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Abstract

We use large deviations to prove a general theorem on the asymptotic edge-
weighted height H?

n of a large class of random trees for which H?
n ∼ c log n for some

positive constant c. A graphical interpretation is also given for the limit constant c.
This unifies what was already known for binary search trees [11, 13], random recur-
sive trees [12] and plane oriented trees [23] for instance. New applications include the
heights of some random lopsided trees [19] and of the intersection of random trees.

Keywords and phrases: Random binary search trees, random recursive trees, plane
oriented trees, lopsided trees, probabilistic analysis, large deviations.

1 Introduction

This paper gives general laws of large numbers for the height of a class of edge-weighted
random trees, which includes as special cases random binary search trees [11], random
recursive trees, random plane oriented trees [23], and random split trees [16]. But it
also covers random k-ary trees not analyzed until now. The paper extends the earlier
theorems of Devroye [11, 12, 15] where the theory of branching processes was used for
this purpose. A special kind of branching random walk permitted Biggins and Grey [5] to
obtain the asymptotic height of various random trees including random binary search trees
and random recursive trees. We propose in this paper a method based on large deviations
for sums of independent random variables. The closest approach was the one of Biggins
[4] which used multidimensional branching processes. Our method makes intensive use of
Cramér’s Theorem for large deviations [17, 10] and some properties of the rate functions
it defines. The height is characterized as the solution of a 2-dimensional optimization
problem involving Cramér’s functions. We apply our method in some cases where these
functions can be expressed in a closed form. In particular, we are able to obtain the height
for random binary search trees, random recursive trees, random median-of-(2k + 1) trees
and random lopsided trees, thus extending the class of trees covered by a single theorem.

We first present the main result and its proof, taking for granted some results about
large deviations. The proofs for these have been put in Appendix. We next make the link
between trees of random variables and random trees of size n, leaving the most interesting
part on applications as a concluding section.

∗Research of the authors was supported by NSERC Grant A3456 and by a James McGill Fellow-
ship. Address: School of Computer Science, McGill University, Montreal H3A2K6, Canada. Email:
{luc,nbrout}@cs.mcgill.ca
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2 Main results

Consider an infinite rooted b-ary tree T∞. Let π(u) denote the set of edges in T∞ on the
path from the root to node u. Assign independently to each node u a random b-vector
{(Z1, E1), (Z2, E2), . . . , (Zb, Eb)}, where each couple (Zi, Ei) is distributed as (Z,E) for
non-negative and independent Z and E, both having finite means. Also, E is not mono-
atomic and has no atom at 0. Note that every Z is independent of any E, but the couples
(Zi, Ei) inside a single b-vector may be dependent. These random variables are mapped
to the edges, so that each edge e receives a couple (Ze, Ee). For each node u, let its age
be Gu =

∑
e∈π(u)Ee and define the weighted depth Du =

∑
e∈π(u) Ze. We now have a

complete b-ary tree with nodes augmented with two independent random variables Gu

and Du. Define Tn to be the tree of nodes u ∈ T∞ for which Gu ≤ n. We are interested
in the weighted height Hn = max{Du : u ∈ Tn}. The following theorem characterizes
Hn, whatever the distributions of Z and E. In the sequel, we let Λ?

Z denote the right-
tail Cramér function for a random variable Z [25, 10] (see below). Also, Λ?

E denotes the
left-tail Cramér function for E. More about large deviations can be found in Appendix.

Theorem 1. Let {Ee, e ∈ T∞} and {Ze, e ∈ T∞} be families of random variables as in
the previous setting. Then

Hn

n
−−−→
n→∞

c

in probability, where c is the unique maximum value of α/ρ along the curve CZ,E and

CZ,E = {(ρ, α) : Λ?
Z(α) + Λ?

E(ρ) = log b, ρ ≤ EE,α ≥ EZ} . (1)

We first argue about the existence of a solution in (1). We need to show that CZ,E 6= ∅.
But from fact 3 of Lemma 5, Λ?

Z(EZ) = 0. Since Λ?
E is continuous where it is not infinite

(Lemma 10), Λ?
E(EE) = 0 and limρ→0 Λ?

E(ρ) = ∞, there must be a value ρ0 for which
Λ?

E(ρ0) = log b. Thus (EZ, ρ0) ∈ CZ,E 6= ∅. The uniqueness of the constant c defined
above follows from the geometry of CZ,E :

Lemma 1. The curve CZ,E defined in Theorem 1 is increasing and concave.

Note that ρ/α is the slope of a line with one endpoint at the origin and the other
one on CZ,E . If Z has a single atom at EZ, then CZ,E consists of a single point, and
there is nothing to show. So assume that Z too is not mono-atomic. As we will see in
Proposition 8, Λ?

Z has a derivative at α = EZ and

d

dα
Λ?

Z(α)
∣∣∣∣
α=EZ

= 0.

This means that the graph of CZ,E has a vertical tangent at EZ, because if α = EZ,
then ρ 6= EE. Similarly, the tangent is horizontal at the other end of the domain, at
a point (EE,α?). Using Lemma 1 above, this shows that the optimal point occurs for
α ∈ (EZ,α?) (see Figure 1). We conclude:

Lemma 2. If Z is not mono-atomic, then the maximal value c = α0/ρ0 on CZ,E occurs in
the interior of CZ,E. If Z is mono-atomic, then CZ,E consists of a single point (ρ?,EZ),
where Λ?

E(ρ?) = log b.
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Figure 1: Geometric interpretation of the constant c in the non-
degenerate case. We draw α versus ρ along the curve CZ,E . Note that
EZ < α < α? and that ρ? < ρ < EE. The slope of the tangent line is c.
The grey box is the domain to be considered.

Proof of Lemma 1. Assume that none of Z and E are single masses. Since Λ?
Z and Λ?

E are
the rate functions for the right tail of Z and left tail of E, Λ?

Z increases and Λ?
E decreases

on its support. Thus, CZ,E is increasing. Consider now α1, α2 ≥ EZ and x ∈ (0, 1). Let
ρ1, ρ2 and ρ be the points of CZ,E corresponding to α1, α2 and α = xα1 + (1 − x)α2,
respectively. We have to show that ρ ≤ xρ1 + (1 − x)ρ2 to obtain the concavity. By
convexity of both rate functions,

Λ?
E(xρ1 + (1− x)ρ2) ≤ xΛ?

E(ρ1) + (1− x)Λ?
E(ρ2)

= log 2− (xΛ?
Z(α1) + (1− x)Λ?

Z(α2))
≤ log 2− Λ?

Z(xα1 + (1− x)α2)
= Λ?

E(ρ).

Since Λ?
E decreases, the concavity holds.

Knowing that c is uniquely defined, we can address the issue of the main part of the
proof of Theorem 1. We split it into two lemmas, following the analysis of Devroye [15].
Collecting the results to prove Theorem 1 is then straightforward.

Lemma 3 (Upper bound). With the notations of Theorem 1, for any ε > 0,

lim
n→∞

P {Hn ≥ c(1 + ε)n} = 0.

Proof. Let ε > 0. Let c′ = c(1 + ε), where c is defined as in Theorem 1. Let Ln,k be the
set of nodes u that are k levels away from the root in Tn. Since Tn =

⋃
k≥0 Ln,k, by the

union bound,

P
{
∃u ∈ Tn : Du ≥ c′n

}
≤
∑
k≥0

P
{
∃u ∈ Ln,k : Du ≥ c′n

}
. (2)
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Consider now one level Ln,k, the union bound on the nodes in this level gives

P
{
∃u ∈ Ln,k : Du ≥ c′n

}
≤ bkP

{
k∑

i=1

Zi ≥ c′n,
k∑

i=1

Ei ≤ n

}

= bkP

{
k∑

i=1

Zi ≥ c′n

}
·P

{
k∑

i=1

Ei ≤ n

}
,

by independence. For each tail probability, we use Chernoff’s bound, which is a one-sided
explicit version of Crámer’s theorem [17, 10]. For any λ > 0 and µ < 0, we have

P
{
∃u ∈ Ln,k : Du ≥ c′n

}
≤ bkP

{
eλ

Pk
i=1 Zi ≥ eλc′n

}
·P
{
eµ

Pk
i=1 Ei ≥ eµn

}
≤ bkekΛZ(λ)−λc′n · ekΛE(µ)−µn. (3)

Three cases may happen:
(a) k is so small that there are not enough edges on the path down to u for the weighted

depth to be large,
(b) k is in the right range to rescale properly, or
(c) k is so large that there are too many edges on the path from the root to u for it to be

likely that u ∈ Tn.

It follows that we can bound (3) in three different ways depending on the value of k:

P
{
∃u ∈ Ln,k : Du ≥ c′n

}
≤



bkekΛZ(λ)−λc′n if kEE ≤ n
kEZ ≤ c′n

bkekΛZ(λ)−λc′n+kΛE(µ)−µn if kEE ≥ n
c′n ≥ kEZ

bkekΛE(µ)−µn if kEE ≥ n
kEZ ≥ c′n.

(4)

Note that kEZ ≤ c′n implies that kEE ≤ n. Let

K1 =
n

EE
and K2 =

c′n

EZ
,

and note that K1 ≤ K2 since EZ/EE ≤ c < c′ (see Figure 1). The three cases of (4) then
correspond to k being lower than K1, between K1 and K2 or greater than K2. Consider
first k ≤ K1,

inf
λ>0

ekΛZ(λ)−λc′n ≤ inf
λ>0

eK1ΛZ(λ)−λc′n = e−K1Λ?
Z(c′n/K1) = e−K1Λ?

Z(c′/EE).

Hence,∑
k≤K1

P
{
∃u ∈ Ln,k : Du ≥ c′n

}
≤
∑

k≤K1

bke−K1Λ?
Z(c′/EE) ≤ K1

(
elog b−Λ?

Z(c′/EE)
)K1

.

But log b − Λ?
Z(c′/EE) < 0 since log b = Λ?

Z(c/EE) + Λ?
E(EE), Λ?

E(EE) = 0 and Λ?
Z is

strictly increasing. Therefore, since K1 →∞ as n→∞,∑
k≤K1

P
{
∃u ∈ Ln,k : Du ≥ c′n

}
= o(1). (5)
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For the second case, K1 ≤ k ≤ K2,∑
K1≤k≤K2

P
{
∃u ∈ Ln,k : Du ≥ c′n

}
≤

∑
K1≤k≤K2

bkekΛZ(λ)−λc′n+kΛE(µ)−µn,

and optimizing the choice of λ > 0 and µ < 0,∑
K1≤k≤K2

P
{
∃u ∈ Ln,k : Du ≥ c′n

}
≤

∑
K1≤k≤K2

bke−kΛ?
Z(c′n/k)−kΛ?

E(n/k).

Observing that
EZ
c′

=
n

K2
≤ n

k
≤ n

K1
= EE,

we have that

Λ?
Z

(
c′
n

k

)
+ Λ?

E

(n
k

)
≥ inf

EZ
c′ ≤ξ≤EE

{
Λ?

Z(c′ξ) + Λ?
E(ξ)

} def= log b+ f(ε).

We claim that f(ε) > 0. Indeed, recall the geometric interpretation of c as the maximum
slope of a line that has one point at the origin and an other on the curve CZ,E{(ρ, α) :
Λ?

Z(α) + Λ?
E(ρ) = log b}. Therefore, a line with slope c′ = (1 + ε)c does not touch CZ,E

and is bounded away from it. The claim then follows from the strict monotonicity of Λ?
Z

and Λ?
E . As a consequence, as n→∞,∑

K1≤k≤K2

P
{
∃u ∈ Ln,k : Du ≥ c′n

}
≤

∑
K1≤k≤K2

e−kf(ε) = o(1). (6)

Finally, for the last case, when k ≥ K2,

P
{
∃u ∈ Ln,k : Du ≥ c′n

}
≤ bk inf

µ<0
ekΛE(µ)−µn ≤ bk inf

µ<0
ekΛE(µ)−µkEZ/c′ = bke−kΛ?

E(EZ/c′).

Again, by definition of c, and the monotonicity of Λ?
E , log b− Λ?

E(EZ/c′) < 0 and hence,∑
k≥K2

P
{
∃u ∈ Ln,k : Du ≥ c′n

}
≤
∑

k≥K2

(
elog b−Λ?

E(EZ/c′)
)k

= o(1). (7)

Plugging (5), (6) and (7) in (2) yields

P {Hn ≥ c(1 + ε)n} ≤
∑
k≥0

P {∃u ∈ Ln,k : Du ≥ c(1 + ε)n} = o(1).

This finishes the proof.

Lemma 4 (Lower Bound). For any ε > 0, there exists some node u for which Du ≥
c(1− ε)n with probability tending to 1 as n→∞.

Proof. This proof uses ideas of Biggins [3]. Let ε > 0 be arbitrary. We exhibit a path
in Tn to a node u with Du ≥ c(1 − 2ε) log n. For this purpose, we will build a surviving
Galton-Watson process. We start with the root. Consider in T∞ the nodes L levels away.
A given node u is called good if Du ≥ αL and Gu ≤ ρL, for some α and ρ to be chosen
later. We define the Galton-Watson children to be the good nodes. Each child reproduces
independently according to the same reproduction distribution, that is, a node v lying L
levels below a node u is a good child of u if Dv−Du ≥ αL and Gv−Gu ≤ ρL. The process
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of good nodes survives with positive probability if the expected number of children is more
than one. Write NL for the number of good nodes L levels away from the root.

ENL = bLP {Du ≥ αL,Gu ≤ ρL}
= exp(−γ(α, ρ)L+ o(L)),

according to the proof of Lemma 3. Choosing α and ρ such that γ(α, ρ) < 0 makes
ENL > 1 for L large enough. Picking α = α0 and ρ = ρ0/

√
1− ε suffices, where α0,

ρ0 are as in Lemma 2. Therefore, writing q < 1 for the probability of extinction, the
process survives with probability 1 − q > 0. We now have to boost this probability up
to 1− o(1). We do this by starting the Galton-Watson process at level tL instead, giving
more chance that at least one of the btL processes survives. We need now to consider the
joint distribution of the E random variables {E1, E2, . . . , Eb} down the same vertex: for
any β > 0, we can pick a such that P {E1 ≤ a,E2 ≤ a, . . . , Eb ≤ a} ≥ 1− β. Let A be the
event that all the Ee random variables in the top tL levels take values less than a. Then,

P {Ac} ≤ β btL.

Thus A occurs with probability arbitrary close to one, controlled by our choice for β. And
if A is true, then all nodes v at level tL are such that Gv ≤ atL. Let now B be the event
that one of the btL Galton-Watson processes survives. Then

P {Bc} = qbtL
,

by independence. If both A and B occur, then there is a node u at level tL + kL in T∞
such that Gu ≤ atL+ ρkL and Du ≥ αkL. Taking

k =
⌊
n(1− ε)
ρ0L

⌋
,

ρ = ρ0/
√

1− ε and α = α0 gives Gu ≤ n
√

1− ε + atL < n, for n large enough and
Du ≥ c(1− ε)n− α0L ≥ c(1− 2ε)n for n large enough. Thus

P {Hn ≥ c(1− 2ε)n} ≥ P {A ∪B} ≥ 1−P {Ac} −P {Bc} ,

and we can control the lower bound and make it as close to 1 as we want by choice of β
and t independently of n. Therefore, for all ε > 0,

lim
n→∞

P {Hn ≥ c(1− 2ε)n} = 1.

3 Towards applications

Our primary aim is to obtain results about the height of some incrementally built random
trees. The main problem is the number of nodes. Indeed, the tree Tm has a random
number of nodes N . We would like to pick the right m for N to be almost n. In most
examples below, we need to pick a node uniformly at random in order to grow the tree.
This can be achieved in the following way.

We need a particular kind of Crump-Mode-Jagers process [9], namely a Bellman-Harris
process [18, 1]. Let X be a random variable of mean µ which takes non-negative integer
values. Consider a branching process that starts with a single individual. It dies at
a random time M1 and gives birth to X + 1 new independent individuals that behave
similarly. Call these events replacements. Assume that the lifetime of each individual is
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exponentially distributed with mean one so that, in particular, M1
L= exponential(1). Let

Mk be the random time of the kth birth, and Nk the size of the population just before Mk.
Because of the memoryless property of the exponential distribution, we just start a new
process at Mk with Nk+1 = Nk +Xk brand new individuals, where Xk is an independent
copy of X. Symmetry shows that each individual is equally likely to be the next one to
die. Let {Ei, i ≥ 1}, be a family of independent exponential(1) random variables. Since

min{E1, E2, . . . , Em}
L=
E1

m
,

and X0 = 1, we have

Mk
L=

k∑
i=1

Ei∑i−1
j=0Xj

.

Estimating the number of nodes when the process is stopped at time mn is made easier
by first considering Mk.

Proposition 1. The time Mk of the k-th birth satisfies µMk ∼ log k, almost surely.

Proof. We have that
1
i

i−1∑
j=0

Xj −−−→
i→∞

µ a.s.,

by the strong law of large numbers. From a generalized law of large numbers, see [8,
Theorem 2, p. 331],

1
log k

k∑
i=1

Ei

i
−−−→
k→∞

1 a.s.,

which together yield
Mk

log k
−−−→
k→∞

1
µ

a.s.

With this in hand, we can now consider the number of nodes in the process. Let

mn =
1
µ
· log n, (8)

and write N(t) for the number of individuals when the process is stopped at the determin-
istic time t. It happens that N(mn) is close enough to n for us to make use of Theorem 1
in the sequel.

Proposition 2. The number of nodes N(mn) in the process stopped at time mn defined
in (8) is such that logN(mn) ∼ log n, almost surely.

Proof. Again, from the law of large numbers

Nk

k
−−−→
k→∞

µ a.s.,

so
logNk

log k
−−−→
k→∞

1 a.s.

Using Proposition 1, this yields

logNk

µMk
−−−→
k→∞

1 a.s.
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So, stopping the process at time t,

logN(t)
µt

−−−→
t→∞

1 a.s..

Taking t = mn finishes the proof.

We now make the link between branching random walks stopped at a deterministic
time mn and random trees over n nodes. Let H?

n be the height of a random tree with n
nodes, grown by appending, at each step, 1 + X children to a uniform random leaf. The
following proposition is of interest for most applications.

Proposition 3. Let c be the constant defined in Theorem 1 with E having exponential(1)
distribution. Then

H?
n

log n
−−−→
n→∞

c

µ

in probability.

Proof. Let ε > 0. Then, with probability tending to 1 as n→∞,

n1−ε ≤ Nn ≤ n1+ε.

Therefore,

µ(1− ε) ·
H?

n1−ε

(1− ε) log n
=
H?

n1−ε

mn
≤
H?

Nn

mn
=
Hmn

mn
≤
H?

n1+ε

mn
=

H?
n1+ε

(1 + ε) log n
· µ(1 + ε),

and Theorem 1 yields the conclusion.

Remark: Since the exponential distribution is the only memoryless distribution, any
other choice for the lifetimes leads to non-uniform sampling for the next individual that
die. This is sometimes required for the applications such as the median-of-(2k + 1) trees
(see section 4.3).

4 Applications

We will now present a few applications of Theorem 1, using our unifying view. We present
in particular random binary search trees, random recursive trees, median-of-(2k+1) trees,
and other models of random trees. The rate functions Λ?

Z and Λ?
E are Crámer functions

which are often hard to express in a closed form. This makes it difficult to derive useful
properties of the optimal point of (1). Also, the equations we obtain are often implicit.

4.1 Random Binary Search Tree

Let us test Theorem 1 on the height of the random binary search tree, which, following
Knuth [20] is defined as follows: take a random permutation Y1, Y2, . . . Yn of {1, 2, . . . , n};
insert the elements Yi, i = 1, 2, . . . , n one after an other as nodes in an initially empty
search tree. We define the partial rank Ri of Yi to be the rank of Yi in the sequence
{Y1, Y2, . . . , Yi}. We make Y1 the root and send all Yi’s such that Yi < Y1 to the left
subtree and the others to the right subtree. We then process the elements falling into each
subtree in a recursive way. Interesting functionals of this random tree are the depth of Yn

(the time to insert Yn) and the height H?
n (the maximal time to insert an element). Knuth

[20] and Mahmoud [22] summarize the known properties. Regarding the height, we have
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Theorem 2 (Devroye 1986, 1987, 1998). For a random binary search tree,

H?
n

log n
−−−→
n→∞

c

in probability, where c is the unique solution greater than 1 of 2e/c = e1/c .

Usually, Theorem 2 is proved by considering the tree in which we associate with each
node the size of the subtree rooted at that node. For instance, at the root, the size of the
left subtree is bnUc, with U

L= [0, 1]-uniform. This approach implies dealing with some
tedious truncations [11]. Instead, we use a property of the partial ranks Ri [22]. Indeed,
at time step i



4.2 Random Recursive Tree

The random recursive tree is one of the simplest random trees [27]. It is built incrementally:
when starting, the tree T1 consists of a single node v1. At each step i a new vertex vi is
added to the tree and appended as a child to a node chosen uniformly in {v1, v2, . . . , vi−1}.
This is sometimes called a Yule process. Various functionals of this tree have been studied
in the literature. We are particularly interested in its height H?

n when n goes to infinity.

Theorem 3 (Devroye 1987, Pittel 1994). The height H?
n of a random recursive tree with

n nodes is e log n in probability as n goes to infinity.

To use Theorem 1, we look at the uniform random recursive tree as a binary tree
(Figure 2). Recall that a random binary search tree can be build alternatively by choosing
at each step an external node uniformly at random and replacing it with an internal
one. This is because the partial rank Ri of the element Yi inserted at time i is uniformly
distributed in {1, 2, . . . , i} [22]. Therefore, building a binary tree in which the external
nodes represent the nodes of our random recursive tree solves the issue of the uniform
choice. Thus we want to map the nodes of a rooted tree to the external nodes of a binary
tree, in such a way that we keep the information about the distances to the root. Consider
a rooted tree Tn on n vertices. Let S = {d1, d2, . . . , dn} be a multiset of numbers that
represent the distances from the nodes to the root tree. To make the mapping more visual,
we will also describe the construction of a binary tree with labeled edges T b

n on n external
vertices together with Sb

n, the sequence of distances in T b
n (see Figure 2).

• T1 consists of a single node and S1 = {0}. Appending a node yields a tree on two
nodes and S2 = {0, 1}. Let T b

2 be the binary tree with two external nodes. Let e and
f be its edges. Label them with ze = 1 and zf = 0. Consider the labels as distances.
Then T b

2 has distance sequence Sb
2 = {0, 1} = S2.

• Suppose now we are given Tn and the corresponding T b
n . They match the distance

sequence Sn = {d1, d2, . . . , dn}. Appending v to node u means that we make Sn+1 =
Sn ∪ {d+ 1}, where d ∈ S is the distance from u to the root in both Tn and T b

n . In
terms of trees, we replace the external node u in T b

n by an internal node x. There
are two new external nodes associated with x, and the edges e and f out of x are
labeled ze = 1 and zf = 0. We may as well label the new external vertices v (such
that e = (x, v)) and u (with f = (x, u)). Then we clearly have Sb

n+1 = Sb
n ∪ {d+ 1},

and the sequences Sn+1 and Sb
n+1 match, as required.

Replacing deterministic labels by random variables makes this model fit for our frame-
work. For the same reason as in binary search trees, E L= exponential(1). Since on any
path π from the root in T∞, each edge e is as likely to be labeled with 0 as with 1, we
have Z L= Bernoulli(1/2). From Theorem 1, we have to maximize α/ρ on the curve

CZ,E = {(α, ρ) : Λ?
Z(α) + Λ?

E(ρ) = log 2}.

But we have that Λ?
Z = α logα+ (1−α) log(1− α) + log 2 and Λ?

E(ρ) = ρ− 1− log ρ [10],
which yields

CZ,E = {(α, ρ) : α logα+ (1− α) log(1− α) + ρ− log ρ = 1}. (10)

The slope of the curve ρ(α) is

dρ

dα
=

logα− log(1− α)
1/ρ− 1

. (11)
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43

5

3
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5 4 1

Figure 2: A rooted tree and the corresponding binary tree. The white
nodes have been added for the sake of the construction. Solid lines
correspond to edges with Z = 1 and dashed ones to those with Z = 0.
Therefore, 1 is equivalent to the root (as the root distance is zero), 2 to
the first child of the root (distance one), and so on.

Recalling the geometric interpretation shows that the optimal α satisfies

dρ

dα
· α = ρ.

Straightforward manipulations using (11) give α logα− α log(1− α) = 1− ρ. Taking the
value for 1 − ρ in the equation (10) for CZ,E yields ρ = 1 − α. Using this value again in
(10) gives the desired result, that is, α/ρ = e.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0

0.5

1.0

Figure 3: The curve corresponding to uniform recursive trees CZ,E =
{(ρ, α) : α logα+ (1− α) log(1− α) + ρ− log ρ = 1, ρ ≤ 1, α ≥ 1/2}.

4.3 Median-of-(2k + 1) trees and split trees

A well-known improvement of Quicksort [20, 26] samples 2k + 1 elements at random and
uses the median as a pivot instead of splitting the data at a uniform random point. Such

11



a scheme makes the splits more balanced, and therefore the tree less high. The trees
produced are called median-of-(2k + 1) trees. They can equivalently be viewed as trees
produced by a balancing heuristic applied to the fringe of the tree [24, 29]. It is clear that
the external nodes are no longer uniformly picked, and as a consequence Proposition 3 does
not apply. However, since our goal is to demonstrate the generality of our framework, we
will avoid wandering around and refer for the details to Devroye [14].

Consider again the associated tree of subtree sizes, with the root having value n.
The sizes of the subtrees of the children of the root are both distributed as multinomial
(n − 1,W, 1 −W ) random variables, where W and 1 −W are in turn distributed as the
median of 2k + 1 uniform [0, 1] random variables, which is known to be beta(k + 1, k +
1). The multinomial is really concentrated about its mean, and thus behaves roughly as
(nW,n(1−W )). So we get same first order behavior for the height and other parameters
if we were to associate with the edges out of the root random variables W and 1 −W ,
and let the tree consist of all nodes u for which the product of edge values on π(u) is at
least 1/n. Equivalently, taking logarithms, and associating with sibling edges the values
− log(W ) and − log(1 −W ), and independently so for all other sibling pairs, we may let
the tree consist of all nodes u for which the sum of edge values on π(u) is at most log n.
Thus, − logW now plays the role of the lifetime of a particle. We are able to rediscover
with little work the following theorem.

Theorem 4 (Devroye 1993). The height H?
n of a median-of-(2k + 1) tree satisfies

H?
n

log n
−−−→
n→∞

c(k)

in probability, where c = c(k) is the unique solution of the equation

s

c
+

2k+1∑
i=k+1

log
(

1− s

i

)
= log 2,

and s is implicitly defined by the equation

1
c

=
2k+1∑
k+1

1
i− s

.

Proof. (Outline only.) Let X be beta(k + 1, k + 1) and E = − logX. Let Z = 1 almost
surely. Then

M(s) = E
{
e−s log X

}
=

Γ(2k + 2)
Γ(k + 1)2

∫ 1

0
x−sxk(1− x)kdx =

(2k + 1)!
k!

2k+1∏
i=k+1

1
i− s

.

Then we have that
Λ?

E(ρ) = sup
t
{ρt+ logM(t)} .

The optimization corresponds to equation

d

dt
(ρt+ logM(t)) = 0,

that is

ρ =
2k+1∑
i=k+1

1
i− s

.
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Theorem 5. The height H?
n of a random b-ary lopsided tree having n nodes built with

costs {c1, c2, . . . , cb} satifies
H?

n ∼
c

b− 1
· log n

in probability, where c is the unique maximal value of α/ρ under the constraint that

αt(α) + logα− log

(∑
i

cie
tci

)
+ ρ− 1− log ρ = 0, (12)

where t(α) is uniquely defined by ∑
i

(α− ci)etci = 0. (13)

Remark: Theorem 5 does not formally apply to the case of equal ci’s. It is easy to verify
though that when c1 = c2 = · · · = cb = 1, we are led to

H?
n ∼

c

b− 1
log n

in probability, where c = 1/ρ, and ρ is the unique solution greater than 1 of Λ?
E(ρ) =

ρ− 1− log ρ = log b.

Our random lopsided trees may also be used when we replace a random node by a
fixed deterministic tree. The growing process is as follows. Start with a grey node. Each
step sees the replacement of uniformly selected random grey node by a deterministic tree
consisting of k nodes (see, e.g., Figure 4). In this replacement tree, all leaves, as well as
none, some or all of the internal nodes are painted grey (if the root is grey, then the node
just replaced may be selected again), for a total of ` ≤ k grey nodes. If we are interested
in standard distances to the root, and in the classical definition of the height, then we can
imagine another tree in which the replaced node receives a number ` of children, with edge
weights equal to the distances to the root in the replacement tree. The original tree has
sizes given by 1+s(k−1) for s integer, and the new imagined tree has sizes given by 1+s`
for s integer: they are linearly related. The weighted height in the new tree corresponds
to the standard height in the original tree. We work out two examples.

In Figure 4, we replace a randomly picked grey node by a subtree of five nodes, of
which two grey nodes, at distances 1 and 3 from their roots. This corresponds to a random
lopsided tree (modulo a proportionality constant in the size of the tree) with weights (1, 3),
and fanout b = 2. The slope of the tangent going through the origin is 9.3389 . . . , implying

H?
n ∼ 9.3389 . . . log n

in probability.

In Figure 5, we have the same replacement, but paint all five nodes grey. This yields
the random lopsided tree with fanout b = 5 and cost vector (0, 1, 1, 2, 3). The slope of the
optimal tangent is 20.966 . . . , which gives the height after renormalization:

H?
n ∼ 5.241 . . . log n

in probability.
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Figure 4: The pattern that replaces a grey node and the curve CZ,E

together with the optimal tangent when the set of costs is {1, 3}. The
nodes are labeled with their depth.

Proof of Theorem 5. In this model, external nodes are picked uniformly at random and
Proposition 3 applies, with X = b − 1 almost surely. Therefore, Λ?

E(ρ) = ρ − 1 − log ρ.
Since on a path to the root, each edge is equally likely to have any cost,

ΛZ(t) = log
(
E
{
etZ
})

= log

(∑
i

etci

)
− log b.

Using the definition Λ?
Z(α) = supt{αt−ΛZ(t)}, we see that the optimal value is obtained

for

α =
∑

i cie
tci∑

i e
tci

,

which is equivalent to (13). The value t(α) is unique as long as at least two of the ci’s are
distinct. (12) follows immediately from Proposition 3.

4.5 Plane oriented trees and linear recursive trees

Plane oriented trees (PORTs) are rooted trees in which the children of every node are
oriented. A random PORT with n nodes is defined as a tree taken uniformly at random
from the set of (n− 1)! plane oriented trees with n nodes. The depths of nodes in random
PORTs have been studied by Mahmoud [21] and their height by Pittel [23]. An interesting
property of PORTs is their recursive description: one can view a random PORT with n
nodes as a random PORT with n− 1 nodes, to which we add a node uniformly at random
in the set of slots available. Nodes have labels 1 through n in order of addition, and
therefore, the label numbers are increasing on paths down from the root. The slots are
the positions in the tree that lead to different new trees. Because of the order, each node
with k children has k + 1 slots (external nodes) attached to it as described in Figure 6.

We may consider them as linear recursive trees, a more general model of Pittel [23],
which has also been dealt with by Biggins and Grey [5]. For this kind of tree, each node
u has a weight wu, and when growing a random linear recursive tree, a new node is added
as a child to u at random with probability proportional to wu. For linear recursive trees,
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1

0

1

2

3

Figure 5: With the set of costs {0, 1, 1, 2, 3}, one can think of a uniform
grey node being replaced by the tree pattern on the left.

we have wu = 1 + βdegu, where degu denotes the number of children of u and β ≥ 0 is
called the parameter. We can obtain the same distribution on trees by taking external
nodes uniformly at random and with a suitable number of external nodes for each vertex,
at least when β is integer (see below).

0 01 0

︸ ︷︷ ︸

β+ 1

. . . . . . . . . . . .

Figure 6: A PORT with the slots represented by squares on the left and
the tree pattern on the right, representing the replacement of an external
node. The labels on the edges are the costs of crossing them.

Assume that β is integer-valued. It is easily seen that when we pick a uniform external
node at depth d, and replace it by β + 2 new external nodes, β + 1 at depth d and one at
d+1, then this may be seen as replacing a uniform external node by the fixed tree pattern
of Figure 6. The Z values of the β+ 2 child edges of a node consist of one 1 and β+ 1 0’s.
A typical Z value therefore is Bernoulli (1/(β+ 2)). One may apply our result on random
lopsided trees with fanout β + 2 to find a new proof of Pittel’s theorem on the height.

Theorem 6 (Pittel 1994). Assume that β is integer-valued. The height H?
n of a random

linear recursive tree with parameter β and n nodes is such that

H?
n

log n
−−−→
n→∞

c

β + 1
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in probability, where c is the maximal value of α/ρ along{
α log((β + 2)α) + (1− α) (log((β + 2)(1− α))− log(β + 1)) + ρ− 1− log ρ = log(β + 2)
α ≥ (β + 2)−1, ρ ≤ 1

}
.

The special case of random recursive trees is obtained for β = 0 and plane oriented
trees for β = 1 yielding an asymptotic height of 1.7956 . . . log n.

4.6 Intersection of random trees

We can also apply Theorem 1 to the intersection of random trees. One can take k in-
dependent copies of a certain kind of random b-ary tree on n nodes and ask about the
height of the intersection (a node is in the intersection if it is present in all k trees). This
model was treated by Baeza-Yates et al. [2] for random binary search trees in the context
of tree matching properties arising in the tree shuffle algorithm [7]. The authors were in
particular interested in the size of the intersection of two random binary search trees. We
will consider the intersection of k binary search trees, and of k plane oriented trees.

Let Sk,n be a collection of k independent copies of identically distributed random trees
with n nodes, and let Ik,n be their intersection. Recall that the shape of the random
tree in our framework is related to the random variables Ee in all k copies. The random
variables E of Theorem 1 are now k-vectors of independent random variables. From now
on, we write E for a coordinate of this vector, and this corresponds to the random variable
describing one of the random trees. By independence of the k trees in Sk,n the rate function
that corresponds to the presence of a node in In,k is kΛ?

E . We obtain that the curve to be
considered is

{Λ?
Z(α) + k · Λ?

E(ρ) = log b} ,

where E and Z



k 2 5 10 50 100
cBST 2.62729. . . 1.78088. . . 1.48726. . . 1.18680. . . 1.12760. . .
cPORT 2.03950. . . 1.39752. . . 1.20841. . . 1.05078. . . 1.02788. . .

Table 1: Some numerical values of the asymptotic height of Ik,n.

Proof. For random binary search trees, this is easily seen since {Λ?
E(ρ) = ρ− 1 − log ρ =

log 2/k, ρ ≤ 1} is the intersection of two explicitly defined curves. By continuity of Λ?
E ,

ρ → 1 as k → ∞. Consider now PORTs. From the properties of CZ,E , ρ ≥ ρmin, where
ρmin is the value at α = EZ = 1/3, and kΛ?

E(ρmin) = log 3, giving that ρmin → 1 as
k → ∞. As a consequence, we only look at α. Now, the line ∆ going through the origin
and (ρ = 1, α = 1) crosses CZ,E because of its concavity and horizontal tangent at ρ = 1.
Therefore, the slope of the tangent τ at the optimal point (ρ, α) is greater than 1. Writing
(ρmin, α∆) for the intersection of ∆ and {ρ = ρmin} (Figure 7), we get that α ≥ α∆ = ρmin,
yielding cPORT → 1 as k →∞.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0

0.5

1.0

Δ

τ

ρmin

αΔ
Figure 7: CZ,E together with the optimal
tangent τ and the line ∆ through the ori-
gin and (1, 1).

4.7 Change of direction in random binary search trees

Given a tree rooted T and a path π from a leaf to the root, we define DT (π) as the number
of changes of direction in π. If we let 0 and 1 encode a move down to the left and to the
right respectively, then the path encoded by 0100101 will have D = 5, that is, a count of
each occurrence of the patterns 01 and 10. We are interested in the maximal value over
all the paths of the tree DT = max{DT (π) : π ∈ T}. When T is a random binary search
tree, this turns into a random variable that may be handled by our framework. It suffices
to notice that if we took a left step, the next move will increase D only if we go right. We
have of course something similar when the first step was to the right. Thus, we label the
edges as follows. For each level k ≥ 2 of edges, we form the word (0110)k−1, and map the
binary characters to the edges from left to right. Then Dπ corresponds exactly to the sum
of these labels along π (Figure 8).

This means that for the tree to match our model we need Z to be binomial(1/2),
and E exponential(1) because the underlying tree is a binary search tree. Therefore the
maximum number of changes of directions along a path in a random binary search tree is
asymptotic to the height of random recursive trees.
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Figure 8: The path consisting of grey nodes is the one with the maximum
number of change of direction. Note that the number of changes of
direction is the sum of the labels along the path.

Proposition 6. The maximal number of change of direction along a path Dn in a random
binary search tree is asymptotic to e log n in probability.

4.8 Elements with two lifetimes

Consider a binary tree in which elements have two independent exponential (1) lifetimes,
E and Z, and let Du and Gu keep their meaning from section 2. In the tree Tn, that is,
the tree of all nodes u with Gu ≤ n, it is interesting to ask what the maximal value of
Du when measured with respect to the second lifetimes (Z). Since Z and E have similar
Cramér functions, and both have mean one, we have by Theorem 1,

Proposition 7. The maximal age Du of any node u in the tree of two lifetimes described
above, cut off at date of birth Gu ≤ n is Hn. We have

Hn

n
−−−→
n→∞

c

in probability, where c = 5.82840157 . . . is the maximal value of α/ρ along

CZ,E = {(ρ, α) : ρ− 1− log ρ+ α− 1− logα = log 2; ρ ≤ 1, α ≥ 1} .

Thus, in spite of the fact that measured by first lifetimes, all have age less than n, there
exist elements whose age as measured in the other time scale is almost six times as large!

4.9 Random k-coloring of the edges in a random tree

Assume that we randomly color the edges of a random binary search tree with k colors, and
that we ask for the maximal number of similar colors on one path from a root to a leaf. This
is equivalent, when k is constant, to studying the maximum number of red colored edges
on such paths. But then, this can be studied by attaching to edges independent copies of
Z where Z = 1 with probability 1/k and Z = 0 otherwise. That is, Z is Bernoulli (1/k).
We have seen already the that the rate function for Bernoulli [10] is

Λ?
Z(α) = α log(kα) + (1− α) (log(1− α)− log(k − 1)) + log k,
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and the curve of interest is{
Λ?

Z(α) = α log(kα) + (1− α) (log(1− α)− log(k − 1)) + log k + ρ− 1− log ρ = log 2,
kα ≥ 1, ρ ≤ 1

}
.

Note that for k = 2, or p = 1/2, we have a situation not unlike that of the maximum
number of sign changes in random binary search trees, or the random recursive tree,
where the asymptotic maximum value is e log n. The maximal path length decreases with
the number of colors.

k 1 2 3 4 5
ck 4.3110. . . 2.7182. . . 2.1206. . . 1.7955. . . 1.5869. . .

6 7 8 9 10
1.4397. . . 1.3292. . . 1.2426. . . 1.1725. . . 1.1148. . .

Table 2: Some numerical values of ck.

For k = 1 and 2 we have the known results for the height of the random binary search
trees and random recursive trees, respectively, as one can check in Table 2. Clearly, we
may even introduce p values not equal to 1/k, and even ask on which path we have most
red-blue color changes, for example, where red and blue occur with probabilities p and q
respectively.

For studying the maximal number of colors of one kind (among k colors) in a random
recursive tree, it takes just a moment to see that it suffices to take Z = Bernoulli (1/k)×
Bernoulli (1/2). In other words, Z is Bernoulli (1/(2k)).

4.10 The maximum left minus right exceedance

Let the differential depth of a node u be Du =
∑

e∈π(u)(L(e) − R(e)), where L(e) is the
indicator of e being a left edge and R(e) is the indicator of e being a right edge. We want to
study the extreme value (differential height) H?

n of Du with an application of Theorem 1,
when u ranges over the nodes of a random binary search tree. For this purpose, we may
make Z = 1 or −1 with probability 1/2. Note that for our Z,

ΛZ(λ) = log
(
eλ + e−λ

)
− log 2.

And we obtain the Crámer function associated to Z,

Λ?
Z(α) =

∞ α ≥ 1
α
2 log

(
1+α
1−α

)
+ log 2− log

(√
1+α
1−α +

√
1−α
1+α

)
0 ≤ α < 1.

Then, results presented in section 2 allow to conclude that there exists a limit constant
c such that H?

n ∼ c log n in probability as n



E
L= exponential(1)), and some minor technical modification, one can show that the proof

can be extended to obtain almost sure convergence too.
We considered Z as being a real-valued random variable, but the work can be extented

to Z ∈ Rd. This has been considered by Biggins [4] in the context of multivariate branching
random walks. We may look for the extremes of some multidimensional branching random
walk such as the univariate extremes after one has projected the walk on some direction
θ. It has been proved by Biggins [4] that the location of the extremes when θ takes values
in the unit ball of Rd tends to some convex asymptotic shape.

One can also think of a generalized model where the random variables E and Z we
have considered are allowed to be dependent for edges that emanate from the same node.
This may be handled with a multidimensional version of Cramér’s Theorem. In this case,
we need the joint distribution of E and Z, and one way to look at it is to consider a unique
random vector X = (Z,E). A bivariate rate function Λ?

X can be defined in a way that is
similar to the univariate case. Then, the curve

CX = {Λ?
X(α, ρ) = log b, α ≥ EZ, ρ ≤ EE}

can be proved to be analogous to CZ,E in the independent case. Our results could have
been stated in terms of a unique random vector, but one would have lost some insight of
what is going on: our approach distinguishes the shape of the tree (random variables E)
and the weighted depths (random variables Z) for the sake of the presentation.
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Appendix: Review of large deviations

We now review some properties of Cramér’s functions that are useful in the proofs of
Theorem 1. One can find an introduction to large deviations and Cramér’s Theorem in
[17] or more advanced material in the extensive textbook of Dembo and Zeitouni [10]. Let
X be a positive random variable and assume that for some λ > 0,

M(λ) def= E
{
eλX

}
<∞.

This implies that E {Xr} < ∞ for all r > 0, and that M(λ′) < ∞ for all λ′ < λ. We
define

λ? = sup{λ ≥ 0 : M(λ) <∞}.

Clearly, we may have λ? = ∞ as well as λ? = 0. We introduce the cumulant generating
function

Λ(λ) def= log(M(λ)).

Then Cramér’s function is defined to be the Fenchel-Legendre dual of Λ: for t such that
t ≥ EX:

Λ?(t) def= sup
λ≥0

{λt− Λ(λ)} = sup
0≤λ<λ?

{λt− Λ(λ)}.

Similarly, for t ≤ EX, the left-tail Cramér function is

Λ?(t) def= sup
λ≤0

{λt− Λ(λ)}.

Recall that if X1, X2, . . . , Xn are i.i.d. with the same distribution as X, then Cramér’s
theorem states that [10, Theorem 2.2.3, p. 27]

P {X1 +X2 + · · ·+Xn ≥ nt} = exp (−nΛ?(t) + o(n)) ,

for t ≥ EX. Similarly,

P {X1 +X2 + · · ·+Xn ≤ nt} = exp (−nΛ?(t) + o(n)) ,

for t ≤ EX, where Λ? is now the left-tail Crámer function. This gives sharp estimates for
large deviations of a sum of i.i.d. random variables, provided we have some information
about the rate Λ?. These functions have been intensively studied, as the Fenchel-Legendre
transform is standard in convex analysis [25]. An example is shown on Figure 9. We note
here that Λ?(t) may be infinite for all t larger than a finite threshold. Also, we may have
Λ?(t) = 0 for all t (this occurs when λ? = 0, a case which is largely uninteresting for us).

Lemma 5 (Properties of Cramér’s functions). Let X be any random variable with EX = µ
finite. Let M , Λ and Λ? be the moment, cumulant generating functions and Cramér’s
function, respectively. Then
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Figure 9: The Crámer function Λ?
E when E is exponentially distributed

with mean one is � Γ 1 Γ log � .

(1) Λ?( t) is increasing for t � � , M ( � ) is increasing where � > 0 and M ( � ) < 1 , and
M (0) = 1.

(2) Λ( � ) � �� .

(3) Λ?( � ) = 0.

Proof. The first fact is obvious from the definitions. Fact (2) comes from Jensen’s inequal-
ity

Λ( � ) = log E
{ e λX

} � E
{ l}g ( e λX

)}
= � E X:

Consider now fact (3). By definition we have,

Λ?(E X ) = sup
λ

f λE X � Λ( � ) g � sup
λ

f λµ � λµ g = 0.

But Λ?( t) is non-negative:

Λ?( t) = sup
λ

f λt � Λ( � ) g � f �t Γ Λ( � ) gλ=0 = 0,

so that Λ?( � ) = 0.
We need one more result to prove the uniqueness of the optimal point on the curve

CZ,E . Indeed, CZ,E is concave and the values of the slope at both ends are of great
importance. This is directly dependent on the derivative of the rate functions Λ?

Z and Λ?
E

at their mean.

Proposition 8. If X is not a single mass at E X = � , and � ? > 0, then

dΛ?

dt

∣∣∣∣
[t=µ]

= 0.

The following lemmas will help us to prove Proposition 8 without using fancy argu-
ments.

Lemma 6. Under the conditions of Lemma 5, Λ( � ) =� is increasing in � . Since P f X = � g <
1, �( � ) =� is in fact strictly increasing.
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Proof. Let Z = eX and λ < λ′. From Hölder’s inequality we have that

E
{
Zλ
}1/λ

≤ E
{
Zλ′
}1/λ′

, (14)

and therefore
(M(λ))1/λ ≤ (M(λ′))1/λ′ .

Taking logarithms shows that Λ(λ)/λ is increasing. Note that equality in (14) occurs if
and only if Z puts all its mass at one point, and thus the second statement holds.

Lemma 7. Under the conditions of Lemma 5,

lim
λ↓0

Λ(λ)
λ

= EX.

Proof. Write ψ(x) = eλx − λx− 1, then

M(λ) = E
{
eλX

}
= E {1 + λX + ψ(X)} = 1 + λEX + E {ψ(X)} .

By Taylor’s series expansion,

ψ(x) ≤ λ2x2

2
eλx,

and for any ε > 0, eεx ≥ εx so that

ψ(x) ≤ λ2

2ε2
e(λ+2ε)x.

Choosing ε such that λ+ 2ε < λ? gives the bounds

1 + λEX ≤M(λ) ≤ 1 + λEX +
λ2

2ε2
M(λ+ 2ε).

As M(λ+ 2ε) decreases as λ ↓ 0, Λ(λ) ∼ λEX.

Lemma 8. Assume λ? > 0. At every λ ∈ [0, λ?), Λ(λ)/λ is continuous in λ.

Proof. For λ = 0, this follows from Lemma 7. If λ > 0, then we have the result if M is
continuous, but M is the moment generating function and is known to be continuous.

Lemma 9. If X is not a single mass, and λ? > 0, then there exists t? > µ = EX (assumed
finite) such that Λ?(t) <∞ for all t < t?.

Proof. Assume first that Λ(λ)/λ increases to ∞ (we consider limits in the domain where
it is finite). Since Λ(λ)/λ is continuous, for any t ≥ µ, there exists a solution λt < λ? of
Λ(λ) = λt. Thus,

Λ?(t) = sup
{
λ

(
t− Λ(λ)

λ

)}
≤ λt(t− µ) <∞. (15)

Now if Λ(λ)/λ increases to a finite limit F , we have the similar result Λ?(t) <∞ for every
µ ≤ t < F .
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Proof of Proposition 8. Recall that from Lemma 9 that Λ?(t) < ∞, t ≤ t? for some t? >
EX. As t ↓ 0, by the strict increasing nature and continuity of Λ(λ)/λ, the solution λt of

Λ(λ)
λ

= t

tends to 0. But by (15) Λ(t) ≤ λt(t− µ), and thus

lim
t↓µ

Λ?(t)− Λ?(µ)
t− µ

≤ lim
t↓µ

λt = 0.

Lemma 10. For any random variable X with finite mean and having λ? > 0, the associated
rate function Λ? is convex and strictly convex inside the interior of the set {Λ′(λ) : λ < λ?}.
If λ? = 0, then Λ?(t) = 0 for all t ≥ EX.

Proof. We can assume without loss of generality that µ ≤ t < t?, where t? is as in the
previous Lemma. Then for ε > 0 small enough, it suffices to show that

Λ?(t+ 2ε)− Λ?(t+ ε) ≥ Λ?(t+ ε)− Λ?(t).

But for functions f, g,

max
x

f(x) + max
x

g(x) ≥ max
x
{f(x) + g(x)}, (16)

and so, using the definition of Λ?,

Λ?(t+ 2ε) + Λ?(t) = sup
λ
{λ(t+ 2ε)− Λ(λ)}+ sup

λ
{λt− Λ(λ)}

≥ 2 sup
λ
{λ(t+ ε)− Λ(λ)} (17)

= 2Λ?(t+ ε).

We can obtain strict convexity by being more careful. Using the geometric interpretation
of Λ? [10], the optimal λ for the supremum is the abscissa of the point where Λ admits
a tangent of slope t. Since Λ is convex and has a continuous derivative where it is finite
(proof of this is very similar to the one of Lemma 7 using a Taylor series expansion), the
values of λ and λ′ corresponding to t and t′ respectively are distinct whenever t 6= t′. As
equality in (16) occurs only if both maxima are achieved at the same point x, we actually
obtain a strict inequality in (17) and therefore strict convexity where one can find such
tangents to Λ with slope t and t+2ε, that is in the interior of the set {Λ′(λ) : λ < λ?}.
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