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Abstract

We study the merging process when Kruskal’s algorithm is run with random
graphs as inputs. Our aim is to analyze this process when the underlying graph
is the complete graph on n vertices lying in [0, 1]d, and edge set weighted with
the Euclidean distance. The height of the binary tree explaining the merging
process is proved to be Θ(n) on average. On the way to the proof, we obtain
similar results for the complete graph and the d-dimensional square lattice with
i.i.d. edge weights.
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1 Introduction

The minimum spanning tree (MST) problem is one of the most studied in combina-
torial optimization. In a connected graph G = (V,E), each edge e is given a weight
w(e). Let the weight of a graph be the sum of the weights of its edges. The MST
problem consists then in computing a minimal weight tree, whose edges cover the
entire set of vertices V . Fast greedy algorithms are known to solve this problem,
namely the algorithms of Prim [10, 15, 25], Kruskal [18] and Bor̊uvka [8]. Minimum
spanning trees with random edge weights have been analyzed in several papers.
Examples of such random graphs include the complete graph or d-dimensional hy-
percube with random independent edge weights [23], and the complete graph over n
points in Rd with the Euclidean distances as weights [26, 28]. The properties studied
include the overall weight [12], the degree sequence [2], and the maximum weight
[22, 24].

In this paper, instead of studying the MST itself, we rather study the process
that builds it. Such a point of view has already been taken by McDiarmid, Johnson,
and Stone [19] who studied the first few steps of Prim’s algorithm when the under-
lying graph is complete and the edge weights are independent identically distributed
(i.i.d.) random variables. We give results for Kruskal’s forest growing method, and
more particularly about the structure of the merging process. With this in mind,
we want to define a tree explaining Kruskal’s algorithm, and we proceed as follows.
∗Research of the authors was supported by NSERC Grant A3456 and by a James McGill Fellow-
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We grow two graph processes side by side. Assume that G is the underlying
weighted graph for which we are computing the MST. Let {Mi(G), 1 ≤ i ≤ n} be
the random graph process for Kruskal’s algorithm on a graph G of n vertices, where
Mi(G) is the forest after exactly i − 1 edges have been added, and Mn(G) is the
resulting MST. The second process is denoted by {Fi(G), i ≤ i ≤ n}, where Fi(G)
is a binary forest over n + i − 1 vertices. We use Mi and Fi for short, when the
underlying graph G is already specified. The Fi’s model the merging process between
components during the execution of Kruskal’s algorithm. Each tree in the forest Fi
is rooted, and each tree in Fi corresponds to a connected component in Mi. One
can think of the leaves of Fi as the vertices in Mi and the internal nodes as being
the connecting edges. When i = n, the process finishes with the tree explaining
Kruskal’s algorithm: Tn

def= Fn. Also, let {Fi, 1 ≤ i ≤ n} be the natural filtration
adapted to the random processes. The two processes grow from i = 1 to n in the
following way: Initially, M1 consists of n isolated vertices v1, v2, . . . , vn and no edges,
and F1 consists of n vertices u1, u2, . . . , un, which are merely copies of the vertices in
the graph G. Kruskal’s algorithm adds the edges of G by increasing weight, as long
as they do not create a cycle. Suppose we have already built Mi and Fi, and that e
is the next edge to be added by Kruskal’s algorithm. We grow the forest Mi+1 by
simply adding the edge e: Mi+1 = Mi ∪ {e}. Next, suppose the endpoints of e are
vertices u and v. Then the edge e connects two components of Mi: one containing
vertex u, and the other, v. In the forest Fi, a component is uniquely represented
by the root of the tree it corresponds to. Let ru and rv be the roots of the trees in
Fi containing u and v respectively. Grow the forest Fi+1 from Fi by using two new
edges and a new root to join the roots ru and rv, creating one tree in Fi+1 out of
the two trees in Fi. Eventually, the process leads to a random binary tree Tn = Fn
that models the way the components were merged during the execution of Kruskal’s
algorithm. The main parameter of interest for us is the height Hn(G) of Tn, which
is the height of the tree Tn when the underlying weighted graph is G.

The purpose of the paper is to give asymptotic results forHn when the underlying
graph is the complete graph over n independent uniform points lying in [0, 1]d, and
the edges are weighted with the Euclidean distance between their endpoints.

Theorem 1. Let X1, X2, . . . , Xn be n independent uniform points in [0, 1]d. Let
En be the complete graph with vertex set {X1, X2, . . . , Xn}. For each 1 ≤ i, j ≤ n,
let the weight of the edge XiXj be the Euclidean distance between Xi and Xj. Let
Hn(En) be the height of the tree Tn(En) explaining Kruskal’s algorithm when the
input is En. Then there exists a constant c ∈ (0, 1) such that

lim
n→∞

P {Hn(En) ≥ cn} = 1.

In particular, EHn(En) = Θ(n), as n goes to infinity.

Hence, in some sense, Kruskal’s algorithm does not proceed very differently from
Prim’s algorithm, which grows a tree of height exactly n− 1. Our proof uses ideas
arising from two simpler examples. The Euclidean case has some dependence be-
tween the distances between points, and one can naturally consider first the complete
graph Kn with i.i.d. edge weights.
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Theorem 2. Hn(Kn) is the height of the tree Tn(Kn) explaining Kruskal’s algorithm
when the input is the complete graph Kn with edges weighted by independent [0, 1]-
uniform random variables. There exists a constant c ∈ (0, 1) such that

lim
n→∞

P {Hn(Kn) ≥ cn} = 1.

As a consequence, EHn = Θ(n).

This simpler case is related to the analysis of union-find algorithms, and quickfind
in particular [1]. In quickfind, the cost of merging two sets is proportional to the
size of the one of them, the one that is “merged into” the other. A result of Knuth
and Schönhage [17] about the average-case behavior in a model of Yao [27] shows
that the cost of n − 1 random unions is Θ(n2). It immediately follows that some
set of linear size must be involved in a linear number of union operations. Further
information about quickfind and related algorithms may be found in the analysis of
Bollobás and Simon [5, 6], which, as our proof of Theorem 2, relies on the theory of
random graphs.

Further, we add a geometrical aspect to the previous example by considering a
lattice. Let Ld be the d-dimensional square lattice: the infinite graph with vertex
set Zd, and the edges between vertices at distance 1 from each other. Consider the
graph Dn, which is the restriction of Ld to a d-dimensional cubic box consisting of
n vertices, where n = kd for some integer k ≥ 0. Assign i.i.d. random weights to the
edges in Dn.

Theorem 3. Let Hn(Dn) be the height of the tree Tn(Dn) explaining Kruskal’s
algorithm when the input is Dn with edges weighted by independent [0, 1]-uniform
random variables. There exists a constant c ∈ (0, 1) such that

lim
n→∞

P {Hn(Dn) ≥ cn} = 1,

as n→∞. Hence, in particular, EHn(Dn) = Θ(n).

After some remarks valid for all three cases (Section 2), we start by proving
Theorems 3 and 2. Theorem 1 is proved in Section 5.

2 Preliminaries

The height Hn of Tn cannot exceed n, and it suffices to focus on a lower bound. The
present section explains a generic strategy to obtain the required lower bound. Step i
of Kruskal’s algorithm is the step when the ith edge is added, i.e., Mi becomes Mi+1.
Observe that when a new edge is added to Mi, two components are joined together
by the edge, and the two corresponding trees in Fi are merged, using a new root and
two new edges. After this merge, the height of the new tree in Fi+1 is at least one
more than the height of either of the two trees before the merging. Suppose we track
a particular component during the execution of Kruskal’s algorithm. Let Ci(x) be
the connected component in Mi containing vertex x. Each time this component is
involved in a merge, the height of the corresponding tree in Fi increases by at least
1. As a consequence, the number of merges that Ci(x) is involved in, as i increases
to n, is a lower bound on the height of the final tree Tn.
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Let ξi be the indicator random variable that Ci(x) 6= Ci+1(x), in other words,
that component Ci(x) is merged to another component to create Ci+1(x). Fix any
k, 1 ≤ k ≤ n− 1. Then the number of merges that the component Ck(x) is involved
in starting at time k is exactly

∑n−1
i=k ξi. The next lemma formalizes this as a lower

bound for the height Hn(G) for any graph G.

Lemma 1. Let Hn(G) be the height of the tree explaining Kruskal’s algorithm when
run on the input graph G with vertex set V . Fix some vertex x ∈ V . Define the
indicator random variables ξi, 1 ≤ i ≤ n− 1 to be 1 when the edge added at the ith
step of Kruskal’s algorithm is incident to the component containing vertex x. Then,

Hn(G) ≥
n−1∑
j=k

ξi (1)

for 1 ≤ k ≤ n− 1.

Lemma 1 lies at the heart of the approach we use in Sections 3, 4 and 5 to find
lower bounds on the height Hn for the examples we study. In the following, we
write | · | for the cardinality function. Unless specified otherwise, | · | counts vertices
for components of graphs. Also, in Euclidean settings, we write ‖ · ‖ to denote the
volume of a subset of [0, 1]d.

3 Proof of Theorem 2

In this section, we deal with the case of the complete graph weighted with i.i.d.
[0, 1]-uniform random variables. This version of the problem is tightly connected to
the structure of Erdős–Rényi random graphs [11].

Observe first that the weights on the edges induce a random permutation of the
edges. This permutation is a uniformly random permutation. In particular, the m
first edges of the permutation define a random graph Gn,m consisting of m random
edges (see Janson et al. [14] or Bollobás [4]). Processing the elements of this random
permutation in order, Kruskal’s algorithm adds an edge to the spanning forest unless
it creates a cycle. Accordingly, the connected components of Mi(Kn) are the same
(vertex-wise), as the connected components of the Erdős–Rényi random graph Gn,m
for some m ≥ i. In other words, studying the structure of the merges in Kruskal’s
algorithm reduces to a similar study in a Gn,m model. In their seminal paper [11],
Erdős and Rényi showed that a phase transition occurs in the component structure
of Gn,m random graphs when m = bβn/2c and β = 1. Indeed, for β < 1, the largest
component, L1 of Gn,bβn/2c satisfies almost surely (a.s.) |L1| = Θ(log n), while for
β > 1 it has size Θ(n).

For our purposes, properties of Hn(Kn) rely deeply on the component structure
of Gn,m: once a component is large enough, it tends to absorb more and more
small components. Let 1 < β < 2 and consider the random graph Gn,m where
m = bβn/2c. The connected components of this graph correspond exactly to those
in the forest Fm′ for some m′ ≤ m. Note that m′ is a random variable. We consider
the evolution of Kruskal’s algorithm from this point on. Let Cm′ be the largest
component at time m′, and let Ci denote the component containing Cm′ at a later
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step i ∈ {m′, . . . , n} of the algorithm. Notice that the Ci’s are increasing in size,
that is, |Ci| ≤ |Ci+1| for any i ∈ {m′, . . . , n − 1}. As in the previous section, let
ξi be the indicator random variable for the event that Ci is merged with another
component at time i. Then by Lemma 1

Hn(Kn) ≥
n−1∑
i=m′

ξi.

Now, for β > 1, there is θ ∈ (0, 1) such that the largest component of Gn,bβn/2c has
at least θn vertices with probability going to 1. The constant θ is independent of
n. Let Z be the indicator random variable for the event that |Cm′ | ≥ θn. Note that
P {Z = 1} → 1, as n→∞. Then certainly

Hn(Kn) ≥
n−1∑
i=m′

ξi · Z.

Consider the forest Mi, and let Ai be the set of edges in Kn between Ci and the
rest of the graph. The edges in Ai are the edges that may hook Ci to an other
component. Let Bi be the remaining edges not incident to Ci and which do not
create cycles. Then

|Ai| ≥ (n− |Ci|) · |Ci|,
and

|Bi| ≤
(n− |Ci|) · (n− |Ci| − 1)

2
.

The edge added at step i is uniformly random among those not creating a cycle,
and

P {ξi = 1 | |Ci|} ≥
|Ai|

|Ai|+ |Bi|
≥ 2|Ci|
|Ci|+ n

.

The events ξi = 1, i ∈ {m′, . . . , n− 1} are not independent, since the more often
Ci merges, the bigger it gets and the more likely it is to merge again. We define new
random variables, completely independent of the graph process to go around this.
Let Si be a Bernoulli random variable with parameter θ. For i ∈ {m′, . . . , n − 1},
ξi · Z stochastically dominates Si · Z:

P {ξi · Z = 1} = P {ξi = 1 | Z} ·P {Z = 1}
= P {ξi = 1 | Z, |Ci| ≥ θn} ·P {Z = 1}

≥ 2θn
2n− 1

·P {Z = 1}

≥ θ ·P {Z = 1} = P {Si · Z = 1} ,

where the last step follows from the independence of Si and Z. Thus, for every t,

P {Hn(Kn) ≥ t} ≥ P

{
n−1∑
m′

Si · Z ≥ t

}
= P

{
n−1∑
m′

Si ≥ t

}
·P {Z = 1} .

Recall that m′ ≤ nβ/2. By the law of large numbers,

P

{
n−1∑
m′

Si ≥ n
(

1− β

2

)
· θ

2

}
≥ P

{
n−1∑
m′

Si ≥ (n−m′) · θ
2

}
−−−→
n→∞

1.
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Finally, Z → 1 almost surely, and

P
{
Hn(Kn) ≥ n · θ

2
·
(

1− β

2

)}
−−−→
n→∞

1.

Since, θ(1 − β/2) > 0 by our definitions of β and θ, this completes the proof of
Theorem 2.

4 Proof of Theorem 3

We now deal with the case of the finite box Dn in the cubic lattice Ld. As in the proof
of Theorem 2, we show that there is a large component at some intermediate stage of
Kruskal’s algorithm, which will be merged to a linear number of other components
as the algorithm goes on. By Lemma 1, this gives a lower bound on Hn(Dn). To
ensure a linear number of merges, we look for a large component with a specified
structure involving “traps” for other components. Our approach is constructive and
goes in two phases. First, a connected component Cp0 made of a large number of
traps is built using only edges of weight less than a fixed constant p0 ∈ (0, 1). The
proof of its existence relies on concepts from percolation theory [13, 16]. Then, the
minimal spanning tree process is completed by adding the edges with weight more
than p0. In this second phase, the traps prevent small components from merging
together before they hook up to Cp0 , hence the large number of merges to Cp0 .

We begin by defining a subset of V (Dn), denoted In, for the sites of a percolation
process. Suppose that the left bottom corner vertex of Dn is at the origin, and using
this coordinate system, let

In = {v : ∀i, vi mod 4 = 1},

where vj is the jth coordinate of vertex v. Each x ∈ In is a site in a (site) percolation
process. Two sites in u, v ∈ In are neighbors if they are at distance 4 from each
other along any one coordinate, i.e., u and v are neighbors if |u − v|1 = 4 and
|u − v|∞ = 4. For any x ∈ In, define a structural event Ex which is depicted in
Figure 1, and defined in terms of the following sets:

U(x) = {v ∈ V (Dn) : |v − x|∞ = 1},

where | · |∞ defines the `∞- norm. Next, we define the edges on the unit box around
x:

N1(x) = {e = (u, v) : u, v ∈ U(x), |u− v|1 = 1}.

Define the sets
F1(x) = {v ∈ V (Dn) : |v − x|1 = 1},

and
F2(x) = {v ∈ V (Dn) : |v − x|1 = 2 and |v − x|∞ = 2},

where | · |1 defines the `1-norm. Finally, the outward edges in Figure 1 are defined
as:

N2(x) = {e = (u, v) : u ∈ F1(x) and v ∈ F2(x)}.
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x

Figure 1. A portion of the
square lattice L2 is shown, and
the event Ex. Edges labelled
e1, . . . , e8 are in N1(x), and
edges labelled f1, . . . , f4 are in
N2(x).

Figure 2. An instance of site
percolation on In, where the
probability of an open site x
is exactly the probability that
event Ex occurs.

x
Event Ex vertices in In

The event Ex holds when all edges in N1(x) and N2(x) have weight less than p0.
Figure 1 depicts the event Ex in d = 2. Note that there is no restriction on the
weights of the other edges (those not in N1(x) or N2(x)) in the event Ex.

A site x ∈ In is declared open if the event Ex is true. This defines precisely a site
percolation process since the probability that sites are open are independent from
site to site. Figure 2 shows an instance of this site percolation process. A cluster in
this model is defined in the usual way: the cluster of a site x is the set of all open
sites that can be reached along paths of open sites from x. For example, Figure 2
shows a cluster of size 13. Each site is a “trap” for its center vertex, and the goal is
now to show the existence of a large open cluster in the site percolation process for
some choice of p0 ∈ (0, 1).

It has been known for quite some time that the usual site percolation process on
the infinite lattice Ld exhibits a phase transition phenomenon analogous to that in
the random graph process: there exists a constant pc ∈ (0, 1) such that for p < pc,
the is almost surely no infinite cluster, whereas for p > pc such an infinite cluster
a.s. exists [13, 16]. In our model, we are dealing with site percolation on a finite

7



lattice, which is in fact a subgraph of the infinite lattice Ld. The phase transition
on the finite lattice has been analyzed by Borgs, Chayes, Kesten, and Spencer [7],
who obtained an exact analog of the phase transition in random graphs for bond
percolation in the finite hypercube Λn = [0, n)d. In particular, they showed:

Lemma 2. Let Λn denote a hypercube lattice of size n. Consider bond percolation,
where each edge in the lattice is open with probability p, and let Lbond1 (p) be the size
of the largest open cluster in this hypercube. Let |Cp(0)| denote the size of the open
cluster at the origin on the infinite lattice Ld, and let θbond(p) = P {|Cp(0)| =∞}.
Finally, let pbondc be the critical probability for an infinite cluster in bond percolation
on the infinite lattice Ld. Then for all p > pbondc ,

|Lbond1 (p)|
|Λn| · θbond(p)

−−−→
n→∞

1 in probability.

A simple extension of this lemma is the following corollary, which gives a lower
bound on the height of the largest open cluster in site percolation. The proof of the
lemma is included at the end of this section.

Lemma 3. Consider site percolation on the finite hypercube lattice Λn. Let Lsite1 (p)
be the largest open cluster. There exist constants c1 > 0 and ps ∈ (0, 1) such that
for p > ps:

P
{
|Lsite1 (p)| ≥ c1nd

}
−−−→
n→∞

1.

The constants c1 and ps depend only on the dimension d.

In our site percolation model, the probability that a site is open is exactly P {Ex},
which depends on our choice of p0. We are now ready to nail down the constant p0.
With the previous definitions of N1(x) and N2(x), P {Ex} = p

|N1(x)|+|N2(x)|
0 . The

sizes of the sets N1(x) and N2(x) are increasing in d, but constant in terms of n.
Therefore, we can choose p0 ∈ (0, 1) large enough that ps < P {Ex} < 1, where
P {Ex} is a function of d only. Consider now the largest open cluster in the site
percolation process on In and let L1(In) be its vertex set. Note that by definition,
the lattice In has size |In| ≥ n/4d. By Lemma 3,

P
{
|L1(In))| ≥ c1n

4d
}
−−−→
n→∞

1. (2)

Next, we isolate the vertices of the connected component of Dn associated with
the largest open cluster, L1(In):

Cp0 = {v ∈ V (Dn) : ∃x ∈ L1(In), v ∈ U(x) or v ∈ F2(x)},

Recall that {Mi, 1 ≤ i ≤ n} is the graph process associated with Kruskal’s algorithm,
and let i? be the largest index for which all the edges of Mi? have weight at most
p0. Then the vertices of Cp0 belong to a connected component in Mi? . Thus it
remains only to provide a lower bound on the number of merges to this component
as Kruskal’s algorithm completes.

8



For each x ∈ In, we define an event Jx which ensures that the “trap” at x is
successful and that a small component joins Cp0 at some stage p > p0 of Kruskal’s
algorithm. Define the set of edges

N3(x) = {e = (x, v) : |v − x|1 = 1}.

Then the event Jx is the event that all edges in N3(x) have weight more than p0.
Thus if Jx holds, the vertex x is not connected to any vertex in Cp0 in the graph
Mi? , but it will be connected at some later stage of Kruskal’s algorithm. Notice that
Jx, x ∈ In, are defined using edges disjoint from N1(y) and N2(y), for y ∈ In, so
that {Jx, x ∈ In} is independent of {Ey, y ∈ In}. Moreover, the events Jx, x ∈ In,
are independent. The proof of the theorem is now straightforward: we show that
Jx is true for a constant proportion of the sites in L1(In), implying that a constant
proportion of sites in L1(In) will be responsible for merges to that component as
Kruskal completes. In other words, by Lemma 1,

Hn(Dn) ≥
∑

x∈L1(In)

1[Jx].

But the events Jx and {x ∈ L1(In)} are independent, and therefore by (2),

P

 ∑
x∈L1(In)

1[Jx] ≥ cn

 −−−→n→∞
1

where c = c1(1 − p)2d/(2 · 4d). It follows that P {Hn(Dn) ≥ cn} → 1 as n → ∞,
which completes the proof of Theorem 3.

Proof of Lemma 3. Consider the lattice Λn where each edge e = (x, y) is represented
by two coloured edges, one red and one green. Each coloured edge is opened inde-
pendently with probability p. Now consider a bond percolation process on Λn where
a bond is considered open if both the red and green edges between two vertices are
open. Thus the bond probability is exactly p2. Let Lbond1 (p2) be the largest open
cluster in this bond percolation process on Λn.

Next, consider a site percolation process, also on Λn. Begin by duplicating the
edges as described above: each edge is replaced by one red and one green edge,
and each coloured edge is opened with probability p. Next, alternate colouring the
vertices of Λn red and green, so a red vertex is surrounded by green vertices, and
vice versa. A red site is declared open if at least one of its incident red edges is open.
A green site is open if at least one of its incident green edges is open. Because of the
alternating colours, sites are opened independently, with probability 1 − (1 − p)2d.
An open cluster is defined in the usual way to be a cluster of open sites, regardless
of their colour. Let Lsite1 (p′) be the size of the largest cluster in this site percolation
process on Λn, where p′ = 1− (1− p)2d.

Now we couple the two models. Consider and instance of Λn with duplicated
edges, where we open the coloured edges with probability p. Notice that if a bond
is open in the bond percolation model, then both the red and green edges are open.
So the red vertex incident to the red edge is open in the site model, and the green
vertex incident to the green edge is also open in the site model. Thus the two

9



neighboring sites are both open in the site model. This implies that the vertices
in the cluster Lbond(p2) are also in a cluster in the site percolation model. Thus
|Lbond(p2)| ≤ |Lsite(p′)|. By Lemma 2, if p2 > pbondc , then P

{
|Lbond1 (p2)| ≥ c1nd

}
→

1 for a constant c1 > 0. Thus

P
{
|Lsite1 (1− (1− p)2d)| ≥ c1nd

}
−−−→
n→∞

1

for p2 > pbondc . So in general, for any p > 1− (1−
√
pbondc )2d,

P
{
|Lsite1 (p) ≥ c1nd

}
−−−→
n→∞

1.

Setting ps = 1− (1−
√
pbondc )2d ∈ (0, 1) completes the proof.

5 Random Euclidean edge lengths

Random Euclidean minimum spanning trees are related to random geometric graphs
[21] and continuum percolation [20]. One can define an analog of Erdős–Renyi
random graphs [4, 14] where the vertex set consists of points lying in the cube
[0, 1]d. The distance between pairs of vertices is defined to be the Euclidean distance.
The classical coupling used to build Erdős–Rényi Gn,p, assigns to each edge of the
complete graph Kn an independent copy of a [0, 1]-uniform random variable, and lets
Gn,p be the graph containing edges shorter than p. Similarly, the random geometric
graph G(Xn, r) is defined to be the graph with vertex set Xn, which consist of
n independent uniform points in [0, 1]d, and edges shorter than r. For technical
reasons, it is usually easier to consider random graphs G(Pn, r) that are defined
similarly, but with vertex set given by a Poisson point process Pn with rate n in
[0, 1]d. It is convenient to see random geometric graphs as a vertex set X together
with closed balls B(x, r/2) of radius r/2 surrounding every x ∈ X . A pair of points
x, y ∈ X share an edge in G(X , r) if and only if B(x, r/2) and B(y, r/2) intersect.
Equivalently, the points x, y ∈ X share an edge if the Euclidean distance from x to
y is at most r.

The graphs G(Xn, rn) and G(Pn, rn) with radius

rn =
(
λ

n

)1/d

are known to admit a threshold for the size of the largest component for some critical
λc > 0 [20]. In other words, if L1(n) is the largest component in the random graph
G(Pn, rn) in [0, 1]d, then there exists a λc such that if λ > λc,

n−d|L1(n)| −−−→
n→∞

λp∞(λ),

in probability [21, Theorem 10.9]. So, as in the Gn,p model, the largest component
has size linear in the volume. The constant p∞(λ) is defined in terms of a Poisson
process P with rate 1 in Rd: it is the probability that the origin lies in the set of
balls of an infinite component of the geometric graph G(P, λ1/d). Random geometric
graphs differ from the Erdős–Rényi model when we consider the second largest
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component. For the Erdős–Rényi random graph with p = cn/2 and c > 1, the order
of the second largest component grows as log n. For the random geometric graph,
it grows not faster than a larger power of the logarithm [21, Theorem 10.18]. Let
L2(n) be the size of the second largest component in G(Pn, rn) and λ > λc, then for
d ≥ 2, there exists a constant c1 such that

P
{
L2(n) < c1 · (log n)d/(d−1)

}
−−−→
n→∞

1.

With these two facts in hand, a lower bound on the height Hn immediately
follows. We can grow the minimum spanning forest using increasing radii rn =
(λ/n)1/d, until λ > λc. Then, use the number of components that hook up to L1(n)
from this point on as a lower bound on Hn. The size of any component merging
with L1(n) is at most of order (log n)d/(d−1) and hence

Hn = Ω
(

n

(log n)d/(d−1)

)
in probability. We now strengthen this bound. We begin by proving the following
Poissonized version of Theorem 1. Theorem 1 is proved for a fixed number of points
in Section 6.

Theorem 4. Let N be a Poisson random variable with mean n. Let X1, X2, . . . , XN

be N independent uniform points in [0, 1]d. Let EN be the complete graph with vertex
set {X1, . . . , XN} and edge weights given by the Euclidean distance between Xi and
Xj. Then, the height of the tree explaining Kruskal’s algorithm with input EN
satisfies

lim
n→∞

P {HN (EN ) ≥ cn} = 1,

for some c ∈ (0, 1). Also, EHN (EN ) = Θ(n), as n goes to infinity.

The proof of the above theorem relies on techniques similar to the ones we
developed in the proof of Theorem 3. Consider the forest Mi? produced by Kruskal’s
algorithm at step i? ∈ {1, . . . , n − 1}, the largest i such that all edges of Mi have
weights less than rn = (λ0/n)1/d, for a fixed constant λ0 > 0 to be chosen later.
We prove the existence of a large component consisting of small “traps” with certain
good properties, and count the number of new components that join the large one.

The analysis becomes easier if we rescale to a box of volume n. Instead of a
Poisson process with rate n, consider a Poisson point process with rate 1 in the
cubic box [0, n1/d]d of volume n. Note that for this rescaled process, the radius of
the balls is λ1/d instead of (λ/n)1/d. We refer to this graph process as G(P, r), where
now P is the set of Poisson points in [0, n1/d]d, and r = λ1/d.

Define

t =

⌊
n1/d

αλ
1/d
0

⌋
,

for a constant α > 0, and partition [0, n1/d]d into exactly td smaller cubic boxes each
of side length αλ1/d

0 (1 +O(n−1/d)). Label these smaller boxes Q1, Q2, . . . , Qtd . The
partition is shown in Figure 3.
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Q1 Q2 Qt

Qtd−1 Qtd

t boxes

boxes
t

Figure 3. The region [0, n1/d]d and its
division into td boxes, labeled Q1, . . . , Qtd

We start by describing particular events Ei, 1 ≤ i ≤ td, where each Ei depends
only on the points lying in Qi. In essence, Ei is the event that the boundary of Qi is
“covered” by balls of radius λ0 centered at the poisson points. This is illustrated in
Figure 3. Each box Qi is further split into even smaller boxes, Bi,j , 1 ≤ j ≤ dα

√
ded

(see Figure 4). Each box Bi,j has side length ` such that

(1− n−1/d)λ1/d
0 /
√
d ≤ ` ≤ λ

1/d
0 /
√
d. (3)

Let Si be the set of indices j for which Bi,j touches the boundary of Qi. Each box
Bi,j , j ∈ Si has a kernel Ki,j , which is a box located at the center of Bi,j . The kernel
boxes Ki,j are chosen with side length `/3. The event Ei is the event that there is
at least one point in each Ki,j , j ∈ Si:

Ei =
⋂
j∈Si

{P ∩Ki,j 6= ∅}.

From now on, we refer to the boundary of Qi as the region
⋃
j∈Si Bi,j .

Let us first verify that the boundary boxes Bi,j , j ∈ Si are connected in Qi.
Suppose x ∈ Ki,j , j ∈ Si. The distance from x to a corner point of the box is at
most:

(2/3)`
√
d ≤ (2/3)λ1/d

0 ,

where we upper bound ` using (3). But the radius of the ball centered at x is
r = λ

1/d
0 , implying that B(x, r) will contain all corners of Bi,j . Therefore if Bi,j

and Bi,k are neighbors and x ∈ Ki,j , y ∈ Ki,k, then the balls B(x, r) and B(y, r)
intersect. Hence if Ei occurs, all points in the Bi,j , j ∈ Si are part of the same
connected component in G(P, r). Notice also that if boxes Qi1 and Qi2 are neighbors
in the partition of Figure 3 and if Ei1 and Ei2 both hold, then all the points in the
boundaries of each box lie in the same connected component of G(P, r).

Now let each box Qi, 1 ≤ i ≤ td, be a site in a (site) percolation process. A
site is declared open if the event Ei holds in the corresponding box Qi. Since the
events Ei are independent and occur with the same probability, this defines a site
percolation process on the finite square lattice of td sites. Figure 5 shows a portion
of the site percolation process. An open site creates the “trap” we are looking for,
since the points lying in the inside have to merge with the boundary.
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!α
√

d#
boxes

Bi,j Ki,j

!α
√

d# boxes

Ki,j

Bi,j

!

!
3

Figure 4. The boxQi when the event Ei is true. The shaded region represents the boundary
region Si of Qi. The kernel boxes Ki,j are shown, and the ball of radius λ1/d

0 centered at a
point in Ki,j . The figure also shows a close-up of a small box Bi,j , and its kernel box, Ki,j .

The probability P {Ei} that a specified site is open is a constant depending only
on λ0 and d. More specifically, the probability that there is at least one point in a
Kij is at least 1− exp(−(`/3)d), |Si| ≤ 2d(α

√
d+ 1). Thus

P {Ei} ≥ (1− exp(−(`/3)d))|Si|.

We are again interested in the existence of a large component of open sites. By
Lemma 3, there exists a ps > 0 such that if the probability of an open site is p, and
p > ps, then P

{
|Lsite1 (p)| ≥ c1td

}
→ 1, as t→∞. Thus in order to guarantee that

P {Ei} > ps, we require that

− log(1− p1/|Si|
s ) < (`/3)d. (4)

By definition, ` ≥ (1−n−1/d)λ1/d
0 /
√
d, and so ` ≥ λ1/d

0 /(2
√
d) for n > 2. Notice the

left side of Equation (4) is a constant, thus we can choose λ0 > 0 large enough that
satisfies (4). Let L1(In) ⊆ {1, . . . , td} denote the index set of the sites in the largest
open component. Then by Lemma 3,

P
{
|L1(In)| ≥ c1td

}
−−−→
n→∞

1.

Next, we establish the existence of a large connected component in the random
geometric graph. Let

Cλ0 = {x ∈ P : x ∈ ∪j∈SiBi,j , for some i ∈ L1(In)},

then the vertices in Cλ0 belong to a connected component in G(P, λ0). It remains
only to provide a lower bound on the number of merges to that connected component
as Kruskal’s algorithm completes (i.e., as λ increases above λ0).
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Qi1 Qi2

open site closed site

Figure 5. A portion of the
site percolation process on sites
Qi, i ∈ {1, . . . , td}. Notice that
when two open sites are neigh-
bours, then the vertices in the
boundaries of each site are in
the same connected component
in G(P, λ0).

Bi,j
Ki,j

Ki,0

Bi,0

Figure 6. Event Ji for the box
Qi. The only Poisson points are
in Ki,0 and Ki,j for j ∈ Si.

Define a new event Ji depending only on the points in Qi in the following way:
suppose Bi,0 is the mini-box at the very center of Qi. Let Ki,0 be the kernel box
associated with this Bi,0. The event Ji occurs when there is at least one point in
Ki,0 and the rest of Qi is free of points, except for the boundary region. In other
words,

Ji = [P ∩ {Bi0 \Ki0} = ∅] ∩ [P ∩Ki0 6= ∅] ∩

 ⋂
j /∈Si,j 6=0

{P ∩Bij = ∅}

 .
The event Ji is illustrated in Figure 6, and ensures that the “trap” created by Ei is
successful. As with the event Ei, P {Ji} > 0 is a constant depending only on λ0 and
d. Clearly, the events Ji are independent from each other and from all the events Ei.

Let us first show that at r = λ
1/d
0 any points in Ki,0 are not connected to the

boundary points. Set α = 6, let x ∈ Ki,0 and suppose Ji is true. Observe that the

14



distance from x to any other Poisson point in Qi (but outside of Ki,0) is at least

(α
√
d/2− 2)` = (3− 2/

√
d)(1− n−1/d)λ1/d

0 ≥ 3λ1/d
0

(
1− n−1/d

)
> 2λ1/d

0 = 2r,

for n1/d > 3. Therefore, the ball centered at x does not intersect any other balls in
Qi, if n1/d > 3. In other words, x ∈ Ki,0 is not connected to the vertices of Cλ0 in
the graph Mi? , but it will be at some later stage of Kruskal’s algorithm.

Finally, let M(n) be the number of merges to the vertices of Cλ0 for i > i?. Each
event Ji accounts for one connection to Cλ0 , thus

M(n) ≥
∑

i∈L1(In)

Ji.

Using the fact that P
{
|L1(In)| ≥ c1td

}
→ 1 and that P {Ji} > 0 is constant, where

Ji is independent of the event {i ∈ L1(In)}, we conclude that

P
{
M(n) ≥ (c1/2)P {Ji} td

}
−−−→
n→∞

1.

Now use the definition of t and:

P {M(n) ≥ cn} −−−→
n→∞

1,

where c = c1P {Ji} /(2αdλ0) is a constant independent of n. This finishes the proof
of Theorem 4.

6 Proof of Theorem 1

In this section, we extend the result of the previous section for a fixed number of
points uniformly distributed in [0, 1]d. In other words, we depoissonize Theorem 4 to
prove Theorem 1. From now on, we use Hn and Tn instead of Hn(En) and Tn(En),
since we are always referring to the graph En (defined in Section 1), constructed
using a point set Xn = {x1, . . . , xn} where each xi ∈ [0, 1]d.

Lemma 4 (Stability of the Euclidean MST). Let x1, x2, . . . , xn+1 ∈ [0, 1]d. Let
MSTn and MSTn+1 be the minimum spanning trees on Xn and Xn+1, respectively,
where Euclidean distance is used for the edge weights. Assume both MSTn and
MSTn+1 are unique. Then MSTn and MSTn+1 differ by at most 2 deg(xn+1) =
O(1) edges, where deg(·) denotes the degree in MSTn+1.

Proof. Let N be the set of neighbours of xn+1 in MSTn+1. We can build MSTn+1

from MSTn as follows: Add vertex xn+1 and add all edges from xn+1 to its neighbors
y ∈ N . Next, we use the well known characterization of edges of the minimum
spanning tree: an edge is part of the minimum spanning tree of a weighted graph
G if and only if there is no cycle in G for which it is the longest edge. By adding
edges from xn+1 to N , we created at most |N | new cycles. So for each newly created
cycle, delete the longest weight edge in the cycle. Doing this, we delete at most
|N | edges. After this process, the remaining graph is exactly MSTn+1, due to the
characterization given above. Therefore, the number of edges that were added or
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deleted is bounded above by 2 deg(xn+1). In any dimension, two edges incident to
the same point in the Euclidean minimum spanning tree must define an angle of
at least 60 degrees, (see, e.g., Lemma 4 of Aldous and Steele [3]). Thus the value
deg(xn+1) is bounded above by a constant in any dimension d.

We can now establish an almost increasing property of the height of the tree
explaining Kruskal:

Lemma 5. Let x1, x2, . . . , xn+1 be any points (not necessarily random) in [0, 1]d.
Let Hn and Hn+1 be the heights of the tree explaining Kruskal’s algorithm for the
point sets Xn = {x1, . . . , xn} and Xn+1 = {x1, . . . , xn+1}, respectively. Then, there
exists some non-negative constant a ≥ 0 independent of Xn+1 such that

Hn+1 ≥ Hn − a.

Proof. Let MSTn be the minimum spanning tree on the point set Xn and let Tn be
the tree explaining Kruskal’s algorithm for this point set, and as usual Hn its height.
Let h = Hn for short, and let π be a path of length h in the tree Tn. Each non-leaf
vertex in the path π corresponds to an edge in MSTn. Label these edges e1, . . . , eh
starting from the bottom of the tree. Now consider MSTn+1. Not all of the edges
{ei, 1 ≤ i ≤ h} are also also in MSTn+1. Let K ⊆ [0, h] be the index set for those
edges also in MSTn+1: K = {k ∈ [1, h] : ek ∈ MSTn+1}. The goal is to show that
{ek : k ∈ K} all lie on a single path in the tree explaining Kruskal for MSTn+1.
From Lemma 4, |K| ≥ h− 2 deg(xn+1), and therefore if the edges are indeed on the
same path in Tn+1, then the height of this tree is at least Hn−a for a > 0 a positive
constant.

Let w(ek) be the weight of the edge ek and for any k ∈ K define Cek to be the
connected component in the graph G(Xn+1, w(ek)) which contains the edge ek. We
show the following fact: The component Cek contains all “previous” edges, {ej : j ∈
K, j ≤ k}. It is easy to see that this fact implies that the edges {ek : k ∈ K} lie on the
same path in the tree Tn+1, since they all grow out from the same component. And
the proof of the fact is also fairly simple: By definition of the edges {ei, 1 ≤ i ≤ h},
there is a connected component in G(Xn, w(ek)) containing all edges {ej : j ≤ k}.
When we add a point, xn+1, the vertices that are connected by edges of weight less
than w(ek) are still connected — but perhaps by a different path. Therefore, all
edges {ej : j ∈ K, j ≤ k} are in the component Cek .

Finally, we are ready to prove our main theorem:

Proof of Theorem 1. Let ε ∈ (0, 1). Let HN be the height of the tree explaining
Kruskal, for a Poisson point process on [0, 1]d with rate n(1−ε). Then by Theorem 4,
there exists a constant c > 0 such that P {HN ≥ cn(1− ε)} → 1, as n→∞. Either
N is close enough to its mean, and then we can apply Lemma 5, or it is far from
the mean, but this happens only with low probability. More precisely, let A(n, ε) be
the event that n− 2εn ≤ N ≤ n and let A(n, ε)c be its complement.

P {HN ≥ cn(1− ε)} ≤ P {A(n, ε)c}+ P {HN ≥ cn(1− ε), A(n, ε)} .

Now, if A(n, ε) holds then Hn ≥ HN − a(n−N), by Lemma 5. Therefore,

P {HN ≥ cn(1− ε), A(n, ε)} ≤ P {Hn ≥ cn(1− ε)− a(n−N), A(n, ε)} .
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Pick ε ∈ (0, c
2(c+2a)). This guarantees that

P {Hn ≥ cn(1− ε)− 2anε} ≤ P {Hn ≥ cn/2} .

Finally, we need a bound on the probability that N is far from its mean. By
Chernoff’s bound [9],

P {A(n, ε)c} ≤ P {|N − EN | ≥ εn} ≤ 2e−γεn,

where γε = ε− ln(1− ε) > 0. Putting everything together, for this range of ε,

P {HN ≥ cn(1− ε)} ≤ P {A(n, ε)c}+ P {Hn ≥ cn/2}

And thus,
P {Hn ≥ cn/2} ≥ P {HN ≥ cn(1− ε)} − 2e−γεn.

Letting n→∞ proves that P {Hn ≥ cn/2} → 1.
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[11] P. Erdős and A. Rényi. On the evolution of random graphs. Publ. Math. Inst.
Hungar. Acad. Sci., 5:17–61, 1960.

[12] A. M. Frieze. On the value of a random minimum spanning tree problem.
Discrete Applied Mathematics, 10:47–56, 1985.

[13] G. R. Grimmett. Percolation, volume 321 of A Series of Comprehensive Studies
in Mathematics. Springer Verlag, second edition, 1999.

[14] S. Janson, T.  Luczak, and A. Ruciński. Random Graphs. Wiley, New York,
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