤ 2V 1/3α
1/3
m and that mpc ≤ 2, so the above is bounded by

V χ(ps)(16C
2δ2/δ1)

K+1 .

We now choose δ2 > 0 small enough so that 16C2δ2/δ1 ≤ 1/2, sum over K ≥ δ1V
1/3/χ(ps) (the

first term is dominant) and thus bound this expectation above by V 4/32−δ1α
−1/3
m . As mentioned earlier,

the event in the statement of the lemma implies that there are at least M2
s such pairs u0, vK , hence by

Markov’s inequality the probability of the event is at most

M−2s V 4/32−δ1α
−1/3
m = α−8m 2−δ1α

−1/3
m = o(1) ,

as required.

Our last preparatory lemma shows that G
C̃

has no short cycles in large components (this is clearly
false for Hpc since there will be many cycles of length 4 in large components).

Lemma 5.10. For any ε > 0 and τ > 0 there exists α = α(ε, τ) > 0 such that as long as m is large
enough, with probability at least 1− ε, no connected components of G

C̃
of weight at least τV 2/3 contains

a cycle of length less than αV 1/3/χ(ps).
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Figure 5: The cycle event from the proof of Lemma 5.10 is represented. The red blobs represent some
connected components of Hps . Blue paths are in Hps . Black segment are edges in Hpc\Hps . The path
between x and z′ represented in red is in Hpc .

Proof. Let X denote the number of vertices x that belong to a component of G
C̃

that contains a cycle
of length at most αV 1/3/χ(ps). We will show that EX = O(αV 2/3) from which the lemma follows
immediately by Markov’s inequality. If x is such a vertex, then there exist 3 ≤ ℓ ≤ αV 1/3/χ(ps)
and vertices A1, . . . , Aℓ of G

C̃
(that is, components of Hps) that form a cycle in G

C̃
(in that order) and

additionally either x ∈ ∪i≤ℓAi, or x is connected in Hpc to A1. We write respectively X1 and X2 for the
two corresponding contributions to X .

The presence of such a cycle implies that there exist vertices v1, u1, . . . , vℓ, uℓ such that vi, ui ∈ Ai

and (vi, ui+1) is an edge that is closed in Hps but open in Hpc for each 1 ≤ i ≤ ℓ (where uℓ+1 = u1).
By [26, Theorem 1.2, (1.17)] with high probability all the components of Hps are of size at most
O(χ(ps)

2 log(V/χ(ps)
3)); multiplying this by ℓ ≤ V 1/3/χ(ps) is o(V 2/3), hence, the contribution

E[X1] of the vertices x lying inside the cycle (in ∪i≤ℓAi) is at most o(V 2/3).
We now proceed to bound the contribution E[X2] of the vertices x ̸∈ ∪i≤ℓAi. Observe that, in this

case, there must exist z ∈ ∪i≤ℓAi and z′ ̸∈ ∪i≤ℓAi such that (z, z′) is an edge that is closed in Hps but
open in Hpc and x is connected to z′ in Hpc . Without loss of generality, we will assume that z ∈ A1. We
obtain that there exist vertices v1, u1, . . . , vℓ, uℓ, z, z′, w such that (vi, ui+1) and (z, z′) are edges such
that the following events occur disjointly (see Figure 5):

1. The edges {(vi, ui+1)}ℓi=1 and (z, z′) are closed in Hps but open in Hpc .

2. There exists w such that {v1←→w} ◦ {u1←→w} ◦ {w←→ z} in Hps .

3. For any 2 ≤ i ≤ ℓ the vertices ui and vi are connected by an open path in Hps .

4. x is connected to z′ in Hpc .

By the BKR inequality we obtain that

EX2 ≤
αV 1/3/χ(ps)∑

ℓ=1

(pc − ps)
ℓ+1

∑
x,(z,z′),w

v1,u1,...,vℓ,uℓ

Ppc(x←→ z′)Pps(v1←→w)Pps(u1←→w)

× Pps(w←→ z)
∏

2≤i≤ℓ
Pps(vi←→ui) .

We now evaluate this sum. We begin by summing over x to get a contribution of χ(pc) = O(V 1/3), then
over z to get a contribution of χ(ps), then over z′ and get a contribution of m. This simplifies the above
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sum to

EX2 ≤ C
∑
ℓ

(pcV
−1/3α−1/3m )ℓ+1mV 1/3χ(ps)

∑
w,v1,u1,...,vℓ,uℓ

Pps(v1←→w)Pps(u1←→w)

×
∏

2≤i≤ℓ
Pps(vi←→ui) . (66)

Now, if any of the connection events above occur in a path of length at least m0, we use (24) to bound that
probability by Cχ(ps)/V and the rest of the sum is then easily seen to give a contribution of V (mχ(ps))

ℓ.
The contribution of this case to EX2 is thus

αV 1/3/χ(ps)∑
ℓ=3

C(pcV
−1/3α−1/3m )ℓ+1V 1/3(mχ(ps))

ℓ+1χ(ps) .

We have that (mpc)
ℓ = 1 + o(1) (since ℓ ≤ α

−1/3
m and pc = m−1 + O(m−2)), and since χ(ps) =

(1 +O(αm))V 1/3α
1/3
m we have (χ(ps)V −1/3α

−1/3
m )ℓ+1 = 1+ o(1), so we are left with a contribution of

χ(ps)V
1/3 for each ℓ, giving in total a contribution of O(αV 2/3) to EX2 (and thus EX), as desired.

This is indeed the main contribution to EX2 and we are left to bound (66) in the case that all connection
events occur in paths of length less than m0. We use (25) and bound the second sum in (66) by

(1 + o(1))ℓ+2mℓ
m0−1∑

t
(a)
1 ,t

(b)
1 ,

t2,...,tℓ=0

∑
w,v1,...vℓ
u1,...,uℓ

pt
(a)
1 (v1, w)pt

(b)
1 (u1, w)p1(v1, u2)

ℓ∏
i=2

pti(ui, vi)p1(vi, ui+1) ,

and note that the terms mp1(vi, ui+1) guarantee that (vi, ui+1) are edges. Using the natural generalization
of (26) this equals

(1 + o(1))ℓ+2V mℓ
m0−1∑

t
(a)
1 ,t

(b)
1 ,

t2,...,tℓ=0

pℓ+t
(a)
1 +t

(b)
1 +t2···+tℓ(v, v; t

(a)
1 , t

(b)
1 , 1, t2, 1, . . . , tℓ, 1) .

We proceed very crudely since we have a lot of room to spare, and bound the term in the sum by 1 and
just bound the above by 2ℓV mℓmℓ+1

0 . We put this back into (66) and get a bound of

αV 1/3/χ(ps)∑
ℓ=3

C(2pcV
−1/3α−1/3m mm0)

ℓ+1V · V 1/3χ(ps) .

Since we assume for Theorem 1.3 that m0 = O(V 1/15αm) and pcm ∼ 1, the factor in parenthesis
goes to 0 as m → ∞. So the main contribution of the above sum comes from ℓ = 3, which is of
order O(1)(V −1/3α

−1/3
m m0)

3V 4/3χ(ps). Inserting χ(ps) = o(V 1/3) and m0 = O(V 1/15αm) yields the
desired bound of o(V 2/3).

We now have everything in place to prove Proposition 5.5.

Proof of Proposition 5.5. Recall that U, V are independent uniformly drawn vertices of the r-th largest
component Cr of Hpc , where r ∈ N is a fixed number. We first apply Lemma 5.7 and since dC(U, V ) ≤
L(Γ) we obtain that for any δ > 0 the event

χ(ps)dC(U, V ) ≤ d□(U, V ) + δV 1/3 (67)

occurs with probability 1− o(1), so it remains to prove a lower bound on dC(U, V ).
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To this end, we first note that the inequality χ(ps)dC(U, V ) ≥ d□(U, V ) − δV 1/3 holds trivially if
d□(U, V ) ≤ δV 1/3. Also by Proposition 5.1 as τ → 0 we have

sup
m

P(d□(U, V ) ≥ δV 1/3, |Cr| ≤ τV 2/3)→ 0,

so we may also assume that |C(U)| ≥ τV 2/3 for some small arbitrary τ > 0. Thus, it suffices to prove
that for any τ > 0 and ζ > 0 we have

P
(
|Cr| > τV 2/3, χ(ps)dC(U,U

′) ≥ d□(U,U
′)− ζV 1/3

)
= 1− o(1) . (68)

Let ε > 0 be an arbitrarily small but fixed constant. We will show that the event above has probability
at least 1−O(ε). By Lemma 5.10 we may take α = α(ε, τ) > 0 small enough such that as long as m is
large enough with probability at least 1− ε we have that

|Cr| > τV 2/3 =⇒ all cycles of CC̃r have length at least 8αV 1/3/χ(ps) , (69)

where CC̃r is just the r-th largest component of G
C̃

(the vertices of CC̃r are the Hps components contained
in Cr). Assume this event holds. We now apply Lemma 5.8 to obtain a constant β = β(α) > 0 so that
with probability at least 1− ε we have

∀u, v ∈ V⋆ d
C̃
(u, v) ≤ βV 1/3/χ(ps) =⇒ d□(u, v) ≤ αV 1/3 , (70)

and assume this event holds. For convenience we assume that βV 1/3/χ(ps) ∈ N; otherwise we round and
carry negligible errors, we omit the details.

Next by Lemma 5.6 we know that dC(U, V ) < ∞ with probability at least 1 − o(1). On this event
we can take the shortest path between them in GC and split it into intervals of length βV 1/3/χ(ps); more
precisely, we find (random) vertices x1, . . . , xk such that U = x1 and V = xk and

∀i = 1, . . . , k − 2 dC(xi, xi+1) = βV 1/3/χ(ps) dC(xk−1, xk) ≤ βV 1/3/χ(ps) , (71)

and

k ≤ β−1χ(ps)V
−1/3dC(U, V ) + 1 . (72)

We record the direct consequence of our choice of β in (70) and our choice of the xi’s:

d□(xi, xi+1) ≤ αV 1/3 ∀i = 1, . . . , k − 1 . (73)

We think of ε, α, β (as well as τ and ζ from the statement of (68)) as constants from now on, and
set δ1 ∈ (0, α) to be a small parameter that we will choose at the end of the proof as a function of these
constants. By Lemma 5.9 there exist δ2 = δ2(δ1) ∈ (0, δ1) so that with probability at least 1− o(1) we
have

∀u, v ∈ V⋆ d□(u, v) ≤ δ2V
1/3 =⇒ d

C̃
(u, v) ≤ δ1V

1/3/χ(ps) , (74)

and we assume this event holds.
Next we apply Lemma 5.3 to obtain N = N(ε, δ2) large enough so that with probability at least 1− ε

we have
d□H(Cr, {Uj}1≤j≤N ) ≤ δ2V

1/3 ,

where given Hpc the random variables {Uj} are i.i.d. uniform vertices in Cr and d□H stands for the
Hausdorff distance in (H, d□) (see Section 1). We assume this event holds and in particular, this implies
that for each i = 1, . . . , k there exists ji so that

d□(xi, Uji) ≤ δ2V
1/3 , (75)
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where we set Uj1 = U = x1 and Ujk = V = xk. It follows by (74) that

d
C̃
(xi, Uji) ≤ δ1V

1/3/χ(ps) , (76)

and also (73) together with the triangle inequality and the fact that δ2 ≤ α imply that

d□(Uji , Uji+1) ≤ (2δ2 + α)V 1/3 ≤ 3αV 1/3 ∀i = 1, . . . , k − 1 . (77)

We now apply Lemma 5.7 and obtain that with probability 1− o(1) for each pair ji, ji+1 there exists a
path in G

C̃
(in fact in GC) between (the Hps components of) Uji and Uji+1 of length L = L(i) satisfying

d□(Uji , Uji+1)− δ2V
1/3 ≤ χ(ps)L ≤ d□(Uji , Uji+1) + δ2V

1/3 . (78)

By (69) we learn that if L ≤ 4αV 1/3/χ(ps), then L = d
C̃
(Uji , Uji+1). This bound on L indeed holds by

(77) and the second inequality in (78). Thus, for each i = 1, . . . , k − 1 we obtain

|χ(ps)dC̃(Uji , Uji+1)− d□(Uji , Uji+1)| ≤ δ2V
1/3 .

By (75) and (76) this implies that for each i = 1, . . . , k − 1

|χ(ps)dC̃(xi, xi+1)− d□(xi, xi+1)| ≤ (2δ1 + 3δ2)V
1/3 ≤ 5δ1V

1/3 .

We now bound using this and the triangle inequality

d□(U, V ) ≤
k−1∑
i=1

d□(xi, xi+1) ≤
k−1∑
i=1

χ(ps)dC̃(xi, xi+1) + 5δ1kV
1/3 .

We now use (71), (72) and that d
C̃
≤ dC to bound from above the first term on the right-hand side

by χ(ps)dC(U, V ). The second term is bounded by 5δ1β
−1χ(ps)dC(U, V ) + 5δ1V

1/3 using (72). Put
together

d□(U, V ) ≤ (1 + 5δ1β
−1)χ(ps)dC(U, V ) + 5δ1V

1/3 ,

or alternately χ(ps)dC(U, V ) ≥ d□(U, V ) − 5δ1(β
−1χ(ps)dC(U, V ) + V 1/3). By (20), there exists

A = A(ε, λ) <∞ such that the diameter of any cluster in Hpc is at most AV 1/3 with probability at least
1− ε/2; in this case, in particular, d□(U, V ) ≤ AV 1/3. We now conclude the proof by choosing δ1 > 0
small enough so that first 5δ1 < ζ/2 and second

5δ1β
−1χ(ps)dC(U, V ) ≤ 5δ1β

−1(AV 1/3 + δ1V
1/3) < ζV 1/3/2 ,

where the first inequality uses the fact that χ(ps)dC(U, V ) ≤ d□(U, V ) + δ1V
1/3 with probability at least

1− ε/2 by (67).

5.3 Proof of Theorem 1.2

In the following, in order to emphasize the dependence in m, we write Mm
i = (Ci, V −1/3d□i , µ□

i ) and Mi

for the ith largest connected component of Hm. We also write Mm = (Mm
i )i≥1. Recall that Mλ denotes

the limit vector. We will write M∞i , i ≥ 1, for the components of Mλ, and let diam(M∞i ) and |M∞i |
for the corresponding diameter and mass. Our aim is to prove that Mm →Mλ in distribution for the L4

GHP topology, and we proceed by successive strengthenings.
We start by proving that Mm converges in distribution to Mλ for the product Gromov–Prokhorov

topology, that is: for every fixed finite S ⊂ N, the collection (Mm
i )i∈S converges to (M∞i )i∈S , where the

convergence of each component is with respect to the GP topology. To do so, denote by dCi the shortest
path metric in CCi and by µC

i the measure on CCi defined by µC
i (A) = V −2/3|A| and lastly write MC

i for
the mm-space

MC
i =

(
Ci, χ(ps)V −1/3dCi , µC

i

)
,
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exactly as above Proposition 4.2. Fix a finite subset S ⊆ N, and let ℓ ≥ 1 be an arbitrary natural number.
For each i ∈ S, let (ξ□i,j)

ℓ
j=1 be ℓ i.i.d. uniformly random vertices of Ci. For each i ∈ S and j ∈ [ℓ] let ξCi,j

be the component containing ξ□i,j in Hps as long as this component is of size at least Ms, so that ξCi,j ∈ CCi ;
if this component is of smaller size, let ξCi,j be an independent sample of a uniform vertex in CCi . Thus,
for each i ∈ S, we obtain a coupling between ℓ i.i.d. uniform vertices (ξ□i,j)

ℓ
j=1 in Ci and ℓ i.i.d. uniform

vertices (components) in CCi . Proposition 5.5 implies that

max
i∈S

max
1≤j,k≤ℓ

{∣∣∣∣χ(ps)V 1/3
dCi (ξ

C
j , ξ

C
k )−

1

V 1/3
d□i (ξ

□
j , ξ

□
k )

∣∣∣∣}→ 0 in probability . (79)

We deduce the desired convergence in probability of (Mm
i )i∈S to (M∞i )i∈S using Lemma 2.1, and hence

the convergence of Mm to Mλ in the product GP topology.
We now prove the convergence of Mm to Mλ in the product GHP topology by relying on Lemma 2.2.

Let S ⊂ N be finite. The first step consists in using Proposition 5.1 to prove that, for every δ > 0,

max
i∈S

max
x∈Ci

V 2/3

|B(x, δV 1/3)|

is tight. For every K > 0, we have

P
(
max
i∈S

max
x∈Ci

V 2/3

|B(x, δV 1/3)|
> K

)
≤ P

(
max
i∈S

max
x∈Ci

V 2/3

|B(x, δV 1/3)|
> K, ∂B(x, δV 1/3) ̸= ∅

)
+ P

(
max
i∈S

max
x∈Ci

V 2/3

|B(x, δV 1/3)|
> K, ∂B(x, δV 1/3) = ∅

)
.

The first term in the right-hand side can be made as small as we want, uniformly in m, by choice of K
by Proposition 5.1. On the other hand, the second term is bounded above by P(mini∈S |Ci| < V 2/3/K),
which can also be made arbitrarily small, uniformly in m, also by choice of K using the convergence of
the component sizes in Theorem 1.1, and the well-known fact that the limit masses (|γi|)i≥1 are all almost
surely positive [9]. The desired tightness follows, so that condition (ii) of Lemma 2.2 is satisfied. Also we
recall and we deduce the claimed convergence of Mm in the product GHP topology.

Finally, we prove the convergence of Mm to Mλ in the L4 topology. Using Skorohod representation
theorem, consider a space where the convergence in the product GHP topology occurs almost surely. In
that space, we now prove that dist4GHP(M

m;Mλ) tends to zero in probability. Observe first that (see
e.g. [4, Section 2.1]) for any metric space A, we have dGHP(A, ∅) ≤ diam(A) + |A|, where ∅ denotes
the trivial measured metric space (one point of mass zero) and |A| is the total mass of A. It follows
readily by the triangle inequality that, for any i ≥ 1, 4−3dGHP(M

m
i ,Mi)

4 ≤ diam(Mm
i )4 + |Mm

i |4 +
diam(M∞i )4 + |M∞i |4. Let now ϵ, η > 0 be arbitrary. By Lemma 5.2, there exists a k′ ∈ N such that

lim sup
m

P
(
44
∑
i>k′

diam(Mm
i )4 > ϵ

)
< η/8 and lim sup

m
P
(
44
∑
i>k′

|Mm
i |4 > ϵ

)
< η/8 .

Let then k ≥ k′ be large enough that we also have for the limit vector Mλ,

P
(
44
∑
i>k

diam(M∞i )4 > ϵ
)
< η/8 and P

(
44
∑
i>k

|M∞i |4 > ϵ
)
< η/8 .

It follows that, for this value of k, for all m large enough, we have

P(dist4GHP(M
m;Mλ) > 2ϵ) ≤ P

( ∑
1≤i≤k

dGHP(M
m
i ,M∞i )4 > ϵ

)
+ η .

The almost sure convergence of Mm to Mλ in the product topology implies that the first term in the
right-hand side above tends to zero as m→∞, which completes the proof.
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[33] P. Erdős and J. Spencer. Evolution of the n-cube. Comput. Math. Appl., 5(1):33–39, 1979.

[34] L. Federico. Critical scaling limits of the random intersection graph. arXiv preprint arXiv:1910.13227,
2019.

[35] C. Goldschmidt, B. Haas, and D. Sénizergues. Stable graphs: distributions and line-breaking
construction. Annales Henri Lebesgue, 5:841–904, 2022.

48



[36] A. Greven, P. Pfaffelhuber, and A. Winter. Convergence in distribution of random metric measure
spaces (Λ-coalescent measure trees). Probab. Theory Related Fields, 145(1-2):285–322, 2009.

[37] G. Grimmett. Percolation, volume 321 of Grundlehren der mathematischen Wissenschaften [Funda-
mental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, second edition, 1999.

[38] M. Heydenreich and R. van der Hofstad. Progress in high-dimensional percolation and random
graphs. CRM Short Courses. Springer, Cham; Centre de Recherches Mathématiques, Montreal, QC,
2017.

[39] T. Hulshof and A. Nachmias. Slightly subcritical hypercube percolation. Random Structures
Algorithms, 56(2):557–593, 2020.

[40] A. Joseph. The component sizes of a critical random graph given degree sequence. The Annals of
Applied Probability, 24:2560–2594, 2014.

[41] G. Kozma and A. Nachmias. A note about critical percolation on finite graphs. J. Theoret. Probab.,
24(4):1087–1096, 2011.

[42] V. Limic. The eternal multiplicative coalescent encoding via excursions of Lévy-type processes.
Bernoulli, 25(4A):2479–2507, 2019.

[43] G. Miermont. Tessellations of random maps of arbitrary genus. Ann. Sci. Éc. Norm. Supér. (4),
42(5):725–781, 2009.

[44] G. Miermont and S. Sen. On breadth-first constructions of scaling limits of random graphs and
random unicellular maps. Random Structures & Algorithms, 61(4):803–843, 2022.

[45] A. Nachmias. Mean-field conditions for percolation on finite graphs. Geom. Funct. Anal., 19(4):1171–
1194, 2009.

[46] A. Nachmias and Y. Peres. Critical random graphs: diameter and mixing time. Ann. Probab.,
36(4):1267–1286, 2008.

[47] D. Reimer. Proof of the van den Berg-Kesten conjecture. Combin. Probab. Comput., 9(1):27–32,
2000.

[48] G. Uribe Bravo. Markovian Bridges, Brownian Excursion and Stochastic Fragmentation and
Coalescence. Phd thesis, Universidad Nacional Autónoma de México, 2007.

[49] J. van den Berg and H. Kesten. Inequalities with applications to percolation and reliability. J. Appl.
Probab., 22(3):556–569, 1985.

[50] R. van der Hofstad and A. Nachmias. Unlacing the lace expansion: a survey to hypercube percolation.
Metrika, 77(1):23–50, 2014.

[51] R. van der Hofstad and A. Nachmias. Hypercube percolation. J. Eur. Math. Soc. (JEMS), 19(3):725–
814, 2017.

[52] R. van der Hofstad and G. Slade. Asymptotic expansions in n−1 for percolation critical values on
the n-cube and Zn. Random Structures Algorithms, 27(3):331–357, 2005.

[53] M. Wang. Large random intersection graphs inside the critical window and triangle counts. arXiv
preprint arXiv:2309.13694, 2023.

49



Acknowledgments

The first and third authors are supported by ERC consolidator grant 101001124 (UniversalMap) as well as
ISF grants 1294/19 and 898/23. We thank Eleanor Archer and Matan Shalev for useful discussions.

DEPARTMENT OF MATHEMATICAL SCIENCES, TEL AVIV UNIVERSITY, ISRAEL

LPSM, SORBONNE UNIVERSITÉ, AND IUF, FRANCE

Emails:
ablancrenaudiepro@gmail.com
nicolas.broutin@sorbonne-universite.fr
asafnach@tauex.tau.ac.il

50


	Introduction
	Main results
	Background
	Other underlying graphs
	Outline of the proof and organization
	Table of notations

	Preliminaries
	Topological notions
	Percolation
	Non-backtracking walk on the hypercube and percolation

	Convergence of the component multiplicative graph G×
	Subcritical estimates for σ2 and σ3: Proofs of Lemmas 3.4 and 3.5
	Convergence of the susceptibility for multiplicative graph: Proof of CVX

	Convergence of the sprinkled component graph GC
	Bounding the ℓ2 distance between the edge probabilities
	Counting the number of bad pairs of vertices
	Convergence of the sprinkled component graph
	Position in the critical window
	Proof of Theorem 1.1

	Convergence of metric space in critical hypercube percolation
	Tightness of the critical hypercube percolation
	Convergence in the Gromov–Prokhorov distance
	Proof of Theorem 1.2


