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Abstract

We consider a natural model of inhomogeneous random graphs that extends the classi-
cal Erdős–Rényi graphs and shares a close connection with the multiplicative coalescence, as
pointed out by Aldous [Ann. Probab., vol. 25, pp. 812–854, 1997]. In this model, the vertices
are assigned weights that govern their tendency to form edges. It is by looking at the asymp-
totic distributions of the masses (sum of the weights) of the connected components of these
graphs that Aldous and Limic [Electron. J. Probab., vol. 3, pp. 1–59, 1998] have identified the
entrance boundary of the multiplicative coalescence, which is intimately related to the excur-
sion lengths of certain Lévy-type processes. We, instead, look at the metric structure of these
components and prove their Gromov–Hausdorff–Prokhorov convergence to a class of (random)
compact measured metric spaces. Our asymptotic regimes relate directly to the general conver-
gence condition appearing in the work of Aldous and Limic. Our techniques provide a unified
approach for this general “critical” regime, and relies upon two key ingredients: an encoding
of the graph by some Lévy process as well as an embedding of its connected components into
Galton–Watson forests. This embedding transfers asymptotically into an embedding of the limit
objects into a forest of Lévy trees, which allows us to give an explicit construction of the limit
objects from the excursions of the Lévy-type process. As a consequence of our construction, we
give a transparent and explicit condition for the compactness of the limit objects and determine
their fractal dimensions. These results extend and complement several previous results that had
obtained via model- or regime-specific proofs, for instance: the case of Erdos-Renyi random
graphs obtained by Addario-Berry, Goldschmidt and B. [Probab. Theory Rel. Fields, vol. 153,
pp. 367–406, 2012], the asymptotic homogeneous case as studied by Bhamidi, Sen and Wang
[Probab Theory Rel. Fields, vol. 169, pp. 565–641, 2017], or the power-law case as considered
by Bhamidi, Sen and van der Hofstad [Probab. Theory Rel. Fields, vol. 170, pp. 387–474,
2018].

1 Introduction

Motivation and model. Random graphs have generated a large amount of literature. This is even
the case for one single model: the Erdős–Rényi graph G(n, p) (graph with n vertices connected
pairwise in an i.i.d. way with probability p ∈ [0, 1]). Since its introduction by Erdős and Rényi [24]
more than fifty years ago, and the discovery of a phase transition where a “giant connected com-
ponent” gets born, the pursuit of a deeper understanding of its structure has never stopped. Many
landmark results by Bollobás [17], Łuczak [34], Janson, Knuth, Łuczak and Pittel [32] have shaped
our grasp of this phase transition. From the point of view of precise asymptotics, one of the most
important papers is certainly the contribution of Aldous [3], who introduced a stochastic process
point of view and paved the way towards the study of scaling limits of critical random graphs. In
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Figure 1: Left: a picture of a large connected component of G(n, p). Right: a picture of a large
connected component of Gw. Observe the presence of “hubs” (nodes of high degrees) in the latter.

that paper, he obtained the asymptotics for the sequence of sizes of the connected components of
G(n, p) in the so-called critical window where the phase transition actually occurs. His work made
possible the construction by Addario-Berry, Goldschmidt and B. [2] of the scaling limits of these
connected components, seen as metric spaces, which also confirmed the limiting fractal (Brownian)
nature.

Following [2], the question of identifying the scaling limits has been investigated for more gen-
eral models of random graphs. Particular attention has been paid to the so-called inhomogeneous
random graphs, which exhibit heterogeneity in the node degrees and whose behaviours are often
quite different from the Erdős–Rényi graph. (See Fig. 1 for an illustration of this difference). Be-
sides being a theoretic object with intriguing properties, these graphs are also commonly believed
to offer more realistic modelling for the complex real-world networks [see, e.g. 35].

In the present work, we consider such an inhomogeneous random graph model, defined as
follows. Let w=(w1, w2, . . . , wn) be a sequence of n positive real numbers sorted in non-increasing
order. Interpreting wi as the propensity of vertex i to form edges, we define a random graph Gw as
follows: the set of its vertices is {1, 2, . . . , n}, the events {{i, j} is an edge of Gw}, 1≤ i < j ≤ n,
are independent and

P
(
{i, j} is an edge of Gw

)
= 1− exp

(
−wiwj/σ1(w)

)
, where σ1(w) = w1 + . . .+ wn.

The graph Gw extends the classical Erdős–Rényi random graph in allowing edges to be drawn with
non uniform probabilities, while keeping the independence among edges.

The graph Gw has come under different names in the literature, for instance, Poisson random
graph in [9, 36], the Norros–Reittu graph in [9] or rank-1 model in [12, 13, 18, 40, 41]. Here, we
will refer to it as the multiplicative graph to emphasise its close connection with the multiplicative
coalescent as pointed out by Aldous in [3]. This connection is the starting point of the work [4]
of Aldous & Limic who identify the entrance boundary of multiplicative coalescent by looking at
the asymptotic distributions of the sizes of the connected components found in Gw. The asymptotic
regime and the limiting processes found in Aldous & Limic [4] lie at the heart of this paper. Namely,
we extend this result to the geometry of Gw by proving the weak convergence of the connected
components of multiplicative graphs as it has been done by Addario-Berry, Goldschmidt and B. [2]
for the critical Erdős–Rényi graphs.

More precisely, we equip Gw with the graph distance dgr and we introduce the weight mea-
sure mw =

∑
1≤i≤nwiδi on Gw. The goal of our article can be roughly rephrased as follows: we

construct a class of (pointed and measured) compact random metric spaces (G, d,m) such that
(Gwn , εndgr, ε

′
nmwn) → (G, d,m) weakly along suitable subsequences (wn, εn, ε

′
n). Of course,
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here the scaling parameters, εn and ε′n go to 0, so that G is not discrete. The limits we con-
sider hold in the sense of the weak convergence corresponding to Gromov–Hausdorff–Prokhorov
topology on the space of (isometry classes of) compact metric spaces. To achieve the construc-
tion of the possible limiting graphs and to prove the convergence of rescaled multiplicative graphs,
we rely on two main new ideas: (1) we code multiplicative graphs by processes derived from a
LIFO-queue; (2) we embed multiplicative graphs into Galton–Watson trees whose scaling limits
are well-understood. Before discussing further the connections with previous works and in order to
explain the advantages of our approach, let us give a brief but precise overview of results and of the
two above mentioned ideas.

Overview of the results. Our approach relies first on a specific coding of w-multiplicative graphs
Gw via a LIFO-queue and a related stochastic process; the queue actually yields an exploration of Gw
and a spanning tree that encompasses almost all the metric structure of the graph. The LIFO-queue
is defined as follows: a single server is visited by n clients labelled by 1, . . . , n; Client j arrives at
time Ej and she/he requests an amount of time of service wj ; the Ej are independent exponentially
distributed r.v. such that E[Ej ]=σ1(w)/wj ; a LIFO (last in first out) policy applies: whenever a new
client arrives, the server interrupts the service of the current client (if any) and serves the newcomer;
when the latter leaves the queue, the server resumes the previous service. As mentioned above, the
LIFO-queue yields a tree Tw whose vertices are the clients: the server is the root (Client 0) and
Client j is a child of Client i in Tw if and only if Client j interrupts the service of Client i (or arrives
when the server is idle if i= 0). Note that the LIFO-queue is coded by either of the two following
processes defined for all t∈ [0,∞) by:

Y w
t =−t+

∑
1≤i≤n

wi1{Ei≤t} and Hw
t = #

{
s ∈ [0, t] : inf

r∈[s,t]
Y w
r > Y w

s−

}
.

The quantity Y w
t is the (algebraic) load of the server, i.e., the amount of service due at time t

and Hw
t is the number of clients waiting in the queue at time t. We easily see that Hw is the

contour (or the depth-first exploration) of Tw; this entails that the graph-metric of Tw is entirely
encoded by Hw: namely, the distance between the vertices/clients served at times s and t in Tw is
Hw
t +Hw

s−2minr∈[s∧t,s∨t]Hw
r .

The tree Tw contains most of the metric information of Gw, but not all. Surplus edges are added
to Tw to obtain Gw as follows: conditionally on Y w, let

∑
1≤p≤pw

δ(tp,yp) be a Poisson point measure
on [0,∞)×[0,∞) with intensity 1

σ1(w) 1{0<y<Y w
t −inf[0,t] Y

w} dt dy and set

sp=inf
{
s∈ [0, tp] : inf

u∈[s,tp]
(Y w
u − inf

[0,u]
Y w) > yp

}
.

Then we define the set of additional edges Sw as the set of the edges connecting the clients served
at times sp and tp, for all 1≤p≤pw. Theorem 2.1 asserts that the graph obtained by removing the
root 0 from Tw and adding the edges Sw is distributed as Gw, a w-multiplicative graph. Namely,

Gw
(d)
= (T w\{0}) ∪ Sw .

From this representation of the discrete graphs, one expects that if Y w converges, then the graph
should also converge, at least in weak sense. However, since Y w is not Markovian, it is difficult to
obtain a limit for the local-time functional Hw, which is the function that encodes the metric. To
circumvent this technical difficulty, we embed the non-Markovian LIFO-queue governed by Y w into
a Markovian one that is defined as follows: a single server receives an infinite number of clients;
a LIFO policy applies; clients arrive at unit rate; each client has a type that is an integer ranging
in {1, . . . , n}; the amount of service required by a client of type j is wj ; types are i.i.d. with law
νw = 1

σ1(w)

∑
1≤j≤nwjδj . Namely, let τk be the arrival-time of the k-th client and let Jk be the

type of the k-th client; then, the Markovian LIFO queueing system is entirely characterised by
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∑
k≥1 δ(τk,Jk) that is a Poisson point measure on [0,∞)×{1, . . . , n} with intensity ` ⊗ νw, where

` stands for the Lebesgue measure on [0,∞). The Markovian queue also yields a tree Tw defined
as follows: the server is the root Tw and the k-th client to enter the queue is a child of the l-th
one if the k-th client enters when the l-th client is served. One easily checks that Tw is a sequence
of i.i.d. Galton–Watson trees glued at their root and that their common offspring distribution is
µw(k)=

∑
1≤j≤n(σ1(w)k!)−1wk+1

j e−wj , k∈N. Here, we restrict to (sub)critical GW-trees: namely,
we assume that

∑
k∈N kµw(k) = σ2(w)/σ1(w) ≤ 1, where for all r ∈ (0,∞), we use the notation

σr(w)=
∑

1≤j≤nw
r
j . This tree is coded by its contour process (Hw

t )t∈[0,∞): namely, Hw
t stands for

the number of clients waiting in the Markovian queue at time t and it is given by

Hw
t = #

{
s ∈ [0, t] : inf

r∈[s,t]
Xw
r > Xw

s−

}
where Xw

t = −t+
∑
k≥1

wJk1[0,t](τk), t∈ [0,∞),

is the (algebraic) load of the Markovian server. Note that Xw is a spectrally positive Lévy process
with initial value 0; it is characterised by its Laplace exponent defined by E[e−λX

w
t ] = etψw(λ),

t, λ∈ [0,∞), that is explicitly given by:

ψw(λ) = αwλ+
∑

1≤j≤n

wj

σ1(w)

(
e−λwj−1+λwj

)
and αw :=1− σ2(w)

σ1(w)
.

From this tractable model, we derive the LIFO-queue and the tree Tw governed by Y w by a
time-change that “skips” some time intervals, which is defined as follows. We colour in blue or
red the clients of the Markovian queue in the following recursive way: (i) if the type Jk of the k-
th client already appeared among the types of the blue clients who previously entered the queue,
then the k-th client is red; (ii) otherwise the k-th client inherits her/his colour from the colour
of the client who is currently served when she/he arrives (and this colour is blue if there is no
client served when she/he arrives: namely, we consider that the server is blue). Note that a client
who is the first arriving of her/his type is not necessarily coloured in blue. Check that exactly n
clients are coloured in blue and their types are necessarily distinct. Moreover, while a blue client is
served, note that the other clients waiting in the line (if any) are blue too. Actually, the sub-queue
of blue clients corresponds to the previous LIFO queue governed by Y w. More precisely, we set
Blue=

{
t∈ [0,∞) : a blue client is served at time t

}
and θb,wt =inf{s∈ [0,∞) :

∫ t
01Blue(s)ds >t}.

Then,
(Y w
t ,Hw

t )t∈[0,∞)
(d)
=
(
Xw

θb,wt
, Hw

θb,wt

)
t∈[0∞)

.

This explains how to code Gw in terms of the two tractable processes Xw and Hw derived from the
Markovian queue.

Such Markovian queues have analogues in the continous time and space setting. The parameters
governing such processes are those identified by Aldous & Limic [4] for the eternal multiplicative
coalescent. Namely:

α ∈ R, β ∈ [0,∞), κ ∈ (0,∞) and c=(cj)j≥1 decreasing and such that
∑
j≥1

c3
j <∞ .

The load of service of the continuous analogue of the Markovian queue is a spectrally positive Lévy
process (Xt)t∈[0,∞) starting at X0 whose Laplace exponent ψ is given by

(1) ψ(λ)=αλ+ 1
2 βλ

2 +
∑
j≥1

κcj
(
e−λcj−1+λcj

)
, λ ≥ 0.

To simplify, we restrict our explanations to the cases where X does not drift to ∞, which is
equivalent to assuming that α ∈ [0,∞). We explain in Section 2.2.1 how to colour the Marko-
vian queue driven by X: namely, we explain how to define a right-continuous increasing time-
change (θbt )t∈[0,∞) that is the analogue of the discrete one θb,w. Then we define the cadlag process
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Y =X ◦ θb that represents the load driving the analogue of the LIFO-queue (without repetitions).
We prove in Section 2.2.1 that Y can be written under the following form:

(2) ∀t ∈ [0,∞), Yt = −αt− 1

2
κβt2 +

√
βBt +

∑
j≥1

cj(1{Ej≤t}−cjκt),

where (Bt)t∈[0,∞) is a standard linear Brownian motion starting at 0 and where the Ej are indepen-
dent exponentially distributed r.v. that are independent from B and such that E[Ej ]=(κcj)

−1. The
sum in (2) has to be understood in the sense of L2 semimartingales (see Section 2.2.1 for a precise
explanation). The latter expression of Y can be found in Aldous & Limic [4] who proved that the
lengths of the excursions of Y above its infimum (ranked in decreasing order) are distributed as the
marginal laws of multiplicative coalescent, roughly speaking.

The tree corresponding to the clients of the continuous analogue of the Markovian queue, that
is driven by X , is actually the Lévy tree yielded by X , which is defined through its contour process
as introduced by Le Gall & Le Jan [33]. To that end, we assume that ψ defined in (1) satisfies the
following:

(3)
∫ ∞ dλ

ψ(λ)
<∞.

which implies that either
∑

j c
2
j = ∞ or β 6=0 and therefore X has infinite variation sample paths.

Under Assumption (3), Le Gall & Le Jan [33] (see also Le Gall & D. [21]) prove that there exists
a continuous process (Ht)t∈[0,∞) such that the following limit holds true for all t ∈ [0,∞), in
probability

(4) Ht = lim
ε→0

1

ε

∫ t

0
1{Xs−infr∈[s,t] Xr≤ε} ds .

The process H is called the height process associated with X; it is clearly an analogue of Hw. The
analogue ofHw is then defined by

∀t ∈ [0,∞), Ht = Hθbt

and Proposition 2.7 shows that H is a.s. a continuous process that is called the height process
associated with Y .

We show in Lemma 5.6 (see Section 5.2.4) that the excursion intervals of H above 0 and the
excursion intervals of Y above its infimum are the same. Moreover, Proposition 14 in Aldous &
Limic [4] (recalled in Proposition 5.8, Section 5.2.4), asserts that these excursions can be indexed
in the decreasing order of their lengths. Namely,

(5)
{
t∈ [0,∞) : Ht > 0

}
=
{
t∈ [0,∞) : Yt > inf

[0,t]
Y
}

=
⋃
k≥1

(lk, rk)

where the sequence ζk= lk−rk, decreases.
The continuous analogue of Gw is derived from (Y,H) as follows: first, for all s, t∈ [0,∞), we

define the usual tree pseudometric associated with H: dH(s, t) = Hs +Ht − 2 minu∈[s∧t,s∨t]Hu.
Then, we introduce

∑
p≥1 δ(tp,yp) distributed (conditionnaly on Y ) as a Poisson point measure on

[0,∞)× [0,∞) with intensity κ1{0<y<Yt−inf[0,t] Y } dt dy. Next for all p≥1, set

sp=inf
{
s∈ [0, tp] : inf

u∈[s,tp]
(Yu− inf

[0,u]
Y ) >yp

}
.

Fix k≥1. One can prove that if tp ∈ [lk, rk], then sp∈ [lk, rk]. Then, we define Gk as the set [lk, rk]
where we have identified points s, t ∈ [lk, rk] such that either dH(s, t) = 0 or (s, t)∈{(sp, tp); p≥
1 : tp∈ [lk, rk]}. It actually yields a metric denoted by dk, on Gk; note that lk and rk are identified
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and we denote by %k the corresponding point in Gk; we denote by mk is the measure induced by
the Lebesgue measure on [lk, rk]. The continuous analogue of Gw is then the sequence of pointed
measured compact metric spaces G=((Gk, dk, %k,mk)k≥1. We refer to Section 2.2.2 and Section
2.2.3 for a more precise definition.

As already mentioned, the main goal of the paper is to prove that G is the scaling limit of se-
quences of rescaled discrete graphs Gwn for a suitable sequence of weights wn = (w(n)

j )j≥1 (here
sup{j ≥ 1 : w(n)

j > 0} is not necessarily equal to n but it tends to ∞ as n → ∞). Our main
result (Theorem 2.14 in Section 2.3.3) asserts that if the Markovian processes (Xwn , Hwn), prop-
erly rescaled in time and space, weakly converge to (X,H), then (Y wn ,Hwn) converges weakly to
(Y,H) within the same scaling.

More precisely, the graphs Gwn , or their coding functions, are rescaled by two factors an and
bn tending to ∞; an is a weight factor: namely, if the largest weight "persists" in the limit, then
an � w(n)

1 and in generalw(n)

1 =O(an); bn is a exploration-time factor: namely, bn � E[Cn], where
Cn stands for the number of clients who are served before the arrival of Client 1 in the wn-LIFO
queue coding Gwn . It is also natural to require that counting the number of served clients is roughly
the same as counting their time of service, which corresponds to assuming that the Gwn are in a
critical regime, namely σ1(wn) � σ2(wn). These constraints amount to assuming the following a
priori estimates:

(6) lim
n→∞

an= lim
n→∞

bn
an

=∞, lim
n→∞

bn
a2
n

=:β0, w(n)

1 =O(an), lim
n→∞

anbn
σ1(wn)

= κ.

We refer to Section 2.3.2 for more detailed explanations for such assumptions. A more precise
statement of Theorem 2.14 is:

(7) If
(

1
an
Xwn
bn· ,

an
bn
Hwn
bn·
)
−−−−→
n→∞

(
X,H

)
weakly on D([0,∞),R)×C([0,∞),R) equipped with the product of the Skorokhod and the contin-
uous topologies, then the following joint convergence

(8)
(

1
an
Xwn
bn· ,

an
bn
Hwn
bn· ,

(
1

bn
θb,wnbn· ,

1
an
Y wn
bn·
)
, anbn H

wn
bn·
)
−−−−→
n→∞

(
X,H, (θb, Y ),H

)
holds weakly on D([0,∞),R)×C([0,∞),R)×D([0,∞),R2)×C([0,∞),R) equipped with the
product topology.

Necessary and sufficient conditions on the (an, bn, wn) for (7) to hold can be derived from
previous results due to Le Gall & D. [21] (let us mention it is not direct: see Proposition 2.12).
Namely, (7) holds if and only if the following condition are satisfied
(9)

(A) : 1
an
Xwn
bn

(weakly)
−−−−→
n→∞

X1 and (B) : ∃δ ∈(0,∞), lim inf
n→∞

P
(
Zwn
bbnδ/anc = 0

)
> 0

where (Zwn
k )k∈N stands for a Galton–Watson Markov chain with offspring distribution µwn and with

initial state Zwn
0 = banc. Let us mention that Proposition 2.13 shows that for all α∈R, β ∈ [0,∞),

β0∈ [0, β], κ ∈ (0,∞) and c such that
∑

j≥1 c
3
j<∞ and such that Grey’s condition (3) is satisfied,

there exists a sequence (an, bn, wn)n∈N satisfying (6) and (9), so that (8) holds. Proposition 2.13 also
shows that in (9), (A) does not imply necessarily (B). Moreover, Proposition 2.13 also provides a
more tractable condition that implies (B) in (9) and that is satisfied in all the examples that have
been considered previously.

By soft arguments (see Lemma 2.10), the convergence (8) of the coding functions implies that
the rescaled sequence of graphs Gwn converges, as random metric spaces. As already mentioned,
the convergence holds weakly on the space G of (pointed and measure preserving) isometry classes
of pointed measured compact metric spaces endowed with the Gromov–Hausdorff–Prokhorov dis-
tance (whose definition is recalled in Section 2.3.1). Actually, the convergence holds jointly for the
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connected components of Gwn : namely, equip Gwn with the weight-measure mwn
k =

∑
j≥1w

(n)
j δj

and denote by Gwn
k the k-largest (with respect to its mwn

k -measure) connected component of Gwn .
For the sake of convenience, we complete this finite sequence of connected components by point
graphs with null measure to get an infinite sequence of G-valued r.v.

(
(Gwn
k , dwnk , %

wn
k ,m

wn
k )
)
k≥1

,
where dwnk stands for the graph-metric on Gwn

k , where %wnk is the first vertex/client of Gwn
k who enters

the queue and where mwn
k is the restriction of mwn to Gwn

k . Then, Theorem 2.16 asserts that if (8)
holds, then

(10)
((
Gwn
k , anbn d

wn
k , %

wn
k ,

1

bn
mwn
k

))
k≥1

−−−−→
n→∞

((
Gk, dk, %k,mk

))
k≥1

holds weakly on GN∗ equipped with the product topology.

Discussion

A unified and exhaustive treatment of the limiting regimes: While important progress has been made
on the Gromov–Hausdorff scaling limits of the multiplicative graphs, notably in [11, 12], previous
works have distinguished two seemingly orthogonal cases depending on whether the inhomogeneity
is mild enough to be washed away in the limit [2, 7, 11], or strong enough to persist asymptotically
[12, 14]: the so-called asymptotic (Brownian) homogeneous case and the power-law case. The proof
strategies greatly differ in these two cases. On the other hand, the remarkable work of Aldous and
Limic [4] about the weights of large critical connected components deals with the inhomogeneity
in a transparent way. We provide here such a unified approach for the geometry, which works not
only for both cases but also for graphs which can be seen as a mixture of the two cases.

Furthermore, an easy correspondence (see (79) below) allows us to link our parameters (α, β,
κ, c) for the limit objects to the ones parametrising all the extremal eternal multiplicative coales-
cents, as identified by Aldous & Limic in [4]. We note that our limit theorems are valid in the
Gromov–Hausdorff–Prokhorov topology, which controls the distances between all pairs of points,
and not just in the Gromov–Prokhorov topology where only distances between finitely many typical
points are controlled. (A general result has already been proved by Bhamidi, van der Hofstad & Sen
[12] for the Gromov–Prokhorov topology in the special case when β=0.) In light of this, we believe
our work contains an exhaustive treatment of all the possible limits related to those multiplicative
coalescents. In the mean time, we remove some technical conditions that had been imposed on the
weight sequences in some of the previous works.

Compactness and fractal dimensions of the limit object : The “homogeneous” scaling limit of the
classical Erdős–Rényi random graphs is compact. One of the hurdles that one faces when dealing
with genuinely inhomogeneous limits is that the limit objects may not be compact anymore. For
genuinely inhomogeneous graphs, the construction of the scaling limit by Bhamidi, Sen & van der
Hofstad [12] (see also [8]) was only proved to yield compact objects in some very specific cases
(regular power-tailed weight sequences). The link with Galton–Watson forests in our approach
allows to rely on the litterature about these well-studied objects, and to deduce almost directly a
compactness criterion. We also argue that the criterion is tight, but the proof of this fact is left
for some future work. The same is also true for the fractal dimensions (Hausdorff, Minkowski,
packing), which are deduced from the corresponding values for limits of Galton–Watson forests. In
some specific cases, namely where the weight sequence has a power law, this confirms conjectures
of Bhamidi, Sen and van der Hofstad [12] who had obtained Minkowski dimensions.

Avoiding to compute the law of connected components: The connected components the random
graphs may be described as the result of the addition of “shortcut edges” to a tree; this picture is
useful both for the discrete models and the limit metric spaces. The work of Bhamidi, Sen & X.
Wang and Bhamidi, van der Hofstad & Sen [11, 12] yields an explicit description of the law of
the random tree to which one should add shortcuts in order connected components with the correct
distribution. As in the case of classical random graphs treated in [2], this law involves a change of
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measure from one of the “classical” random trees, whose behaviour is in general difficult to control
asymptotically. Our connected components are described as the metric induced on a subset of a
Galton–Watson tree; the bias of the law of the underlying tree is somewhat transparently handled
by the procedure that extracts the relevant subset.

More general models of random graphs. While we focus on the model of the multiplicative graphs,
the theorems of Janson [31] on asymptotic equivalent models (see Section 2.3.4) and the expected
universality of the limits confers on the results obtained here potential implications that go beyond
the realm of this specific model: for instance, random graphs constructed by the celebrated con-
figuration model where the sequence of degrees has asymptotic properties similar to the weight
sequence of the present paper are believed to exhibit similar scaling limits; see Section 3.1 in [12]
for a related discussion.

Upcoming work. As indicated before, here we have restricted ourselves to the case of subcritical
weight sequences, for which σ2(wn) ≤ σ1(wn), for a technical reason: as we embed the graph into a
Galton–Watson tree with offspring distribution µwn , under this condition µwn is subcritical; then the
Galton–Watson tree is finite a.s.; thereby we can carry out a complete exploration of the tree, upon
which our construction of the graph is based. However, in an upcoming version of the work, we will
resolve this issue and address the asypmtotics in full generality. Also, we have equipped the graph
Gwn with an (inhomogeneous) measure induced by wn. Another natural choice for the measure is
the counting measure. The difference between these measures is asymptotically negligible, and we
will prove it rigorously in the upcoming version.

Finally, the current version of the linit theorems consider the sequences of connected compo-
nents in the product topology. The embedding of the graphs in a forest of Galton–Watson forest
actually also yields a control the tail of the sequence, which would allow to strengthen the conver-
gence to `p-like spaces as in [2] or [11]; this will be pursued somewhere else as well.

Organisation of the paper In Section 2.1, we give the construction of the finite graphs and its
embedding into Galton–Watson forests, which is based upon a LIFO queueing interpretation. Sec-
tion 2.2 contains the construction of the continuum graphs. We then state in Section 2.3, our main
convergence theorems. The proofs of the results of Section 2 are given in Sections 3-7, while some
facts on the Skorokhod topology and branching process are recalled in Appendices.
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2 Main results

2.1 Exploration of discrete multiplicative random graphs.

We briefly describe the model of discrete random graphs that are considered in this paper and we
discuss a combinatorial construction thanks to a LIFO-queue. Unless the contrary is specified, all
the random variables that we consider are defined on the same probability space (Ω,F ,P). The
graphs G = (V (G),E (G)) that we consider are not oriented, without neither loops nor multiple
edges: E (G) is therefore a set consisting of unordered pairs of distinct vertices.

Let n ≥ 2 and let w = (w1, . . . , wn) be a set of weights: namely, it is a set of positive real
numbers such that w1≥w2≥ . . .≥wn>0. We shall use the following notation.

(11) ∀r∈(0,∞), σr(w) = wr1 + . . .+ wrn.
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Figure 2: An example of Y w and the associated exploration tree. Above, an illustration of Y w. The black
squares � on the abscissa correspond to the arrivals of clients, namely, the sequence {Ei} rearranged in
order. The white square � on the abscissa marks the departures of clients: By the LIFO rule, the client
arriving at time Ei leaves at inf{t > Ei : Y w

t < Y w
Ei−}. Below, the exploration tree associated to this queue.

Observe that each grey block contains a subtree above the root 0 and is encoded by an excursion of Y w−Jw.
�

The random graph Gw is said to be w-multiplicative if V (Gw) = {1, . . . , n} and if

(12) the r.v. (1{{i,j}∈E(Gw)})1≤i<j≤n, are independent and P
(
{i, j}∈E (Gw)

)
= 1−e−wiwj/σ1(w).

2.1.1 A LIFO queueing system exploring the multiplicative graph.

Let us first explain how to generate a w-multiplicative graph Gw thanks to the queueing system
that is described as follows: there is a single server; at most one client is served at a time; the
server applies the Last In First Out policy (LIFO, for short). Namely, when a client enters the
queue, she/he interrupts the service of the previously served client (if any) and the new client is
immediately served. When the server completes the service of a client, it comes back to the last
arrived client whose service has been interrupted (if there exists such). Exactly n clients will enter
the queue; each client is labelled with a distinct integer of {1, . . . , n} and wi stands for the total
amount of time of service that is needed by Client i who enters the queue at a time denoted by Ei;
we refer to Ei as to the time of arrival of Client i; we assume that E1, . . . , En∈(0,∞) are distinct.
For sake of convenience, we label the server by 0 and we set w0 =∞. The single-server LIFO
queueing system is completely determined by the (always deterministic) times of service w and the
times of arrival E = (E1, . . . , En), that are random variables whose laws are specified below. We
introduce the following processes.

(13) ∀t∈ [0,∞), Y w
t =−t+

∑
1≤i≤n

wi1{Ei≤t} and Jw
t = inf

s∈[0,t]
Y w
s

10



The load at time t (namely the time of service still due by time t) is then Y w
t −Jw

t . We shall sometimes
call Y w the algebraic load of the queue. LIFO rule implies that Client i arriving at timeEi will leave
the queue at the moment inf{t ≥ Ei : Y w

t < Y w
Ei−}, namely the first moment when the service load

falls back to the level right before her/his arrival. We shall refer to the previous queueing system as
to the w-LIFO queueing system.

The exploration tree. Denote by Vt ∈ {0, . . . , n} the label of the client who is served right after
time t if there is one; otherwise (namely, if the server is idle right after time t), we set Vt = 0
(for a formal definition, see Section 3). First observe that V0 = 0 and that t 7→ Vt is càdlàg. By
convenience, we set V0−=0. Next note that VEj =j and that VEj− is the label of the client who was
served when Client j entered the queue. Then, the w-LIFO queueing system induces an exploration
tree Tw that is defined as follows:

(14) V (Tw) = {0, . . . , n} and E (Tw) =
{
{VEj−, j}; 1≤j≤n

}
.

Namely, Tw is rooted at 0, which allows to view it as a family tree: the ancestor is 0 (the server)
and Client j is a child of Client i if Client j enters the queue while Client i is served. In particular,
the ancestors of Client i are those waiting in queue while i is being served. See Figure 2 for an
example.

Additional edges. The w-multiplicative graph Gw is obtained by adding edges to Tw as follows.
Conditionally given E, let

(15) Pw=
∑

1≤p≤pw

δ(tp,yp) be a Poisson pt. meas. on [0,∞)2 with intensity 1

σ1(w)
1{0<y<Y w

t −Jw
t } dt dy.

Note that a.s. pw<∞, since Y w−Jw is null eventually. We set:

(16) Πw =
(
(sp, tp)

)
1≤p≤pw

where sp=inf
{
s∈ [0, tp] : inf

u∈[s,tp]
Y w
u −Jw

u > yp
}
, 1≤p≤pw .

Note that sp is well defined, since yp < Y w
tp − Jw

tp . We then derive Gw from Tw and Πw by setting:
V (Gw)={1, . . . , n} and E (Gw)=A t S , where

(17) A=
{
{i, j}∈E (Tw) : i, j≥1

}
and S=

{
{Vsp , Vtp}; 1≤p≤pw

}
\A.

Note that Vsp is necessarily an ancestor of Vtp ; in other words, Vsp is in the queue at time tp.
Moreover, we have Vsp 6= 0 a.s, since Y w

sp − Jw
sp ≥ yp > 0. It follows that the endpoints of an edge

belonging to S necessarily belong to the same connected component of Tw \ {0}. Note that 0 is
not a vertex of Gw; S is the set of surplus edges. When E is suitably distributed, Gw is distributed
as a w-multiplicative graph: this is the content of the following theorem that is the key-point of the
paper.

Theorem 2.1 Keep the previous notation; suppose that E1, . . . , En are independent exponentially
distributed r.v. such that E[Ej ] = σ1(w)/wj , for all j ∈ {1, . . . , n}. Then, Gw is a w-multiplicative
random graph as specified in (12).

Proof: see Section 3. �

The connected components of the w-multiplicative graph. The above LIFO-queue construction
of the w-multiplicative graph Gw has the following nice property: the vertex sets of the connected
components of Gw coincide with those of Tw \ {0}, since surplus edges from S are only added
inside the connected components of the latter. More precisely, we equip Gw with the measure
mw =

∑
1≤j≤nwjδj that is the pushforwards measure of the Lebesgue measure via V restricted to

the set of times {t∈ [0,∞) :Vt 6=0}. Denote by qw the number of connected components of Gw that
are denoted by Gw

1 , . . ., Gw
qw

; here the indexation is such that

mw(V (Gw
1 ))≥ . . .≥mw(V (Gw

qw
)) .
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Note that for all k ∈ {1, . . . ,qw}, Gw
k corresponds to a connected component T w

k of Tw\{0} such
that

V (Gw
k ) = V (T w

k ) and E(Gw
k ) = E(T w

k ) t Sk where Sk =
{
{i, j}∈S : i, j∈V (T w

k )
}
.

Indeed, if {i, j}∈S, then either i is on the ancestral line of j (namely between 0 and j in Tw), or j
is on the ancestral line of i; therefore, i, j are in the same connected component of Tw\{0}.

Let dGw
k

and dT w
k

be the respective graph-metrics of Gw
k and of T w

k and denote by mw
k the restric-

tion of mw to V (Gw
k ). The main purpose of the article is to prove weak limit theorems for the laws of

the random measured metric spaces ((Gw
k , dGw

k
,mw

k))1≤k≤qw whose metric and measure are suitably
rescaled; the weak limit takes place on the space of sequences of compact measured metric spaces
equipped with the Gromov–Hausdorff–Prohorov topology, whose definition is recalled further. In
our approach, we actually pass to the limit for the trees ((T w

k , dT w
k
,mw

k))1≤k≤qw via their coding
functions called height processes whose definition is recalled next. We then discuss a key ingredi-
ent in the proof of the limit theorems: namely, a specific embedding of the exploration tree Tw into
a Galton–Watson tree, much easier to analyse; the embedding is carefully explained in the discrete
setting, which helps to understand the definition of the continuous analogue of the exploration tree
that is discussed hereafter and therefore to understand the definition of the limiting graph.

Height process of the exploration tree. For all t∈ [0,∞), let Hw
t be the number of clients waiting

in the line by time t. Recall that by the LIFO rule, a client entered at time s is still in the queue at
time t iff infs≤u≤t Y

w
u > Y w

s−. In terms of Y w, it is defined by

(18) Hw
t = #Jt, where Jt=

{
s∈ [0, t] :Jw,s−

t <Jw,s
t

}
and where ∀s∈ [0, t], Jw,s

t = inf
r∈[s,t]

Y w
r .

We refer to Hw as to the height process associated with Y w. Note that Hw
t is also the height of the

vertex Vt in the exploration tree Tw. Actually, this process is a specific contour of the exploration
tree Tw and we easily check that it codes its graph-metric dTw as follows:

(19) ∀s, t∈ [0,∞), dTw(Vs, Vt) = Hw
t +Hw

s − 2 min
r∈[s∧t,s∨t]

Hw
r .

See Figure 2. Then, Hw and Πw completely encode the sequence ((Gw
k , dGw

k
,mw

k))1≤k≤qw of con-
nected components viewed as measured metric spaces. Indeed, each excursion of Hw above zero
corresponds to a connected component T w

k of Tw\{0}, the length of the excursion interval is
mw(V (T w

k )) and Sk corresponds to pinching times that fall in this excursion interval. More de-
tails are given further.

2.1.2 Embedding the exploration tree into a Galton-Watson tree.

A Markovian LIFO queueing system. We embed the w-LIFO queueing system into the following
Markovian LIFO queueing system: a single server which receives in total an infinite number of
clients applying the LIFO policy; clients arrive at unit rate; each client has a type that is an integer
ranging in {1, . . . , n}; the amount of service required by a client of type j is wj; types are i.i.d. with
law νw = 1

σ1(w)

∑
1≤j≤nwjδj . Let τk be the arrival-time of the k-th client and let Jk be the type of

the k-th client. Then, the Markovian LIFO queueing system is entirely characterised by:

(20) Xw=
∑
k≥1

δ(τk,Jk),

that is a Poisson point measure on [0,∞)×{1, . . . , n} whith intensity `⊗νw, where ` stands for the
Lebesgue measure on [0,∞). We next introduce the following.

(21) ∀t∈ [0,∞), Xw
t = −t+

∑
k≥1

wJk1[0,t](τk) and Iwt = inf
s∈[0,t]

Xw
s .
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Figure 3: Colouring the clients of the Markovian LIFO queue. In this example, we use the exploration
tree representation of the queue. Clients correspond to nodes in the tree; their types are the numbers next
to them. The lexicographic order of the tree (bottom to top, left to right in the picture) corresponds to the
arrival orders of the clients. Applying the colouring rules, we color the clients one by one in this order: blue
clients are depicted by •, red ones by ◦. Observe that the blue clients form a subtree of the initial tree. Also
observe in this example, the first blue client of type 6 is not the first type-6 client in the queue: there is one
previous to it, which has been coloured in red because of a red parent. �

Then, Xw
t −Iwt is the load of the Markovian LIFO-queueing system and Xw is called the algebraic

load of the queue. Note that Xw is a spectrally positive Lévy process with initial value 0 whose law
is given by its Laplace exponent ψw : [0,∞)→R given for all t, λ∈ [0,∞) by:

E
[
e−λX

w
t
]
=etψw(λ) where ψw(λ) = αwλ+

∑
1≤j≤n

wj

σ1(w)

(
e−λwj−1+λwj

)
and αw :=1−σ2(w)

σ1(w)
.

Here, recall from (11) that σ2(w)=w2
1 + . . .+ w2

n. We assume that the Markovian LIFO-queueing
system is critical or subcritical: namely, we assume thatXw does not drift to∞ which is equivalent
to the condition αw≥0, that is σ2(w)/σ1(w)≤1.

Colouring the clients of the Markovian queueing system. We recover the w-LIFO queueing
system from the Markovian one by colouring each client in the following recursive way.

Colouring rules. Clients are coloured in red or blue. If the type Jk of the k-th client
already appeared among the types of the blue clients who previously entered the queue, then
the k-th client is red. Otherwise the k-th client inherits her/his colour from the colour of the
client who is currently served when she/he arrives (and this colour is blue if there is no client
served when she/he arrives: namely, we consider that the server is blue).

Note that the colour of a client depends in an intricate way on the types of the clients who entered
the queue previously. For instance, a client who is the first arriving of her/his type is not necessarily
coloured in blue; see Figure 3 for an example. On the other hand, one can check that exactly n
clients are coloured in blue and their types are necessarily distinct. While a blue client is served, note
that her/his ancestors, namely, the other clients waiting in the line (if any), are blue too. Actually,
we will see that the sub-queue constituted by the blue clients corresponds to the previous w-LIFO
queue. We next set:

Blue=
{
t∈ [0,∞) : a blue client is served at time t

}
and Red=[0,∞)\Blue.
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Let Blue stands for the closure of Blue; the set Blue ∩ Red, formed by the left endpoints of the
connected components of Red, is of particular interest to us. It is the set of times τk such that the
k-th client is a red one who interrupts the service of a blue one (and possibly the server if it is idle
when the k-th client arrives). Note that, by the colouring rule, the type of such a (red) client already
appeared among the previous types of the blue clients. A more formal definition of the random
subset of times Blue is given in Section 4.2.1. We next define the following change of times. For
all t∈ [0,∞), set:

(22) Λb,w
t =

∫ t

0
1Blue(s) ds, Λr,w

t = t−Λb,w
t , θb,wt = inf{s∈ [0,∞) : Λb,w

s >t}

and we also introduce the following:

(23) Xb,w
t =−t+

∑
k≥1

wJk1{τk∈Blue ; Λb,w
τk
≤t} and Xr,w

t =−t+
∑
k≥1

wJk1{τk /∈ Blue ; Λr,w
τk
≤t}

Lemma 2.2 Set X b
w =

∑
k≥1 1Blue(τk) δ(Λb,w

τk
,Jk). Then, X b

w and Xr,w are independent, X b
w has

the same law as Xw and Xr,w has the same law as Xw.

Proof. See Section 4.2.2. �

By Lemma 2.2, Xb,w and Xr,w are independent copies of Xw. Next observe that (21) immediately
implies:

(24) ∀t∈ [0,∞), Xw
t = Xb,w

Λb,w
t

+Xr,w
Λr,w
t
.

See also Figure 4.
As explained before and illustrated by the example in Fig. 3, the colour of a client depends

somehow in a complicated way on the types of the previous clients. For this reason, the above
colouring procedure of the Markovian queue does not allow for a straightforward generalisation
to the limit case, where “clients” will arrive according to a Poisson point process with infinite
intensity. Here we explain an alternative construction for the time-change process Λb,w, θb,w,Λr,w in
terms of the blue and red processes Xb,w and Xr,w. Namely, to understand the limiting processes,
we now explain how to derive the time-change θb,w directly from X b

w and Xr,w. To that end, for all
j∈{1, . . . , n} and all t ∈ [0,∞), we set:

(25) Nw
j (t)=X b

w

(
[0, t]×{j}

)
and Ew

j = inf
{
t∈ [0,∞) : X b

w ([0, t]×{j})=1
}
.

Thus, the Nw
j are independent homogeneous Poisson processes with jump-rate wj/σ1(w) and the

r.v. (
wj
σ1(w)E

w
j )1≤j≤n are i.i.d. exponentially distributed r.v. with unit mean. We also set

(26) X r/b
w =

∑
k≥1

1Blue∩ Red(τk) δ(Λb,w
τk
,Jk) and Yw=X b

w −X r/b
w .

Namely, Yw and X
r/b
w are the empirical measures of the times of arrival (in the blue scale) &

the types of resp. the blue clients and the red clients interrupting blue clients. Recall that by the
colouring rules, τk ∈ Blue ∩ Red iff the client’s type Jk has already appeared among the types of
the previous blue clients, i.e. Nw

Jk
(τk) ≥ 2 . On the other hand, the (only) blue client of type j

corresponds exactly to the first atom of Nw
j , 1 ≤ j ≤ n. Thus,

(27) Yw=
∑

1≤j≤n
δ(Ew

j ,j)
and ∀t∈ [0,∞), ∀j∈{1, . . . , n}, X r/b

w

(
[0, t]×{j}

)
=(Nw

j (t)−1)+ .
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Xw

2 1 3

1 3 6 6 6

3 5 5 4 3 6 3

blue
red

end

Xb,w

2 1 3 1

6 6

5 4 3

Y w = Xw ◦ θb,w

2 1 3

6

5 4

3

Xr,w

3 6 5 6 3

Z1

Z2

Z3

Z4

Z4

Z3

Z1

Z2

Figure 4: Decomposition of Xw into Xb,w and Xr,w. We take the same example as in Figure 3. Above, the
process Xw: clients are in bijection with its jumps; their types are the numbers next to the jumps. Blue clients
are marked by • and red ones by ◦. The restriction of Xw to the set Blue corresponds to the grey blocks.
Concatenating these blocks yields the blue process Xb,w. The remaining pieces of Xw, namely, (Zi)i≥1, are
glued together, producing the red process Xr,w. Concatenating the grey blocks but without the final jump
of each block yields Y w. Alternatively, we can obtain Y w by erasing in Xw the pieces Zi, i ≥ 1 and then
removing the temporal gaps between the grey blocks: this is the graphic representation of Y w = Xw ◦ θb,w.
Observe also that each connected component of Red begins with the arrival of a red client whose type is a
repeat among the types of the previous blue ones, and ends with the departure of this red client, marked by ×
on the abscissa. �
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For all x, t∈ [0,∞), we next set

(28) Y w
t =−t +

∑
1≤j≤n

wj1{Ew
j≤t}, Aw

t =
∑

1≤j≤n
wj(N

w
j (t)−1)+

and γr,wx =inf{t∈ [0,∞) :Xr,w
t <−x}.

Consequently,

(29) Aw
t =

∑
k≥1

wJk1Blue∩ Red(τk) 1{Λb,w
τk
≤t} and thus Y w

t =Xb,w
t −Aw

t .

Clearly (Y w, Aw) is independent of the càdlàg subordinator γr,w. Moreover, Y w has the same law as
in (13) when the wjEj/σ1(w) are i.i.d. exponential r.v. with unit mean. In the following lemma, we
get θb,w in terms of X b

w and Xr,w.

Lemma 2.3 A.s. for all t∈ [0,∞),

(30) θb,wt = t+ γr,wAw
t
.

Then, Λb,w
t = inf{s∈ [0,∞) : θb,ws > t}, Λr,w

t = t−Λb,w
t ; we derive Xw from Xb,w and Xr,w thanks to

(24). We also get

(31) a.s. ∀ t∈ [0,∞), Y w
t =Xw

θb,wt
.

Proof. See Section 4.2.3. �

The red and blue Galton-Watson trees; height processes. Let Y w be given by (28) or equivalently
by (13) with Ew

j =Ej , j∈{1, . . . , n}. Recall from (14) the definition of the exploration tree Tw that
is derived from the w-LIFO queueing system. Recall from (18) the definition of the height process
Hw in terms of Y w: namely,Hw

t is the number of clients waiting on the line at time t in the blue-times
scale. Recall that while a blue client is served, all the other clients in the line are blue too.

Similarly, the Markovian queueing system governed by Xw as defined in (20) induces an explo-
ration tree denoted by Tw that is defined as follows: its vertices are the clients (and the server) and
its set of edges is specified as follows; we root Tw at the server, that is viewed as the first "client";
the k-th client to enter the queue is a child of the l-th one if the k-th client enters when the l-th client
is served. We next denote by Hw

t the number of clients waiting in the queue right after time t, since
both queues are LIFO, the following expression for Hw

t is an analogue of (18):

(32) Hw
t = #Kt, where Kt=

{
s∈ [0, t] :Iw,s−t <Iw,st

}
and where ∀s∈ [0, t], Iw,st = inf

r∈[s,t]
Xw
r .

We shall refer to Hw as to the height process associated with Xw. One easily checks that Tw

is a sequence of i.i.d. Galton-Watson trees glued at their root and that their common offspring
distribution is given by:

(33) ∀k∈N, µw(k)=
∑

1≤j≤n

wk+1
j e−wj

σ1(w) k!
.

We refer to Section 4.1.2 for a more formal definition. Observe that∑
k≥0

kµw(k)=
∑

1≤j≤n
w2
j/σ1(w)=σ2(w)/σ1(w).

Since the Markovian queueing system is assumed to be (sub)critical, we get
∑

k≥0 kµw(k) ≤ 1.
Thus, the Galton-Watson trees are a.s. finite and Hw fully explores Tw.

Since the vertices of Tw are the clients of the Markovian queueing system, the blue clients
in Tw are therefore a subtree tree that is a relabelled version of Tw, the exploration tree of the
w-multiplicative graph generated by Y w. Since the order of visit is preserved, we get the following.
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Lemma 2.4 Recall from (31) the joint law of Xw and Y w; recall from (30) the definition of θw,b,
recall from (18) and (32) the definition of resp.Hw and Hw. Then,

(34) a.s. ∀t∈ [0,∞), Hw
t = Hw

θb,wt
.

Proof. See Section 4.2.4. �

Although the law of Tw is complicated, (34) allows to define its height process in a tractable way to
pass to the limit.

Remark 2.1 Note that the height process of Xb,w is actually distinct fromHw. Although related to
Hw, the tree coded by Xb,w is not relevant to our purpose. �

Let us summarise the various embeddings introduced in this section. The sub-system formed
by the server and the blue clients in the Markovian LIFO queue behave as the w-LIFO queue;
the load processes Xw, Y w for the two queues are then related by the time-change relation (31).
Since the same genealogical relation is introduced for both queueing systems, the embedding of
the queues leads to the embedding of the associated exploration trees, the latter being formalised
in (34). Meanwhile, we have the decomposition of Xw into two independent Lévy processes Xb,w

and Xr,w. This decomposition has great technical significance in our approach. Firstly, it allows for
the alternative representation (30) of the time-change, which is later generalised into the continuous
setting. Secondly, thanks to this decomposition, we are able to control the pruning as n tends to
infinity and derive a joint convergence for (θb,w, Xw) after a proper scaling (see in particular Lemma
4.3 and Proposition 6.12), which is an essential ingredient in our proof for the convergence of the
graphs.

2.2 The multiplicative graph in the continuous setting.

2.2.1 The continuous exploration tree and its height process.

Notations and conventions. Recall that N stands for the set of nonnegative integers and that N∗=
N\{0}. We denote by ` ↓∞ =

{
(wj)j≥1 ∈ [0,∞)N

∗
: wj ≥wj+1

}
the set of weights. By an obvious

extension of Notation (11), for all r∈ (0,∞) and all w= (wj)j≥1∈ ` ↓∞, we set σr(w) =
∑

j≥1w
r
j ∈

[0,∞]. We also introduce the following:

` ↓r =
{
w∈` ↓∞ : σr(w)<∞

}
, and ` ↓f =

{
w∈` ↓∞ : ∃j0≥1 : wj0 =0

}
.

Let (Ft)t∈[0,∞) be a filtration on (Ω,F ) that is specified further. A process (Zt)t∈[0,∞) is said
to be (Ft)-Lévy process with initial value 0 if a.s. Z is càdlàg, Z0 = 0 and if for all a.s. finite
(Ft)-stopping time T , the process ZT+ ·−ZT is independent of FT and has the same law as Z.

Let (Mj(·))j≥1 be a sequence of càdlàg (Ft)-martingales that are inL2 and orthogonal: namely,
for all t∈ [0,∞),

∑
j≥1 E

[
Mj(t)

2
]
<∞ and E[Mj(t)Mk(t)] = 0 if k > j. Then

∑
⊥
j≥1Mj stands

for the (unique up to indistinguishability) càdlàg (Ft)-martingale M(·) such that for all j≥ 1 and
all t∈ [0,∞), E

[
sups∈[0,t]

∣∣M(s)−∑1≤k≤jMk(s)
∣∣2]≤4

∑
l>j E[Ml(t)

2], by Doob’s inequality.
Sometimes, we simply write

∑
⊥
j≥1Mj(t) instead of M(t).

Blue processes. We fix the following parameters.

(35) α, β∈ [0,∞), κ∈(0,∞), c=(cj)j≥1∈` ↓3 .

These quantites are the parameters of the continuous multiplicative graph: c plays the same role as
w in the discrete setting, α is a drift coefficient similar to αw, β is a Brownian coefficient and the
interpretation of κ is explained later. Next, let (Bt)t∈[0,∞), (Nj(t))t∈[0,∞), j≥ 1 be processes that
satisfy the following.
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(b1) B is a (Ft)-real valued standard Brownian motion with initial value 0.
(b2) For all j≥1, Nj is a (Ft)-homogeneous Poisson process with jump-rate κcj .
(b3) The processes B, Nj , j≥1 are independent.

The blue Lévy process is then defined by

(36) ∀t∈ [0,∞), Xb
t = −αt+

√
βBt +

∑
j≥1

⊥ cj
(
Nj(t)−cjκt

)
.

ClearlyXb is a (Ft)-spectrally positive Lévy process with initial value 0 whose law is characterized
by the Laplace exponent ψ : [0,∞)→R given for all t, λ∈ [0,∞) by:

(37) E
[
e−λX

b
t
]
=etψ(λ), where ψ(λ)=αλ+ 1

2 βλ
2 +
∑
j≥1

κcj
(
e−λcj−1+λcj

)
.

Since α≥0, Xb does not drift to∞ and we shall refer to it as to the (sub)criticality assumption for
the continuous multiplicative graph. Most of the time we shall assume that:

(38) either β > 0 or σ2(c)=∞.

This assumption is equivalent to the fact that Xb has infinite variation sample paths.
We next introduce the analogues of Aw and Y w as in (28) and (29). To that end, note that

E[cj(Nj(t)−1)+]=cj
(
e−cjκt−1+cjκt

)
≤ 1

2 (κt)2c3
j , which makes sense of the following:

(39) ∀t∈ [0,∞), At = 1
2 κβt

2 +
∑
j≥1

cj
(
Nj(t)−1

)
+

and Yt = Xb
t −At.

Remark 2.2 To view Y as in (13), set Ej =inf{t∈ [0,∞) :Nj(t)=1}, note that cj(Nj(t)−cjκt)−
cj(Nj(t)−1)+ = cj(1{Ej≤t}−cjκt) and check that cj(1{Ej≤t}−cjκt) = M ′j(t)−κc2

j (t−Ej)+

where M ′j is a centered (Ft)-martingale such that E[M ′j(t)
2] = c2

j (1− e−cjκt) ≤ κtc3
j . Since

E[κc2
j (t−Ej)+] ≤ κtc2

j (1−e−κcjt)≤κ2tc3
j , it makes sense to write for all t∈ [0,∞):

Yt = −αt− 1

2
κβt2 +

√
βBt +

∑
j≥1

⊥cj
(
1{Ej≤t}−κcj(t∧ Ej)

)
−
∑
j≥1

κc2
j (t−Ej)+

(informal)
= −αt− 1

2
κβt2 +

√
βBt +

∑
j≥1

cj(1{Ej≤t}−cjκt).(40)

Namely the jump-times of Y are the Ej and ∆YEj =cj . �

Lemma 2.5 We keep the previous notation. We assume (38). Then, a.s. the process A is strictly
increasing and the process Y has infinite variation sample paths.

Proof. See Section 5.2.1. �

Red and bi-coloured processes. We next introduce the red process Xr that satisfies the following.
(r1) Xr is a (Ft)-spectrally positive Lévy process starting at 0 and whose Laplace exponent
is ψ as in (37).
(r2) Xr is independent of the processes B and (Nj)j≥1.

To keep the filtration (Ft) minimal, we may assume that Ft is the completed sigma-field generated
by Bs, (Nj(s))j≥1 and Xr

s , s∈ [0, t]. We next introduce the following processes:

(41) ∀x, t∈ [0,∞), γrx = inf{s∈ [0,∞) : Xr
s <−x} and θbt = t+ γrAt .

Observe that γr is a subordinator with initial value 0 and Laplace exponent the inverse function
ψ−1: see e.g. Bertoin’s book, Ch. VII. Then, note that the blue time-change θb is strictly increasing
and càdlàg; it is the analogue of θb,w by (30) in Lemma 2.3. We next introduce the following.

(42) ∀t∈ [0,∞), Λb
t = inf{s∈ [0,∞) : θbs>t} and Λr

t = t− Λb
t .

We prove the following.
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Theorem 2.6 We keep the previous notation. Then, the process Λr is nondecreasing and if we set

(43) ∀t∈ [0,∞), Xt = Xb
Λb
t

+Xr
Λr
t
,

then X is a spectrally positive Lévy process with initial value 0 and Laplace exponent ψ as in (37).
Namely, X , Xb and Xr have the same law.

Proof. See Section 5.2.2. �

Height processes; pinching points. We next define the analogue of Hw. To that end, we assume
that ψ defined in (37) satisfies the following:

(44)
∫ ∞ dλ

ψ(λ)
<∞.

Note that in particular (44) entails (38).
Le Gall & Le Jan [33] (see also Le Gall & D. [21]) prove that there exists a continuous process

H=(Ht)t∈[0,∞) such that the following limit holds true for all t∈ [0,∞) in probability :

(45) Ht = lim
ε→0

1

ε

∫ t

0
1{Xs−infr∈[s,t] Xr≤ε} ds .

Note that (45) is a local time version of (32). We refer to H as to the height process of X . The
analogue ofHw is then defined as follows.

Proposition 2.7 For all t∈ [0,∞), set Ht=Hθbt
. Then, H is a.s. a continuous process. We refer to

H as to the height process associated with Y .

Proof. See Lemma 5.6, Section 5.2.4. �

We next define the pinching times as in (47): for all t ∈ [0,∞), set Jt = infs∈[0,t] Ys and
conditionally given Y , let

(46) P=
∑
p≥1

δ(tp,yp) be a Poisson pt. meas. on [0,∞)2 with intensity κ1{0<y<Yt−Jt} dt dy.

Then, set

(47) Π=
(
(sp, tp)

)
p≥1

where sp=inf
{
s∈ [0, tp] : inf

u∈[s,tp]
Yu−Ju > yp

}
, p≥1.

We claim that the processes (Y,H,Π) completely characterise the continuous version of the multi-
plicative graph as explained in the next section.

2.2.2 Coding graphs.

Coding trees. Let us first briefly recall how functions (not necessarily continuous) code trees. Let
h : [0,∞)→ [0,∞) be càdlàg and such that

(48) h(0) = 0 and ζh=sup{t∈ [0,∞) :h(t)>0} <∞ .

For all s, t∈ [0, ζh), we set

(49) bh(s, t) = inf
r∈[s∧t,s∨t]

h(r) and dh(s, t) = h(s) + h(t)− 2bh(s, t).

Note that dh satisfies the four-points inequality: for all s1, s2, s3, s4∈ [0, ζh), dh(s1, s2)+dh(s3, s4)≤(
dh(s1, s3)+dh(s2, s4)

)
∨
(
dh(s1, s4)+dh(s2, s3)

)
. Taking s3 =s4 shows that dh is a pseudometric

on [0, ζh). We then denote by s∼h t the equivalence relation dh(s, t)=0 and we set

(50) Th = [0, ζh)/∼h .

Then, dh induces a true metric on the quotient set Th that we keep denoting by dh and we denote
by ph : [0, ζh)→Th the canonical projection. Note that ph is not necessarily continuous.
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Remark 2.3 The metric space (Th, dh) is tree-like but in general it is not necessarily connected or
compact. However, we shall consider the following cases.

(a) h is pure jump: it takes finitely many values.
(b) h is continuous.

In Case (a), Th is not connected but it is compact; Th is in fact formed by a finite number of
points. In particular,Hw is in this case: by (19), the exploration tree Tw as defined in (14) is actually
isometric to THw , that is the tree coded by the height processHw that is derived from Y w by (18).
In Case (b), Th is compact and connected; the metric dh satisfies the four-points condition: it is
therefore a compact real tree, namely a compact metric space such that any pair of points is joined
by a unique injective path that turns out to be a geodesic (see Evans [26] for more references on this
topic). �

The coding function provide two additional features: a distinguished point ρh = ph(0) that is
called the root of Th and the mass measure mh that is the pushforward measure of the Lebesgue
measure on [0, ζh) induced by ph on Th: for any Borel measurable function f :Th→ [0,∞),

(51)
∫
Th

f(σ)mh(dσ) =

∫ ζh

0
f(ph(t)) dt .

Pinched metric spaces. We next briefly explain how the metric of a graph is modified when several
vertices are added. Since we deal with rescaled version of graphs, and continuous limits of such
graphs, we discuss this point in a general setting. Our construction of the graphs both in the discrete
and the continuous settings consists in creating cycles in the spanning trees of the graphs. In the
discrete setting, we do this by adding surplus edges; in the continuous setting, we identify pairs of
points in a real tree. In what follows, we provide a unified way to deal with both operations on the
metrics.

Let (E, d) be a metric space and let Π=((xi, yi))1≤i≤p where (xi, yi)∈E2, 1≤ i≤p, are pairs
of pinching points. Let ε∈ [0,∞) that is interpreted as the length of the edges that are added to E
(if ε=0, then each xi is identified with yi). Set AE ={(x, y);x, y∈E} and for all e=(x, y)∈AE ,
set e = x and e = y. A path γ joining x to y is a sequence of e1, . . . , eq ∈ AE such that e1 = x,
eq = y and ei = ei+1, for all 1 ≤ i < q. For all e = (x, y) ∈ AE , we then define its length by
le=ε∧d(xi, yi) if (x, y) or (y, x) is equal to (xi, yi); otherwise we set le=d(x, y). The length of a
path γ=(e1, . . . , eq) is given by l(γ)=

∑
1≤i≤q lei , and we set:

(52) ∀x, y∈E, dΠ,ε(x, y) = inf
{
l(γ); γ is a path joining x to y

}
.

We refer to Section C.1 for more details. Clearly, dΠ,ε is a pseudo-metric and we denote the
equivalence relation dΠ,ε(x, y) = 0 by x ≡Π,ε y; the (Π, ε)-pinched metric space associated with
(E, d) is then the quotient space E/≡Π,ε equipped with dΠ,ε. First note that if (E, d) is compact
or connected, so is the associated (Π, ε)-pinched metric space since the canonical projection $Π,ε :
E→E/≡Π,ε is 1-Lipschitz. Of course when ε> 0, dΠ,ε on E is a true metric, E =E/≡Π,ε and
$Π,ε is the identity map on E.

Coding pinched trees. Let h : [0,∞)→ [0,∞) be a càdlàg function that satisfies (48) and (a) or
(b) in Remark 2.3; let Π=((si, ti))1≤i≤p where 0 ≤ si≤ ti<ζh, for all 1≤ i≤p and let ε∈ [0,∞).
Then, the compact measured metric space coded by h and the pinching setup (Π, ε) is the (Π, ε)-
pinched metric space associated with (Th, dh) and the pinching points Π=((ph(si), ph(ti)))1≤i≤p,
where ph : [0, ζh)→Th stands for the canonical projection. We shall use the following notation:

(53) G(h,Π, ε) =
(
Gh,Π,ε, dh,Π,ε, %h,Π,ε,mh,Π,ε

)
.

We shall denote by ph,Π,ε the composition of the canonical projections $Π,ε ◦ ph : [0, ζh)→Gh,Π,ε;
then %h,Π,ε = ph,Π,ε(0) and mh,Π,ε stands for the pushforward measure of the Lebesgue on [0, ζh)
via ph,Π,ε.
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Coding w-multiplicative graphs. Recall from Paragraph 2.1.1 that (Gw
k)1≤k≤qw , are the connected

component of Gw. Here, qw is the total number of connected components of Gw; Gw
k is equipped

with its graph-metric dGw
k

and with the restriction mw
k of the measure mw =

∑
1≤j≤nwjδj on Gw

k ;
the indexation satisfies mw(Gw

1 )≥ . . .≥mw(Gw
qw

) (with a slight abuse of notation). Let us briefly
explain how the excursions ofHw above 0 code the measured metric spaces Gw

k .
First, denote by (lwk, r

w
k), 1≤k≤qw, the excursion intervals of Hw above 0, that are exactly the

excursion intervals of Y w above its infimum process Jw
t =infs∈[0,t] Y

w
s . Namely,

(54)
⋃

1≤k≤qw

(lwk, r
w
k) =

{
t∈ [0,∞) : Hw

t > 0
}

=
{
t∈ [0,∞) : Y w

t > Jw
t

}
Here, we set ζwk = rwk−lwk =mw

k(G
w
k ) and thus ζw1 ≥ . . .≥ ζwqw

; moreover, if ζwk = ζwk+1, then we agree
on the convention that lwk<l

w
k+1; excursions processes are then defined as follows:

(55) ∀k∈{1, . . . ,qw}, ∀t∈ [0,∞), Hwk(t) = Hw
(lwk+t)∧rwk

and Ywk(t) = Y w
(lwk+t)∧rwk

− Jw
lwk
.

We next define the sequences of pinching points of the excursions: to that end, recall from (15) and
(16) the definition of Πw =

(
(sp, tp)

)
1≤p≤pw

the sequence of pinching points of Gw; observe that if
tp∈ [lwk, r

w
k], then sp∈ [lwk, r

w
k]; then, it allows to define the following for all k∈{1, . . . ,qw}:

(56) Πw
k=
(
(skp, t

k
p)
)

1≤p≤pw
k

where (tkp)1≤p≤pw
k

increases and where

the (lwk + skp, l
w
k + tkp) are exactly the terms (sp′ , tp′) of Πw such that tp′ ∈ [lwk, r

w
k].

Then, for all k ∈ {1, . . . ,qw}, we easily see that Gw
k is coded by (Hwk,Π

w
k, 1) as defined in (53).

Namely,

(57) G(Hwk,Π
w
k, 1) is isometric to Gw

k .

Here, isometric means that there is a bijective isometry from G(Hwk,Π
w
k, 1) onto Gw

k sending mw
k to

mHwk,Π
w
k,1

.

2.2.3 The continuous multiplicative random graph. Fractal properties.

We fix α, β∈ [0,∞), κ∈ (0,∞) and c∈ ` ↓3 such that (44) holds true. By analogy with the discrete
coding, we now define the (α, β, κ, c)-continuous multiplicative random graph, the continuous
version of w-multiplicative graph. In this construction, the processes (Y,H,Π) defined in Section
2.2.1 plays the role of (Y w,Hw,Πw).

First, recall from (39) the definition of Y ; recall from Proposition 2.7 the definition of H, the
height process associated with Y and recall the notation, Jt = infs∈[0,t] Ys, t∈ [0,∞). Lemma 5.6
(see further in Section 5.2.4) asserts that the excursion intervals of H above 0 and the excursion
intervals of Y −J above 0 are the same; moreover Proposition 14 in Aldous & Limic [4] (recalled
further in Proposition 5.8, Section 5.2.4), asserts that these excursions can be indexed in the de-
creasing order of their lengths. Namely,

(58)
{
t∈ [0,∞) : Ht > 0

}
=
{
t∈ [0,∞) : Yt > Jt

}
=
⋃
k≥1

(lk, rk)

where the sequence ζk = lk−rk, k ≥ 1 decreases. This proposition also asserts that {t ∈ [0,∞) :
Ht=0} has no isolated point, that P(Ht=0)=0 for all t∈ [0,∞) and that the continuous function
t 7→−Jt can be viewed as a sort of local-time for the set of zeros of H. We refer to Section 5.2.4
for more details. These properties allow to define the excursion processes as follows.

(59) ∀k≥1, ∀t∈ [0,∞), Hk(t) = H(lk+t)∧rk and Yk(t) = Y(lk+t)∧rk − Jlk .
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The pinching times are defined as follows: recall from (46) and (47) the definition of Π=
(
(sp, tp)

)
p≥1

.
If tp∈ [lk, rk], then note that sp∈ [lk, rk], by definition of sp. For all k≥1, we then define:

(60) Πk=
(
(skp, t

k
p)
)

1≤p≤pk
where (tkp)1≤p≤pk increases and where

the (lk + skp, lk + tkp) are exactly the terms (sp′ , tp′) of Π such that tp′ ∈ [lk, rk].

The connected components of the (α, β, κ, c)-continuous multiplicative random graph are then de-
fined as the sequence of random compact measured metric spaces coded by the excursions Hk and
the pinching setups (Πk, 0). Namely, we shall use the following notation: for all k≥1,

(61) Gk =
(
Gk,dk, %k,mk

)
stands for G(Hk,Πk, 0) as defined by (53).

The main purpose of this paper is to get a weak convergence of the sequences of rescaled discrete
graphs (Gwn

k ) to the sequence (Gk). Before stating such results, let us briefly discuss a geometric
property of the random metric spaces Gk. As part of our construction, each component Gk of the
graph is embedded in a Lévy tree whose branching mechanism ψ is derived from (α, β, κ, c) by
(37); roughly speaking the measure mk is the restriction of the mass measure of the Lévy tree;
this measure enjoys specific fractal properties and as a consequence of Theorem 5.5 in Le Gall &
D. [22], we get the following result.

Proposition 2.8 Let α, β ∈ [0,∞), let κ ∈ (0,∞) and let c = (cj)j≥1 ∈ ` ↓3 be such that (44)
holds true. Let (Gk)k≥1 be the connected components of the continuous (α, β, κ, c)-multiplicative
random graph as defined in (61). We denote by dimH the Hausdorff dimension and by dimp the
packing dimension. Then, the following assertions hold true a.s. for all k≥1,

(i) If β 6=0, then dimH(Gk)=dimp(Gk)=2.
(ii) Let us assume that β = 0. By (44), we necessarily get σ2(c) =∞. We first introduce the

following function:

∀x∈(0, 1), J(x)=
1

x

∑
j:cj≤x

κc3
j +

∑
j:cj>x

κc2
j =

∑
j≥1

κc2
j

(
1∧(cj/x)

)
that tends to∞ as x↓0. We next define the following exponents:

(62) γ = 1 + sup
{
r∈ [0,∞) : lim

x→0+
xrJ(x)=∞

}
and η = 1 + inf

{
r∈ [1,∞) : lim

x→0+
xrJ(x)=0

}
.

In particular, if c varies regularly with index ρ−1 ∈ (1/3, 1/2), then γ = η= ρ−1. Then, if
γ>1, we get

dimH(Gk)=
γ

γ − 1
and dimp(Gk)=

η

η − 1
.

Proof. See Section 5.2.5. �

2.3 Limit theorems.

Let wn=(w(n)
j )j≥1∈ ` ↓f , n∈N, be a sequence of weights. We want to prove that rescaled versions

of the connected components (Gwn
k )1≤k≤qwn , viewed as random pointed compact measured metric

spaces as defined in (57) weakly converge to the sequence of connected components (Gk)k≥1 of the
continuous multiplicative random graphs as defined in (61). To that end, we first recall in Section
2.3.1 the definition of the Gromov–Hausdorff–Prohorov metric on the space of compact measured
metric spaces. Since the core of our approach consists in embedding multiplicative graphs into
Galton-Watson trees, in Section 2.3.2, we specify the possible asymptotic regimes for such trees and
the Markovian processes that generate those trees. Convergence results for multiplicative graphs are
stated in Section 2.3.3. A careful discussion about the connections to previous works is given in
Section 2.3.4.
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2.3.1 Convergence of metric spaces.

Let (G1, d1, ρ1,m1) and (G2, d2, ρ2,m2) be two pointed compact measured metric spaces. The
pointed Gromov-Hausdorff-Prohorov distance of G1 and G2 is then defined by

(63) δGHP(G1, G2)=inf
{
dHaus
E

(
φ1(G1), φ2(G2)

)
+ dE(φ1(ρ1), φ2(ρ2)) + dProh

E

(
m1◦φ−1

1 ,m2◦φ−1
2

)}
.

Here, the infimum is taken over all Polish spaces (E, dE) and all isometric embeddings φi : Gi ↪→
E, i∈ {1, 2}; dHaus

E stands for the Hausdorff distance on the space of compact subsets of E, dProh
E

stands for the Prohorov distance on the space of finite Borel measures on E and for all i∈ {1, 2},
mi◦φ−1

i stands for the pushforward measure of mi via φi.
We recall from Theorem 2.5 in Abraham, Delmas & Hoscheit [1] the following assertions:

δGHP is symmetric and it satisfies the triangle inequality; δGHP(G1, G2) = 0 iff G1 and G2 are
isometric, namely iff there exists a bijective isometry φ :G1→G2 such that φ(ρ1) = ρ2 and such
that m2 =m1 ◦φ−1. Denote by G the isometry classes of pointed compact measured metric spaces.
Then, we recall the following result.

Theorem 2.9 (Theorem 2.5 [1] ) (G, δGHP) is a complete and separable metric space.

Actually in our paper, weak-limits are proved for coding functions, which entail δGHP-limits as
asserted by the following lemma.

Lemma 2.10 Let h, h′ : [0,∞)→ [0,∞) be two càdlàg functions such that ζh and ζh′ are finite
and that satisfy (a) or (b) in Remark 2.3. Let Π = ((si, ti))1≤i≤p and Π′ = ((s′i, t

′
i))1≤i≤p be two

sequences such that 0≤si≤ ti<ζh and 0≤s′i≤ t′i<ζh′ . Let ε, ε′∈ [0,∞). Let δ∈ (0,∞) be such
that

(64) ∀i∈{1, . . . , p}, |si−s′i|≤δ and |ti−t′i|≤δ .

Recall from (53) the definition of the pointed compact measured metric spaces G :=G(h,Π, ε) and
G′ :=G(h′,Π′, ε′). Then, we get:

(65) δGHP(G,G′) ≤ 6(p+ 1)
(
‖h−h′‖∞ + ωδ(h)

)
+ 3p(ε∨ε′) + |ζh−ζh′ | ,

where ωδ(h)=max
{
|h(s)−h(t)| ; s, t∈ [0,∞) : |s−t|≤δ

}
and where ‖·‖∞ stands for the uniform

norm on [0,∞).

Proof. See Appendix Section C. The proof is partly adapted from Theorem 2.1 in Le Gall & D. [22],
Proposition 2.4 Abraham, Delmas & Hoscheit [1] and Lemma 21 in Addario-Berry, Goldschmidt
& B. in [2]. �

2.3.2 Possible asymptotic regimes.

A priori estimates. Let wn = (w(n)
j )j≥1 ∈ ` ↓f , n ∈ N, be a sequence of weights. We discuss

assumptions on wn in order to get proper weak-limits of rescaled wn-multiplicative graphs Gwn
viewed as random measured metric spaces. Let us first mention that the number of vertices of Gwn
that is jn :=sup{j ≥ 1 : w(n)

j >0}, is not necessarily equal to n; of course, we want it to tend to∞
as n→∞.

We introduce two kinds of scaling factors: weight factors an that are related to the asymptotics
of the large weights, and exploration-time factors bn that take into account the speed of the explo-
ration of the graph. We recall the following convention: if (un) and (vn) are two sequences of non-
negative real numbers, then un � vn means that there exists k∈ (1,∞) such that un/k≤vn≤kun
for all sufficiently large n.
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– (A1) Large weights are proportional. Large weights that persist in the limiting graph have to be
of the same order of magnitude. Namely, if w(n)

j does not vanish, then w(n)
j � w(n)

1 � an, and more
generally w(n)

1 =O(an).

– (A2) Vertices with large weights tend to be well-separated. In the limit, if two large weights
persist, they cannot fuse and they tend not to be connected by an edge. Namely, if the two largest
weights persist, then

1−exp(−w(n)
1 w(n)

2 /σ1(wn)−→0

and since w(n)
1 � w(n)

2 � an, it entails limn→∞ a
2
n/σ1(wn)=0.

– (A3) Exploration time-scale. We denote by Cn (resp. Dn) the number (resp. the sum of the
weights) of the vertices explored before visiting the vertex with the largest weight w(n)

1 . In terms
of the wn-LIFO-queue coding Gwn , Cn is the number of clients who entered the queue before the
arrival of Client 1 and Dn is the sum of the times of service of the clients who entered the queue
before the arrival of Client 1. We easily check that

Cn
(law)
=

∑
2≤j≤jn

1{ej<e1} and Dn
(law)
=

∑
2≤j≤jn

w(n)
j 1{ej<e1},

where (w(n)
j ej)2≤j≤jn are i.i.d. exponential r.v. with unit mean. Consequently,

E[Cn] =
∑
j≥2

w(n)
j

w(n)
j + w(n)

1

and E[Dn] =
∑
j≥2

(w(n)
j )2

w(n)
j + w(n)

1

.

By (A1) and (A2), we get σ1(wn) � anE[Cn] and that σ2(wn) � anE[Dn]. In the asymptotic
regime that we consider, we require the two following properties.

– (A3a) The number of visited vertices has to be of the same order of magnitude as the sum of the
corresponding weights: namely E[Cn] � E[Dn].

– (A3b) In the time-scale bn, the first time of visit of the vertex with the largest weight converges
to a non-trivial limit: namely, bn � E[Cn].

Assumptions (A3a) and (A3b) imply that there exists K∈(1,∞) such that K−1≤σ2(wn)/σ1(wn)≤
K and K−1 ≤ anbn/σ1(wn)≤K. Note that a2

n/σ1(wn) → 0 implies: an/bn→ 0. We shall also
require the additional technical assumption bn=O(a2

n).
To summarise, the previous arguments justify why we restrict to sequences an, bn ∈ (0,∞),

wn∈` ↓f , n∈N satisfying the following a priori assumptions:

(66) an and
bn
an
−−−→
n→∞

∞, bn
a2
n

−−−→
n→∞

β0∈ [0,∞),

sup
n∈N

w(n)
1

an
<∞ and

anbn
σ1(wn)

−−−→
n→∞

κ ∈ (0,∞).

Note that (66) allows β0 to be null and that we have relaxed the assumption infn∈Nw
(n)
1 /an>0.

Remark 2.4 We call (A3b) the Condensation Assumption. If one relaxes this condition, we get
interesting asymptotic regimes that have not been considered previously and that we shall study in
future works. �

Convergence results for the Markovian queue. As already mentioned the convergence of the
graphs Gwn is obtained thanks to the convergence of rescaled versions of Y wn and Hwn and the
convergence of these two processes is also obtained by the convergence of the Markovian processes
into which they are embedded: namely, the asymptotic regimes of (Y wn ,Hwn) and of (Xwn , Hwn)
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should be the same. The purpose of this section is to state weak limit-theorems for Xwn and Hwn .
Let us mention that a part of the results of this section rely on standard limit-theorems on random
walks, on results due to Grimvall in [27] on branching processes and on results due to Le Gall
& D. in [21] on the height processes of Galton–Watson trees. However, the specific form of the
jumps and of the offspring distribution of the trees actually requires a careful analysis done in the
Proof-Section 6.3.

Recall from (21) the definition of the compensated Poisson process Xwn ; recall that the Marko-
vian queueing system induced by Xwn yields a tree Twn that is an i.i.d. sequence of Galton-Watson
trees with offspring distribution µwn whose definition is given by (33). Denote by (Zwn

k )k∈N a
Galton-Watson Markov chain with offspring distribution µwn and with initial state Zwn

0 = banc.
The following proposition is mainly based on Theorem 3.4 in Grimvall [27] (p.1040) that proves
weak convergence for Galton-Watson processes to Continuous States Branching Processes (CSBP
for short). Recall that a (conservative) CSBP is a [0,∞)-valued Markov process obtained from
spectrally positive Lévy processes via Lamperti’s time-change; the law of the CSBP is completely
characterised by the Lévy process and thus by its Laplace exponent that is usually called the branch-
ing mechanism of the CSBP: we refer to Bingham [15] for more details on CSBP (see also Appendix
Section B.2.2 for a very brief account). We denote by D([0,∞),R) the space of càdlàg functions
from [0,∞) to R equipped with Skorokod’s topology and we denote by C([0,∞),R) the space of
continuous functions from [0,∞) to R, equipped with the topology of uniform convergence on all
compact subsets.

Proposition 2.11 Let an, bn ∈ (0,∞) and wn ∈ ` ↓f , n ∈ N, satisfy (66). Recall from above the
definition of Xwn and Zwn . Let (Xt)t∈[0,∞) and (Zt)t∈[0,∞) be two càdlàg processes such that
X0 = 0 and Z0 = 1. Then, the following holds true.

(i) The following convergences are equivalent.

(i-a) There exists t∈(0,∞) such that 1
an
Xwn
bnt
→Xt in law on R.

(i-b) ( 1
an
Xwn
bnt

)t∈[0,∞)−→(Xt)t∈[0,∞) in law on D([0,∞),R).

(i-c) ( 1
an
Zwn
bbnt/anc)t∈[0,∞)−→(Zt)t∈[0,∞) in law on D([0,∞),R).

If any of the three convergences in (i) holds true, then X is a spectrally Lévy process and Z a
conservative CSBP; moreover there exist α∈R, β∈ [β0,∞), κ∈(0,∞) and c=(cj)j≥1∈` ↓3
such that the branching mechanism of Z and the Laplace exponent ofX are equal to the same
function ψ given by:

(67) ∀λ∈ [0,∞), ψ(λ)=αλ+ 1
2 βλ

2 +
∑
j≥1

κcj
(
e−λcj−1+λcj

)
.

(ii) Any of the three convergences in (i) is equivalent to the following conditions:

(68) (C1) :
bn
an

(
1− σ2(wn)

σ1(wn)

)
−−−→
n→∞

α (C2) :
bn
a2
n

·σ3(wn)

σ1(wn)
−−−→
n→∞

β + κσ3(c) ,

(69) (C3) : ∀j ∈ N∗,
w

(n)
j

an
−−−→
n→∞

cj .

(iii) Any of the three convergences of (i) is equivalent to (C1) and the following limit for all
λ∈(0,∞):

(70)
anbn
σ1(wn)

∑
j≥1

w
(n)
j

an

(
e−λw

(n)
j /an − 1 + λw

(n)
j /an

)
−−−−→
n→∞

ψ(λ)− αλ ,
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(iv) For all α ∈ R, β ∈ [0,∞), κ ∈ (0,∞) and c = (cj)j≥1 ∈ ` ↓3 , there are sequences an, bn ∈
(0,∞), wn∈` ↓f , n∈N, satisfying (66) with β0∈ [0, β], (C1), (C2) and (C3).

Proof. See Section 6.3 (and more specifically Section 6.3.2). As already mentioned, Proposition
2.11 (i) strongly relies on Theorem 3.4 in Grimvall [27] (p.1040). However, (ii), (iii) and (iv)
require specific arguments. �

Recall from (32) the definition of Hwn , the height process associated with Xwn .

Proposition 2.12 Let α, β ∈ [0,∞), κ ∈ (0,∞) and c = (cj)j≥1 ∈ ` ↓3 and let ψ be given by (67).
We assume that ψ satisfies (44): namely,

∫∞
dλ/ψ(λ)<∞. Let X be a spectrally positive Lévy

process with Laplace exponent ψ. LetH be its height process as defined in (45). Let an, bn∈(0,∞),
wn∈ ` ↓f , n∈N, satisfy (66) with β0∈ [0, β], (C1), (C2) and (C3). Suppose that σ2(wn) ≤ σ1(wn)
for all n. We also assume the following:

(71) (C4) : ∃ δ∈(0,∞), lim inf
n→∞

P
(
Zwn
bbnδ/anc=0

)
> 0 .

Then, the joint convergence holds true

(72)
(
( 1
an
Xwn
bnt

)t∈[0,∞), (
an
bn
Hwn
bnt

)t∈[0,∞)

)
−−−−→
n→∞

(X,H)

weakly on D([0,∞),R)×C([0,∞),R) equipped with the product topology. We also get:

(73) ∀t∈ [0,∞), lim
n→∞

P
(
Zwn
bbnt/anc=0

)
= e−vψ(t) where

∫ ∞
vψ(t)

dλ

ψ(λ)
= t.

Proof. See Section 6.3 (and more specifically Section 6.3.2). Proposition 2.12 strongly relies on
Theorem 2.3.1 in Le Gall & D. [21]. However, its proof requires more care than expected at first
glance because the asymptotic regime is quite restrictive and because Hwn is not exactly the height
process as defined in [21] (it is actually a time-changed version of the so-called contour process as
in Theorem 2.4.1 [21] p. 68). �

The following proposition provides a pratical criterion to check (C4): in particular, it shows
that (C4) is always true when β0>0; it also shows that Proposition 2.12 is never void.

Proposition 2.13 Let α, β ∈ [0,∞), κ∈ (0,∞) and c = (cj)j≥1 ∈ ` ↓3 . Let ψ be given by (67) and
assume that ψ satisfies (44): namely,

∫∞
dλ/ψ(λ)<∞. Then, the following holds true.

(i) Let an, bn ∈ (0,∞), wn ∈ ` ↓f , n∈N, satisfy (66), (C1), (C2) and (C3). Denote by ψn the
Laplace exponent of ( 1

an
Xwn
bnt

)t∈[0,∞): namely, for all λ∈ [0,∞),

(74) ψn(λ)=
bn
an

(
1− σ2(wn)

σ1(wn)

)
λ+

anbn
σ1(wn)

∑
j≥1

w
(n)
j

an

(
e−λw

(n)
j /an − 1 + λw

(n)
j /an

)
.

Then, (C4) holds true if

(75) lim
y→∞

lim sup
n→∞

∫ an

y

dλ

ψn(λ)
= 0 .

In particular, if β0>0 in (66), then (75) is always satisfied and (C4) holds true.

(ii) There are sequences an, bn ∈ (0,∞), wn ∈ ` ↓f , n ∈ N, that satisfy (66) with β0 = 0, (C1),
(C2) and (C3) but not (C4).

(iii) There exist an, bn ∈ (0,∞), and wn ∈ ` ↓f , n ∈ N, that satisfy (66) with any β0 ∈ [0, β],
(C1), (C2), (C3) and (C4).

Proof. See Sections 6.3.3, 6.3.4 and 6.3.5. �
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2.3.3 Limit theorems for multiplicative random graphs.

A convention. To deal with limits of sequences of pinching times, it is convenient to embed
([0,∞)2)p into (R2)N

∗
by extending any sequence ((si, ti))1≤i≤p ∈ ([0,∞)2)p by setting (si, ti)=

(−1,−1), for all i > p. Here, (−1,−1) plays the role of an unspecific cemetery point. We equip
(R2)N

∗
with the product topology. Then, the main theorem of paper is the following.

Theorem 2.14 Let α, β ∈ [0,∞), κ ∈ (0,∞) and c = (cj)j≥1 ∈ ` ↓3 . Let ψ be given by (67) and
assume that ψ satisfies (44): namely,

∫∞
dλ/ψ(λ) <∞. Recall from (39), the definition of Y .

Recall from Proposition 2.7 the definition of H. Recall from (47) the definition of Π. Recall from
(41) the definition of θb. Recall from (43) the definition of X . Recall from (45) the definition of H .

Let an, bn∈ (0,∞), and wn∈ ` ↓f , n∈N, satisfy (66), (C1), (C2), (C3) and (C4), as specified
in (68), (69) and (71). Recall from (13) the definition of Y wn . Recall from (18) the definition ofHwn .
Recall from (16) the definition of Πwn . Recall from Lemma 2.2, from (24) and from (30) in Lemma
2.3, the definition of the joint law of (θb,wn , Xwn). Recall from (32) the definition of Hwn .

Then, the joint convergence

(76)
(

1
an
Xwn
bn· ,

an
bn
Hwn
bn· ,

(
1

bn
θb,wnbn· ,

1
an
Y wn
bn·
)
, anbn H

wn
bn· ,

1

bn
Πwn

)
−−−−→
n→∞

(
X,H, (θb, Y ),H,Π

)
holds weakly on D([0,∞),R)×C([0,∞),R)×D([0,∞),R2)×C([0,∞),R)×(R2)N

∗
equipped

with the product topology.

Proof. See Section 6.1. �

Theorem 2.14 implies that rescaled versions of (Hwn ,Πwn) converge to (H,Π). This entails
the convergence of the coding processes of the connected components of Gwn . More precisely,
recall from (55) that (Hwnk (·))1≤k≤qwn are the excursions of Hwn above 0 and recall from (59) that
(Hk(·))k≥1 are the excursions ofH above 0. We also recall that

ζwnk =sup{t∈ [0,∞) : Hwnk (t)>0} and ζk=sup{t∈ [0,∞) : Hk(t)>0}

stand for the respective duration of the excusions Hwnk and H. The indexation is such that the
sequences (ζwnk ) and (ζk) are non-increasing. Recall from (56) and from (60) the definition of the
respective sequences (Πwn

k )1≤k≤qwn and (Πk)k≥1, that are the pinching times. As already specified,
we trivially extend each finite sequence Πwn

k as a random element of (R2)N
∗
. We pass to the limit

for rescaled versions of ((Hwnk , ζ
wn
k ,Πwn

k ))1≤k≤qwn . Since qwn tends to∞, it is convenient to extend
this sequence by taking for all k > qwn , Hwnk as the null function, ζwnk = 0 and Πwn

k as the sequence
constant to (−1,−1). Then the following theorem holds true.

Theorem 2.15 Under the same assumptions as Theorem 2.14, the following convergence

(77)
((

(anbn H
wn
k (bnt))t∈[0,∞),

1

bn
ζwnk , 1

bn
Πwn
k

))
k≥1

−−−−→
n→∞

((
Hk, ζk,Πk

))
k≥1

holds weakly on ((C([0,∞),R)×[0,∞)×(R2)N
∗
)N
∗

equipped with the product topology.

Proof. See Section 6.2.1. �

As a consequence of Lemma 2.10, Theorem 2.15 entails the convergence of a rescaled version
of the connected component of Gwn . More precisely, recall from (61) the notation

(
Gk,dk, %k,mk

)
for G(Hk,Πk, 0), the graph coded by the function Hk and the pinching setup (Πk, 0): namely, Gk

is the k-th largest connected component of the continuous (α, β, κ, c)-multiplicative graph. Recall
that (

Gwn
k , dwnk , %

wn
k ,m

wn
k

)
, 1 ≤ k ≤ qwn
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are the connected components of the wn-multiplicative graph Gwn . Here, dwnk stands for the graph-
metric on Gwn

k , mwn
k is the restriction to Gwn

k of the measure mwn =
∑

j≥1w
(n)

j δj , %wnk is the first
vertex of Gwn

k that is visited during the exploration of Gwn , and the indexation satisfies:

mwn
1

(
Gwn

1

)
≥ . . . ≥mwn

qwn

(
Gwn
qwn

)
.

Next, recall from (57) that Gwn
k is isometric to the graph coded by the function Hwnk and the pinching

setup (Πwn
k , 1): thus, they define the same random element in the space G of the isometry classes of

pointed compact measured metric spaces equipped with the Gromov-Hausdorff-Prohorov distance
δGHP defined in (63). Since qwn tends to∞, it is convenient to extend the sequence (Gwn

k )1≤k≤qwn by
taking Gwn

k equal to the point space equipped with the null measure for all k>qwn . Then, Theorem
2.15 and Lemma 2.10 entail the following theorem.

Theorem 2.16 Under the same assumptions as Theorem 2.14, the following convergence

(78)
((
Gwn
k , anbn d

wn
k , %

wn
k ,

1

bn
mwn
k

))
k≥1

−−−−→
n→∞

((
Gk, dk, %k,mk

))
k≥1

holds weakly on GN∗ equipped with the product topology.

Proof. See Section 6.2.2. �

2.3.4 Connections with previous results.

Entrance boundary of the multiplicative coalescent. The model of w-multiplicative random
graphs appears in the work of Aldous [3] as an extension of Erdős–Rényi random graphs that have
close connections with multiplicative coalescent processes. Relying upon this connection, Aldous
and Limic determine in [4] the extremal eternal versions of the multiplicative coalescent in terms of
the excursion lengths of Lévy-type processes close to Y ; to that end, they consider in Proposition 7
[4] asymptotics of the masses of the connected components of sequences of multiplicative random
graphs. The asymptotic regime in Proposition 7 [4] is very close to Assumptions (66) and (C1) –
(C3) in our Theorem 2.16.

Let us briefly recall Proposition 7 in [4] since it is used in the proof of Theorem 2.16. Aldous
& Limic fix a sequence of weights xn ∈ ` ↓f , n ∈ N, and their notations for multiplicative graphs
are the following: let (ξi,j)j>i≥1 be an array of independent and exponentially distributed r.v. with
unit mean; let N(xn) = max{j ≥ 1 : x(n)

j > 0}; then for all q ∈ [0,∞), Aldous & Limic consider
the random graph Gn(q) whose set of vertices is V (Gn(q)) = {1, . . . , N(xn)} and whose set of
edges E (Gn(q)) is such that {i, j} ∈ E (Gn(q)) iff ξi,j ≤ qx(n)

i x
(n)
j ; the graph is equipped with the

measure mn =
∑

j≥1 x
(n)
j δj ; let ζ1(xn, q) ≥ . . . ≥ ζk(xn, q) ≥ . . . stand for the (eventually null)

sequence of the mn-masses of the connected components of Gn(q). Then, it is easy to check that
Xn : q 7→ (ζk(xn, q))k≥1 is a multiplicative coalescent process with finite support. Then, Aldous
& Limic describe the limit of the processes Xn in terms of the excursion-lengths of a process
(W κAL,−τAL,cAL

s )s∈[0,∞) whose law is characterized by three parameters: κAL∈ [0,∞), τAL∈R and
cAL∈` ↓3 ; this process is connected to the (α, β, κ, c)-process Y defined in (39) as follows:

(79) ∀s∈ [0,∞), W κAL,−τAL,cAL
s = Ys/κ, where κAL =

β

κ
, τAL =

α

κ
and cAL = c.

Proposition 7 [4] assumes the following:

(80) lim
n→∞

σ3(xn)

(σ2(xn))3
=κAL + σ3(cAL), ∀j∈N∗, lim

n→∞

x(n)
j

σ2(xn)
=cAL

j and lim
n→∞

σ2(xn)=0.

and it asserts that for all τAL∈R, Xn(σ2(xn)−1−τAL)→ (ζk)k≥1, weakly in ` ↓2 , where (ζk)k≥1 are
the excursion-lengths of W κAL,−τAL,cAL above its infimum, listed in the decreasing order.
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Assumptions (80) are close to (C2) and (C3). More precisely, let (α, β, κ, c) be connected
with κAL, τAL and cAL as in (79); let an, bn ∈ (0,∞) and wn ∈ ` ↓f satisfy (66) and (C1) – (C3);
then, set:

∀j∈N∗, x(n)
j =

κw(n)
j

bn
and τnAL =

b2n
κ2σ2(wn)

(
1−σ2(wn)

σ1(wn)

)
−−−−→
n→∞

α

κ
=τAL.

Recall from (12) the definition of Gwn , the wn-multiplicative graph. Recall that mwn =
∑

j≥1w
(n)
j δj .

Recall from Section 2.1.1 that the Gwn
k are the connected components of Gwn listed in the non-

increasing order of their mwn-mass. Then, it is easy to check the following.

(81) Gn
(
σ2(xn)−1−τnAL

)
= Gwn and ζk

(
xn , σ2(xn)−1−τnAL

)
=
κ

bn
mwn

(
Gwn
k

)
=: κζnk .

Note that the ζnk are the excursion-lengths of ( 1
an
Y wn
bnt

)t∈[0,∞) above its infimum. Since τnAL→ α/κ
and since multiplicative coalescent processes have no fixed time-discontinuity, Proposition 7 in [4]
immediately entails the following proposition that is used in Section 6.2.1 to prove Theorems 2.15
and 2.16.

Proposition 2.17 (Proposition 7 [4]) Let an, bn∈(0,∞) and wn∈` ↓f satisfy (66) and (C1)–(C3),
with α, β,∈ [0,∞), κ∈ (0,∞) and c∈ ` ↓3 . Recall from (28) (resp. from (39)) the definition of Y wn

(resp. of Y ). Let (ζnk )1≤k≤qwn
(resp. (ζk)k≥1) be the excursion-lengths of ( 1

an
Y wn
bnt

)t∈[0,∞) (resp. of
Y ) above its infimum. Then,

(82)
(
ζnk
)

1≤k≤qwn

weakly in ` ↓
2−−−−→

n→∞
(ζk)k≥1.

Gromov–Prokhorov convergence of multiplicative graphs without Brownian component. In
light of the above mentioned result of Aldous & Limic [4] on the convergence of the component
masses of the multiplicative graph in the asymptotic regime (80), it is natural to expect that the graph
itself should also converge in some sense. The first affirmation in this direction is due to Bhamidi,
van der Hofstad and Sen who prove the following in [12]: Denote by Ci(q) the i-largest (in mn-
mass) connected component of Gn(q), that is, mn(Ci(q)) = ζi(xn, q). Equip each component
Ci(−τAL + σ2(xn)) with its graph distance rescaled by σ2(xn) and with the mass measure mn,
they prove that under (80) with τAL = 0, the collection of rescaled metric spaces converge in the
sense of Gromov–Prokhorov topology to a collection of measured metric spaces, which are not
necessarily compact. They also give an explicit construction of the limiting spaces based upon a
model of continuum random tree called ICRT. The Gromov-Prokhorov convergence is equivalent
to the convergence of mutual distance of an i.i.d. sequence with law mn, which is weaker than the
Gromov-Hausdorff-Prokhorov.

Limits of Erdős–Rényi graphs in the critical window. The first result proving metric convergence
of rescaled Erdős-Rényi graphs and their inhomogeneous extensions is due to Addario-Berry, Gold-
schmidt & B. in [2]. In this paper, they study the scaling limits of the largest components of the
Erdős–Rényi random graph G(n, pn) in the critical window pn=n−1−αn−4/3, with α∈R. which
corresponds to the graph Gwn where w(n)

j = 1{j≤n}n log( 1
1−pn ), j ≥ 1. Taking, an = n1/3 and

bn = n2/3, we immediately see that an, bn and wn satisfy (66) with κ = β0 = 1, (C1), (C2) and
(C3), with α∈ [0,∞), β = 1 and c = 0. Namely, the branching mechanism is ψ(λ) =αλ + 1

2λ
2.

Since β0>0, Proposition 2.13 (i) implies that (C4) is automatically satisfied and Theorem 2.16 ap-
plies: in this case, Theorem 2.16 is a weaker version of Theorem 2 in Addario-Berry, Goldschmidt
& B. [2], p. 369: the result in [2] actually holds for α possibly negative and the paper provides
more precise estimates on the size of metric components. Let us mention that [2] also contains
tail-estimates on the diameters of the small components. Such estimates seem difficult to obtain in
the case of general wn.
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Multiplicative graphs in the same bassin of attraction as Erdős-Rényi graphs. Bhamidi, van der
Hofstad & van Leeuwaarden in [10], Bhamidi, Sen & X. Wang in [11] and Bhamidi, Sen, X. Wang
& B. in [7] investigate asymptotic regimes in the bassin of attraction of Erdős–Rényi graphs in the
critical window. More precisely, they consider the cases where an = n1/3, bn = n2/3 and where
wn∈` ↓f is such that w(n)

j =0 for all j>n and

(83)
w

(n)
1

n1/3
→ 0, ∃σ, σ′∈(0,∞) : σi(wn)=nσ+o(n2/3), i∈{1, 2} and σ3(wn)=nσ′+o(n).

Note that σ′ ≥ σ since σ2(wn)≤
√
σ3(wn)

√
σ1(wn) by Cauchy-Schwarz. Another application of

Cauchy-Schwarz, σ1(wn) ≤
√
nσ2(wn), which implies σ≤1. For all α∈ [0,∞), set

wn(α)=
(
1−αn− 1

3
)
wn=

((
1−αn− 1

3
)
w(n)

j

)
j≥1

.

Then, (83) easily implies that an, bn, wn(α) satisfy (66), (C1), (C2) and (C3), with α ∈ [0,∞),
β0 = 1, β = σ′/σ, κ = 1/σ and c = 0. Thus, the branching mechanism is ψ(λ) = αλ + 1

2
σ′

σ λ
2.

Since β0 = 1, Proposition 2.13 (i) implies (C4). Then, Theorem 2.16 holds true, which extends
Theorem 3.3 in Bhamidi, Sen & X. Wang in [11] that has been proved by quite different methods
and under two additional technical assumptions (Assumptions 3.1 (c) and (d)). Let us mention that
the convergence under the sole assumptions (83), that we proved, has been conjectured in [11],
Section 5, part (c).

Power-law cases. We extend the power-law cases investigated in Bhamidi, van der Hofstad & van
Leeuwaarden [14] and Bhamidi, van der Hofstad & Sen [12]. Let W :Ω→ [0,∞) be a r.v. such that

(84) r = E[W ] = E[W 2] <∞ and P(W ≥ x) = x−ρL(x),

where ρ∈ (2, 3) (in the notations of [12], τ = ρ + 1∈ (3, 4)) and where L is slowly varying at∞.
We then set for all y∈ [0,∞),

(85) G(y) = sup
{
x∈ [0,∞) : P(W ≥x) ≥ 1∧y

}
.

Note that G(y)=0 for all y∈ [1,∞) and that G(y)=y−1/ρ `(y), where ` is slowly varying at 0. We
assume the following.

(86) ∀n∈N∗, P
(
W =G(1/n)

)
= 0 .

Let κ, q∈(0,∞) and let an, bn, wn be such that

(87) an ∼
n→∞

q−1G(1/n), ∀ j≥1, w
(n)
j =G(j/n), bn ∼

n→∞
κσ1(wn)/an .

Then, the following lemma holds true.

Lemma 2.18 We keep the notations from above and we assume (86). Then an ∼ q−1n
1
ρ `(1/n),

bn ∼ qκ n1− 1
ρ/`(1/n) and an, bn and wn satisfy (66) with β0 =0.

Next, let us set for all integers j≥1 and all α∈ [0,∞),

(88) w
(n)
j (α)=

(
1− an

bn
(α− α0)

)
w

(n)
j , where α0 =2κq2

(∫ 1

0
y{y−ρ} dy +

1

ρ−2

)
and where {·} stands for the fractional part function. Then, an, bn, wn(α) satisfy (66), (C1)–(C4)

with α∈ [0,∞), κ∈(0,∞), β=β0 =0 and cj = q j
− 1
ρ , for all j≥1.
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Proof. See section 7. �

Lemma 2.18 implies that Theorem 2.16 applies to an, bn and wn(α) as defined above. This
extends Theorem 1.2 in Bhamidi, van der Hofstad & Sen [12] (Section 1.1.3) that asserts the same
weak-limit under the more restrictive assumption that L(x) = xρP(W ≥ x) → cF ∈ (0,∞) as
x→∞ (see (1.3) in [12], Section 1.1.1) and where it is also assumed that P(W ∈ dx) = f(x)dx,
where f is a continuous function whose support is of the form [ε,∞) with ε > 0, and such that
x∈ [ε,∞) 7→ xf(x) is non-increasing (see Assumption 1.1 in [12], Section 1.1.3). Let us mention
that the proof of Theorem 1.2 [12] is quite different from ours.

Let us also mention that Conjecture 1.3 right after Theorem 1.2 in [12] is solved by our Proposi-
tion 2.8 that asserts the following: if α∈ [0,∞), κ∈(0,∞), β=0 and cj =q j−1/ρ, then η=γ=ρ−1
(which corresponds to τ−2 in [12]) and

P-a.s. for all k≥1, dimH(Gk)=dimp(Gk) =
ρ−1

ρ−2
,

where dimH and dimp stand respectively for the Hausdorff and for the packing dimensions.

General inhomogeneous Erdős–Rényi graphs that are close to be multiplicative. In [31], Janson
investigates strong asymptotic equivalence of general inhomogeneous Erdős–Rényi graphs that are
defined as follows: denote by P the set of arrays p=(pi,j )j>i≥1 of real numbers in [0, 1] such that
Np =sup{j≥ 2:

∑
1≤i<j pi,j>0}<∞; the p-inhomogeneous Erdős–Rényi graphG(p) is the ran-

dom graph whose set of vertices is {1, . . . , N(p)} and whose random set of edges E (G(p)) is such
that the r.v. (1{{i,j}∈E (G(p))})1≤i<j≤N(p) are independent and such that P({i, j}∈E (G(p)))=pi,j .
The asymptotic equivalence is measured through the following function ρ that is defined for all
p, q ∈ [0, 1], by ρ(p, q) = (

√
p−√q)2 +(

√
1−p−√1−q)2. More precisely, let pn,qn ∈P , n∈N;

then Theorem 2.2 in Janson [31] implies that there are couplings of G(pn) and G(qn) such that
limn→∞P(G(pn) 6=G(qn))=0 if and only if

(89) lim
n→∞

∑
j>i≥1

ρ(p(n)
i,j , q

(n)
i,j ) = 0 .

We then apply this result as follows: let an, bn∈ (0,∞) and wn∈` ↓f , n∈N, satisfy the assumptions
of Theorem 2.16; we set

(90) ∀j>i≥1, p(n)
i,j =

w(n)
i w(n)

j

σ1(wn)
and u(n)

i,j =


q
(n)
i,j

p
(n)
i,j

−1 if p(n)
i,j >0

0 if p(n)
i,j >0.

First note that maxj>i≥1 p
(n)
i,j =O((w(n)

1 /an)2an/bn)→ 0 by (66); next, as proved in Janson [31]
(2.5) p. 30, if p≤0.9, then ρ(p, q) � |p−q|

(
1 ∧ |q/p−1|

)
. Thus, (89) is equivalent to

(91) lim
n→∞

∑
j>i≥1

p(n)
i,j |u(n)

i,j |
(
1 ∧ |u(n)

i,j |
)

= 0, with the convention p(n)
i,j |u(n)

i,j |=q(n)
i,j if p(n)

i,j = 0.

In particular, let h : [0, 1] → [0, 1] be such that h(x) = x + O(x2). If we set q(n)
i,j = h(p(n)

i,j ), then
there exists C∈(0,∞) such that |u(n)

i,j | ≤ Cp(n)
i,j . In this case, for all sufficiently large n,∑

j>i≥1

p(n)
i,j |u(n)

i,j |
(
1 ∧ |u(n)

i,j |
)
≤ C2

∑
j>i≥1

(p(n)
i,j )3 ≤ C2σ3(wn)2

σ1(wn)3
∼ C ′(an/bn)3 −→ 0

by (C2) and (66). Cases where h(x)=x have been considered by van der Esker, van der Hofstad &
Hooghiemstra [39], close cases where h(x)=1∧x have been studied by Chung & Lu [20]; the cases
where h(x)=1−e−x, was first studied by Aldous [3] and Aldous & Limic [4] and the previous cited
papers [2, 7, 10–12, 14], including this paper; cases where h(x)=x/(1 +x) have been investigated
by Britton, Deijfen & Martin-Löf [19]. To summarise, Janson’s Theorem 2.2 [31], p. 31 combined
with Theorem 2.16 imply the following result.
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Theorem 2.19 (Theorem 2.2 in Janson [31]) Assume that an, bn, wn satisfy the same assumptions
as in Theorem 2.14 (and thus as in Theorem 2.16). We define pn by (90). Let qn ∈ P . We define
(u(n)

i,j )j>i≥1 by (90) and we suppose (91). Then, there exist couplings of G(qn) and Gwn such that

(92) lim
n→∞

P(Gwn 6=G(qn))=0

and the weak limit (78) in Theorem 2.16 for the metric part holds true in the same scaling for the
connected components of G(qn). In particular, its holds true when u(n)

i,j =h(p(n)
i,j ), j >i≥1, for all

functions h : [0, 1]→ [0, 1] such that h(x)=x+O(x2).

3 Proof of Theorem 2.1.

Let G = (V (G),E (G)) be a graph with V (G) ⊂ N\{0}. We suppose that G has q connected
components CG1 , . . . , CGq listed in the increasing order of their least vertex: min CG1 <. . .<min CGq .
Let w=(wj)j∈V (G) be a set of strictly positive weights; we m=

∑
j∈V (G)wjδj that is a measure on

V (G). We then define a law ΛG,m on ((0,∞) ∈ V (G))q as follows. Let (Πj)j∈V (G) be indepen-
dent Poisson random subsets of (0,∞) with rate wj/σ1(w) (for convenience, the Πj are viewed as
random countable subset of (0,∞)); for all non-empty subset S⊂V (G) we set Π(S) :=

⋃
j∈S Πj .

Then Π(S) is a Poisson random set with rate m(S)/σ1(w) and Π({j}) = Πj , for all j ∈V (G). For
all k∈{1, . . . , q}, we then define (Tk, Uk) :Ω→(0,∞)×V (G) by:

Tk=inf Π(CGs(k)

)
=inf ΠUk where the permutation s is such that inf Π

(
CG

s(1)

)
<. . .< inf Π

(
CG

s(q)

)
(here, we slightly abuse notation by writing CGk instead of V (CGk )). Namely, Tk is the kth order
statistic of

(
inf Π(CG1 ), . . . , inf Π

(
CGq
))

. We denote by ΛG,m the joint law of ((Tk, Uk))1≤k≤q. We
easily check:

ΛG,m(dt1 . . . dtq; j1, . . . , jq) = P
(
T1∈dt1; . . . ;Tq∈dtq;U1 =j1; . . . ;Uq=jq

)
=

wj1
σ1(w)

. . .
wjq
σ1(w)

exp
(
− 1

σ1(w)

∑
1≤k≤l≤q

tkm
(
CGs(l)

))
dt1 . . . dtq.(93)

where s is the unique permutation of {1, . . . , q} such that jl ∈V (CGs(l)), for all l∈{1, . . . , q}. The
following lemma, whose elementary proof is left to the reader, provides a description of the law of
((Tk, Uk))2≤k≤q conditionally given (T1, U1). Let us mention that it is formulated within specific
notation for further use.

Lemma 3.1 Let Go be a finite graph with qo connected components; let wo = (woj )j∈V (Go) be
strictly positive weights; let mo =

∑
j∈V (Go)w

o
j δj . We fix j∗ ∈ CG

o

k∗ and a ∈ (0,∞). Then, we
set G′ = Go\CGok∗ ; we equip G′ with w′j = awoj , j ∈ V (G′) and m′ =

∑
j∈V (G′)w

′
jδj . Let T and

(T ′k, U
′
k)1≤k≤qo−1 be independent r.v. such that T is exponentially distributed with unit mean and

such that (T ′k, U
′
k)1≤k≤qo−1 has law ΛG′,m′ . We then set

T o1 = T and ∀k∈{1, . . . , qo−1}, T ok+1 = T + 1
a T
′
k Uok+1 =U ′k .

Then,

woj∗

σ1(wo)
P
(
T o1 ∈dt1; . . . ;T oqo ∈dtqo ;Uo2 =j2; . . . ;Uoqo =jqo

)
=ΛGo,mo(dt1 . . . dtqo ; j

∗, j2, . . . , jqo).

Next we briefly recall how to derive a graph from the LIFO queue (and an additional point
process) as discussed in Section 2.1.1. Let V ⊂N\{0} be the finite set of vertices (or the labels of
clients) associated with strictly positive weight w= (wj)i∈V (the total amount of service of Client
j is wj); let E = (Ej)j∈V be the times of arrival of the clients. We assume that the clients arrive
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at distinct times and that no client enters when another client definitively leaves the queue. These
restrictions correspond to a Borel subset of (0,∞)#V for E that has a full Lebesgue measure. We
next set

(94) Yt=−t+
∑
j∈V

wj1{Ej≤t} and Jt= inf
r∈[0,t]

Yr .

We then define V : [0,∞)→V such that Vt the label of the client who is served right after time t:
since Y only increases by jumps, for all t∈ [0,∞), we get the following.
• either {s∈ [0, t] :Ys− < inf [s,t] Y } is empty and we set Vt=0,
• or there exists j∈V such that Ej =sup{s∈ [0, t] :Ys− < inf [s,t] Y } and we set Vt=j.

Note that Vt = 0 if the server is idle and that V is càdlàg. As mentioned in Section 2.1.1, the
LIFO-queue yields an exploration forest whose set of vertices is V and whose set of edges are

A=
{
{i, j} : i, j∈V and VEj− = i

}
.

Additional vertices are created thanks to a finite set of points Π = {(tp, yp) ; 1≤ p≤ pw} in D =
{(t, y) ∈ (0,∞)2 : 0< y < Yt−Jt} as follows. For all (t, y) ∈D, define τ(t, y) = inf

{
s ∈ [0, t] :

infu∈[s,t] Yu>y + Jt
}

. Then the additional set of edges is defined by

S=
{
{i, j} : i, j∈V and ∃(t, y)∈Π such that Vτ(t,y) = i and Vt=j

}
.

Then the graph produced by E, w and Π is G=
(
V (G)=V ; E (G)=A ∪ S

)
.

Theorem 2.1 asserts that ifE, w and Π have the appropriate distribution, then G is a w-multiplicative
graph, whose law is denoted by MV ,w given as follows: for all graphs G such that V (G)=V ,

(95) MV ,w(G) =
∏

{i,j}∈E (G)

(
1−ewj ,wj/σ1(w)

) ∏
{i,j}/∈E (G)

ewj ,wj/σ1(w) ,

where the second product is taken over all pairs of distinct i, j ∈ V such that {i, j} /∈ E (G). We
actually prove a result that is slightly more general than Theorem 2.1 and that involves additional
features derived from the LIFO queue, namely times Tk and vertices Uk that are defined as follows:
Denote by q the number of excursions of Y strictly above its infimum and denote by (lk, rk), k ∈
{1, . . . ,q} the corresponding excursion intervals listed in the increasing order their left endpoints:
l1<. . .<lq. Then, we set:

(96) ∀k∈{1, . . . ,q}, Tk = −Jlk and Uk∈V is such that EUk = lk .

From the definition of G as a determinsitic function of (E, w,Π), we easily check the following:
G has q connected components CG

1 , . . . , C
G
q ; recall that they are listed in the increasing order of

their least vertex: min CG
1 < . . . <min CG

q . Then, we define the permutation s on {1, . . . ,q} that
satisfies Uk ∈ CG

s(k) for all k ∈ {1, . . . ,q}. Observe that rk− lk = m
(
CG

s(k)

)
and that the excursion

(Yt+lk−Jlk)t∈[0,rk−lk] codes the connected component CG
s(k) . The quantity Tk is actually the total

amount of time during which the server is idle before the k-th connected component is visited, and
Uk is the first visited vertex of the k-th component. We denote by Φ the (deterministic) function
that associates (E, w,Π) to (G, Y, J, (Tk, Uk)1≤k≤q):

(97) Φ
(
E, w,Π

)
=
(
G, Y, J, (Tk, Uk)1≤k≤q

)
.

We next prove the following theorem that implies Theorem 2.1.

Theorem 3.2 We keep the notation from above. We assume that E = (Ej)V are independent ex-
ponentially distributed r.v. such that E[Ej ] = σ1(w)/wj , j ∈ V . We assume that conditionally
given E, Π is a Poisson random subset of D = {(t, y) ∈ (0,∞)2 : 0≤ y < Yt−Jt} with intensity
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σ1(w)−11D(t, y) dtdy. Let
(
G, (Tk, Uk)1≤k≤q

)
be derived from

(
E, w,Π

)
by (97). Then, for all

graphs G whose set of vertices is V and that have q connected components, we get

P(G=G ; T1∈dt1; . . . ;Tq∈dtq ; U1 =j1; . . . ;Uq=jq
)

= MV ,w(G) ΛG, m(dt1, ? . . . , dtq; j1, . . . , jq) .(98)

where MV ,w is defined by (95) and ΛG, m is defined by (93).

Proof. We proceed by induction on the number of vertices of G. When, G has only one vertex, then
(98) is obvious. We fix an integer n≥1 and we assume that (98) holds for all V ⊂N\{0} such that
#V =n and all sets of positive weights w=(wj)j∈V .

Then, we fix V o⊂N\{0} such that #V o=n+1; let wo=(woj )j∈V o be strictly positive weights.
we also fix Eo=(Eoj )j∈V o in (0,∞)n+1; we assume that in the corresponding LIFO queue, clients
arrive at distinct times and that no client enters when another client definitively leaves the queue.
Let Y o

t = −t +
∑

j∈V o woj1{Eoj≤t} and Jot = inf [0,t] Y
o. Let qo be the number of excursions of

Y o strictly above its infimum and let (T ok , U
o
k )1≤k≤qo as in (96): namely T ok =−Jolok and EoUok = lok,

where (lok, r
o
k) is the k-th excursion interval of Y o strictly above Jo listed in the increasing order of

their left endpoint: lo1<. . .<l
o
qo .

The main idea for the induction is to shift the LIFO queue at the time of arrival T o1 of the first
client (with label Uo1 ) and to consider the resulting graph. More precisely, we set the following.

(99) V :=V o\{Uo1}, a :=
σ1(wo)−woUo1

σ1(wo)
, ∀j∈V , wj =awoj and Ej =a(Eoj−T o1 ) .

Let Y and J be derived from E :=(Ej)j∈V and w :=(wj)j∈V as in (94). Then observe that

(100) Yt = a
(
Y o
a−1t+T o1

− Y o
T o1

)
= Yt=−t+

∑
j∈V

wj1{Ej≤t} , t∈ [0,∞) .

Note that T o1 = minj∈V o Eoj . Then the alarm clock lemma implies the following.

(I) If (Eoj )j∈V o are independent exponentially distributed r.v. such that E[Eoj ]=woj/σ(wo), then
T o1 is an exponentially distributed r.v. with unit mean, P(Uo1 = j) = woj/σ1(wo), j ∈ V o,
T o1 and Uo1 are independent and under P( · |Uo1 = j∗), (Ej)j∈V , as defined in (99), are
independent exponentially distributed r.v. such that E[Ej ]=wj/σ(w), j∈V =V o\{j∗}.

We next introduce Q1 and Q2, two discrete (without limit-point) subsets of [0,∞)2 that yield
the additional edges in a specific way that is explained later. We first set:

D1 :=
{

(t, y)∈ [0,∞)2 :0≤y<Yt−Jt
}
, Π:=Q1 ∩D1

and D2 =
{

(t, y)∈ [0,∞)2 :−Jt<y≤awoUo1
}
, Π2 :=Q2 ∩ D2.(101)

We next define f1 and f2 from [0,∞)2 to [0,∞)2 and a set of points Πo by:

f1(t, y) =
(

1
a t+ T o1 ,

1
a y + (woUo1 + Jt)+

)
, f2(t, y) =

(
1
a t+ T o1 , w

o
Uo1
− 1

a y
)

and Πo=f1(Π) ∪ f2(Π2)(102)

We check the following.

(II) FixEo; suppose thatQ1 andQ2 are two independent Poisson random subsets of [0,∞)2 with
intensity 1

σ1(w) dtdy. Then, Πo is a Poisson random subset on Do={(t, y)∈ [0,∞)2 : 0≤y<
Y o
t −Jot } with intensity 1

σ1(wo) 1Do(t, y) dtdy.

Indeed, observe that f1(D1) and f2(D2) form a partition of Do. Then, note that f1 is piecewise
affine with slope 1/a, on the excursion intervals of Y −J strictly above 0. Note that f2 is affine
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with slope 1/a. Standard results on Poisson subsets entail that Πo is a Poisson random subset on
Do with intensity a2

σ1(w) 1Do(t, y) dtdy and by (99) a2

σ1(w) = 1
σ1(wo) , which implies (II). �

Recall notation (97). We next introduce the the two following graphs:
(103)

Φ
(
Eo, wo,Πo

)
=
(
Go, Y o, Jo, (T ok, U

o
k )1≤k≤qo

)
and Φ

(
E, w,Π

)
=
(
G, Y, J, (Tk, Uk)1≤k≤q

)
.

Then, the previous construction of Πo combined with (100) easily imply the following:

(III) FixEo,Q1 andQ2. Then, G is obtained by removing the vertex Uo1 from Go: namely, V (G)=
V =V o\{Uo1} and E (G)=

{
{i, j}∈E (Go) : i, j∈V (G)

}
.

We next consider which connected components of G are attached to Uo1 in Go. To that end, recall
that the CGo

l (resp. the CG
l ) are the connected components of Go (resp. of G); recall that so (resp. s)

is the permutation on {1, . . . ,qo} (resp. on {1, . . . ,q}) such that Uok ∈CGo
so(k) for all k∈{1, . . . ,qo}

(resp. Uk∈CG
s(k) for all k∈{1, . . . ,q}). We first introduce

(104) G′ :=Go\CGo
so(1) and K :=sup

{
k∈{1, . . . , q} : Tk ≤ awoUo1

}
.

with the convention sup ∅= 0. The graph G′ is the graph Go where the first (in the order of visit)
component has been removed. Note that G′ is possibly empty: it has qo−1 connected components.
We easily check that qo=q−K + 1. We denote by s′ the permutation of {1, . . . ,qo− 1} such that

(105) ∀k∈{1, . . . ,qo−1}, CG
′

s′(k) =CG
o

so(k+1)

We also set:

(106) ∀k∈{1, . . . ,qo−1}, T ′k=TK+k−awoUo1 and U ′k=UK+k .

Suppose that Eo,Q1,Q2 are fixed, then we also check that

(107) ∀k∈{1, . . . ,qo−1}, T ok+1 = T o1 + 1
a T
′
k, Uok+1 =U ′k and CG

′

s′(k) =CGs(K+k) .

We now explain how additional edges are added to connect G to Uo1 . For all j ∈ V , let Ij =
{t ∈ [0,∞) : Vt = j}; Ij is the set of times during which Client j is served; we easily check that
Ij is a finite union of disjoint intervals of the form [x, y) whose Lebesgue measure is wj : namely,
Leb(Ij)=wj . We also set:

Π∗j =
{
y∈ [0,∞) :∃t∈Ij such that (t, y)∈Q2 and y>−Jt

}
Note that if j∈CG

s(k) , then −Jt=Tk. Combined with elementary results on Poisson random sets, it
implies the following.

(IV) Fix Eo and Q1; suppose that Q2 is a Poisson random subset with intensity 1
σ1(w) dtdy. Then,

the (Π∗j )j∈V are independent and Π∗j is a Poisson random subset of (Tk,∞) with ratewj/σ1(w),
where k is such that j∈CG

s(k) .

Note that the law of (Π∗j )j∈V only depends on Uo1 and (Tk, Uk)1≤k≤q.
We next introduce the following.

∗ We set Πj :={Tk} ∪Π∗j if there is k∈{1, . . . ,q} such that j=Uk.

∗ We set Πj :=Π∗j if j∈V \{U1, . . . , Uq}.
∗ We set Π′j :=

{
y−awoUo1 ; y∈ Πj∩(awoUo1

,∞)
}

.

∗ For all non-empty S⊂V , we set Π′(S) :=
⋃
j∈S Π′j .

We claim the following.

(V) Fix Eo,Q1,Q2. Then,
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(Va) for all j∈V , {Uo1 , j}∈E (Go) iff Πj∩[0, awoUo1
] 6=∅;

(Vb) for all k∈{1, . . . ,qo−1}, TK+k−awoUo1 =inf Π′(CGs(K+k))=Π′UK+k
; namely,

(108) ∀k∈{1, . . . ,qo−1}, T ′k=inf Π′(CG
′

s′(k)) = Π′U ′k
,

within the notation of (104) (105) (106) and (107).
Proof. Suppose that {Uo1 , j} ∈ E (Go). There are two cases to consider. (Case 1): {Uo1 , j} is
part of the exploration tree generated by (Eo, wo) which means that V o

Eoj−
=Uo1 . Namely, it means

that T o1 =sup{s∈ [0, Eoj ] : Y o
s−< inf [s,Eoj ] Y

o} because EoUo1 =T o1 , by definition of (Uo1 , T
o
1 ); since

Y o
T o1−

+woUo1
=Y o

T o1
and by (100), it is equivalent to: −awoUo1 < JEj =YEj−. It implies that Ej is the

left endpoint of an excursion of Y strictly above its infimum; therefore, there exists k∈{1, . . . ,q}
such that j=Uk and −JEj =Tk, by (96); thus Tk∈ [0, awoUo1

] which implies that Πj∩[0, awoUo1
] 6=∅

(since Tk∈Πj in the case where j=Uk).
Conversely, let j = Uk be such that Πj ∩ [0, awoUo1

] 6= ∅. It implies that Tk ≤ awoUo1 and the
previous arguments can be reversed verbatim to prove that {Uo1 , j} is an edge of Go that is part of
the exploration tree generated by (Eo, wo) .

(Case 2): {Uo1 , j} is an additional edge of Go. Then, there exists (t′, y′) ∈ Πo such that
V o
t′ = j and V o

τo(t′,y′) = Uo1 , where τ o(t′, y′) = inf
{
s ∈ [0, t′] : inf [s,t′] Y

o > y′ + Jot′
}

. Note that
V o
t′ = j implies that t′>T o1 since j 6=Uo1 and since Uo1 is the first visited vertex (or the first client).

Also observe that V o
τo(t′,y′) = Uo1 implies τ o(t′, y′) = T o1 . It also implies that t′ lies in the first

excursion interval of Y o strictly above its infimum, which entails that Jot′ = JoT o1
=−T o1 . Then, we

set t= a(t′−T o1 ) and, thanks to (100), we rewrite the previous conditions in terms of Y, J and V
as follows: Vt = j and 0 = inf{s ∈ [0, t] : awoUo1

+ inf [s,t] Y > ay′}, which is equivalent to: t ∈ Ij
and y := a(woUo1

−y′)>−Jt. This proves that there is (t, y) ∈D2 (as defined in (101)) such that
(t′, y′) = f2(t, y) as defined in (102). Since f1(Π) and f2(Π2) form a partition of Πo, (t, y) ∈Π2

and this proves that there is (t, y) ∈ Q2 such that t ∈ Ij and awoUo1
≥ y ≥ −Jt which implies

Πj ∩ [0, awoUo1
] 6=∅.

Conversely, suppose that Πj ∩ [0, awoUo1
] 6= ∅ and that j ∈ V \{U1, . . . , Uq}. Then, Π∗j ∩

[0, awoUo1
] 6= ∅ and the previous arguments can be reversed verbatim to prove that {Uo1 , j} is an

(additional) edge of Go, which completes the proof of (Va).
Let us prove (Vb). Let k ∈ {1, . . . ,qo−1}. By definition UK+k ∈ CG

s(K+k) . Let y ∈ Π∗UK+k
:

namely, there exists t such that Vt =UK+k, (t, y)∈Q2 and y >−Jt. But Vt =UK+k implies that
−Jt = TK+k. Since ΠUK+k

= Π∗UK+k
∪{TK+k}, we get inf ΠUK+k

= TK+k. By definition of K,
TK+k>aw

o
Uo1

, which entails inf Π′UK+k
=TK+k−awoUo1 .

Let j ∈ CG
s(K+k)\{UK+k} (if any) and let y ∈ Πj . Necessarily, j ∈ V \{U1, . . . , Uq}, which

entails Πj = Π∗j , by definition. Then there exists t such that Vt = j, (t, y)∈Q2 and y >−Jt. Note
that Ij is included in the excursion interval of Y strictly above its infimum whose left endpoint
is EUK+k

, which implies that Jt = −TK+k, for all t ∈ Ij . Thus y > TK+k. This proves that
inf Π′(CG

s(K+k))=inf Π′UK+k
, which completes the proof of (Vb). �

We now complete the proof of Theorem 3.2 as follows: let (Eoj )j∈V o be independent expo-
nentially distributed r.v.such that E[Eoj ] = woj/σ(wo). We then fix j∗ ∈ V o and we work under
Pj∗ := P( · |Uo1 = j∗); under Pj∗ , by (99), we get V = V o\{j∗}, a = (σ1(wo)−woj∗)/σ1(wo)
and for all j ∈ V , wj = awoj and Ej = a(Eoj −T o1 ). Under Pj∗ , we take Q1 and Q2 as two
independent Poisson random subsets of [0,∞)2 with intensity 1

σ1(w) dtdy; Q1 and Q2 are also sup-
posed independent of Eo. Recall from (101) and (102) the definition of Π and Πo and from (103)
the definition (G, (Tk, Uk)1≤k≤q). By (I) and (II) under Pj∗ , the induction hypothesis applies to
(G, (Tk, Uk)1≤k≤q) since (E, w,Π) has the appropriate distribution: namely, under Pj∗ , G has law
MV , w (as defined in (95)) and conditionally given G, (Tk, Uk)1≤k≤q has law ΛG, m as defined in (93)
(namely, (98) holds).
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By (IV), under Pj∗ and conditionally given (T o1 ,G, (Tk, Uk)1≤k≤q), the (Π∗j )j∈V are indepen-
dent and Π∗j is a Poisson random subset of (Tk,∞) with ratewj/σ1(w), where k is such that j∈CG

s(k) .
Since, conditionnally given (T o1 ,G), the r.v. (Tk, Uk)1≤k≤q has law ΛG, m, the definition of the Πj

combined with elementary results on Poisson processes imply the following key point.

(VI) Under Pj∗ and conditionnaly given (T o1 ,G), the (Πj)j∈V are independent and Πj is a Pois-
son random subset of (0,∞) with rate wj/σ1(w); therefore, under Pj∗ , the (Πj)j∈V are
independent of (T o1 ,G) and the very definition of the Πj implies that for all {1, . . . ,q},

Tk=inf Π(CGs(k)

)
=inf ΠUk where s is such that inf Π

(
CG

s(1)

)
<. . .< inf Π

(
CG

s(q)

)
.

Consequently, under Pj∗ , (Va) and the previous arguments entail that Go only depends on G
and on the Πj ∩ [0, awoj∗ ], j∈V . Thus, by (VI) combined elementary results on Poisson processes,
Go is independent from Π′j , j ∈ V and T o1 ; (Va) and (VI) also imply that under Pj∗ , the events
{{j∗, j} ∈ E (Go)}, j ∈ V , are independent with respective probability 1−exp(−wjawoj∗/σ1(w)).
Then, note that wjawoj∗/σ1(w) = wojw

o
j∗/σ1(wo). Thus, under Pj∗ , Go has law MV o, wo and it is

independent from (T o1 ; Π′j , j∈V ).
Recall from (104) (105) (106) and (107) notation G′, s′ and (T ′k, U

′
k)1≤k≤qo−1. Then, observe

that under Pj∗ and conditionally given Go, (Vb) and (VI) imply that (T ′k, U
′
k)1≤k≤qo−1 has condi-

tional law ΛG′, m′ where m′=
∑

j∈V (G′)wjδj . Then, under Pj∗ and conditionally given Go, Lemma
3.1 applies and (107) entails that

woj∗

σ1(wo)
Pj∗

(
T o1 ∈dt1; . . . ;T oqo ∈dtqo ;Uo2 =j2; . . . ;Uoqo =jqo

∣∣Go)
= ΛGo, mo(dt1 . . . dtqo ; j

∗, j2, . . . , jqo).

Since P(Uo1 =j∗)=woj∗/σ1(wo), it implies that for all graph Go whose set of vertice is V o and that
has qo connected components, we get

P
(
Go=Go ; T o1 ∈dt1; . . . ;T oqo ∈dtqo ;Uo1 =j∗;Uo2 =j2; . . . ;Uoqo =jqo

)
= MV o, wo(G

o) ΛGo, mo(dt1 . . . dtqo ; j
∗, j2, . . . , jqo).

This completes the proof of Theorem 3.2 by induction on the number of vertices. �

4 Embedding the multiplicative graph in a GW-tree.

4.1 The tree associated with the Markovian queue.

We recall here various codings of the tree generated by a Markovian LIFO queue and we prove or
recall easy results on these codings.

4.1.1 Height and contour processes of Galton-Watson trees.

Let us briefly recall basic notation about the coding of trees. First set U =
⋃
n∈N(N∗)n, the set of

finite words written with positive integers; here, (N∗)0 is taken as {∅}. Let u= [i1, . . . , in] ∈ U;
we set←−u = [i1, . . . , in−1] that is interpreted as the parent of u; if n= 1, then←−u is taken as ∅; we
also set |u| = n, the length of u, with the convention that |∅| = 0; let v = [j1, . . . , jm] ∈ U; then
u ∗ v = [i1, . . . , in, j1, . . . , jm] stands for the concatenation of u with v, with the convention that
∅ ∗ u=u ∗ ∅=u. A rooted ordered tree can be viewed as a subset t⊂U such that the following
holds true.

(a) : ∅∈ t.
(b) : If u∈ t\{∅}, then←−u ∈ t.
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(c) : For all u∈ t, there exists ku(t)∈N ∪ {∞} such that u ∗ [i]∈ t iff 1≤ i≤ku(t).
Here ku(t) is interpreted as the number of children of u and if 1≤ i≤ku(t), then u ∗ [i] is the i-th
child of u. Implicitely, if ku(t), then there is no child stemming from u and assertion (c) is empty.
Let u∈ t, we set θut={v∈U : u ∗ v∈ t} that is also a tree in the previous meaning: it is the family
subtree of the descendants stemming from u.

We denote by T the set of such trees. We equipp T with the sigma-field F (T) generated by the
sets {t∈T :u∈ t}, u∈U. Then, a Galton-Watson tree with offspring distribution µ (a GW(µ)-tree,
for short) is a (F ,F (T))-measurable r.v. τ :Ω→T that satisfies the following.
(a′) : k∅(τ) has law µ.
(b′) : For all k ≥ 1 such that µ(k) > 0, the subtrees θ[1]τ, . . . , θ[k]τ under P( · |k∅(τ) = k) are

independent with the same law as τ under P.
Recall that τ is a.s. finite iff µ is critical or subcritical: namely, iff

∑
k≥1 kµ(k)≤1.

A Galton-Watson forest with offspring distribution µ (a GW(µ)-forest, for short) is a random tree
T such that k∅(T) =∞ and such that the subtrees (θ[k]T)k≥1 stemming from ∅ are i.i.d. GW(µ)-
trees.

We next recall how to encode a (sub)critical GW(µ)-forest T thanks to three processes: its
Lukasiewicz path, its height process and its contour process: since µ is subcritical, it is possible
to list all the vertices of T in the lexicographical order on U; we denote by (ul)l∈N this sequence.
Then, we set:

(109) V T
0 =0, ∀l∈N, V T

l+1 =V T
l + kul+1

(T)−1 and Hght(T, l)= |ul+1|−1.

The process (V T
l )l∈N is the Lukasiewicz path associated with T and (Hght(T, l))l∈N is the height

process associated with T; V T
· is distributed as a random walk starting from 0 and with jump-law

ν(k)=µ(k + 1), k∈N ∪ {−1}. The height process Hght(T, ·) is derived from V T
· by

(110) ∀l∈N, Hght(T, l) = #
{
m∈{0, . . . , l−1} : V T

m = inf
m≤j≤l

V T
j

}
.

We refer to Le Gall & Le Jan [33] for a proof of (110).
The contour process of T is informally defined as follows: suppose that T is embedded in the

half plane in such a way that edges have length one; we think of a particle starting at time 0 from
∅ and exploring the tree from the left to the right, backtracking as less as possible and moving
continuously along the edges at unit speed. It is clear that the particle crosses each edge twice
(upwards first and then downwards). Then, for all t ∈ [0,∞), we define CT

t as the distance at
time t of the particle from the root ∅. The contour process is close to the height process: CT

· .
The associated distance dCT as defined in (49) is the graph distance of T. We refer to Le Gall &
D. [21] (Section 2.4, Chapter 2, pp. 61-62) for a formal definition and the connection with the height
process.

4.1.2 Coding processes related to the Markovian queueing system.

The Markovian LIFO queueing system. We fix the set of weights w=(w1, . . . , wn, 0, 0, . . .)∈` ↓f
and we consider the Markovian LIFO queueing system that is described as follows: the server is
visited be an infinite number of clients; the clients arrive according to a Poisson process with unit
rate; each client has a type that is a positive integer ranging in {1, . . . , n}; the amount of time of
service required by a client of type j is wj ; the types are i.i.d. with law

(111) νw=
1

σ1(w)

∑
j≥1

wjδj

Let τk stand for the time of arrival of the k-th client in the queue and let Jk stand for her/his type;
then, the queueing system is entirely characterised by the the following point measure:

(112) Xw=
∑
k≥1

δ(τk,Jk),
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that is distributed as a Poisson point measure on [0,∞)×{1, . . . , n} whith intensity `⊗νw, where `
stands for the Lebesgue measure on [0,∞). We next introduce the following:

(113) ∀t∈ [0,∞), Xw
t = −t+

∑
k≥1

wJk1[0,t](τk) and Iwt = inf
s∈[0,t]

Xw
s .

Then, Xw
t −Iwt is interpreted as the load of the Markovian queueing system at time t and Xw

t is the
algebraic load of the queue.

We next denote by Gt the sigma field generated by
∑

k≥1 1{τk≤t}δ(τk,Jk) and completed with
the P-negligible events. We recall the following fact: let T be an a.s. finite (Gt)-stopping time; we
set

(114) X T
w =

∑
k≥1

1{τk>T}δ(τk−T,Jk) and Xw,T
s =Xw

T+s−Xw
T , s∈ [0,∞).

Then X T
w is independent of GT and it has the same law as Xw. In particular it implies that Xw

is a (Gt)-spectrally positive Lévy process. We shall assume that Xw does not drift to ∞: this is
equivalent to assume that E[Xw

1 ]≤0, namely,

(115)
σ2(w)

σ1(w)
≤ 1 .

The tree generated by the Markovian queueing system. The LIFO queueing system governed
by Xw generates a tree Tw that can be informaly defined as follows.

The clients are the vertices and the server is the root (or the ancestor); the j-th client to enter
the queue is a child of the i-th one if the j-th client enters when the i-th client is served;
among siblings, the clients are ordered according to their time of arrival.

A more formal definition is given below and we see that Tw is a GW-forest. We also show below
that the Lukasiewicz path (V Tw

k ) and the contour process (CTw
t ) are close to Xw and Hw, as defined

(32). We prove estimates that are used in the proof of Proposition 2.12.

First we formally define Tw as a random element of T, as defined in Section 4.1.1. To that end,
recall from (114) that Xw,t

s =Xw
t+s−Xw

t and set

(116) ∀t, x∈ [0,∞), M(t, x) = #
{
s∈ [0,∞) : Xw,t

s > Xw,t
s− = inf

r∈[0,s]
Xw,t
r ≥ −x

}
.

Among the clients waiting in the line by time t, exactlyM(t, x) of them will have entered the queue
when the load will have decreased of x, after time t. Let T be an a.s. finite (Gt)-stopping time; since
we assume that Xw does not drift to ∞, it is easy to check the following: (M(T, x))x∈[0,∞) is a
homogeneous Poisson process on [0,∞) with unit rate and it is independent of GT .

To each client we inductively associate a label in U in order to define Tw as a random element of
T: by convention, client 0 is the server and we set u0 =∅; we denote by uk∈U the label associated
with the k-th client; we suppose that u0, . . . , uk−1 have been already defined and we denote by
m∈{0, . . . , k − 1} the client that is the direct parent of Client k: namely

m = sup
{
l∈{0, . . . , k − 1} : Xw

τl− < inf
t∈[τl,τk]

Xw
t

}
,

with the conventions τ0 =0 and Xw
0−=−∞. Then, the number of clients who arrived before Client

k (including Client k) and whose direct parent is Client m is given by

rk = M
(
τm ,− inf

s∈[0,τk−τm]
Xw,τm
s

)
.

We then define uk by the concatenation of the words um and [rk]: namely uk = um ∗ [rk] (with
the notation of Section (4.1.1). This inductively defines the sequence (uk)k∈N of the labels of the
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clients; here, the lexicographical order excatly corresponds to the order of arrival of the clients. The
tree generated by the queueing system is then formally given by Tw={uk; k∈N}. We let the reader
check that Tw is Galton-Watson forest (as defined in Section 4.1.1) whose offspring distribution µw
is defined by

(117) ∀k∈N, µw(k)=
∑

1≤j≤n

wk+1
j e−wj

σ1(w) k!
.

Actually, the subtree θukTw stemming from uk is completely determined by ∆Xw
τk

and the path
(Xw,τk

s )s∈[0,τ ] where τ=inf{s∈ [0,∞) : Xw,τk
s <−∆Xτk}. In particular, we get

(118) kuk(Tw)=M(τk,∆X
w
τk

).

Then, conditionally given Gτk , kuk(Tw) is distributed as a Poisson r.v. with parameter ∆Xw
τk

=wJk
that has law νw, which explains the form of the offspring distribution µw. Since

∑
k≥0 kµk(k) =

σ2(w)/σ1(w), (115) implies that µw is (sub)critical.

The Lukasiewicz path associated with Tw: estimates. Recall from Section 4.1.1 the definition of
(V Tw

k )k∈N, the Lukasiewicz path of Tw; recall from (113) the definition of Xw and Iw; recall from
(116) the definition of M(t, x). We set

(119) ∀t∈ [0,∞), Nw(t) =
∑
k≥1

1[0,t](τk) .

Clearly Nw is a homogeneous Poisson process with unit rate. The following lemma expresses V Tw

in terms of Xw and compare these two processes.

Lemma 4.1 We keep the notation from above. Then, P-a.s. for all t∈ [0,∞)

(120) V Tw

Nw(t) = M
(
t,Xw

t −Iwt )−M(0,−Iwt )

and for all a, x∈(0,∞), we get

(121) P
(∣∣V Tw

Nw(t)−X
w
t

∣∣ > 2a
)
≤ 1∧(4x/a2) + P

(
−Iwt >x) + E

[
1 ∧
(
(Xw

t −Iwt )/a2
)]
.

Proof. We denote by Qt the process on the right hand side of (120); the set of its jump-times is
included in {τl; l∈N∗} that is the set of jump-times of Nw. To prove (120) it is therefore sufficient
to prove that

(122) Qτk+1
−Qτk =M(τk+1,∆X

w
τk+1

)− 1 = kuk+1
(Tw)− 1=V Tw

k+1−V Tw

k .

Actually, one only needs to prove the first equality since the second one is (118) and the third
one is (109). From the definition (116) of M(t, x), we easily get that M(τl, X

w
τl
−Iwτl) = #{s ∈

(τl,∞) : Xw
s > Xw

s− = inf [τl,s]X
w > Iwτl}. We fix k ∈ N and we set σ = inf{s > τk+1 : Xw

s <
Xw
τk+1−}, which is well-defined since Xw does not drift to ∞. Then, for all s > σ, observe that

inf [τk,s]X
w = inf [τk+1,s]X

w and note that τk+1 is the unique jump-time of (τk, σ] and we check
that #{s ∈ (τk, σ] : Xw

s > Xw
s− = inf [τk,s]X

w > Iwτk} = 1{Iw(τk)=Iw(τk+1)}, which is equal to 1−
M(0,−Iwτk+1

) +M(0,−Iwτk). Thus,

Qτk+1
−Qτk = M(τk+1, X

w
τk+1
−Iwτk+1

)−M(τk, X
w
τk
−Iwτk)−M(0,−Iwτk+1

) +M(0,−Iwτk)

= #
{
s∈(τk+1, σ] : Xw

s >X
w
s−= inf

[τk+1,s]
Xw
}
−1

and the last term equals M(τk+1,∆X
w
τk+1

)− 1, which proves (122).
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Let us prove (121). We fix t ∈ [0,∞) and to simplify we set Z = Xw
t − Iwt and Y = −Iwt .

SinceM(t, ·) is independent of Gt and distributed as a homogeneous Poisson process with unit rate,
E
[
(M(t, Z)−Z)2|Gt

]
=Z ; thus P(|M(t, Z)−Z|>a)≤E[1∧ (Z/a2)]. For all x∈(0,∞), we also

get P(|M(0, Y )−Y |>a)≤P(supy∈[0,x] |M(0, y)−y|>a) + P(Y >x)≤1∧(4x/a2) + P(Y >x)

by Doob L2 inequality for martingales. This easily completes the proof of(121). �

The contour of Tw: estimates. Recall from (32) that Hw
t stands for the number of clients waiting

in the line right after time t. More formally, for all s, t ∈ [0,∞) such that s ≤ t, we set Iw,st =
infr∈[s,t]X

w
r and we set

(123) Hw
t = #

{
s∈ [0, t] : Iw,s−t <Iw,st

}
.

The process Hw is called the height process associated with Xw, by analogy with (110). Actually,
Hw is closer to the contour process of Tw. To see this, recall that (uk)k∈N stands for the sequence
of vertices of Tw listed in the lexicographical order; we identify uk with the k-th client to enter the
queueing system. For all t∈ [0,∞), we denote by u(t) the client currently served right after time t:
namely u(t) =uk where k= sup{l∈N : τl≤ t and Xw

τl−< infs∈[τl,t]X
w
s }. Then, the length of the

word u(t) is the number of clients waiting in the line right after time t: |u(t)|=Hw
t .

We next denote by (σm)m≥1 the sequence of jump-times of Hw: namely, σm+1 = inf{s>σm :
Hw
s 6=Hw

σm}, for all m∈N, with the convention σ0 =0. We then set

(124) ∀t∈ [0,∞), Mw
t =

∑
m≥1

1[0,t](σm) .

Note that (σm)m≥1 is also the sequence of jump-times of u and observe that for all m ≥ 1,
(u(σm−1),uσm) is necessarily an oriented edge of Tw. We then set Tw(t) = {u(s); s ∈ [0, t]},
that is a subtree of Tw: it represents the set of the clients who entered the queue before time t; Tw(t)
hasNw(t)+1 vertices (including the server represented by ∅); therefore, Tw(t) has 2Nw(t) oriented
edges. Among the 2Nw(t) oriented edges of Tw(t), the |u(t)| edges going down from u(t) to ∅
does not belong to the subset {(u(σm−1),u(σm));m≥1: σm≤ t}. Thus, we get

(125) ∀t∈ [0,∞), Mw
t = 2Nw(t)−Hw

t .

Recall from Section 4.1.1 the definition of the contour and the height processes of Tw, denoted
resp. by (CTw

t ) and (HghtTw

k ). Then, observe that

(126) ∀t∈ [0,∞), CTw

Mw(t) =Hw
t and sup

s∈[0,t]
Hw
s ≤ 1 + sup

s∈[0,t]
HghtTw

Nw
s
.

Since Nw is a homogeneous Poisson process with unit rate, Doob’s L2-inequality combined with
(125) and (126) imply the following inequality:

(127) ∀t, a∈(0,∞), P
(

sup
s∈[0,t]
|Mw

s −2s| > 2a
)
≤ 1∧(16t/a2) + P

(
1 + sup

s∈[0,t]
HghtTw

Nw
s
> a

)
.

4.2 Colouring the clients of the Markovian queueing system.

4.2.1 Formal definition of the colouring.

We fix the set of weights w=(w1, . . . , wn, 0, 0, . . .)∈` ↓f . Recall from (20) that Xw=
∑

k≥1 δ(τk,Jk)

is a Poisson point measure on [0,∞)×{1, . . . , n} with intensity `⊗ νw where ` stands for the
Lebesgue measure on [0,∞) and where νw = 1

σ1(w)

∑
1≤j≤nwjδj . As explained in Section 4.1.2,

the point measure Xw governs a Markovian single-server LIFO queueing system: τk is the time of
arrival of the k-th client to enters the queueing system, Jk stands for his type; recall that the service-
time required by a client of type j is wj ; recall from (21) that Xw

t = −t +
∑

k≥1wJk1[0,t](τk);
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recall that we assume that Xw does not drift to∞, which is equivalent to assume σ2(w)/σ1(w)≤1.
Recall that Gt stands for the sigma field generated by

∑
k≥1 1{τk≤t}δ(τk,Jk) and completed with the

P-negligible events. Recall from (114) that Xw is a (Gt)-spectrally positive Lévy process.
To embed the non-Markovian queueing system into the Markovian one, recall that we colour

the clients in blue or red as follows:
Colouring rules. If the type Jk already appeared among the types of the blue clients
who previously entered the queueing system, then the k-th client is red; otherwise the k-th
client inherits his colour from the colour of the client currently served when he arrives (if the
server is idle when the kth client arrives, then his colour is blue).

More precisely, we recursively define an increasing sequence of times (sl)l≥0 and an associated
sequence of marks ul∈{blue, red, end} and Jl∈{0, . . . , n} that are interpreted as follows:

– sl is either the time of arrival of a blue client, Jl is her/his type and ul=blue,
– or sl is the time of arrival of a red client who interrupts the service of a blue client, Jl is

her/his type and ul=red,
– or sl is the time of departure of a red client such that right after time sl either a blue client is

served or the line is empty. In that case, Jl=0 and ul=end.
Formally, the sequence (sl, ul, Jl)l≥0 is defined by the following induction: we first set s0 = 0,
u0 =end and J0 =0; suppose that (sm, um, Jm)0≤m≤l are already defined; we first set

Sl=
{
Jm; 1≤m≤ l : um=blue

}
and Sl={1, . . . , n}\Sl

and we define sl+1, ul+1 and Jl+1 as follows.
(a) If ul=red, then ul+1 =end, Jl+1 =0 and sl+1 =inf{t>sl : Xw

t ≤Xw
sl−} that is well-defined

since Xw does not drift to∞.
(b) If ul 6= red, then set M = min{k≥ 1 : τk > sl} and sl+1 = τM , Jl+1 = JM ; if JM ∈ Sl, we

then set ul+1 =blue and if JM /∈Sl, we set ul+1 =red.
We then set

(128) Blue =
⋃
l≥0,

ul 6=red

[sl, sl+1) and Red =
⋃
l≥0,

ul=red

[sl, sl+1) .

It is easy to check that for all l ∈ N, sl is an a.s. finite (Gt)-stopping time and that (ul, Jl) is Gsl-
measurable. We also recall from (22) that Λb,w

t =
∫ t

0 1Blue(s) ds. We also set Λr,w
t =

∫ t
0 1Red(s) ds.

Next, recall from the recursive definition above that if ul = red, then ul+1 = end. Thus, Blue =
[0,∞)\Red, which implies that Λb,w

t + Λr,w
t = t. Note that Blue ∩ Red = {sl; l∈ N : ul = red},

namely it is the set of arrival-times of red clients interrupting the service of blue clients.

4.2.2 Proof of Lemma 2.2.

Recall that τk is the time of arrival of the k-th client. By convenience we set τ0 = 0. We define the
increasing sequences of positives integers (k(m))m∈N and (l(m))m∈N by setting

{k(m);m∈N}={k∈N : τk∈Blue} and {l(m);m∈N}={l∈N : ul 6=end}.

Note that l(0)=k(0)=0 and observe that for all l≥1, sl∈{τk; k≥1} iff ul 6=end. Thus,

{τk(m);m∈N} = {sl(m);m∈N} .

For all m∈N, we define (em+1, Jm+1) by setting

(em+1, Jm+1)=
(
Λb,w
τk(m+1)

−Λb,w
τk(m)

, Jk(m+1)

)
.

We consider the two following cases.

42



(c) Suppose that ul(m) =blue. Then, sl(m)+1∈Blue and l(m+ 1)= l(m) + 1 (and k(m+ 1)=
k(m) + 1). Then,

em+1 =Λb,w
τk(m+1)

−Λb,w
τk(m)

=sl(m)+1−sl(m) =min{τk−sl(m); k≥1 :τk>sl(m)} .

Thus, (em+1, Jm+1) is the first atom of the shifted Poisson point measure X
sl(m)
w as defined

by (114); (em+1, Jm+1) are independent and they are also independent of Gsl(m)
; moreover,

em+1 has an exponential law with unit mean and Jm+1 has law νw.
(d) Suppose that ul(m) =red, then

[sl(m), sl(m)+1)⊂Red, ul(m)+1 =end and thus [sl(m)+1, sl(m)+2)⊂Blue .

It implies that l(m+ 1)= l(m) + 2, τk(m+1) =sl(m)+2 and

em+1 =Λb,w
τk(m+1)

−Λb,w
τk(m)

=sl(m)+2−sl(m)+1.

Thus, (em+1, Jm+1) is the first atom of the shifted Poisson point measure X
sl(m)+1
w : there-

fore, (em+1, Jm+1) are independent, thay are also independent of Gsl(m)+1
; moreover, em+1

has an exponential law with unit mean and Jm+1 has law νw.
Since (em, Jm) is clearly Gsl(m)

-measurable, this first entails that

X b
w =

∑
m≥1

δ(Λb,w
τk(m)

,Jk(m))
=
∑
k≥1

1Blue(τk)δ(Λb,w
τk
,Jk)

is a Poisson point measure on [0,∞)×{1, . . . , n} with intensity `⊗νw: X b
w has the same law as

Xw.
Moreover, Cases (b) implies the following: denote by 1{ul(m)=red}X

b
w the measure that is equal

to X b
w if ul(m) =red and that is equal to 0 otherwise. Then, for all m ≥ 1,

(129) 1{ul(m)=red}X
b
w is measurable with respect to

the σ-field generated by Gsl(m)
and the shifted point measure X

sl(m)+1
w .

We next define the increasing sequence of integers (j(p))p≥1 by

(130) {j(p); p≥1} = {l∈N : ul=red} and thus Red=
⋃
p≥1

[sj(p), sj(p)+1).

We then define the "red processes" the following:

(131) ∀p≥1, Zp =
(
Xw

(sj(p)+t)∧sj(p)+1
−Xw

sj(p)

)
t∈[0,∞)

and ζp = sj(p)+1−sj(p).

Note that ζp is the duration of Zp. By (a) in the recursive definition of the (sl), ζp is the first time
that the process Xw

sj(p)+· − Xw
sj(p)

has been below −wJj(p) . Since Xw has no negative jumps, it
entails that Zpζp =−wJj(p) . By convenience, we next set

ξ0 =0 and ∀p≥1, ξp=
∑

1≤q≤p
ζq .

Then, for all t ∈ [sj(p), sj(p)+1), Λr,w
t = t− sj(p) + ξp−1. Recall from (23) that Xr,w

t = −t +∑
k≥0wJk1{τk∈[0,∞)\Blue ; Λr,w

τk
≤t}. Then observe that for all t∈ [ξp−1, ξp),

Xr,w
t =

∑
1≤q<p

(
−ζq +

∑
k≥1

wJk1{τk∈(sj(q),sj(q)+1)}

)
−(t−ξp−1) +

∑
k≥1

wJk1{0<τk−sj(p)≤t−ξp−1}

=
∑

1≤q<p

(
Xw

sj(q)+1
−Xw

sj(q)

)
+Xw

sj(p)+t−ξp−1
−Xw

sj(p)
= Zpt−ξp−1

+
∑

1≤q<p
Zqζq .
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Thus Xr,w is the concatenation of the paths Zp, p≥1.
We moreover get the following: recall from (28) that γr,wx =inf{t∈ [0,∞) : Xr,w

t <−x}, for all
x∈ [0,∞); by convenience we set

x0 =0 and ∀p≥1, xp=
∑

1≤q≤p
wJj(q) .

Then, for all p≥1,

(132) ∀t∈ [0,∞),
(
Xr,w

(γr,wxp−1
+t)∧γr,wxp

−Xr,w
γr,wxp−1

)
t∈[0,∞)

= Zp

We then complete the proof of Lemma 2.2 as follows. For all x∈ [0,∞), set γwx=inf{t∈ [0,∞) :
Xw
t <−x} and denote byP (x) the law on D([0,∞),R) of the stopped process (Xw

t∧γwx)t∈[0,∞). First

observe that the law of Zp conditionally given Gsj(p) is P (wJj(p)). Next, note that since X
sj(p)+1
w

is independent of Gsj(p)+1
, X

sj(p)+1
w is independent from Zp. By (129), it implies that the law of

Zp conditionally given X b
w is P (wJj(p)). Moreover, since for all p′>p, the paths Zp

′
depends on

X
sj(p)+1
w and on (Jj(q))1≤q≤p that are Gsj(p)-measurable r.v, we have proved finally that condition-

ally given X b
w , the paths Zp, p≥1 are independent and that the conditional law of Zp is P (wJj(p)).

This easily entails that the concatenation of the paths Zp is independent of X b
w and that it is dis-

tributed as Xw: namely, Xr,w is independent of X b
w and it is distributed as Xw. This proves Lemma

2.2. �

4.2.3 Proof of Lemma 2.3.

We keep the same notations as in Sections 4.2.1 and 4.2.2. Recall that xp =
∑

1≤q≤pwJj(q) and
observe that (132) implies that

γr,wxp = ζ1 + . . .+ ζp =
∑

1≤q≤p
sj(q)+1−sj(q).

Next observe that Blue = [0, sj(1)) ∪
⋃
p≥1 [sj(p)+1, sj(p+1)). Thus, Λb,w

s = s, for all s ∈ [0, sj(1))
and for all p≥1 and all s∈ [sj(p)+1, sj(p+1)), we get

(133) Λb,w
s =s−

∑
1≤q≤p

sj(q)+1−sj(q) = s− γr,wxp

Recall from (22) that θb,wt = inf{s ∈ [0,∞) : Λb,w
s > t}. Since Λb,w is continuous, by definition,

Λb,w(θb,wt ) = t. Note that θb,wt ∈ Blue. Thus, either θb,wt ∈ [0, sj(1)) and obviously θb,wt = t, or there
is p≥1 such that θb,wt ∈ [sj(p)+1, sj(p+1)), and (133) applied to s=θb,wt entails t=θb,wt −γr,wxp . Next,
recall from (29) that Aw

t =
∑

k≥1wJk1Blue∩ Red(τk) 1{Λb,w
τk
≤t}. Thus,

Aw

Λb,w
t

=
∑
k≥1

wJk1Blue∩ Red(τk) 1{τk≤t} =
∑
q≥1

wJj(q)1{sj(q)≤t} .

Thus, if θb,wt ∈ [sj(p)+1, sj(p+1)), Aw
t =

∑
q≥1wJj(q)1{sj(q)≤θ

b,w
t }

= xp and the previous argument

entail that t=θb,wt −γr,wAw
t

. This proves (30).
It remains to prove (31). To that end, recall from (24) that

Xw(θb,wt ) = Xb,w(Λb,w

θb,wt
)+Xr,w(Λr,w

θb,wt
) = Xb,w

t +Xr,w(θb,wt − Λb,w

θb,wt
)

= Xb,w
t +Xr,w(θb,wt − t) = Xb,w

t +Xr,w(γr,wAw
t
)=Xb,w

t −Aw
t ,

which implies (31) by (29). �
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4.2.4 Proof of Lemma 2.4.

We keep the same notations as in Sections 4.2.1 and 4.2.2. Let t∈Red. By (130), there exists p≥1
such that t∈ [sj(p), sj(p)+1). Note that on [sj(p), sj(p)+1), the process s 7→Aw(Λb,w

s ) is constant to
xp=

∑
1≤q≤pwJj(q) and recall that Λr,w

t = t−sj(p) +γr,wxp−1 . Consequently,Aw(Λb,w
t )+Xr,w(Λr,w

t )=

xp +Xr,w
t−sj(p)+γ

r,w
xp−1

>0, since sj(p)+1−sj(p) + γr,wxp−1 =γr,wxp . This easily entails the following:

{
t∈ [0,∞) : Aw

Λb,w
t

+Xr,w
Λr,w
t
>0
}

= Red and
{
t∈ [0,∞) : Aw

Λb,w
t

+Xr,w
Λr,w
t

=0
}

= Blue .

Recall from (24) and from (29) that Xw
t −Y w(Λb,w

t )=Aw(Λb,w
t ) +Xr,w(Λr,w

t ). Thus,

(134)
{
t∈ [0,∞) : Xw

t >Y
w(Λb,w

t )
}

=Red and
{
t∈ [0,∞) : Xw

t =Y w(Λb,w
t )
}

=Blue.

Since Blue ∪ Red = [0,∞), (134) implies that a.s. Xw
t ≥ Y w(Λb,w

t ) for all t ∈ [0,∞) and we next
claim that:

(135) ∀s≤ t
(
[s, t] ∩ Blue 6=∅

)
=⇒

(
inf
r∈[s,t]

Xw
r = inf

r∈[s,t]
Y w

Λb,w
r

)
.

Indeed, suppose that [s, t] ∩ Blue 6=∅; since Y w◦Λb,w is constant on Red, since Xw≥Y w◦Λb,w and
since these two processes coincide on Blue, inf{Xw

r ; r ∈ [s, t]} = inf{Xw
r ; Blue ∩ [s, t]}, which

easily implies (135).
Recall from (18) that Jw,s′

t′ =inf [s′,t′] Y
w and that Hw

t′=#Jt′ where Jt′={s′∈ [0, t′] : Jw,s′−
t′ <

Jw,s′

t′ }; recall from (32) that Iw,st = inf [s,t]X
w and that Hw

t = #Kt, where Kt = {s∈ [0, t] : Iw,s−t <

Iw,st }. Since Λb,w is continuous and non-decreasing, we get infr∈[s,t] Y
w(Λb,w

r ) = infr′∈[Λb,w
s ,Λ

b,w
t ] Y

w
r′ .

Thus, by (135), for all t∈Blue, we get JΛb,w
t

={Λb,w
s ; s∈Kt}. Then, note that Kt⊂Blue and since

Λb,w is increasing on Blue we get

(136) ∀t∈Blue, Hw
t = #Kt = #JΛb,w

t
= Hw

Λb,w
t
.

Since for all t∈ [0,∞), θb,wt ∈Blue, and since Λb,w(θb,wt )= t, by definition, (136) entails: Hw(θb,wt )=
Hw
t . This proves (34) and Lemma 2.4. �

4.3 Estimates on the coloured processes.

We keep the same definition and the same notation as in Section 4.2. In this section, we provide
estimates for Aw and Xb,w

Λb,w and Xr,w
Λr,w that are used in the proof of Theorem 2.14.

4.3.1 Increments of Aw.

By Lemma 2.2, X b
w =

∑
k≥1 1Blue (τk) δ(Λb,w

τk
,Jk) is Poisson point measure on [0,∞)×{1, . . . , n}

with intensity `⊗νw. Recall from (25) that for all j ∈ {1, . . . , n}, and all t ∈ [0,∞), Nw
j (t) =

X b
w

(
[0, t]×{j}

)
. Then, Nw

j are independent Poisson processes with respective rates wj/σ1(w).
We also recall from (25) that Ew

j = inf
{
t ∈ [0,∞) : X b

w ([0, t]× {j}) = 1
}

; therefore, the
r.v. (

wj
σ1(w)Ej)1≤j≤n are i.i.d. exponential r.v. with unit mean. Next, recall from (26) and from

(27) that

(137) Yw=
∑

1≤j≤n
δ(Ew

j ,j)
and X r/b

w =X b
w −Yw=

∑
k≥1

1Blue∩ Red(τk) δ(Λb,w
τk
,Jk).
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Therefore, X
r/b
w

(
[0, t]×{j}

)
=(Nw

j (t)−1)+. We also recall from (28) that

(138) Y w
t =−t +

∑
1≤j≤n

wj1{Ew
j≤t} and

Aw
t =

∑
1≤j≤n

wj(N
w
j (t)−1)+ =

∑
k≥1

wJk1Blue∩ Red(τk) 1{Λb,w
τk
≤t}.

Let (Ft)t∈[0,∞) be a filtration such that for all for all j≥1, Nw
j is a (Ft)-homogeneous Poisson

process: namely, Nw
j is (Ft)-adapted and for all t ∈ [0,∞), Nj(· + t)−Nj(t) is independent

of Ft. For all a.s. finite (Ft)-stopping time T , we set Nw,T
j (t) = Nw

j (T + t)−Nw
j (T ). Thus,

the (Nw,T
j )j≥1 are independent of FT and distributed as (Nw

j )j≥1. By convenience we also set

Aw,T
t =

∑
1≤j≤nwj(N

w,T
j (t)−1)+. Then, Aw,T is independent of FT and distributed as Aw. It is

also easy to observe that

(139) Aw
T+t −Aw

T = Aw,T
t +

∑
j≥1

wj1{Ew
j≤T}1{Nw,T

j (t)≥1}.

The Markov inequality and easy calculations combined with (139) immediately entail the following
lemma.

Lemma 4.2 We keep the notation from above. For all (Ft)-stopping time T and all a, t0, t∈(0,∞),

(140) aP
(
T ≤ t0 ; Aw

T+t−Aw
T ≥ a

)
≤ E[Aw

t ] +
∑
j≥1

wjP(Ew
j ≤ t0)P(Nw

j (t) ≥ 1).

Note that E[Aw
t ]=

∑
j≥1wj(e

−twj/σ1(w)−1 +
twj
σ1(w)). Thus,

(141) aP
(
T ≤ t0 ; Aw

T+t−Aw
T ≥ a

)
≤ t
(
t0 + 1

2 t
) σ3(w)

σ1(w)2 .

4.3.2 Oscillations of Xb,w
Λb,w and Xr,w

Λr,w .

Recall that D([0,∞),R) stands for the space of R-valued càdlàg functions equipped with Sko-
rokhod’s topology. For all y∈D([0,∞),R) and for all interval I of [0,∞), we set

(142) ocs(y, I) = sup
{
|y(s)−y(t)|; s, t∈I

}
that is the oscillation of y on I . It is easy to check that

(143) ∀ a<b, ocs(y, [a, b) ) ≤ ocs(y, [a, b]) ≤ ocs(y, [a, b) ) + |∆y(b)| ,

where we recall that ∆y(b)=y(b)−y(b−). We also recall that the definition of the càdlàg modulus
of continuity of y: let z, η∈(0,∞); then, we set

(144) wz(y, η) = inf
{

max
1≤i≤r

osc(y, [ti−1, ti) ) ; 0= t0<. . .<tr=z : min
1≤i≤r−1

(ti−ti−1) ≥ η
}
,

Here the infimum is taken on the set of all subdivisions (ti)0≤j≤r, of [0, z], r being a positive
integer; note that we do not require tr−tr−1≥η. We refer to Jacod & Shiryaev [30] Chapter VI for
a general introduction on Skorokod’s topology. We first prove the following lemma on the modulus
of continuity of Xb,w ◦ Λb,w and Xr,w ◦ Λr,w. This technical lemma is a key argument in the proof
of Theorem 2.14.
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Lemma 4.3 We keep the notation from above. For all z0, z1, z, η ∈ (0,∞), almost surely on the
event {Λb,w

z1 ≤z0<Λb,w
z }, the following inequality holds true.

(145) wz1
(
Xb,w

Λb,w , η
)
≤ wz+η

(
Xw, η

)
+ wz0

(
Xb,w, η

)
.

Similarly

(146) a.s. on {z>Λr,w
z1 }, wz1

(
Xr,w

Λr,w , η
)
≤ wz

(
Xr,w, η

)
.

Proof. First note that for all interval I , we get:

ocs
(
Xb,w

Λb,w , I
)

= sup
{∣∣Xb,w

Λb,w
t

−Xb,w

Λb,w
s

∣∣; s, t∈I} = sup
{∣∣Xb,w

t −Xb,w
s

∣∣; s, t∈{Λb,w
u ;u∈I

}}
.

We then fix η, a, b ∈ (0,∞) such that b−a ≥ η. By (30), θb,wb−−θ
b,w
a ≥ b−a ≥ η. Since Λb,w is

non-decrasing and continuous and since θb,w is increasing, we get {Λb,w
t ; t∈ [θb,wa , θb,wb− )}=[a, b) and

ocs
(
Xb,w

Λb,w , [θ
b,w
a , θb,wb− )

)
=ocs

(
Xb,w, [a, b)

)
.

We next suppose that ∆θb,wb >0. Then, {Λb,w
t ; t∈ [θb,wa , θb,wb )}=[a, b] and by (143), we get

(147) ocs
(
Xb,w

Λb,w , [θ
b,w
a , θb,wb )

)
=ocs

(
Xb,w, [a, b]

)
≤ ocs

(
Xb,w, [a, b)

)
+ |∆Xb,w

b |.

Since the process Xb,w
Λb,w is constant on [θb,wb− , θ

b,w
b ), we also get

(148) max
(
ocs
(
Xb,w

Λb,w , [θ
b,w
a , θb,wb− )

)
, ocs

(
Xb,w

Λb,w , [θ
b,w
b− , θ

b,w
b )
))

= ocs
(
Xb,w, [a, b)

)
.

We next assume that ∆θb,wb ∈ (0, η) and we want to control |∆Xb,w
b | in terms of the càdlàg

η-modulus of continuity of Xw. To that end, first observe that ∆θb,wb > 0 implies that [θb,wb− , θ
b,w
b ) is

a connected component of Red; by (130), there exists p≥ 1 such that θb,wb− = sj(p): namely, θb,wb− is
the time of arrival of a red client who interrupts a blue one. By (134), for all t ∈ [sj(p), sj(p)+1),
Xw
t ≥Xw

sj(p)−=Y w(Λb,w
sj(p)); moreover ∆Xb,w

b =∆Xw

θb,wb−
. To summarize:

(149) ∀t∈ [θb,wb− , θ
b,w
b ), Xw

t >X
w

(θb,wb−)−=Xw

θb,wb
and ∆Xw

θb,wb−
=Xw

θb,wb−
−Xw

(θb,wb−)−=∆Xb,w
b

Let z∈(0,∞) such that θb,wb− ≤z and let 0= t0<. . .<tr=z+η be such that min1≤i≤r−1(ti−ti−1)≥
η. Then, there exists i∈{1, . . . , r} such that ti−1≤θb,wb− <ti. There are two cases to consider:

– If ti−1<θ
b,w
b− , then, by the last point of (149), osc(Xw, [ti−1, ti))≥|∆Xw(θb,wb− )|= |∆Xb,w

b |.
– If ti−1 =θb,wb− , since ∆θb,wb ∈(0, η), θb,wb <ti. Then osc(Xw, [ti−1, ti))≥|Xw(θb,wb− )−Xw(θb,wb )|.

Recall from the first part of (149) thatXw((θb,wb− )−)=Xw(θb,wb ). Thus, |Xw(θb,wb− )−Xw(θb,wb )|=
|∆Xw(θb,wb− )| and we also get osc(Xw, [ti−1, ti))≥|∆Xw(θb,wb− )|= |∆Xb,w

b |.
This proves that if ∆θb,wb ∈ (0, η) and if θb,wb− ≤ z, then |∆Xb,w

b |≤max1≤i<r osc(Xw, [ti−1, ti)) and
since it holds true for all subdivisions of [0, z + η] satisfying the conditions as above, we get

(150) a.s. on {θb,wb− ≤z ; ∆θb,wb ∈(0, η)}, |∆Xb,w
b |≤wz+η

(
Xw, η

)
.

We are now ready to prove (145). Let us fix z0, z ∈ (0,∞) and 0 = t0< . . .< tr = z0 such that
min1≤i≤r−1(ti−ti−1)≥ η. We assume that θb,wz0 ≤ z. For all i ∈ {1, . . . , r}, we set Si = {θb,wti } if
∆θb,wti < η and Si = {θb,wti−, θ

b,w
ti
} if ∆θb,wti ≥ η; we then define S = {s0 = 0 < . . . < sr′ = θb,wz0 } =

{0} ∪ S1 ∪ . . . ∪ Sr that is a subdivision of [0, θb,wz0 ] such that min1≤i≤r′−1(si−si−1)≥η (indeed,
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recall that θb,wti−−θ
b,w
ti−1
≥ ti−ti−1). By (148) (if Si has two points) and by (147) and (150) (if Si

reduces to a single point), we get

wθb,wz0

(
Xb,w

Λb,w , η) ≤ max
1≤i≤r′

(
osc
(
Xb,w

Λb,w , [si−1, si)
))
≤ wz+η

(
Xw, η

)
+ max

1≤i≤r

(
osc
(
Xb,w, [ti−1, ti)

))
Since it holds true for all subdivisions (ti) and since z′ 7→wz′(y(·), η) is non-decreasing, it easily
entails (145) under the assumption that z1≤θb,wz0 ≤z. We complete the proof of (145) by observing
that Λb,w

z1 ≤z0<Λb,w
z implies z1≤θb,wz0 ≤z.

The proof (146) is similar: let θr,wt = inf{s∈ [0,∞) : Λr,w
s > t}. Since s= Λb,w

s + Λr,w
s , we take

s= θr,wt to get θr,wt = Λb,w(θr,wt ) + t. Thus, θr,w is strictly increasing and for all a, b∈ (0,∞) such
that b>a, we get θr,wb−−θ

r,w
a ≥b−a and {Λr,w

t ; t∈ [θr,wa , θr,wb− )}=[a, b). Thus,

ocs
(
Xr,w

Λr,w , [θ
r,w
a , θr,wb− )

)
=ocs

(
Xr,w, [a, b)

)
.

We next suppose that ∆θr,wb >0. Note that {Λr,w
t ; t∈ [θr,wa , θr,wb )}=[a, b] and by (143), we get

ocs
(
Xr,w

Λr,w , [θ
r,w
a , θr,wb )

)
=ocs

(
Xr,w, [a, b]

)
≤ ocs

(
Xr,w, [a, b)

)
+ |∆Xr,w

b |.

Then, θr,wb− is the departure time of a red client interrupting a blue client: namely, there exists p≥1
such that sj(p)+1 = θr,wb− . Recall that xp =

∑
1≤q≤pwJj(q) and that necessarily, b = γr,wxp . Thus,

∆Xr,w
b =0. Thus, for all b>a>0, we have proved that

ocs
(
Xr,w

Λr,w , [θ
r,w
a , θr,wb )

)
= ocs

(
Xr,w, [a, b)

)
and we argue as in the proof of (145) to complete the proof of (146). �

5 Properties of the limiting processes.

5.1 The height process of a Lévy tree.

In this section we briefly recall various properties of the height process associated with a Lévy
process. To that end, we fix α, β∈ [0,∞), κ∈(0,∞), c=(cj)j≥1∈` ↓3 and we set

(151) ∀λ∈ [0,∞), ψ(λ)=αλ+ 1
2 βλ

2 +
∑
j≥1

κcj
(
e−λcj−1+λcj

)
.

and we assume that

(152)
∫ ∞ dλ

ψ(λ)
<∞ .

Let (Xt)t∈[0,∞) be a spectrally positive Lévy process with initial state X0 =0 and with Laplace
exponent ψ: namely, log E[exp(−λXt)] = tψ(λ), for all t, λ ∈ [0,∞). Then, the Lévy measure
of X is π =

∑
j≥1 κcjδcj , its Brownian parameter is β and its drift is α. Since α ≥ 0, X does

not drift to ∞: namely a.s. lim inft→∞Xt = −∞. Note that (152) implies that either β > 0 or
σ2(c)=

∫
(0,∞) rπ(dr)=∞, which also entails that X has infinite variation sample paths.

5.1.1 Local time at the supremum.

For all t ∈ [0,∞), we set St = sups∈[0,t]Xs. Basic results of fluctuation theory entail that S−X
is a strong Markov process in [0,∞) and that 0 is regular for (0,∞) and recurrent with respect to
this Markov process (see for instance Bertoin [6] VI.1). We denote by (Lt)t∈[0,∞) the local time of
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X at its supremum (namely, the local time of S−X at 0), whose normalisation is such that for all
t∈ [0,∞) the following holds in probability:

(153) Lt = lim
ε→0

1

ε

∫ t

0
1{Ss−Xs≤ε} ds

See Le Gall & D. [21] (Chapter 1, Lemma 1.1.3 p. 21) for more details. If β > 0, then standard
results on subordinators imply that a.s. for all t∈ [0,∞), Lt = 2

β `({Ss; s∈ [0, t]}), where ` stands
for the Lebesgue measure. When σ2(c) =∞, we also recall the following approximation of L: for
all ε∈(0, c1), we set

(154) q(ε)=

∫
(ε,∞)
dxπ((x,∞)) =

∑
j≥1

κcj(cj−ε)+ and L ε
t =

{
s∈(0, t] : Ss− + ε<Xs

}
.

If σ2(c)=∞, then the following approximation holds true.

(155) ∀x, t∈(0,∞), E
[
1{Lt≤x} sup

s∈[0,t]

∣∣Ls− 1

q(ε)
#L ε

s

∣∣2] ≤ x

q(ε)
.

This is a standard consequence of the decomposition of X into excursions under its supremum: see
Bertoin [6], Chapter VI.

5.1.2 The height process.

For all t∈ (0,∞), we denote by X̂t=(Xt−X(t−s)−)s∈[0,t] the process X reversed at time t; recall
that X̂t has the same law as (Xs)s∈[0,t]. Under (152), Le Gall & Le Jan [33] (see also Le Gall &
D. [21]) prove that there exists a continuous process H=(Ht)t∈[0,∞) such that for all

(156) ∀t∈ [0,∞), a.s. Ht = Lt(X̂
t) .

Namely, Ht is a.s. equal to the local time at of X̂t at its supremum evaluated at time t. The previous
approximations of L have the following consequences. First introduce the following:

(157) ∀t≥s≥0, Its= inf
r∈[s,t]

Xr, It=I0
t = inf

r∈[0,t]
Xr and H ε

t =
{
s∈(0, t] : Xs− + ε < Ist

}
Then we easily derive from (156) and (153) that (45) holds true: namely,Ht=limε→0

1
ε

∫ t
01{Xs−Ist≤ε} ds

in probability. Of course,

(158) If β>0, then a.s. for all t∈ [0,∞), Ht=
2

β
`({Ist ; s∈ [0, t]}) .

If σ2(c) =∞, then (156) and (155) easily imply that for all t∈ [0,∞), Ht = limε→0
1
q(ε) #H ε

t in
probability. Actually, a closer look at the uniform approximation (155) shows the following.

(159) If σ2(c)=∞, then ∀t∈ [0,∞), ∃(εk)k∈N decreasing to 0 such that:

P-a.s. for all s∈ [0, t] such that Xs−≤Ist , Hs = lim
k→∞

1

q(εk)
#H εk

s .

We shall need the following lemma.

Lemma 5.1 We assume (152). Then P-a.s. for all t1>t0, if for all t∈ (t0, t1), Xt>Xt0−=Xt1 ,
then for all t∈(t0, t1), Ht≥Ht0 =Ht1 .
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Proof: let t1 > t0 be such that for all t ∈ (t0, t1), Xt > Xt0− = Xt1 . Since X has only positive
jumps, it implies that ∆Xt1 = 0; thus, for all s∈ [t0, t1], we get Ist1 =Xt1 and for all s∈ [0, t0) and
for all t∈ [t0, t1], we get Ist1 =Ist0 =Ist . It implies for all t∈ [t0, t1], that {Ist0 ; s∈ [0, t0)}\{Xt0−}=
{Ist1 ; s∈ [0, t1)}\{Xt1} ⊂ {Ist ; s∈ [0, t)} which entails the desired result when β>0 by (158).

Suppose next that σ2(c) =∞. By a diagonal argument and (159), there is a sequence (εk)k∈N
decreasing to 0 such that P-a.s. for all t ∈ [0,∞)∩Q and for all s ∈ [0, t] such that Xs− ≤ Ist ,
Hs = limk→∞ 1

q(εk) #H εk
s . First observe that for all t∈ (t0, t1) ∩ Q, we get Xt0−≤ It0t and that

#H εk
t0
⊂ #H εk

t , for all k. Consequently, Ht0 ≤ Ht, for all t ∈ (t0, t1) ∩ Q, and thus for all
t∈ [t0, t1] since H is continuous.

Let t ∈ (t1,∞) ∩ Q. Let s ∈ [t1, t] be such that Xs− = It1t . Then observe that Xs− ≤ Ist and
that #H εk

s ⊂#H εk
t0

for all k. Consequently, Hs ≤ Ht0 . Since s can be arbitrarily close to t1,
the continuity of H entails that Ht1 ≤Ht0 and the previous inequality implies Ht1 =Ht0 , which
completes the proof of the lemma. �

5.1.3 Excursion of the height process.

Recall that (152) implies that X has unbounded variation sample paths. Then, basic results of
fluctuation theory entail that X−I is a strong Markov process in [0,∞), that 0 is regular for (0,∞)
and recurrent with respect to this Markov process. Moreover,−I is a local time at 0 for X−I (see
Bertoin [6], Theorem VII.1). We denote by N the corresponding excursion measure of X−I above
0. It is not difficult to derive from the previous approximations of Ht, that Ht only depends on the
excursion of X−I above 0 that straddles t. Moreover, the following holds true:

(160) Z = {t∈R+ : Ht=0} = {t∈R+ : Xt=It}

(see Le Gall & D. [21] Chapter 1). Since −I is a local time for X−I at 0, the topological support
of the Stieltjes measure d(−I) is Z . Namely,

(161) P-a.s. for all s, t∈ [0,∞) such that s<t,
(

(s, t) ∩Z 6= ∅
)
⇐⇒

(
Is>It

)
Denote by (ai, bi), i∈ I, the connected components of the open set {t∈ [0,∞) : Ht> 0} and set
H i
s=H(ai+s)∧bi , s∈R+. Then, the point measure

(162)
∑
i∈I

δ(−Iai , Hi)

is a Poisson point measure on R+×C([0,∞),R) with intensity dxN(dH), where, with a slight
abuse of notation, N(dH) stands for the "distribution" of H(X) under N(dX). In the Brownian
case, up to scaling, N is Itô positive excursion of Brownian motion and the decomposition (162)
corresponds to the Poisson decomposition of a reflected Brownian motion above 0. For more details,
we refer to Le Gall & D. [21] Chapter 1.

As a consequence of (160), X and H under N have the same lifetime ζ. This lifetime satisfies
the following.

(163) N-a.e. ζ <∞, ∀t∈ [ζ,∞), X0 =H0 =Xt=Ht=0 and ∀t∈(0, ζ), Xt and Ht>0.

We next define for all x ∈ [0,∞), γx = inf{t ∈ [0,∞) : Xt < −x}. Basic results of fluctuation
theory (see e.g. Bertoin [6], Chapter VII) imply that (γx)x∈[0,∞) is a subordinator whose Laplace
exponent is the inverse function ψ−1. Moreover (152) entails that limλ→∞ ψ

−1(λ)/λ= 0; conse-
quently, (γx) has no drift: it is a pure jump-process; thus, a.s. γx =

∑
i∈I 1[0,x](−Iai)ζi (with an

obvious notation) and we get

(164) ∀λ ∈ (0,∞) , N
[
1−e−λζ

]
= ψ−1(λ),
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We next recall from Le Gall & D. [21] (Chapter 1, Corollary 1.4.2, p. 41) the following:

(165) ∀a ∈ (0,∞), v(a) = N
(

sup
t∈[0,ζ]

Ht > a
)

satisfies
∫ ∞
v(a)

dλ

ψ(λ)
= t .

Note that v : (0,∞)→ (0,∞) is a bijective decreasing C∞ function. By excursion theory, we then
get

(166) ∀x, a∈(0,∞), P
(

sup
t∈[0,γx]

Ht > a
)

= e−xv(a) .

5.2 Properties of the coloured processes.

Let α ∈ R, β ∈ [0,∞), κ ∈ (0,∞) and c = (cj)j≥1 ∈ ` ↓3 . For all j ≥ 1, let (Nj(t))t∈[0,∞) be
a homogeneous Poisson process with jump rate κcj ; let B be a standard Brownian motion with
initial value 0. We assume that the processes B and Nj are independent. Let (Br;N ′j , j ≥ 1) be
independent copies of (B;Nj , j≥1). Recall from (36) that for all t∈ [0,∞), we have set

Xb
t = −αt+

√
βBt+

∑
j≥1

⊥ cj
(
Nj(t)−cjκt

)
and Xr

t = −αt+
√
βBr

t +
∑
j≥1

⊥ cj
(
N ′j(t)−cjκt

)
,

where
∑⊥

j≥1 stands for the sum of orthogonal L2-martingales. Then Xb and Xr are two indepen-
dent spectrally positive Lévy processes whose Laplace exponent ψ is defined by (151). Recall that
(152) implies (38), namely: either β > 0 or σ2(c) =∞. We recall from (39) the definitions of
(At)t∈[0,∞) and of (Yt)t∈[0,∞):

(167) ∀t∈ [0,∞), At = 1
2 κβt

2 +
∑
j≥1

cj
(
Nj(t)−1

)
+

and Yt = Xb
t −At.

Recall the notation γrx = inf{s∈ [0,∞) :Xr
s <−x}, with the convention that inf ∅=∞. Next, we

recall from (41) and (42) the following definitions for all x, t∈ [0,∞):

(168) θbt = t+ γrAt , Λb
t =inf{s∈ [0,∞) :θbs>t} and Λr

t = t−Λb
t .

5.2.1 Properties of A.

Proof of Lemma 2.5. We assume (38). Namely: either β > 0 or σ2(c) = ∞. If β > 0, then
clearly a.s. A is increasing. Suppose that σ2(c) =∞. With the notation of (167), observe that for
all s, t∈(0,∞), ∑

j≥1

1{Nj(t)≥1;Nj(t+s)−Nj(t)≥1} ≤ #
{
a∈(t, t+ s] : ∆Aa>0

}
.

Note that P(Nj(t)≥ 1;Nj(t + s)−Nj(t)≥ 1) = (1−exp(−κcjt))(1−exp(−κcjs)). Since there
exists K∈(0,∞), such that(1−exp(−κcjt))(1−exp(−κcjs))≥Kc2j for all j≥1, Borel’s Lemma
implies that a.s. #

{
a∈ (t, t+ s] : ∆Aa>0

}
=∞. This easily implies that A is strictly increasing.

To complete the proof of the lemma, observe that under (38),Xb has infinite variation sample paths.
By (167) Y =Xb−A. Since Y has bounded variation sample paths (it is incresing), Y has infinite
variation sample paths. �

We shall need the following estimates on A in the proof of Theorem 2.6.

Lemma 5.2 We assume (38). For all t∈ [0,∞) we set A−1
t =inf

{
s∈ [0,∞) : As>t

}
, that is well

defined. Then, A−1 is a continuous process and there exists a0, a1, a2∈ (0,∞) that depend on β, κ
and c, such that

(169) ∀t∈ [0,∞), E
[
A−1
t

]
≤ a1t+ a0 and E

[
(A−1

t )2
]
≤a2t

2 + a1t+ a0 .
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Proof: first suppose that c1 > 0. Then, by (167) At≥ c1(N1(t)−1)+≥ c1N1(t)−c1. This entails
that A tend to∞ and therefore that A−1 is well defined. Moreover, we get A−1

t ≤N−1
1 (1 + (t/c1)),

where: N−1
1 (t) = inf{s∈ [0,∞) : N1(s) > t}. Note that N−1

1 (t) is the sum of dte exponentially
distributed r.v. with parameter κc1, which implies that E[N−1

1 (t)] = dte/(κc1) and E[N−1
1 (t)2] =

(dte2 + dte)/(κc1)2. Thus,

E
[
A−1
t

]
≤ 1

κc21
t+

2

κc1
and E

[
(A−1

t )2
]
≤ 1

κ2c41
t2 +

6

κ2c31
t+

6

κ2c21
.

If c= 0, then β>0, by (38) and A−1
t =

√
2t/(βκ) and it is easy to see that it is possible to choose

a0, a1, a2∈ (0,∞) such that (169). By Lemma 2.5, A is strictly increasing and standard arguments
entail that A−1 is continuous. �

5.2.2 Proof of Theorem 2.6.

Let us first introduce notation. We first say that a martingale (Mt)t∈[0,∞) is of class (M ) if

(a) a.s. M0 =0,

(b) M is càdlàg,

(c) there exists c∈ [0,∞) such that a.s. for all t∈ [0,∞), 0≤∆Mt≤c,
(d) for all t∈ [0,∞), E[M2

t ]<∞.

Let M be a class (M ) martingale relatively to a filtration (Ft)t∈[0,∞). Let 〈M〉 stands for its
quadratic variation process that is the continuous process such that (M2

t −〈M〉t)t∈[0,∞) is a (Ft)-
martingale. We shall repeatedly use the following standard optional stopping theorem:

(Stp) Let S and T be two (Ft)-stopping times such that a.s. S≤T <∞ and E[〈M〉T ]<∞. Then,
E[M2

T ]=E[〈M〉T ] and a.s. MS =E[MT |FS ].

Then, the characteristic measure of M is a random measure V on [0,∞)×(0,∞) such that:

• for all ε∈(0,∞), the process t 7→V
(
[0, t]×[ε,∞)

)
is (Ft)-predictable;

• t 7−→∑
s∈[0,t] 1[ε,∞)(∆Ms)− V

(
[0, t]×[ε,∞)

)
is a (Ft)-martingale.

(See Jacod & Shiryaev [30], Chapter II, Theorem 2.21, p. 80.) The purely discontinuous part of
M is obtained as the V-compensated sum of its jumps: namely, the L2-limit as ε goes to 0 of the
martingales t 7−→ ∑

s∈[0,t]∆Ms 1[ε,∞)(∆Ms)−
∫

[0,t]×[ε,∞)r V(dsdr). The purely discontinuous
part of M is denoted by Md and it is a (Ft)-martingale in the class (M ). The continuous part of
M is the continuous (Ft)-martingale M c = M−Md. Note that M c is also a (Ft)-martingale in
the class (M ). We call (〈M c〉,V) the characteristics of M . For more details see Jacod & Shiryaev
[30] Chapter II, Definition 2.16 p. 76 and §2.d, Theorem 2.34, p. 84, on the canonical representation
of semi-martingales.

Let (FN
t )t∈[0,∞) (resp. (FB

t )t∈[0,∞)) the right-continuous filtration associated with natural fil-
tration of the process (Nj(·))j≥1 (resp. B). We also denote F 0

t = σ(FN
t ,F

B
t ), t ∈ [0,∞). We

set
∀t∈ [0,∞), X∗bt = Xb

t + αt =
√
βBt +

∑
j≥1

⊥ cj
(
Nj(t)−cjκt

)
.

By standard arguments on Lévy processes, X∗b is a (F 0
t )-martingale. Moreover, set a3 = β +

κσ3(c); then, we easily check that

(170) t 7−→(X∗bt )2−a3t is a (F 0
t )-martingale.

Moreover, we easily check that isX∗b in the class (M ) and that its (deterministic) characteristic are
the following: its characteristic measure is dt⊗ π(dr), where π(dr)=

∑
j≥1 κcjδcj ; its continuous

part is
√
β.Bb, whose quadratic variation process is t 7→ βt. To prove Theorem 2.6, we shall use the

converse of this result: namely, a martingale whose characteristics are dt⊗ π(dr) and t 7→ βt has
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necessarilty the same law as X∗b (for a proof see Jacod & Shiryaev [30] Chapter II, §4.c, Corollary
4.18, p. 107). To that end, one computes the characteristic of several time-change of X∗b and Xr.

First, recall from Lemma 5.2, that A−1 is continuous and note that A−1
t is a (F 0

r )-stopping
time. We set

∀t ∈ [0,∞), M (1)

t =Xb(A−1(t)) and F 1
t =F 0(A−1

t ) .

By (170), 〈X∗b〉t = a3t and (169) combined with (Stp) imply that M (1) is a square integrable
(F 1

t )-martingale and that E[(M (1)
t )2]=a3E[A−1

t ]. Then, set g(r)=inf{s∈ [0,∞) : A−1
s =r}, for

all r∈ [0,∞). We easily check that:

(171) g :
{
r∈ [0, A−1

t ] : ∆X∗br >0
}
−→

{
s∈ [0, t] : ∆M (1)

s > 0
}

is one-to-one

and since A−1 is continuous, if ∆M (1)
s > 0, then there exists r ∈ [0,∞) such that g(r) = s and

∆M (1)
s =∆X∗br . This implies that M (1) is in the class (M ).

For all ε∈(0,∞), we next set

∀t∈ [0,∞), Jεt =
∑

r′∈[0,r]

1[ε,∞)(∆X
∗b
r′ )− rπ([ε,∞))

that is a (F 0
r )-martingale in the class (M ) such that 〈Jε〉r=π([ε,∞))r, and (169) combined with

(Stp) entails that Jε ◦A−1 is a square integrable (F 1
t )-martingale. Moreover, (171) entails that

Jε(A−1
t )=

∑
s∈[0,t] 1[ε,∞)(∆M

(1)
s )−A−1

t π([ε,∞)). Since A−1 continuous, it is (F 1
t )-predictable

and dA−1
t ⊗π(dr) is the characteristic measure of M (1) . It easily entails that the continuous part

of M (1) is
√
β.B ◦A−1. We next set Qt = βB2

t −βt; by Itô’s formula 〈Q〉t = 4β2
∫ t

0 B
2
sds and

thus, E[〈Q〉t] = 2β2t2. Since A−1 is independent of B, E[〈Q〉(A−1
t )] = 2β2E[(A−1

t )2] that is a
finite quantity by (169). Then, by (Stp), we see that 〈√β.B◦A−1〉=β.A−1. We have proved that
β.A−1 and dA−1

t ⊗π(dr) are the characteristics of M (1) . It is easy to realize that M (1) is also a
martingale relatively to the natural filtration of (A−1,M (1)) with the same characteristics β.A−1

and dA−1
t ⊗π(dr). We next prove the following lemma.

Lemma 5.3 LetE be a Polish space and let (Zt)t∈[0,∞) aE-valued càdlàg process. Let (Mr)r∈[0,∞)

be a càdlàg martingale relatively to the natural filtration of Z. Let (φt)[0,∞) be a nondecreasing
càd process that is adapted to a filtration (Gt)t∈[0,∞) we assume that Z and G∞ are independent
and that for all t∈ [0,∞),

∫
P(φt∈dr)E[|Mr|]<∞. We set Ft =σ(Z·∧φt ,Gt), for all t∈ [0,∞).

Then, M ◦φ is a càdlàg (Ft)-martingale.

Proof: let t, r1, . . . , rn∈ [0,∞) and let s∈ [0, t]. Let G : En→ [0,∞) be bounded and measurable
and letQ be a nonnegative bounded Gs-measurable random variable. Then independence properties
imply the following

E
[
MφtQG

(
(Zrk∧φs)1≤k≤n

)]
=

∫
P(φt∈dr′;φs∈dr;Q∈dq) qE

[
Mr′G

(
(Zrk∧r)1≤k≤n

)]
=

∫
P(φt∈dr′;φs∈dr;Q∈dq) qE

[
MrG

(
(Zrk∧r)1≤k≤n

)]
= E

[
MφsQG

(
(Zrk∧φs)1≤k≤n

)]
,

and we completes the proof by use of the monotone class theorem. �

Recall from the beginning of Section 5.2 the definitions of the processes Br, (N ′j(·))j≥1 and
Xr; recall that Xr is an independent copy of Xb. We next need the following result. For all
t∈ [0,∞), we set Irt =infs∈[0,t]X

r
s . Then,

(172) ∀p, t∈(0,∞), E[(−Irt )p]<∞ .
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Indeed, recall that γrx=inf{t∈ [0,∞)Xr
t <−x} and that x 7→γrx is a (possibly killed) subordinator

with Laplace exponent ψ−1. Then for all λ∈(0,∞) we get the following

E[(−Irt )p] =

∫ ∞
0
pxp−1P(−Irt >x) dx ≤

∫ ∞
0
pxp−1P(γrx ≤ t)dx

≤
∫ ∞

0
pxp−1eλtE[e−λγ

r
x ] dx = pΓ(p)(ψ−1(λ))−peλt ,

which entails (172). �

We apply Lemma 5.3 to Z = (A−1,M (1)), to φt = −Irt , to (Gt) that is taken as the right-
continuous filtration associated with the natural filtration of (Br;N ′j , j≥1), and to M =M (1), first,
and toM=Jε◦A−1, next. Recall that E

[
(M (1)

t )2
]
=a3E[A−1

t ]≤a3(a1t+a0) and E
[
Jε(A−1

t )2
]
=

π([ε,∞))E[A−1
t ]≤π([ε,∞))(a1t+ a0), by (169). In both cases (M =M (1)or M =Jε◦A−1), we

get
∫

P(−Irt ∈dr)E[M2
r ]<∞, by (172). Then, we set for all t∈ [0,∞),

M
(2)
t =M

(1)
−Irt

, J ′εt =JεA−1(−Irt ) and F 2
t =σ

(
Gt, A

−1
·∧(−Irt ),M

(1)
·∧(−Irt )

)
.

Lemma 5.3 asserts that M (2) and J ′ε are (F 2
t )-square integrable martingales. Since they are càdlàg

processes standard arguments entail they are also (F 2
t+)t∈[0,∞)-martingales.

Then, set g′(r) = inf{t ∈ [0,∞) : −Irt = r}, for all r ∈ [0,∞). It is easy to check that g′ is
one-to-one correspondence between {r ∈ [0,−Irt ] : ∆M (1)

r > 0} and {s∈ [0, t] : ∆M (2)
s > 0}. This

first entails that M (2) is in the class (M ). It also implies that

(173) J ′εt =
∑
s∈[0,t]

1[ε,∞)(∆M
(2)
t )−A−1(−Irt )π([ε,∞)) .

Since t 7→A−1(−Irt ) is continuous, it is (F 2
t )-predictable and therefore, the characteristic measure

of M (2) is d(A−1◦(−Ir))(t)⊗ π(dr).
Consequently, the continuous part of M (2) is

√
β.B◦A−1◦(−Ir). We then apply Lemma 5.3

to M = (B ◦ A−1)2 − A−1: note that E[|Mt|] ≤ 2E[A−1
t ] ≤ 2(a1t + a0), by (169); thus (172)

entails
∫

P(−Irt ∈dr)E[|Mr|]<∞; thus, Lemma 5.3 applies and asserts that M ◦(−Ir) is a (F 2
t )-

martigale; by standard arguments, it is also a (F 2
t+). This entails that β.A−1◦(−Ir) is the quadratic

variation of
√
β.B◦A−1◦(−Ir) that is the continuous part of M (2) . Thus,

√
β.B◦A−1◦(−Ir) and

d(A−1◦(−Ir))(t)⊗ π(dr) are the (F 2
t+)-characteristics of M (2) .

Recall from (168) the notations θb, Λb and Λr. Then we check that a.s.

(174) ∀t∈ [0,∞), θrt := inf
{
s∈ [0,∞) : Λr

s > t
}

= t+A−1(−Irt ) .

Indeed, for all r < A−1(−Irt ), since A is strictly increasing, we get Ar < −Irt , which entails
γr(Ar)<t. Since θbr−r=γr(Ar) and thus θbr<t+ r<t+A−1(−Irt ). Consequently, r=Λb(θbr)≤
Λb(t+A−1(−Irt )). Since it is true for all r<A−1(−Irt ), we get A−1(−Irt )≤Λb(t+A−1(−Irt )).

Similarly, suppose that r>A−1(−Irt ). SinceA is strictly increasing, we getAr>−Irt and thus,
γr(Ar)>t. Consequently, θbr>t+r>t+A−1(−Irt ) and r≥Λb(t+A−1(−Irt )). Since it holds for
all r>A−1(−Irt ), it entailsA−1(−Irt )≥Λb(t+A−1(−Irt )). Thus,A−1(−Irt )=Λb(t+A−1(−Irt )).
By (168), Λr(t+A−1(−Irt ))= t, which completes the proof. �

We next set for all t∈ [0,∞),

X∗rt = Xr
t + αt and Mt=X∗rt +M (2)

t .

Clearly, M is a (F 2
t+)-martingale in the class (M ). Note that X∗r and M (2) do not jump simulta-

neously. Thus, by (173) and (174), we get

J ′′εt = J ′εt +
∑
s∈[0,t]

1[ε,∞)(∆X
∗r
s )− tπ([ε,∞)) =

∑
s∈[0,t]

1[ε,∞)(∆Ms)− θrt π([ε,∞)) .
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Moreover, J ′′ε is clearly a (F 2
t+)-martingale. By (174), θr is continuous and strictly increasing;

therefore it is (F 2
t+)-predictable. This implies that the characteristic measure of M is dθrt ⊗ π(dr).

Consequently, the continuous component of M is M c
t =
√
β(Br

t + B(A−1(−Irt ))). The inde-
pendence of B, A−1 and Br easily entails that t 7→ Br

t + B(A−1(−Irt ))) is a (F 2
t+)-martingale.

Moreover, recall that the quadratic variation of
√
β.B ◦A−1 ◦ (−Ir) is equal to β.A−1 ◦ (−Ir).

Thus, it is easy to see that the quadratic variation of M c is equal to β.θr. We have proved that the
characteristics of M are β.θr and dθrt ⊗ π(dr).

We next recall from (174) that Λr is the inverse of θr that is also strictly increasing and contin-
uous. We set X∗=M ◦Λr and we see that a.s. for all t∈ [0,∞),

X∗t = X∗r(Λr
t ) +X∗b(A−1(−Ir(Λr

t )))

= X∗r(Λr
t ) +X∗b(Λb

t )

= Xr(Λr
t ) +Xb(Λb

t ) + αt .(175)

Indeed, the first equality is a direct consequence of the definition; then recall from (174) that
A−1(−Irt ) = θrt − t, thus, A−1(−Ir(Λr

t )) = t−Λr
t = Λb

t , which entails the second equality and
also (175). �

Observe that for all t ∈ [0,∞), Λr
t is a (F 2

r+)-stopping time such that Λr
t ≤ t. We then set

Ft = F 2(Λr
t+). Then, the optional stopping theorem applies to M and J ′′ε to show that X and

J ′′ε◦Λr are (Ft)-square integrable martingales. Since Λr is strictly increasing and continuous, X
is in the class (M ) and J ′′ε(Λr

t )=
∑

s∈[0,t] 1[ε,∞)(∆Ms)− tπ([ε,∞)). This proves that dt⊗π(dr)
is the characteristic measure of X∗. Consequently, M c◦Λr is the continuous part of X∗. Since Λr

is a bounded stopping-time, the optional stopping theorem applies to the martingale (M c)2−βθr
and it entails that 〈M c◦Λr〉t = βt. Thus, the characteristics of X∗ are t 7→ βt and dt⊗π(dr). By
[30] Corollary 4.18 in Jacod & Shiryaev [30] (Chapter II, §4.c, p. 107), it implies that X∗ has the
same law as X∗b, which completes the proof of Theorem 2.6 by (175). �

5.2.3 Properties of X and Y .

Next, we recall from (41) and (42) the following definitions for all x, t∈ [0,∞):

γrx= inf{s∈ [0,∞) :Xr
s <−x}, θbt = t+ γrAt , Λb

t =inf{s∈ [0,∞) :θbs>t} and Λr
t = t−Λb

t .

We also recall from (43) that Xt =Xb(Λb
t) + Xr(Λr

t) for all t ∈ [0,∞). Let us mention that the
proof of the following lemma does not use Theorem 2.6.

Lemma 5.4 Let α, β ∈ [0,∞), κ ∈ (0,∞) and c = (cj)j≥1 ∈ ` ↓3 satisfy (38). Then, P-a.s. the
following holds true for all a∈ [0,∞).

(i) Xθba
=Ya.

(ii) If ∆θba=0, then t=θba is the unique t∈ [0,∞) such that Λb
t =a.

(iii) If ∆θba>0, then ∆X(θba−)=∆Aa and ∆Ya=0. Moreover,

∀t∈
(
θba−, θ

b
a

)
, Xt≥Xt−>X(θba−)−=Xθba

=Ya .

Proof: observe that Λr(θba) = θba−Λb(θba) = θba−a= γr(Aa). Thus, X(θba) =Xb
a + Xr(γr(Aa))=

Xb
a−Aa=Ya, which proves (i). We next prove (ii): since Λb is the pseudo-inverse of θb, if Λb

t =a,
then θba−≤ t≤θba; this immediately implies (ii).

We next prove (iii): we suppose that ∆θba>0. Observe that θb is strictly increasing. Thus, for
all b<a, θbb <θ

b
a− and Ya−=limb→a− Yb=limb→a−X(θbb )=X(θba−−) by (i).

We first assume that ∆Aa > 0. Since the processesXb andXr are independent Lévy processes,
it is easy to check that a.s. {x ∈ [0,∞) : ∆γrx > 0} ∩ {Aa−; a ∈ [0,∞) : ∆Aa > 0} = ∅. Thus,

55



θba−=a+ γr(Aa−), and for all t∈ [θba−, θ
b
a], Λb

t =a and Λr
t = t−a= t−θba− + γr(Aa−). Thus, for

all s∈ [0,∆θba],

(176) Xs+θba−
=Xb

a +Xr
s+γr(Aa−) =Ya +Aa +Xr

s+γr(Aa−).

Taking s=0 in the previous equality first entailsX(θba−)=Ya+∆Aa. Recall that Ya−=X(θba−−).
Thus, ∆X(θba−) = ∆Ya + ∆Aa, but since Y and A have distinct jump-times, and since we have
assumed that ∆Aa> 0, we get ∆X(θba−) = ∆Aa and ∆Ya = 0. Next, observe the following: since
θba−=a + γr(Aa−) and θba=a + γr(Aa), then for all s∈ (0,∆θba), Xr((s + γr(Aa−))−)>−Aa;
moreover by taking s=∆θba in (176), we see that X(θba)=Ya, by (i). Namely, for all t∈

(
θba−, θ

b
a

)
,

we get Xt≥Xt−>X((θba−)−)=Ya, which proves (iii) when ∆Aa>0.
We next assume that ∆θba > 0 and ∆Aa = 0. Consequently, θba−= a + γr((Aa)−). Since Xb

and Xr are independent, a.s. {x∈ [0,∞) : ∆γrx>0} ∩ {Aa; a∈ [0,∞) : ∆Ya>0}=∅. Therefore,
∆Ya=0. We also check that

(177) ∀s∈ [0,∆θba], Xs+θba−
=Ya +Aa +Xr

s+γr((Aa)−) .

Since θba = a + γr(Aa), applying (177) at s= 0 and s= ∆θba implies that X(θba−) =X(θba) = Ya.
Since X(θba−−)=Ya−, we get ∆X(θba−)=∆Ya=∆Aa=0. then, observe that for all s∈ (0,∆θba),
Xr((s + γr(Aa−))−)>−Aa; thus (177) entails (iii) when ∆Aa = 0, which completes the proof
of the lemma. �

Lemma 5.5 Let α, β ∈ [0,∞), κ ∈ (0,∞) and c = (cj)j≥1 ∈ ` ↓3 satisfy (38). Then, the following
holds true.

(i) P-a.s. if (∆Xr)(Λr
t )>0, then there exists a∈(0,∞) such that θba−<t<θ

b
a.

(ii) P-a.s. for all b∈ [0,∞) such that ∆Xr
b >0, there is a unique t∈ [0,∞) such that Λr

t =b.

(iii) For all t∈ [0,∞), set Qb
t =Xb

Λb
t

and Qr
t =Xr

Λr
t
. Then, a.s. for all t∈ [0,∞), ∆Qb

t∆Q
r
t =0.

Proof: suppose that (∆Xr)(Λr
t )> 0. To simplify notation, we set b= Λr

t and x=− infs∈[0,b]X
r
s .

Since Xr is a spectrally positive Lévy process, Xb > −x. Thus, b < γrx; moreover, since no
excursion above the infimum of the spectrally positive Lévy process Xr starts with a jump we also
get, γrx−<b. Thus, γrx−<b<γ

r
x. We next set a= sup{s∈ [0,∞) :As<x}. Then, Aa−≤x≤Aa

and we first prove the following:

(178) θba−− a≤γrx−<b<γrx≤θba− a .

Let us first supose that ∆Aa>0, then a.s γr(As)→γr(Aa−) as s→a−, since a.s. γr has no jump
at time Aa− because A and γr are independent. Thus, γr(Aa−)≤γr(x−). Similarly, a.s γr(As)→
γr(Aa) as s→ a+, which implies that γr(x) ≤ γr(Aa). Note that γr(Aa−) = θba−−a; and that
γr(Aa)=θba−a, by definition. This implies (178). Now suppose that ∆Aa=0. Then,Aa−=Aa=x
and θba−− a=γr(Aa−)=γr(x−), which also implies (178).

We next use (178) to prove (i): first observe that it implies that θba− < b + a < θba. But for all
s∈ (θba−, θ

b
a), Λb

s =a and thus Λr
s =s− a, which shows that on (θba−, θ

b
a), Λr is strictly increasing:

since b=Λr
a+b=Λr

t , we get t=a+ b and finally θba−<t<θ
b
a, which completes the proof of (i).

Let us prove (ii): let b∈ [0,∞) be such that ∆Xr
b > 0. Since Λr is continous and tends to∞,

there exists at least one time t∈ [0,∞) such that Λr
t = b. By (i), there exists a∈ (0,∞) such that

θba−< t< θ
b
a. But as previously noticed, Λr on (θba−, θ

b
a) is strictly increasing, which immediately

implies (ii).

Let us prove (iii): suppose that ∆Qr
t > 0. Since Λr is continous, it implies that ∆Xr(Λr

t )> 0
and by (i) there exists a ∈ (0,∞), such that θba− < t < θba; now observe that for all s ∈ (θba−, θ

b
a),

Λb
s=a. Thus, Qb is constant on this interval and it implies that ∆Qb

t =0. This proves (iii). �

56



5.2.4 Excursions of Y above its infimum.

By Theorem 2.6, X is a Lévy process whose Laplace exponent is ψ. recall from Section 5.1 that if
ψ satisfies (152), the height process H associated with X is a well-defined continuous process. We
prove the following lemma that entails Proposition 2.7.

Lemma 5.6 Let α, β ∈ [0,∞), κ ∈ (0,∞) and c = (cj)j≥1 ∈ ` ↓3 satisfy (152). For all t ∈ [0,∞),
we recall the following notation: It = infs∈[0,t]Xs, Jt = infs∈[0,t] Ys and Ht =H(θbt ). Then, the
following holds true.

(i) A.s. for all t∈ [0,∞), Xt≥Y (Λb
t ) and It = J(Λb

t).

(ii) A.s.
{
t∈ [0,∞) : Xt>It

}
=
{
t∈ [0,∞) : Y (Λb

t)>J(Λb
t)
}

.

(iii) A.s. the set E =
{
a∈ [0,∞) : Ya>Ja

}
is open. Moreover, if (l, r) is a connected component

of E , then Yl=Yr=Jl=Jr and for all a∈(l, r), we get Ja=Jl and Ya−∧Ya>Jl.
(iv) Set Z b={a∈ [0,∞) :Ya=Ja}. Then, P-a.s.

(179) ∀a, z∈ [0,∞) such that a<z,
(
Z b∩ (a, z) 6= ∅

)
⇐⇒

(
Jz<Ja

)
.

(v) A.s.H is continuous and a.s.
{
a∈ [0,∞) : Ya>Ja

}
=
{
a∈ [0,∞) : Ha>0

}
.

Proof: fix t∈ (0,∞) and set a=Λb
t. Thus, θba−≤ t≤θba. If ∆θba>0, then Lemma 5.4 (iii) implies

that Xs≥Ya = X(θba−−), for all s∈ [θba−, θ
b
a]. Thus, Xt≥Ya. If ∆θba = 0, t= θba and Xt =Ya by

Lemma 5.4 (i). Thus, we have proved that a.s. for all t∈ [0,∞), Xt≥Y (Λb
t).

Let z∈ [0, a] be such that Yz−= infy∈[0,a] Yy. Note that Yy =X(θby)→X((θbz−)−) as y→ z−.
Thus, Yz−=X((θbz−)−) and since θbz−≤θba−≤ t, we get infs∈[0,t]Xs= It≤J(Λb

t )= infy∈[0,a] Yy.
But since a.s. for all s∈ [0,∞), Xs≥Y (Λb

s), we get It≥J(Λb
t). Thus, It=J(Λb

t), which completes
the proof of (i).

We next fix t ∈ (0,∞) such that Xt > It; we set gt = sup{s < t :Xs = Is} and dt = inf{s >
t :Xs = Is}; standard result on the excursion of spectrally positive processes above their infimum
entails that ∆X(gt)=∆X(dt)=0: consequently, for all s∈ [gt, dt], Is=It=X(gt)=X(dt).

Let us suppose that Y (Λb
t)=J(Λb

t); to simplify, we set a=Λb
t , and thus we get θba−≤ t≤θba. If

∆θba=0, then by Lemma 5.4 (i), we getXt=X(θba)=Ya = Ja but Ja=It by (i) which contradicts
Xt>It. Thus, ∆θba> 0 and Lemma 5.4 (iii) asserts that for all s∈ (θba−, θ

b
a), Xs>X(θba) =Ya =

X((θba−)−). Recall that we suppose Ya=Ja and that It=Ja, by (i); thus, for all s∈ (θba−, θ
b
a), we

get Xs> Is=X(θba)=X((θba−)−). Thus, gt=θba− and dt=θba, and since ∆X(gt)=0, Lemma 5.4
(iii) entails that ∆Aa = ∆X(θba−) = 0. Thus we have proved that a.s. for all t∈ (0,∞), if Xt>It
and if Y (Λb

t) = J(Λb
t) then gt = θba− < dt = θba and ∆Aa = 0. We next use the following: for all

ε∈(0,∞),

(180) P-a.s.
∑

a∈[0,∞)

1{∆Aa=0 ; ∆θba>ε ;Ya=Ja} = 0.

Before proving (180), let us complete the proof of (ii): first note that (180) and the previous argu-
ments entail that a.s. for all t∈(0,∞), if Xt>It, then Y (Λb

t)>J(Λb
t). Next observe that if Xt=It,

then (i) implies that It = J(Λb
t )≤Y (Λb

t ) ≤ Xt. This shows that if Xt= It, then J(Λb
t ) =Y (Λb

t ),
which completes the proof of (ii), provided that (180) holds true.
Proof of (180). Suppose that ∆θba > ε and that ∆Aa = 0. Then θba− = a + γr(Aa−); since by
definition θba = a + γr(Aa), we get ∆θba = (∆γr)(Aa). For all x ∈ [0,∞), we set λx = inf{a ∈
[0,∞) : Aa > x}. By Lemma 2.5, a.s. A is strictly increasing, which implies that x 7→ λx is
continuous: we get a=λ(Aa) and (180) is clearly a consequence of the following

(181) P-a.s. Q(ε) =
∑

x∈[0,∞)

1{∆A(λx)=0 ; ∆γr(x)>ε ;Y (λx)=J(λx)} = 0.
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Let us prove (181): recall from (164) that N(ζ ∈ dr) is the Lévy measure of the subordinator γr;
since (Y,A) and Xr are independent, we get

E
[
Q(ε)

∣∣(Y,A)
]

= N(ζ >ε)

∫ ∞
0
dx1{∆A(λx)=0 ;Y (λx)=J(λx)} = N(ζ >ε)

∫ ∞
0
dAa1{∆Aa=0 ;Ya=Ja},

by an easy change of variable. Observe that dAa = κβa da+
∑

a′∈[0,∞) ∆Aa′δa′(da). Thus,

E
[
Q(ε)

∣∣(Y,A)
]

= N(ζ >ε)

∫ ∞
0
κβa da1{Ya=Ja} = N(ζ >ε)

∫ ∞
0
κβa da1{X(θba)=I(θba)},

since X(θba) =Ya (by Lemma 5.4 (i)) and since I(θba) = Ja by (i). The change of variable t= θba,
entails that

∫∞
0 a da1{X(θba)=I(θba)} =

∫∞
0 Λb

t dΛb
t 1{Xt=It}. Since Λb is 1-Lipschitz, and since∫∞

0 dt1{Xt=It} = 0 a.s., the previous arguments imply E
[
Q(ε)

∣∣(Y,A)
]

= 0 and (181) and (180).
This completes the proof of (ii).

Let us prove (iii): by standard results, E ′ := {t ∈ [0,∞) : Xt > It} is open and if (g, d) is a
connected component of E ′, then Xg =Xd = Ig = Id and for all t∈ (g, d), Xt−∧ Xt>Ig. Recall
that E =

{
a ∈ [0,∞) : Ya > Ja

}
and let a ∈ E . Since X(θba) = Ya and since I(θba) = Ja (by (i)),

we get θba ∈ E ′; denote by (g, d) the connected component of E ′ such that θba ∈ (g, d). By (i),
Xd =Xg = Y (Λb

g) = Y (Λb
d) = J(Λb

g) = J(Λb
d). We then set l= Λb

g and r = Λb
d. This proves that

Yl = Yr = Jr = Jl and that for all a∈ [l, r], Ja = Jl. By (ii), E ′ := {t∈ [0,∞) : Y (Λb
t )>J(Λb

t )};
since (g, d) is connected component of E ′, for all t∈ (g, d), we get Y (Λb

t)>J(Λb
t) = Jl and thus

l < Λb
t < r. Namely, Λb((g, d)) = (l, r) ⊂ E ; since neither l nor r are in E , (l, r) is a connected

component of E . This easily entails (iii).
Let us prove (iv). First recall from Section 5.1.3 the notation: Z =

{
t∈ [0,∞) :Xt = It

}
and

recall that the continuous process t 7→ −It is a local-time for Z : in particular, recall from (161)
that Z ∩(s, t) 6= ∅ iff It < Is. By (ii), Z =

{
t ∈ [0,∞) : Y (Λb

t) = J(Λb
t)
}

; it easily implies the
following: Z b∩ (a, z) 6= ∅ iff Z ∩ (θba, θ

b
z) 6=∅ which is equivalent to I(θbz)=Jz<Ja=I(θba) (by

(i)), which completes the proof of (iv).
Let us prove (v). Since H is continuous, H is càdlàg and Ha− = H(θba−). If ∆θba = 0, then

Ha− = Ha. We next assume that ∆θba > 0: by Lemma 5.4 (iii), for all t ∈ (θba−, θ
b
a), we get

Xt>X((θba−)−) =X(θba); we then apply Lemma 5.1 to t0 =θba− and t1 =θba: in particular we get
Ht0 =Ht1 , namely: Ha−=Ha. This proves that a.s.H is continuous.

Recall from above that E ′=
{
t∈ [0,∞) : Xt>It

}
and recall from (160) and (ii) that E ′=

{
t∈

[0,∞) : Ht>0
}

=
{
t∈ [0,∞) : Y (Λb

t)>J(Λb
t)
}

. Then, observe that a∈E iff X(θba)=Ya>Ja=
I(θba), which also equivalent to Ha=H(θba)>0. This implies (v) and it completes the proof of the
lemma. �

Proposition 5.7 Let α, β∈ [0,∞), κ∈ (0,∞) and c= (cj)j≥1∈ ` ↓3 satisfy (152). Then, a.s. for all
t∈ [0,∞), Ht≥H(Λb

t ). Thus,

(182) P-a.s. for all a≥b≥0, inf
r∈[a,b]

Hr = inf
s∈[θb

a ,θ
b
a ]
Hs .

Proof. Recall that θb is the right-continuous inverse of Λb and thatH ◦θb=H. Let t∈ [0,∞). Then,
set a= Λb

t, which entails that θba−≤ t≤ θba. If ∆θba = 0, then θb(Λb
t ) = t and Ht=H(Λb

t ). Suppose
next that ∆θba>0; by Lemma 5.4 (iii), Xs>X((θba−)−)=Ya=X(θba), for all s∈ (θba−, θ

b
a); thus,

we can apply Lemma 5.1 with t0 = θba− and t1 = θba, to get Ht≥H(θba−) = H(θba) =Ha =H(Λb
t).

We thus have proved the first point of the proposition.
Let us prove (182): since H ◦ θb = H, inf [a,b]H = inf [a,b]H ◦ θb ≥ inf [θba,θ

b
a]H . But H ≥

H◦Λb implies inf [θba,θ
b
a]H≥ inf [θba,θ

b
a]H◦Λb. Since Λb is non-decreasing and continuous, and since

Λb(θbt )= t, we finally get inf [θba,θ
b
a]H◦Λb=inf [a,b]H, which entails (182). �

We next recall the following result due to Aldous & Limic [4] (Proposition 14, p. 20).
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Proposition 5.8 (Proposition 14 [4]) Let α, β ∈ [0,∞), κ ∈ (0,∞) and c = (cj)j≥1 ∈ ` ↓3 satisfy
(38). Then the following holds true.

(i) For all a∈ [0,∞), P(Ya=Ja)=0.

(ii) P-a.s. the set {a∈ [0,∞) :Ya=Ja} contains no isolated points.

(iii) Set Ma = max{r− l ; r ≥ l ≥ a : (l, r) is an excursion interval of Y −J above 0}. Then,
Ma→0 in probability as a→∞.

Proof. The process (Ys/κ)s∈[0,∞) is the the process W κ′,−τ,c in [4], where κ′= β/κ and τ =α/κ
(note that the letter κ plays another role in [4]). Then (i) (resp. (ii) and (iii)) is Proposition 14 [4]
(b) (resp. resp. (d) and (c)). �

Thanks to Proposition 5.8 (iii), the excursion intervals of Y −J above 0 can be listed as follows

(183) {a∈ [0,∞) : Ya>Ja} =
⋃
k≥1

(lk, rk) .

where ζk = rk− lk, k ≥ 1 is non-decreasing. Then, as a consequence of Theorem 2 in Aldous &
Limic [4], p. 4, we recall the following.

Proposition 5.9 (Theorem 2 [4]) Let α, β ∈ [0,∞), κ∈ (0,∞) and c = (cj)j≥1 ∈ ` ↓3 satisfy (38).
Then, (ζk)k≥1, the ordered sequence of lengths of the excursions of Y −J above 0, is distributed as
the (β/κ, α/κ, c)-multiplicative coalescent (as defined in [4]) taken at at time 0. In particular, we
get a.s.

∑
k≥1 ζ

2
k<∞.

5.2.5 Embedding into a Lévy tree. Proof of Proposition 2.8.

We now explain how continuous multiplicative graphs are embedded in Lévy trees. First, let us
index properly the excursions of H above 0. To that end, recall that Lemma 5.6 (v) asserts that the
excursion intervals of Y −J above 0 are exactly the excursion intervals of H above 0. Similarly,
(160) asserts that the excursion intervals of X−I above 0 are exactly the excursion intervals of H
above 0. By Lemma 5.6 (ii), (l, r) is an excursion interval ofH above 0 iff l=Λb(l) and r=Λb(r),
where (l, r) is an excursion interval of H above 0. Consequently, the excursion interval of H above
zero can be ordered according to (183):

(184)
⋃
k≥1

(lk, rk)=
{
t∈ [0,∞) : Ht>0

}
where lk=Λb(lk) and rk=Λb(rk) satisfy

⋃
k≥1

(lk, rk)=
{
a∈ [0,∞) : Ha>0

}
with ζk=rk−lk, k≥1, decreasing.

Next, we set for all k≥1,

(185) ∀s∈ [0,∞), Hk(s)=H(lk+s)∧rk and Hk(s)=H(lk+s)∧rk .

We also set ζk=rk−lk. Recall from (49) the definition of the pseudometric dh coded by a function
h. As a consequence of (182) in Lemma 5.7, we get for all k≥1,

(186) ∀a, b∈ [0, ζk], dHk(a, b) = dHk
(θb
a , θ

b
b ) .

Recall from (50) in Section 2.2.2 that (Th, dh, ρh,mh) stands for the rooted compact measured real
tree coded by h and recall that ph : [0, ζh)→ Th is the canonical projection. To simplify notation,
we set (

Tk, δk, ρk,m
∗
k

)
:=
(
THk

, dHk
, ρHk

,mHk

)
.
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Then (186) implies the following: set T k=pHk
(θb([0, ζk])), then

(187) (T k, δk |Tk×Tk , ρk,m
∗
k(· ∩ T k)

)
is isometric to

(
THk , dHk , ρHk ,mHk

)
.

Namely, we view the tree coded by Hk as a compact subtree (namely, a compact connected sub-
set) of the Lévy tree coded by Hk. Next, recall from (60) that Πk = ((skp, t

k
p))1≤p≤pk is the

set of pinching times of the excursion Hk and recall from (61) that (Gk, dk, ρk,mk) is the com-
pact metric space coded by Hk and the pinching setup (Πk, 0) as defined in (53). We then set
Π∗k=

(
pHk

(θb
skp

), pHk
(θb
tkp

)
)

1≤p≤pk
and thanks to (186), we see that:

(188) (Gk, dk, ρk,mk) is isometric to the (Π∗k, 0)-metric space

associated to (T k, δk |Tk×Tk , ρk,m
∗
k(· ∩ T k)

)
.

To summarise, up to the identifications given by (187) and (188), the k-th largest component Gk of
the multiplicative continuous random graph is obtained as a finitely pinched metric space associated
with the real tree T k coded by Hk that is a subtree of the real tree Tk coded by Hk. This allows to
prove Proposition 2.8 as follows.

Proof of Proposition 2.8. Let α, β ∈ [0,∞), κ ∈ (0,∞) and c ∈ ` ↓3 . Recall from (37) that for all
λ∈ [0,∞), ψ(λ)=αλ+ 1

2βλ
2 +

∑
j≥1 κcj

(
e−λcj−1 + λcj

)
, that is assumed to satisfy (152). We

then introduce the following exponents:

γ=sup{r∈ [0,∞) : lim
λ→∞

ψ(λ)λ−r=∞} and η=inf{r∈ [0,∞) : lim
λ→∞

ψ(λ)λ−r=0} .

Recall from (162) that N stands for the excursion measure of the ψ-height process H above 0 and
denote by (TH , dH , ρH ,mH) the rooted compact measured real tree coded by H . Theorem 5.5
in Le Gall & D. [22], p. 590, asserts that if γ > 1, then N(dH)-a.e. dimH(TH) = η/(η− 1)
and dimp(TH) = γ/(γ − 1) (this statement is a specific case of Theorem 5.5 in [22] where
E = [0,∞)). Moreover, in the proof of the Theorem 5.5 [22], two estimates for the local upper-
and lower-densities of the mass measure mH are given at (45) and (46) in [22], p. 593: namely,
for all 0 < u < η/(η− 1) and 0 < v < γ/(γ − 1), N(dH)-a.e. for mH -almost all σ ∈ TH ,
lim supr→0 r

−umH(B(σ, r))<∞ and lim infr→0 r
−vmH(B(σ, r))<∞ (actually, within the no-

tations of [22], if E = [0,∞), then d(E) = 1 and κ(dσ) = mH(dσ)). Since Tk is the tree coded
by Hk, then, the previous estimates and Thm 5.5 in [22] show that for all 0< u < η/(η−1) and
0<v<γ/(γ−1)

(189) P-a.s. for all k≥1, dimH(Tk)=
η

η−1
and dimp(Tk)=

γ

γ−1

and for m∗k-almost all σ∈Tk lim sup
r→0

m∗k(B(σ, r))

ru
<∞ and lim inf

r→0

m∗k(B(σ, r))

rv
<∞.

We now apply Lemma C.1 in Appendix Section C to E0 =Tk, E=T k and E′=Gk to derive from
(189) that P-a.s. for all k≥1, dimH(Gk)=η/(η−1) and dimp(Gk)=γ/(γ−1).

Thus, to complete the proof of Proposition 2.8, it remains to prove that the exponents γ and η
are given by (62) when β=0: set π(dr)=

∑
j≥1 κcjδcj , the Lévy measure of X . By an immediate

calculation, we get ψ′(λ)− α=
∫

(0,∞)(1− e−λr)rπ(dr). We next introduce

J(x)=x−1

∫ x

0
du

∫
(u,∞)
rπ(dr) =

∫
(0,∞)
r(1 ∧ (r/x))π(dr)=

∑
j≥1

κc2
j (1 ∧ (cj/x))

as in Proposition 2.8 (ii). As explained in Bertoin’s book [6] Chapter III, general arguments on the
Laplace exponents of subordinators entail that there exist two universal constants k1, k2 ∈ (0,∞)
such that

k1J(1/λ) ≤ ψ′(λ)− α ≤ k2J(1/λ) .
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Since ψ(λ) ≤ λψ′(λ) ≤ 4ψ(λ), by convexity, the previous inequality entails: γ = 1 + sup{r ∈
(0,∞) : lim0+ x

rJ(x)=∞} and η=1 + inf{r∈ (0,∞) : lim0+ x
rJ(x)=0}, which complete the

proof of Proposition 2.8. �

6 Limit theorems.

6.1 Proof of Theorem 2.14.

In this section we fix α, β∈ [0,∞), κ∈(0,∞), c=(cj)j≥1∈` ↓3 . We assume that

(190)
∫ ∞dλ

ψ(λ)
<∞ where ψ(λ)=αλ+ 1

2 βλ
2 +
∑
j≤1

κcj
(
e−λcj−1+λcj

)
, λ∈ [0,∞).

We fix the following independent processes: a standard linear Brownian motionB=(Bt)t∈[0,∞) and
for all j ≥ 1, (Nj(t))t∈[0,∞), an homogeneous Poisson process with jump-rate κcj . All processes
have initial value 0. Recall from (36) that

(191) ∀t∈ [0,∞), Xb
t = αt+

√
βBt +

∑
j≥1

⊥ cj
(
Nj(t)−cjκt

)
.

(we sum with respect to the L2-norm of the supremum). Then, Xb is a spectrally positive Lévy
process with Laplace exponent ψ and initial value 0. Recall that E[cj(Nj(t)−1)+] = cj

(
e−κcjt−

1+κcjt
)
?≤ 1

2 (κt)2c3
j , then, recall from (39) that it makes sense to set

(192) ∀t∈ [0,∞), At = 1
2 κβt

2 +
∑
j≥1

cj
(
Nj(t)−1

)
+

and Yt = Xb
t −At.

Let (Xr
t )t∈[0,∞) be an independent copy of Xb and recall from (41) the following:

(193) ∀x, t∈ [0,∞), γrx=inf{s∈ [0,∞) :Xr
s <−x} and θbt = t+ γrAt .

Let an, bn ∈ (0,∞), and wn ∈ ` ↓f , n∈N, satisfy (66), (C1)–(C3): namely an→∞, bn/an→∞,
b2n/an→β0∈ [0, β], anbn/σ1(wn)→κ∈(0,∞) and

(194) (C1) :
bn
an

(
1− σ2(wn)

σ1(wn)

)
−−−→
n→∞

α (C2) :
bn
a2
n

·σ3(wn)

σ1(wn)
−−−→
n→∞

β + κσ3(c) ,

(195) (C3) : ∀j ∈ N∗,
w

(n)
j

an
−−−→
n→∞

cj .

In this section we admit Proposition 2.11 and Proposition 2.12 that are proved in Section 6.3.2.

Recall that N∗ = N\{0} is the set of positive integers. For all n ∈ N∗, let (Nwn
j (·))j≥1 be

independent homogeneous Poisson processes, the jumps rate of Nwn
j being w(n)

j /σ1(wn). Recall
from (28) and (29) that for all t∈ [0,∞),

(196) Xb,wn
t =−t+

∑
j≥1

w(n)
j Nwn

j (t), Awn
t =

∑
j≥1

w(n)
j (Nwn

j (t)−1)+ and Y wn
t =Xb,wn

t −Awn
t .

Let Xr,wn be an independent copy of Xb,wn . Recall from (28) and (30) in Lemma 2.3 the following
definition for all x, t∈ [0,∞):

(197) γr,wnx =inf{s∈ [0,∞) :Xr,wn
s <−x} and θb,wnt = t+ γr,wn

Awn
t
.

We shall use several time the following result from Ethier & Kurtz [25].
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Lemma 6.1 (Lemma 8.2 [25]) For all n∈N, let 0 = sn0 < sn1 < sn2 < . . . be a sequence of r.v. such
that a.s. limk→∞ snk =∞. Fix z∈(0,∞) and set kn=max{k∈N : snk<z}. Then

lim
η→0+

sup
n∈N

P
(

min
1≤k≤kn

snk−snk−1< η
)

=0 ⇐⇒ lim
η→0+

sup
n∈N

sup
k∈N

P
(
snk<z ; snk+1−snk<η

)
=0.

Proof: see Lemma 8.2 in Ethier & Kurtz [25] (Chapter 3, p. 134). �

Recall from (144) the càdlàg modulus of continuity of y∈D([0,∞),R): for all z, η∈(0,∞):

(198) wz(y, η) = inf
{

max
1≤i≤r

osc(y, [ti−1, ti) ) ; 0= t0<. . .<tr=z : min
1≤i≤r−1

(ti−ti−1) ≥ η
}
,

where for all interval I , ocs(y, I) = sup{|y(s)−y(t)|; s, t ∈ I}. We shall use a tightness result
for increasing processes that is a consequence of Proposition 8.3 in Ethier & Kurtz [25]. To recall
this statement, we need to introduce the following notation: let y ∈D([0,∞),R) be nonnegative,
increasing and such that y(t)→∞ as t→∞; then for all ε∈ (0,∞), we recursively define times
(τ εk(y))k∈N by setting

(199) τ0(y)=0 and τ εk+1(y) = inf
{
t > τ εk(y) : y(t)−y

(
τ εk(y)

)
> ε
}
.

Observe that ifwz(y, η)>ε, then there exists k∈N such that τ εk(y)≤z and τ εk+1(y)−τ εk(y)<η. This
combined with Lemma 8.2 [25] (recalled above as Lemma 6.1) immediately entails the following.

Lemma 6.2 For all n ∈ N, let (Rnt )t∈[0,∞) be a càdlàg nondecreasing process such that a.s.
limt→∞Rn(t) = ∞. Then, the laws of the Rn are tight in D([0,∞),R) if for any t, the laws
of the Rn(t), n∈N are tight on R and if

(200) ∀z, ε∈(0,∞), lim
η→0+

lim sup
n∈N

sup
k∈N

P
(
τ εk(Rn)<z ; τ εk+1(Rn)−τ εk(Rn)<η

)
=0.

Proof: see Lemma 8.1 and Proposition 8.3 in Ethier & Kurtz [25] (Chapter 3, pp. 134-135). �

We immediately apply Lemma 6.2 in combination to the estimates in Lemma 4.2 with to prove
tightness of a rescaled version of Awn .

Lemma 6.3 Let α, β ∈ [0,∞), κ ∈ (0,∞) and c ∈ ` ↓3 satisfy (190). Let an, bn ∈ (0,∞) and
bwn ∈ ` ↓f , n ∈ N, satisfy (66) and (C1)–(C3). The the laws of ( 1

anA
wn
bnt

)t∈[0,∞) are tight on
D([0,∞),R).

Proof: we repeatedly use the following estimate on Poisson r.v. N with mean r∈(0,∞):

(201) E
[
(N−1)+

]
=e−r−1 + r and var

(
(N−1)+

)
=r2−(e−r−1 + r)(e−r + r) ≤ r2.

By the definition(196), we get E[Awn
t ]=

∑
j≥1w

(n)
j (e

−tw(n)
j /σ1(wn)−1 +

tw
(n)
j

σ1(wn)) ≤ t2σ3(wn)
2σ1(wn)2 . Thus,

by (C1)–(C3) and the Markov inequality, we get

lim sup
n→∞

P
(

1

an
Awn
bnt
≥ x

)
≤ 1

2
x−1t2κ

(
κσ3(c) + β

)
−−−−→
x→∞

0.

This shows that for any t∈ [0,∞), the laws of the 1
anA

wn
bnt

are tight on R.
We next prove (200) with Rnt = 1

anA
wn
bnt

, t∈ [0,∞). To that end we fix z, ε∈ (0,∞) and k∈N,
and we set Tn := τ εk(Rn). Then, (141) in Lemma 4.2 with a=anε, T = bnTn, t= bnη and t0 = bnz
implies the following:

P
(
τ εk(Rn)<z ; τ εk+1(Rn)−τ εk(Rn)<η

)
= P

(
bnTn<bnz ; Awn

bnTn+bnη
−Awn

bnTn
>anε

)
≤ (anε)

−1bnη
(
bnz +

1

2
bnη
) σ3(wn)

σ1(wn)2

≤ ε−1η(z + η)
anbn
σ1(wn)

bnσ3(wn)

a2
nσ1(wn)

.

Then (C1)–(C3) entails (200) and Lemma 6.2 completes the proof. �
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Lemma 6.4 Let α, β∈ [0,∞), κ∈(0,∞) and c∈` ↓3 satisfy (190). Let an, bn∈(0,∞) and wn∈` ↓f ,
n∈N, satisfy (66), (C1)–(C3). Then

(202)
((

1
an
Xb,wn
bnt

)
t∈[0,∞)

, (Nwn
j (bnt))t∈[0,∞); j ≥ 1

)
−−−−→
n→∞

(
Xb, Nj ; j ≥ 1

)
weakly on D([0,∞),R)N equipped with the product topology.

Proof. Let u∈R. Note that

E
[
exp(iuNwn

j (bnt))
]
=exp(−tbnw(n)

j (1−eiu)/σ1(wn))−→ exp(−tκcj(1−eiu))

by (66) and (C3). Thus, for all t∈ [0,∞), Nwn
j (bnt)→Nj(t) in law. Next fix k≥1 and set:

∀t∈ [0,∞), Qnt =
1

an
Xb,wn
bnt
−
∑

1≤j≤k
a−1
n w(n)

j Nwn
j (bnt) and Qt=Xb

t −
∑

1≤j≤k
cjNj(t) .

Since we assume that Proposition 2.11 holds true, 1
anX

b,wn
bnt
→Xb

t weakly on R. SinceQnt (resp.Qt)
is independent of (Nwn

j )1≤j≤k (resp. independent of (Nj)1≤j≤k), we easily check

E
[
eiuQ

n
t
]
=E

[
eiuX

b,wn
bnt

/an
]/∏

1≤j≤k
E
[
e−iu

w
(n)
j
an

Nwn
j (bnt)

]
−−−→
n→∞

E
[
eiuX

b
t
]/∏

1≤j≤k
E
[
e−iucjNj(t)

]
=E

[
eiuQt

]
.

Thus, Qnt → Qt weakly on R. Since Lévy processes weakly converge in D([0,∞),R) iff unidi-
mensional marginals weakly converge on R (see Lemma B.8 in Appendix Section B, with precise
references), we get Qn→Q and for all j≥1, Nwn

j (bn·)→Nj , weakly on D([0,∞),R).
Since Qn, Nwn

1 , . . . , Nwn
k are independent Lévy processes, they have a.s. no common jump-

times and Lemma B.2 (in Appendix, Section B) asserts that

(Qnt , N
wn
1 (bnt), . . . , N

wn
k (bnt))t∈[0,∞)−→(Q,N1, . . . , Nk) weakly on D([0,∞),Rk+1).

Since Xb,wn is a linear combination of Qn and the (Nwn
j )1≤j≤k, we get:(

( 1
an
Xb,wn
bnt

, Nwn
1 (bnt), . . . , N

wn
k (bnt)

)
t∈[0,∞)

−→(Xb, N1, . . . , Nk) weakly on D([0,∞),Rk+1),

which implies the weaker statement: ( 1
anX

b,wn
bn· , N

wn
1 (bn·), . . . , Nwn

k (bn·)) −→ (Xb, N1, . . . , Nk),
weakly on (D([0,∞),R))k+1 equipped with the product topology. Since it holds true for all k, an
elementary result (see Lemma B.7 in Appendix, Section B) entails (202). �

Lemma 6.5 Let α, β∈ [0,∞), κ∈(0,∞) and c∈` ↓3 satisfy (190). Let an, bn∈(0,∞) and wn∈` ↓f ,
n∈N, satisfy (66), (C1)–(C3). Then

(203)
((

1
an
Xb,wn
bnt

)
t∈[0,∞)

,
(

1
an
Awn
bnt

)
t∈[0,∞)

)
−−−−→
n→∞

(
Xb, A

)
weakly on D([0,∞),R)2.

Proof: Lemma 6.3 and Lemma 6.4 imply that the laws of ( 1
anA

wn
bn·,

1
anX

b,wn
bn· , N

wn
j (bn·); j≥ 1) are

tight on D([0,∞),R)N equipped with the product topology. We want to prove that there is a unique
limiting law: let (n(p))p∈N be an increasing sequence of integers such that

(204) (
1

an(p)
A
wn(p)

bn(p)·,
1

an(p)
X

b,wn(p)

bn(p)· , N
wn(p)

j (bn(p)·); j≥1) −−−−→
p→∞

(
A′, Xb, Nj ; j ≥ 1

)
,

holds weakly on D([0,∞),R)N. Since D([0,∞),R)N equipped with the product topology is a
Polish space, Skorokod’s representation theorem applies and without loss of generality (but with a
slight abuse of notation), we can assume that (204) holds true P-almost surely on D([0,∞),R)N.
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Set At = 1
2 κβt

2 +
∑

j≥1 cj
(
Nj(t)−1

)
+

, t∈ [0,∞). Then, to prove (203), we claim that it is
sufficient to prove that for all t∈ [0,∞),

(205) 1
an(p)

A
wn(p)

bn(p)t
−→At in probability

because it implies a.s. that A=A′. Indeed, let t such that ∆A′t = ∆At = 0 and let q, q′ be rational
numbers such that q < t < q′; thus, A

wn(p)

b(n(p))q ≤ A
wn(p)

b(n(p))t ≤ A
wn(p)

b(n(p))q′ ; since ∆A′t = 0, we get

a.s. A
wn(p)
bn(p)t

/an(p)→A′t; the convergence in probability entails that Aq ≤A′t ≤Aq′ ; since it holds
true for all rational numbers q, q′ such that q<t<q′, we get At−≤A′t≤At which implies At=A′t
since ∆At=0. Thus, a.s. A and A′ coincide on the dense subset {t∈ [0,∞) : ∆A′t=∆At=0}: it
entails that a.s. A=A′ and the law of (A,Xb, Nj ; j ≥ 1) is the unique weak limit of the the laws
of ( 1

anA
wn
bn·,

1
anX

b,wn
bn· , N

wn
j (bn·); j≥1).

So, we only need to prove (205). To simplify notation we define vn∈` ↓f by

(206) ∀j?∈N∗, v
(n)
j = w

(n)
j /an

By (C3), v(n)
j → cj ; by (66) and (C2),bnσ1(vn)→κ and σ3(vn)→ σ3(c) + β/κ. We next claim

that there exists jn →∞ such that

(207) lim
n→∞

v
(n)
jn

=0 lim
n→∞

∑
1≤j≤jn

(v(n)
j )3 =σ3(c) and lim

n→∞

∑
j>jn

(v(n)
j )3 =β/κ.

Indedd, suppose first that sup{j≥1:cj>0}=∞ and set jn=sup{j ≥ 1:
∑

1≤i≤j(v
(n)
i )3≤σ3(c)},

with the convention that sup ∅=0. Here jn→∞, and it is easy to check that it satisfies (207).
Next suppose that j∗ = sup{j ≥ 1 : cj > 0} <∞. Clearly

∑
1≤j≤j∗(v

(n)
j )3 → σ3(c). Thus,∑

j>j∗
(v(n)
j )3 → β/κ, that is strictly positive as implied by (190). Thus, it is possible to find a

sequence (jn) that tends to∞ sufficiently slowly to get
∑

j∗<j≤jn(v
(n)
j )3→0, which implies (207).

�

We fix t∈ [0,∞). Let k∈N to be specified further; since jn→∞, we can assume p such that
k<jn(p). To simplify, we set ξpj =v

(n(p))
j

(
N

wn(p)

j (bn(p)t)−1
)

+
and ξj =cj

(
Nj(t)−1

)
+

and

Dk,p
t =

∑
1≤j≤k

ξpj−ξj , R
k,p
t =

∑
k<j≤jn(p)

ξpj −
∑
j>k

ξj , C
p
t =
∑
j>jn(p)

ξpj−E[ξpj ] and dp(t)=
1

2
κβt2−

∑
j>jn(p)

E[ξpj ].

Thus, Awn(p)(bn(p)t)/an(p)−At = Dk,p
t + Rk,pt + Cpt −dp(t) and we prove that each term in the

right-hand side goes to 0 in probability.
We first show that dp(t)→0. SinceN

wn(p)
j (bn(p)t) is a Poisson r.v. with mean rp,j that is equal to

v(n(p))
j bn(p)t/σ1(vn(p)), by (201) we get E

[
ξpj
]
=v(n(p))

j

(
e−rp,j−1+rp,j). We next use the following

elementary inequality:

(208) ∀y∈ [0,∞), 0 ≤ 1

2
y2 −

(
e−y−1 + y

)
≤ 1

2
y2(1−e−y) ≤ 1

2
y2∧y3 .

that holds true since y−2(e−y−1 + y)=
∫ 1

0 dv
∫ v

0 dw e
−wy. Thus

0≤
∑
j>jn(p)

1

2
v(n(p))
j r2

p,j−E
[
ξpj
]
≤
∑
j>jn(p)

1

2
v(n(p))
j r3

p,j ≤ 1

2
v(n(p))
jn(p)

(bn(p)t)
3

σ1(vn(p))
3

∑
j>jn(p)

(v(n(p))
j )3 −→ 0,

by (207). Next, note that
∑

j>jn(p)
v(n(p))
j r2

p,j = (bn(p)t/σ1(vn(p))
2
∑

j>jn(p)
(v(n(p))
j )3 −→ κβt2,

which implies that dp(t)→ 0 as p→∞.
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We next consider Cpt : by (201), var(ξpj )≤(v(n(p))
j )2r2

p,j . Since the ξpj are independent, we get

E
[
(Cpt )2

]
=
∑
j>jn(p)

var(ξpj ) ≤ v(n(p))
jn(p)

(bn(p)t)
2

σ1(vn(p))
2

∑
j>jn(p)

(v(n(p))
j )3 −→ 0

by (207), which proves that Cpt →0 in probability when p→∞.
We next deal with Rk,pt . By (201), (207) and (208), we first get:

(209) 0≤
∑

k<j≤jn(p)

E
[
ξpj
]
≤
∑

k<j≤jn(p)

1

2
v(n(p))
j r2

p,j =
1

2

(bn(p)t)
2

σ1(vn(p))
2

∑
k<j≤jn(p)

(v(n(p))
j )3 −−−−→

p→∞
1

2
(κt)2

∑
j>k

c3
j

Similarly, observe that E[ξj ] = cj
(
e−κtcj−1 + κtcj

)
≤ 1

2 (κt)2c3
j . This inequality combined with

(209) entail:

(210) lim sup
p→∞

E
[
|Rk,pt |

]
≤ (κt)2

∑
j>k

c3
j −−−−→

k→∞
0.

Finally, we considerDk,p. Since a.s. t is not a jump-time ofNj , a.s. vn(p)
j (N

wn(p)

j (bn(p)t)−1)+→
cj(Nj(t)−1)+. Thus, for all k∈N, a.s. Dk,p

t →0. These limits combined with (209) (and with the
convergence to 0 in probability of Cpt and dp(t)) easily imply (205), which complete the proof of
the lemma. �

Lemma 6.6 Let α, β∈ [0,∞), κ∈(0,∞) and c∈` ↓3 satisfy (190). Let an, bn∈(0,∞) and wn∈` ↓f ,
n∈N, satisfy (66), (C1)–(C3). Then,

(211)
(( 1

an
Xb,wn
bnt

,
1

an
Awn
bnt
,

1

an
Y wn
bnt

))
t∈[0,∞)

weakly
−−−−→
n→∞

(
(Xb

t , At, Yt)
)
t∈[0,∞)

in D([0,∞),R3).

Proof: without loss of generality (but with a slight abuse of notation), by Skorokod’s representation
theorem we can assume that the convergence in (203) holds true P-almost surely. We first prove
that (( 1

anX
b,wn
bn· ,

1
anA

wn
bn·))→((Xb, A)) a.s. in D([0,∞),R2) thanks to Lemma B.1 (iii) (a standard

result recalled in Appendix, Section B). To that end, first recall that by definition, the jumps of A
(resp. of Awn) are jumps of Xb (resp. of Xb,wn): namely if ∆At > 0, then ∆Xb

t = ∆At and if
∆Xb

t =0, then ∆At=0. The same holds true with Awn and Xb,wn .
Let t ∈ (0,∞). First suppose that ∆At > 0. Thus, ∆Xb

t = ∆At. By Lemma B.1 (i), there
exists a sequence of times tn→ t such that 1

an ∆Awn
bntn
→∆At. Thus, for all sufficiently large n,

1
an ∆Awn

bntn
> 0, which entails 1

an ∆Awn
bntn

= 1
an ∆Xb,wn

bntn
and we get 1

an ∆Xb,wn
bntn
→ ∆At = ∆Xb

t .
Suppose next that ∆At = 0; by Lemma B.1 (i), there exists a sequence of times tn → t such
that 1

an ∆Xb,wn
bntn
→ ∆Xb

t . Since ∆At = 0, Lemma B.1 (ii) entails that 1
an ∆Awn

bntn
→ ∆At = 0.

In both cases, we have proved that for all t ∈ (0,∞), there exists a sequence of times tn →
t such that 1

an ∆Xb,wn
bntn

→ ∆Xb
t and 1

an ∆Awn
bntn

→ ∆At: by Lemma B.1 (iii), it implies that
(( 1
anX

b,wn
bn· ,

1
anA

wn
bn·)) → ((Xb, A)) a.s. in D([0,∞),R2). This entails (211), since the function

(x, a)∈R2 7→(x, a, x−a)∈R3 is Lipschitz and since Xb,wn−Awn =Y wn and Xb−A=Y . �

Recall that Xr,wn (resp. Xr) is an independent copy of Xb,wn (resp. of Xb). Recall from (197)
(resp. from (193)) the definition of γr,wn (resp. of γr).

Lemma 6.7 Let α, β∈ [0,∞), κ∈(0,∞) and c∈` ↓3 satisfy (190). Let an, bn∈(0,∞) and wn∈` ↓f ,
n∈N, satisfy (66), (C1)–(C3). Then,

(212)
((

1

bn
γr,wnanx

)
x∈[0,∞)

,
(

1
an
Xr,wn
bnt

)
t∈[0,∞)

)
−−−−→
n→∞

(
γr, Xr

)
weakly on D([0,∞),R)2
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Proof: recall that Proposition 2.11 asserts that 1
anX

r,wn
bn· →Xr weakly on D([0,∞),R). Let 0≤

x1 < . . . < xk. Since γr is subordinator, it has no fixed time-discontinuity; thus, a.s. ∆γrxj =
. . .= ∆γrxk = 0; a standard result recalled in Lemma B.3 in Appendix Section B, implies the joint
convergence: (

1
an
Xr,wn
bn· ; 1

bn
γr,wnanx1

, . . . , 1

bn
γr,wnanxk

)
−→

(
Xr; γrx1

, . . . , γrxk
)

Since the γr,wn are Lévy processes, Theorem B.8 (in Appendix Section B) entails that 1
bn
γr,wnan· →γr,

which easily entails (212). �

Lemma 6.8 Let α, β∈ [0,∞), κ∈(0,∞) and c∈` ↓3 satisfy (190). Let an, bn∈(0,∞) and wn∈` ↓f ,
n ∈ N, satisfy (66), (C1)–(C3). Recall from (197) the definition of θb,wn . Then, the laws of the
processes ( 1

bn
θb,wnbnt

)t∈[0,∞) are tight on D([0,∞),R).

Proof: to simplify notation we set Rnt = 1
bn
θb,wnbnt

− t = 1
bn
γr,wn(Awn

bnt
); we only need to prove

that the Rn are tight on D([0,∞),R). We use Lemma 6.2. To that end, first observe that for all
K, z∈(0,∞),

P(Rnt > K) = P
(

1

bn
γr,wn(Awn(bnt)) > K

)
≤ P

(
1

bn
γr,wnanz > K

)
+ P

(
1
an
Awn
bnt

> z) .

This easily implies that the laws of the Rnt are tight on [0,∞) since it is the case of the laws of
γr,wnanz /bn and of Awn

bnt
/an.

Next, denote by Ft the σ-field generated by the r.v. Nwn
j (s) and γwnr(Awn

s ) with s∈ [0, t] and
j≥1; note that Nwn

j (t+ ·)−Nwn
j (t) are independent of Ft. Fix ε∈(0,∞) and recall from (199) the

definition of the times τ εk(Rn): clearly bnτ εk(Rn) is a (Ft)-stopping times. Next, fix k∈N and set

∀x∈ [0,∞), g(x)= 1

bn
γr,wn

(
an(x+ 1

an
Awn(bnτ

ε
k(Rn))

)
− 1

bn
γb,wn(Awn(bnτ

ε
k(Rn))

Clearly, g has the same law as 1
bn
γb,wnan· ; we also set uε = inf{x ∈ [0,∞) : g(x) > ε}. Then, the

definition of τ εk+1(Rn) in (199) implies:

τ εk+1(Rn) = inf
{
t > τ εk(Rn) : 1

an
Awn(bnt)− 1

an
Awn(bnτ

ε
k(Rn)) > uε

}
Fix z, η∈(0,∞) and set qn,k(η)=P

(
τ εk(Rn)<z ; τ εk+1(Rn)−τ εk(Rn)≤η

)
. Thus, we get:

qn,k(η) ≤ P
(
bnτ

ε
k(Rn) < bnz ;Awn(bnη + bnτ

ε
k(Rn))−Awn(bnτ

ε
k(Rn)) > anuε

)
≤ P

(
bnτ

ε
k(Rn) < bnz ;Awn(bnη + bnτ

ε
k(Rn))−Awn(bnτ

ε
k(Rn)) > any

)
+ P(uε ≤ y)

≤ y−1η(z + 1
2 η)

anbn
σ1(wn)

bnσ3(wn)

a2
nσ1(wn)

+ P(uε ≤ y)

≤ y−1η(z + 1
2 η)

anbn
σ1(wn)

bnσ3(wn)

a2
nσ1(wn)

+ P
( 1

bn
γr,wnany >ε

)
by (141) in Lemma 4.2 applied to the (Ft)-stopping time T = bnτ

ε
k(Rn) to t0 = bnz, t= bnη and

a=any. Thus,

lim sup
n→∞

sup
k∈N

qn,k(η) ≤ y−1η(z + η)κ(β + κσ3(c)) + P
(
γry>ε

)
−−−→
η→0+

P
(
γry>ε

)
−−−→
y→0+

0,

which completes the proof by Lemma 6.2. �

Lemma 6.9 Let α, β∈ [0,∞), κ∈(0,∞) and c∈` ↓3 satisfy (190). Let an, bn∈(0,∞) and wn∈` ↓f ,
n∈N, satisfy (66), (C1)–(C3). Recall from (193) the definition of θb. Then((

1
an
Xb,wn
bn· ,

1
an
Awn
bn·,

1
an
Y wn
bn·
)
, 1

bn
θb,wnbn· ,

1

bn
γr,wnan· ,

1
an
Xr,wn
bn·

)
(213)

−−−→
n→∞

(
(Xb, A, Y ), θb, γr, Xr

)
weakly on D([0,∞),R3)×D([0,∞),R)3 equipped with the product-topology.
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Proof: by Lemmas 6.6, 6.7 and 6.8, the laws of the processes on the left hand side of (213) are
tight on D([0,∞),R3)×D([0,∞),R)3; we only need to prove that the joint law of the processes
on the right hand side of (213) is the unique limiting law: to that end, let (n(p))p∈N be an increasing
sequence of integers such that(( 1

an(p)
X

b,wn(p)

bn(p)· ,
1

an(p)
A
wn(p)

bn(p)·,
1

an(p)
Y

wn(p)

bn(p)·
)
,

1

bn(p)
θ
b,wn(p)

bn(p)· ,
1

bn(p)
γ
r,wn(p)
an(p)· ,

1
an(p)

X
r,wn(p)

bn(p)·
)

−−−−→
p→∞

(
(Xb, A, Y ), θ′, γr, Xr

)
.(214)

Actually, we only have to prove that θ′ = θb. Without loss of generality (but with a slight abuse
of notation), by Skorokod’s representation theorem we can assume that (214) holds true P-almost
surely. Since A has no fixed time of discontinuity, a.s. for all q ∈Q ∩ [0,∞), ∆Aq = 0, and thus
A
wn(p)

bn(p)q
/an(p)→Aq. Since γr has no fixed discontinuity and since it is independent of A, a.s. for

all q∈Q∩ [0,∞), ∆γr(Aq)=0, which easily entails that γr,wn(p)(Awn(p)(bn(p)q))/bn(p)→γr(Aq);
thus, θb,wn(p)(bn(p)q)/bn(p)→ θbq for all q ∈Q ∩ [0,∞). Therefore, θ′ = θb, which completes the
proof. �

Lemma 6.10 Let α, β ∈ [0,∞), κ ∈ (0,∞) and c ∈ ` ↓3 satisfy (190). Let an, bn ∈ (0,∞) and
wn∈` ↓f , n∈N, satisfy (66), (C1)–(C3). Recall from (193) the definition of θb. Then

Qn(1)=
((

1
an
Xb,wn
bn· ,

1
an
Awn
bn·,

1
an
Y wn
bn· ,

1

bn
θb,wnbn·

)
, 1

bn
γr,wnan· ,

1
an
Xr,wn
bn·

)
(215)

−−−→
n→∞

(
(Xb, A, Y, θb), γr, Xr

)
weakly on D([0,∞),R4)×D([0,∞),R)2 equipped with the product-topology.

Proof: without loss of generality (but with a slight abuse of notation), Skorokod’s representa-
tion theorem allows to assume that (213) holds P-a.s. and to simplify notation, we set Rn =
1
an (Xb,wn

bn· , A
wn
bn·, Y

wn
bn·) and R=(Xb, A, Y ). Let a∈(0,∞).

Suppose first that ∆Ra 6= 0. By Lemma B.1 (i), there is sn → a such that Rnsn− → Ra−,
Rnsn→Ra and thus ∆Rnsn→∆Ra. If ∆Ya>0, then, by definition, ∆Xb

a =∆Ya and ∆Aa=0, and
Lemma 5.4 (iii) asserts that ∆θba=0 and Lemma B.1 (ii) asserts that 1

bn
∆θb,wn(bnsn)→∆θba=0.

We next suppose that ∆Ra 6=0 but ∆Ya=0; then, by definition, we get ∆Xb
a =∆Aa>0. Since

γr is independent from R, it a.s. has no jump at the times Aa− and Aa; therefore:

1

bn
γr,wn(Awn

bnsn−)→ γr(Aa−) and 1

bn
γr,wn(Awn

bnsn
)→ γr(Aa) .

This implies that 1
bn

∆θb,wn(bnsn)→∆θba=γr(Aa)−γr(Aa−).
We finally suppose that ∆Ra = 0; by Lemma B.1 (i), there exists a sequence s′n→a such that

1
bn

∆θb,wn(bns
′
n)→∆θba. Since, ∆Ra=0, Lemma B.1 (ii) entails that ∆Rns′n→∆Ra.

Then, we have proved that for all a ∈ (0,∞), there exists a sequence s′′n → a such that
1
bn

∆θb,wn(bns
′′
n)→∆θba and ∆Rns′′n →∆Ra. By Lemma B.1 (iii), (Rn, 1

bn
θb,wn(bn·))→ (R, θb)

a.s. on D([0,∞),R4), which completes the proof. �

Recall next that for all t∈ [0,∞) and all n∈N,

(216) Λb,wn
t =inf

{
s∈ [0,∞) : θb,wns >t

}
, Λb

t =inf
{
s∈ [0,∞) : θbs>t

}
,

that Λr,wn
t = t−Λb,wn

t and that Λr
t = t−Λb

t . We next prove that under the assumptions of Lemma 6.10
and with the notation Qn(1) in (215), the following convergence holds true

(217) Qn(2)=
(
Qn(1), 1

bn
Λb,wn
bn· ,

1

bn
Λr,wn
bn·
)
−−−→
n→∞

(
(Xb, A, Y, θb), γr, Xr,Λb,Λr

)
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weakly on D([0,∞),R4)×D([0,∞),R)2×C([0,∞),R)2 equipped with the product-topology.
Indeed, without loss of generality (but with a slight abuse of notation), by Skorokod’s representation
theorem we can assume that the convergence in (215) holds P-a.s.; we fix t ∈ (0,∞); since θb is
strictly increasing, standard arguments entail Λb,wn(bnt)/bn→Λb

t . Since Λb is non-decreasing and
continuous, a theorem due to Dini implies that 1

bn
Λb,wn
bn· →Λb uniformly on all compact subsets; it

entails a similar convergence for Λr, which completes the proof of (217). �

Lemma 6.11 Let α, β ∈ [0,∞), κ ∈ (0,∞) and c ∈ ` ↓3 satisfy (190). Let an, bn ∈ (0,∞) and
wn∈ ` ↓f , n∈N, satisfy (66), (C1)–(C3). Then, the laws of the processes ( 1

anX
b,wn(Λb,wn

bnt
))t∈[0,∞)

and ( 1
anX

r,wn(Λr,wn
bnt

))t∈[0,∞) are tight on D([0,∞),R).

Proof. Fix t∈ [0,∞); then for all t0,K∈(0,∞), note that:

P
(

sup
s∈[0,t]

1
an
|Xb,wn(Λb,wn

bns
)| > K

)
≤ P

(
sup
s∈[0,t0]

1
an
|Xb,wn

bns
| > K

)
+ P

(
1

bn
Λb,wn
bnt

> t0
)
.

Then, deduce from (217) that

lim
K→∞

lim sup
n→∞

P
(

sup
s∈[0,t]

1
an
|Xb,wn(Λb,wn

bns
)| > K

)
≤ lim sup

n→∞
P
(

1

bn
Λb,wn
bnt

> t0
)
−−→
t0→∞

0 .

By a similar argument limK→∞ lim supn→∞P(sups∈[0,t] |Xr,wn(Λr,wn
bns

)|>anK
)

=0.
Next, recall from (24) that a.s. for all n∈N and for all t∈ [0,∞)

(218) Xwn
t =Xb,wn

Λb,wn
t

+Xr,wn
Λr,wn
t

.

Recall from (144) that for all y∈D([0,∞),R), wz(y, η) stands for the η-càdlàg modulus of conti-
nuity of y on [0, z]. Fix z1, z, z0, η, ε∈(0,∞) and recall Lemma 4.3: by (145), we easily get:

P
(
wz1
(

1
an
Xb,wn(Λb,wn

bn· ), η
)
> 2ε

)
≤ P

(
wz+η

(
1
an
Xwn
bn·, η

)
> ε
)

+ P
(
wz0
(

1
an
Xb,wn
bn· , η

)
> ε
)

+P
(

1

bn
Λb,wn
bnz1

> z0

)
+ P

(
1

bn
Λb,wn
bnz
≤ z0

)
By Lemma 2.2, Xwn has the same law as Xb,wn and Xr,wn : by Proposition 2.11, the laws of the
processes 1

anX
wn
bn· (or equivalently of 1

anX
b,wn
bn· ) are tight on D([0,∞),R). Consequently,

lim
η→0

lim sup
n→∞

P
(
wz1
(

1
an
Xb,wn(Λb,wn

bn· ), η
)
> 2ε

)
≤ lim sup

n→∞
P
(

1

bn
Λb,wn
bnz1

> z0

)
+lim sup

n→∞
P
(

1

bn
Λb,wn
bnz
≤ z0

)
−−→
z→∞

P
(

1

bn
Λb,wn
bnz1

> z0

)
−−→
z0→∞

0,

since the laws of the processes Λb,wn
bn· /bn are tight by (217). This proves that the laws of the processes

( 1
anX

b,wn(Λb,wn
bnt

))t∈[0,∞) are tight on D([0,∞),R). We derive a similar result for the red processes
by a quite similar argument based on (146) in Lemma 4.3. �

Recall (218) and recall from (43) that Xt=Xb(Λb
t ) +Xr(Λr

t ) for all t∈ [0,∞).

Proposition 6.12 Let α, β ∈ [0,∞), κ∈ (0,∞) and c∈ ` ↓3 satisfy (190). Let an, bn ∈ (0,∞) and
wn∈` ↓f , n∈N, satisfy (66), (C1)–(C3). Recall from (217) the notation Qn(2). Then

Qn(3)=
(
Qn(2), 1

an

(
Xb,wn

Λb,wn
bn·
, Xr,wn

Λr,wn
bn·

, Xwn
bn·
))

(219)

−−−→
n→∞

(
(Xb, A, Y, θb), γr, Xr,Λb,Λr, (Xb

Λb , Xr
Λr , X)

)
,

weakly on D([0,∞),R4) × D([0,∞),R)2 × C([0,∞),R)2 × D([0,∞),R3) equipped with the
product-topology.
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Proof: we first prove the following

Q′n(3)=
(
Qn(2), 1

an
Xb,wn

Λb,wn
bn·

, 1
an
Xr,wn

Λr,wn
bn·

)
(220)

−−−→
n→∞

(
(Xb, A, Y, θb), γr, Xr,Λb,Λr, Xb

Λb , Xr
Λr

)
,

weakly on D([0,∞),R4)×D([0,∞),R)2×C([0,∞),R)2×D([0,∞),R)2 equipped with the
product-topology. Note that the laws of Q′n(3) are tight thanks to (217) and Lemma 6.11. We
only need to prove that the joint law of the processes on the right hand side of (220) is the unique
limiting law: to that end, let (n(p))p∈N be an increasing sequence of integers such that

(221) Q′n(p)(3)−−−→
p→∞

(
(Xb, A, Y, θb), γr, Xr,Λb,Λr, Qb, Qr

)
weakly on D([0,∞),R4) × D([0,∞),R)2 × C([0,∞),R)2 × D([0,∞),R)2 equipped with the
product topology. Without loss of generality (but with a slight abuse of notation), by Skorokod’s
representation theorem we can assume that the convergence in (221) holds P-a.s. and we only need
to prove that Qb=Xb◦Λb and Qr=Xr◦Λr.

To that end, recall first from Lemma 5.4 (iii) that if ∆θba> 0, then ∆Ya = 0; thus, if ∆Ya> 0,
then ∆θba = 0 and by Lemma 5.4 (ii), there exists a unique time t ∈ [0,∞) such that Λb

t = a.
This implies that the set of time S1 =

{
t ∈ [0,∞) : ∆Y (Λb

t ) > 0
}

is countable. We next set
S2 ={θba−, θba; a∈ [0,∞) :∆θba>0} and S=S1∪S2; then S is countable. We next fix t∈(0,∞)\S.
We first assume that (∆Xb)(Λb

t )=0, then by Lemma B.1 (ii), ∆Xb,wn(p)(Λb,wn(p)(bn(p)t))/an(p)→
(∆Xb)(Λb

t )=0, since Λb,wn(p)(bn(p)t)/bn(p)→Λb
t .

We next assume that ∆Xb(Λb
t )> 0. Since t /∈S1, ∆Y (Λb

t ) = 0, ∆Xb(Λb
t ) = ∆A(Λb

t )> 0, by
definition: we then set a= Λb

t and we necessarily get ∆θba > 0 and t∈ [θba−, θ
b
a]; since t /∈ S2, we

then get t∈(θba−, θ
b
a). To simplify notation we set

Rp=( 1
an(p)

X
b,wn(p)

bn(p)· ,
1

an(p)
A
wn(p)

bn(p)·,
1

an(p)
Y

wn(p)

bn(p)· ,
1

bn(p)
θ
b,wn(p)

bn(p)· ) and R = (Xb, A, Y, θb) .

By (221), Rp → R a.s. on D([0,∞),R4). Since ∆θba > 0, a is a jump-time of R. By Lemma
B.1 (i), there is a sequence sp → a such that (Rpsp−, R

p
sp) → (Ra−, Ra): in particular, we get

Xb,wn(p)(sp)/an(p) → Xb
a = Xb(Λb

t ). It also implies that θb,wn(p)(bn(p)sp−)/bn(p) → θba− and
θb,wn(p)(bn(p)sp)/bn(p)→θba; thus, for all sufficiently large p, we get

1

bn(p)
θb,wn(p)(bn(p)sp−) < t < 1

bn(p)
θb,wn(p)(bn(p)sp) and thus Λ

b,wn(p)

bn(p)t
= sp,

which implies that Xb,wn(p)
(
Λb,wn(p)(bn(p)t)

)
/an(p)→Xb(Λb

t ).
Thus, we have proved a.s. for all t∈ [0,∞)\S that Xb,wn(p)

(
Λb,wn(p)(bn(p)t)

)
/an(p)→Xb(Λb

t ).
Since S is countable, it easily implies that Qb=Xb◦Λb.

We next prove that Qr =Xr◦Λr: to that end, set S3 = {t∈ [0,∞) : (∆Xr)(Λr
t )> 0}. Lemma

5.5 (ii) entails that a.s. S3 is countable and by Lemma B.1 (ii), a.s. for all t ∈ [0,∞)\S3, we
get Xr,wn(p)

(
Λr,wn(p)(bn(p)t

)
/an(p) → Xr(Λr

t ); this easily entails that a.s. Qr = Xr ◦Λr, which
completes the proof of (220).

We now prove (219): without loss of generality (but with a slight abuse of notation), Skorokod’s
representation theorem allow to assume that (220) holds P-a.s. By Lemma 5.5 (iii), a.s. for all
t∈ [0,∞), ∆Qb

t∆Q
r
t =0, and Lemma B.1 entails:((

1
an
Xb,wn

Λb,wn
bnt

, 1
an
Xr,wn

Λr,wn
bnt

))
t∈[0,∞)

−−−→
n→∞

(
(Qb

t , Q
r
t )
)
t∈[0,∞)

a.s. on D([0,∞),R2).

which implies (219) since Xwn
t =Xb,wn(Λb,wn

t ) +Xr,wn(Λr,wn
t ) and Xt=Xb(Λb

t ) +Xr(Λr
t ). �
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Recall from (32) the definition of the height process Hwn associated with Xwn and recall from
(18) the definition ofHwn the definition of the height process associated with Y wn . Recall from (34)
in Lemma 2.4 that Hwn =Hwn ◦ θb,wn . Let α, β, κ, c satisfy (44) and recall from (45) the definition
of (Ht)t∈[0,∞), the height process associated with X: H is a continuous process and note that (45)
implies that H is a measurable functional of X . Recall next from Proposition 2.7 that H=H ◦ θb
and thatH is continuous too: H is the height process associated with Y . Then, recall from (33) the
definition of the offspring distribution µwn and denote by (Zwn

k )k∈N a Galton-Watson Markov chain
with initial state Zwn

0 =banc and offspring distribution µwn ; recall from (71) Assumption (C4):

(222) (C4) : ∃δ ∈(0,∞), lim inf
n→∞

P
(
Zwn
bbnδ/anc = 0

)
> 0 .

Proposition 6.13 Let α, β ∈ [0,∞), κ∈ (0,∞) and c∈ ` ↓3 satisfy (190). Let an, bn ∈ (0,∞) and
wn∈` ↓f , n∈N, satisfy (66), (C1)–(C4). Recall from (219) the notation Qn(3). Then,

(223) Qn(4)=
(
Qn(3), anbn H

wn
bn·,

an
bn
Hwn
bn·
)

−−−→
n→∞

(
(Xb, A, Y, θb), γr, Xr,Λb,Λr, (Xb

Λb , Xr
Λr , X), H,H

)
,

weakly on D([0,∞),R4) × D([0,∞),R)2 × C([0,∞),R)2 × D([0,∞),R3) × C([0,∞),R)2

equipped with the product-topology.

Proof: we first prove that

(224) Q′n(4)=
(
Qn(3), anbn H

wn
bn·
)

−−−→
n→∞

Q′(4) =
(
(Xb, A, Y, θb), γr, Xr,Λb,Λr, (Xb

Λb , Xr
Λr , X), H

)
,

weakly on the appropriate product-space. By Proposition 2.12, the laws of the processes bn
anH

wn
bn·

are tight on C([0,∞),R). Then, the laws of Q′n(4) are tight thanks to (219). We only need to prove
that the law of Q′(4) is the unique limiting law, which is an easy consequence of (219), of the joint
convergence (72) in Proposition 2.12 and of the fact that H is a measurable deterministic functional
of X .

To complete the proof of the lemma, we use a general (deterministic) result on Skorokhod’s
convergence for the composition of functions that is recalled in Theorem B.5, in Appendix Section
B.1. Without loss of generality (but with a slight abuse of notation), Skorokod’s representation
theorem allows to assume that (224) holds P-a.s.: since an

bn
Hwn
bn·→H a.s. on C([0,∞),R), since

1
bn
θb,wnbn· →θb a.s. on D([0,∞),R) and finally we since H=H◦θb is a.s. continuous, Theorem B.5

(i) applies and asserts that an
bn
Hwn
bn·→H, which completes the proof of the proposition. �

Proof of Theorem 2.14. We only have to deal with the convergence of the sequences of pairs of
pinching times Πwn . To that end, we denote by Q(4) the right member of (223) and thanks to
Skorokod’s representation theorem (but with a slight abuse of notation) we can assume without loss
of generality that (223) holds almost surely: namely, a.s. Qn(4)→Q(4); next, we couple the Πwn

and Πw as follows.
− Let R =

∑
i∈I δ(ti,ri,ui) a Poisson point measure on [0,∞)3 with intensity the Lebesgue

measure dtdrdv on [0,∞)3. We assume thatR is independent of Q(4) and of (Qn(4))n∈N.
− We set κn=anbn/σ1(wn) and for all t∈ [0,∞) we set Znt = 1

an (Y wn
bnt
−Jwn

bnt
), where we recall

that Jwn
bnt

=infs∈[0,bnt] Y
wn
s . We then set Sn={(t, r, v)∈ [0,∞)3 : 0<r<Znt and 0≤v≤ κn}

and we define

Pn =
∑
i∈I

1{(ti,ri,ui)∈Sn}δ(ti,ri,ui) =
∑

1≤p<pn

δ(tnp ,r
n
p ,v

n
p ),

where the indexation is such that the finite sequence (tnp )1≤p<pn increases. (Note that since
Zn is eventually null, Pn is a finite point process.)
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− For all t∈ [0,∞), for all r∈R and for all z∈D([0,∞),R), we set

(225) τ(z, t, r)=inf
{
s∈ [0, t] : inf

u∈[s,t]
z(u)>r

}
with the the convention that inf ∅=∞.

Then, we set

(226) 1

bn
Πwn =

(
(snp , t

n
p )
)

1≤p<pn
where spn = τ(Zn, tnp , r

n
p ), 1 ≤ p < pn.

Thanks to (15) and (16), we see that conditionally given Y wn, 1
bn

Πwn has the right law. By conve-
nience, we set (snp , t

n
p )=(−1,−1), for all p≥pn.

Similarly, we set Z∞t =Yt−Jt, where Jt=infs∈[0,t] Ys and we also set S= {(t, r, v)∈ [0,∞)3 :
0<r<Z∞t and 0≤v≤ κ}; then we define:

P =
∑
i∈I

1{(ti,ri,ui)∈S}δ(ti,ri,ui) =
∑
p≥1

δ(tp,r′p,vp),

where the indexation is such that (tp)p≥1 is increases. Then, set

(227) Π =
(
(sp, tp)

)
p≥1

where sp = τ(Z∞, tp, r
′
p), p ≥ 1,

It is easy to check that Π has the right law conditionally given Y .
First observe that κn → κ > 0, by the last point of (66). Next, we prove that Zn → Z∞

a.s. in D([0,∞),R): indeed, since Y has no negative jumps, J is continuous and by Lemma B.3
(ii), ( 1

an J
wn
bnt

)t∈[0,∞) → (Jt)t∈[0,∞) a.s. in C([0,∞),R). Since J is continuous, Y and J do not
share any jump-times and by Lemma B.1 (iii), ( 1

an (Y wn
bnt
, Jwn
bnt

))t∈[0,∞)→ ((Yt, Jt))t∈[0,∞) a.s. in
D([0,∞),R2), which entails that Zn→Z∞ a.s. in D([0,∞),R).

Let us fix a, b, c∈(0,∞) such that

b>2 sup
n∈N∪{∞}

sup
s∈[0,a]

Zns and c>2 sup
n∈N∪{∞}

κn .

We introduce
∑

1≤l≤N δ(t∗l ,r
∗
l ,u
∗
l ) :=

∑
i∈I 1{ti<a ; ri<b ;ui<c}δ(ti,ri,ui), where (t∗l )1≤l≤N increases;

here,N is Poisson r.v. with mean abc; note that conditionally givenN , the law of the r.v. (t∗l , r
∗
l , u
∗
l )

is absolutely continuous with respect to Lebesgue measure. Therefore, a.s. for all l∈{1, . . . , N} (if
any), ∆Z∞t∗l

=0, u∗l 6=κ∞, and r∗l 6=Z∞t∗l
, and if r∗l <Z∞t∗l

, then we get τ(Z∞, t∗l , r
∗
l−)=τ(Z∞, t∗l , r

∗
l )

since, by Lemma B.3 (iv), r 7→ τ(Z∞, t∗l , r) is right-continuous and has therefore a countable
number of times of discontinuities. Since ∆Z∞t∗l

= 0, Lemma B.1 (ii) entails that Znt∗l → Z∞t∗l
, and

for all sufficiently large n, u∗l 6= κn, u∗l 6= κn and r∗l 6= Znt∗l
, and when r∗l < Znt∗l

, by Lemma B.3
(iv), τ(Zn, t∗l , r

∗
l )→ τ(Z∞, t∗l , r

∗
l ). This proves that if tp<a, then (snp , t

n
p )→ (sp, tp). Since a can

be arbitrarily large, we get 1
bn

Πwn →Π a.s. in (R2)N
∗
equipped with the product topology. This,

combined with the a.s. convergence Qn(4)→Q(4), entails Theorem 2.14. �

6.2 Proof of Theorem 2.15 and proof of Theorem 2.16

Let α, β ∈ [0,∞), κ∈ (0,∞) and c = (cj)j≥1 ∈ ` ↓3 . Recall that ψ satisfies (190). Recall from (39)
the definition of Y ; recall from Proposition 2.7, the definition of H, the height process associated
with Y ; recall the notation, Jt= infs∈[0,t] Ys, t∈ [0,∞). Lemma 5.6 (v) in Section 5.2 asserts that
the excursions ofH above 0 and those of Y−J above 0 are the same. As recalled in Proposition 5.8,
Proposition 14 in Aldous & Limic [4] asserts that these excursions can be indexed in the decreasing
order of their length. Namely,

(228)
{
t∈ [0,∞) : Ht > 0

}
=
{
t∈ [0,∞) : Yt > Jt

}
=
⋃
k≥1

(lk, rk) ,
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where the sequence ζk = lk − rk, k≥1, decreases. Moreover, the sequence (ζk)k≥1 appears as the
law of a version of the multiplicative coalescent at a fixed time: see Theorem 2 in Aldous & Limic
[4] (recalled in Proposition 5.9). In particular, it implies that a.s.

∑
k≥1 ζ

2
k < ∞. We then recall

from (59) in Section 2.2.3 the definition of excursion processes ofH and Y −J above 0:

(229) ∀k≥1, ∀t∈ [0,∞), Hk(t) = H(lk+t)∧rk and Yk(t) = Y(lk+t)∧rk − Jlk .

Recall from (46) and (47) the definition of Π=
(
(sp, tp)

)
p≥1

: namely, conditionally given Y , let

(230) P=
∑
p≥1

δ(tp,yp) be a Poisson pt. meas. on [0,∞)2 with intensity κ1{0<y<Yt−Jt} dt dy

and set

(231) Π=
(
(sp, tp)

)
p≥1

where sp=inf
{
s∈ [0, tp] : inf

u∈[s,tp]
Yu−Ju > yp

}
, p≥1.

Let an, bn ∈ (0,∞), and wn ∈ ` ↓f , n ∈ N, satisfy (66) and (C1)–(C4). Recall from (13) the
definition of Y wn ; recall from (18) the definition of Hwn , the height process associated to Y wn .
Recall from (15) and (16) the definition of Πwn . For all t ∈ [0,∞), to simplify notations, we
introduce the following:

(232) Y (n)

t := 1
an
Y wn
bnt
, J (n)

t := inf
s∈[0,t]

Y (n)
s , H(n)

t := an
bn
Hwn
bnt

and Π(n) :=
1

bn
Πwn =:

(
(snp , t

n
p )
)

1≤p<pn
.

Recall from Section 2.2.2 that the excursion intervals of Y (n)−J (n) above 0 are the same as the
excursions intervals ofH(n) above 0; let qwn stands for the number of such intervals. Namely,

(233)
{
t∈ [0,∞) : H(n)

t >0
}

=
{
t∈ [0,∞) : Y (n)

t >J (n)

t

}
=

⋃
1≤k≤qwn

(lnk , r
n
k )

where the indexation is such that the ζnk := rnk − lnk are nonincreasing and such that lnk < lnk+1 if
ζnk =ζnk+1 (within the notation of Section 2.2.2, lnk = lwnk /bn, rnk =rwnk /bn and ζnk =ζwnk /bn).

6.2.1 Proof of Theorem 2.15.

We keep the previous notation. By Theorem 2.14, we get

(234)
(
Y (n),H(n),Π(n)

)
−−−−→
n→∞

(
Y,H,Π

)
weakly on D([0,∞),R) × C([0,∞),R) × (R2)N

∗
, equipped with product topology (recall that

here we use the following convention: the finite sequence Π(n) =
(
(snp , t

n
p )
)

1≤p<pn
is extended by

setting (snp , t
n
p )=(−1,−1) for all p>pn). Thanks to Skorokod’s representation theorem (but with

a slight abuse of notation) we can assume without loss of generality that (234) holds P-a.s. We first
prove the following lemma.

Lemma 6.14 We keep the previous notations and we assume that (234) holds a.s. Then, for all
k, n≥ 1, there exists a sequence j(n, k)∈{1, . . . ,qn} such that

(235) P-a.s. for all k≥1,
(
lnj(n,k), r

n
j(n,k)

)
−−−−→
n→∞

(
lk, rk

)
.
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Proof. Fix k≥1 and let t0∈(lk, rk); note that lk=sup{t∈ [0, t0] :Ht=0} and rk=inf{t∈ [t0,∞) :
Ht=0}. For all n≥1, set γ(n)=sup{t∈ [0, t0) :H(n)

t =0} and δ(n)= inf{t∈ [t0,∞) :H(n)

t =0}.
Let q and r be such that lk < q < t0 < r < rk. Since inft∈[q,r]Ht > 0, for all sufficiently large
n, we get inft∈[q,r]H(n)

t > 0, which implies that γ(n) ≤ q and r ≤ δ(n). This easily implies that
lim supn→∞ γ(n)≤ lk and rk≤ lim infn→∞ δ(n).

Let q and r be such that q < lk and rk < r. Since Hlk = Hrk = 0, (179) in Lemma 5.6
(iv) implies that Jq > Jt0 > Jr. Since J is continuous, Lemma B.1 (iii) entails that J (n) → J
a.s. in C([0,∞),R). Thus, for all sufficiently large n, J (n)

q >J (n)

t0
>J (n)

r ; by definition, it implies
that Y (n)−J (n) (and thus H(n)) take the value 0 between the times q and t0 and between the
times t0 and r: namely, for all sufficiently large n, γ(n) ≥ q and δ(n) ≤ r. This easily entails
lim infn→∞ γ(n)≥ lk and rk≥ lim supn→∞ δ(n), and we have proved that limn→∞ γ(n) = lk and
limn→∞ δ(n)=rk.

Let n0 ≥ 1 be such that for all n≥ n0, H(n)

t0
> 0. Then, for all n≥ n0, there exists j(n, k) ∈

{1, . . . ,qwn} such that γ(n) = lnj(n,k) and δ(n) = rnj(n,k); for all n ≤ n1, we take for instance
j(n, k)=1. Then, (235) holds true which completes the proof. �

We next recall from Proposition 2.17, Section 2.3.4 (this result an immediate consequence of
Proposition 7 in Aldous & Limic [4]) that

∑
1≤k≤qwn

(ζnk )2 → ∑
k≥1(ζk)

2 weakly on [0,∞) as
n→∞. We use this result to prove the following joint convergence.

Lemma 6.15 We keep the previous notations. Then

(236) Qn(5) :=
(
Y (n),H(n),Π(n),

∑
1≤k≤qwn

(ζnk )2
)
−−−−→
n→∞

Q(5) :=
(
Y,H,Π,

∑
k≥1

(ζk)
2
)

weakly on D([0,∞),R)?×C([0,∞),R)?×?(R2)N
∗×[0,∞), equipped with product topology.

Proof. The laws of the Qn(5) are tight by (234) and the weak convergence
∑

1≤k≤qwn
(ζnk )2 →∑

k≥1(ζk)
2. We only need to prove that the law of Q(5) is the unique limiting law: to that end,

let (n(p))p∈N be an increasing sequence of integers such that Qn(p)(5)→ (Y,H,Π, Z) weakly.
Actually, we only have to prove that Z =

∑
k≥1(ζk)

2. Without loss of generality (but with a
slight abuse of notation), by Skorokod’s representation theorem we can assume that Qn(p)(5)→
(Y,H,Π, Z) holds true P-a.s. Then, by Lemma 6.14, observe that for all l ≥1,

(237) Z ←−−−
n→∞

∑
1≤k≤qwn

(ζnk )2 ≥
∑

1≤k≤l
(ζnj(n,k))

2 −−−→
n→∞

∑
1≤k≤l

(ζk)
2.

Set Z ′=
∑

k≥1(ζk)
2; by letting l go to∞ in (237), we get Z≥Z ′, which implies Z=Z ′ a.s. since

Z and Z ′ have the same law. This completes the proof of the lemma. �

Without loss of generality (but with a slight abuse of notation), by Skorokod’s representation
theorem we can assume that (236) holds true a.s. on D([0,∞),R)?×C([0,∞),R)×?(R2)N

∗
?×

[0,∞), equipped with product topology. We next prove the following.

Lemma 6.16 Assume that (236) holds true almost surely. We keep the previous notations. Then,

(238) P-a.s. for all k≥1,
(
lnk , r

n
k

)
−−−−→
n→∞

(
lk, rk

)
.

Proof. Let ε∈(0,∞) and kε be such that ζk>ε for all k∈{1, . . . , kε} and ζk<ε for all k>kε. Let
k′ε≥kε be such that

∑
k>k′ε

(ζk)
2<ε2/3. Let n0≥1 be such that for all n≥n0,

(239)
∣∣∣ ∑

1≤k≤qwn

(ζnk )2 −
∑
k≥1

(ζk)
2
∣∣∣ < ε2/3,

∑
1≤k≤k′ε

∣∣(ζnj(n,k))
2−(ζk)

2
∣∣ < ε2/3

and max
1≤k≤k′ε

∣∣ζk−ζnj(n,k)

∣∣ < min
1≤k≤k′ε

|ε−ζk|.
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Set Sn = {1, . . . ,qwn}\{j(n, 1), . . . , j(n, k′ε)}; then the previous inequality imply for all n≥ n0,
that

∑
k∈Sn(ζnk )2 < ε2. Thus, for all n ≥ n0, if k ∈ Sn, then ζnk < ε; the last inequality of (239)

implies for all k ∈ {kε + 1, . . . , k′ε}, ζnj(n,k) < ε and that for all k ∈ {1, . . . , kε}, ζnj(n,k) > ε. This
implies that for all sufficiently large n, j(n, k)=k, for all k∈{1, . . . , kε} and (235) in Lemma 6.14
implies (lnk , r

n
k )→ (lk, rk) a.s. for all k∈{1, . . . , kε}, which entails (241) since ε can be choosen

arbitrarily small. �

Recall from (229) the definition of the excursions Hk and Yk of resp. H and Y −J above 0. We
define the (rescaled) excursion of Y (n)−J (n) and ofH(n) above 0 as follows:

(240) ∀k≥1, ∀t∈ [0,∞), H
(n)

k (t) = H(n)

(lnk+t)∧rnk
and Y

(n)

k (t) = Y (n)

(lnk+t)∧rnk
− J (n)

lnk
.

As an immediate consequence of (236), Lemma 6.16 and Lemma B.4 (iii) in Appendix Section B,
we get the following result.

Lemma 6.17 Assume that (236) holds true almost surely. We keep the previous notations. Then,

(241) P-a.s. for all k≥1,
(
Y

(n)

k , H(n)

k , lnk , r
n
k

)
−−−−→
n→∞

(
Yk, Hk, lk, rk

)
.

in D([0,∞),R)×C([0,∞),R)×[0,∞)2.

Recall from (230) and (231) the definition of Π =
(
(sp, tp)

)
p≥1

and recall from (232) the notation

Π(n) =
(
(snp , t

n
p )
)

1≤p≤pn
. We next prove the following.

Lemma 6.18 Assume that (236) holds almost surely. We keep the previous notations. Then, P-
a.s. for all p ≥ 1, there exists k ≥ 1 such that lk < sp ≤ tp < rk and for all sufficiently large n,
lnk <s

n
p <t

n
p <r

n
k and (lnk , s

n
p , t

n
p , r

n
k )→(lk, sp, tp, rk).

Proof. By Proposition 5.8 (i), P-a.s. for all p ≥ 1, Ytp > Jtp and there exists k ≥ 1 such that
tp∈(lk, rk). By Lemma 5.6 (iii), we get Ylk−Jlk =0; recall that yp∈(0, Ytp−Jtp) and recall from
(231) that sp = inf

{
s ∈ [0, tp] : infu∈[s,tp] Yu−Ju > yp

}
; thus, we get lk < sp ≤ tp < rk and the

proof is completed by (236) that asserts that (snp , t
n
p )→(sp, tp) and by Lemma 6.16 that asserts that

(lnk , r
n
k )→(lk, rk). �

Recall from (60) that for all k≥1,

Πk=
(
(skp, t

k
p)
)

1≤p≤pk
where (tkp)1≤p≤pk increases and where

the (lk + skp, lk + tkp) are exactly the terms (sp′ , tp′) of Π such that tp′ ∈ [lk, rk],

and similarly recall from (56) the definition of the sequence of pinching times (Πw
k)1≤k≤qwn

:
namely, in their rescaled version,

1

bn
Πwn
k =

(
(sn,kp , tn,kp )

)
1≤p≤pnk

where (tn,kp )1≤p≤pnk
increases and where

the (lnk + sn,kp , lnk + tn,kp ) are exactly the terms (snp′ , t
n
p′) of Π(n)

w such that tnp′ ∈ [lnk , r
n
k ].

Thus, Lemma 6.18 immediately entails that

P-a.s. for all k ≥1, 1

bn
Πwn
k −−−−→

n→∞
Πk.

This convergence combined with Lemma 6.17 implies Theorem 2.15. �
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6.2.2 Proof of Theorem 2.16.

Keep the previous notation and recall that
(
Gwn
k , d

wn
k , %

wn
k ,m

wn
k

)
, 1 ≤ k ≤ qwn , stand for the con-

nected components of the wn-multiplicative random graph Gwn . Here, dwnk stands for the graph-
metric on Gwn

k , mwn
k is the restriction to Gwn

k of the measure mwn =
∑

j≥1w
(n)

j δj , %wnk is the
first vertex of Gwn

k that is visited during the exploration of Gwn , and the indexation is such that
mwn

1

(
Gwn

1

)
≥ . . . ≥mwn

qwn

(
Gwn

qwn

)
.

Next, recall from (240) that H(n)

k (·) stands for k-th longest excursion of Hwn that is rescaled in
time by a factor 1/bn and in space by a factor an/bn; recall that 1

bn
Πwn
k =

(
(sn,kp , tn,kp ); 1≤p≤pnk

)
is the (1/bn-rescaled) finite sequence of pinching times of H(n)

k . Then, for all k ∈{1, . . . ,qwn} the
compact measured metric space

G(n)

k :=
(
Gwn
k ,

an
bn
dwnk , %

wn
k ,

1

bn
mwn
k

)
is isometric to G

(
H

(n)

k , 1
bn

Πwn
k ,

an
bn

)
, the compact measured metric space coded by H

(n)

k and the
pinching setup ( 1

bn
Πwn
k ,

an
bn

) as defined in (53).
Then recall from (229) that Hk(·) stands for k-th longest excursion of H and recall from (60)

that Πk =
(
(skp, t

k
p); 1≤ p≤pk

)
is the finite sequence of pinching times of Hk. Then, for all k≥ 1,

the compact measured metric space

Gk :=
(
Gk,dk, %k,mk

)
is isometric toG(Hk,Πk, 0) that is the compact measured metric space coded by Hk and the pinching
setup (Πk, 0) as defined in (53).

Without loss of generality (but with a slight abuse of notation), by Skorokod’s representation
theorem we can assume that the convergence in Theorem 2.15 holds almost surely. Namely a.s. for
all k≥1,

(
H

(n)

k , ζnk ,
1
bn

Πwn
k

)
→
(
Hk, ζk,Πk

)
on C([0,∞),R)× [0,∞)× (R2)N

∗
. We next fix k≥1;

then for all sufficiently large n, 1
bn

Πwn
k and Πk have the same number of points: namely, pnk = pk

and

(242) ∀1≤p≤pnk =pk, (sn,kp , tn,kp ) −−−−→
n→∞

(skp, t
k
p) .

Recall from (63) the definition of the Gromov-Hausdorff-Prohorov distance δGHP. We next apply
Lemma 2.10 with (h, h′) = (Hk, H

(n)

k ), (Π,Π′) = (Πk, 1
bn

Πwn
k ), (ε, ε′) = (0, an/bn) and δ = δn =

max1≤p≤pk |skp−sn,kp | ∨ |tkp−tn,kp |. Then, by (65),

(243) δGHP(Gk,G
(n)

k ) ≤ 6(pk + 1)
(
‖Hk−H(n)

k ‖∞ + ωδn(Hk)
)

+ 3anpk/bn + |ζk−ζnk |,

where ωδn(Hk) = max{|Hk(t)−Hk(s)|; s, t∈ [0,∞) : |s−t| ≤ δn}. By (242), δn→ 0; since Hk is
continuous and since it is null on [ζk,∞), it is uniformly continuous and ωδn(Hk)→ 0; recall that
an/bn→0. Thus, the right member of (243) goes to 0 as n→0. Thus, we have proved that a.s. for
all k≥1, δGHP(Gk,G

(n)

k )→0, which implies Theorem 2.16. �

6.3 Proof of the limit theorems for the Markovian processes.

6.3.1 Convergence of the Markovian queueing system: the general case.

We say that R-valued spectrally positive Lévy processes (Rt)t∈[0,∞) with initial value R0 = 0 is
integrable if for at least one t ∈ (0,∞) we have E[|Rt|] < ∞. It implies that E[|Rt|] < ∞ for
all t∈ (0,∞). We recall from Section B.2.1 in Appendix that there is a one-to-one correspondence
between the laws of R-valued spectrally positive Lévy processes (Rt)t∈[0,∞) with initial valueR0 =
0 that are integrable and triplets (α, β, π), where α ∈ R, β ∈ [0,∞) and π is a Borel-measure on
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(0,∞) such that
∫

(0,∞) π(dr) (r∧r2) <∞. More precisely, the correspondence is given by the
Laplace exponent of spectrally positive Lévy processes: namely, for all t, λ ∈ [0,∞),

(244) E
[
e−λRt

]
=etψα,β,π(λ), where ψα,β,π(λ) = αλ+

1

2
βλ2 +

∫
(0,∞)

(e−λr−1 + λr)π(dr).

Concerning the convergence of branching processes, we rely on a result due to Grimvall [27],
that is recalled in Theorem B.11: this result states the convergence of rescaled Galton-Watson pro-
cesses to Continuous State Branching Processes (CSBP for short). Namely, recall that (Zt)t∈[0,∞) is
a conservative CSBP if it is a [0,∞)-valued Feller Markov process obtained from spectrally positive
Lévy processes via Lamperti’s time-change, the law of the CSBP being completely characterised
by the spectrally Lévy process and thus by its Laplace exponent that is usually called the branch-
ing mechanism of the CSBP, which is necessarily of the form (244): see Section B.2.2 for a brief
account on CSBP.

Let wn∈` ↓f , n∈N. Define the law νwn and µwn by setting:

(245) νwn =
1

σ1(wn)

∑
j≥1

w(n)
j δj and ∀k∈N, µwn(k)=

∑
j≥1

(w(n)
j )k+1

σ1(wn) k!
e
−w(n)

j .

Recall from Section 4.1.2, the definition of the Markovian LIFO-queueing system associated with
the set of weights wn: clients arrive at unit rate; each client has a type that is a positive integer;
the amount of service required by a client of type j is w(n)

j ; the types are i.i.d. with law νwn . If one
denotes by τnk the time of arrival of the k-th client in the queue and by Jnk his type, then the queueing
system is entirely characterised by:

(246) Xwn =
∑
k≥1

δ(τnk ,J
n
k ),

that is a Poisson point measure on [0,∞)×N∗ whith intensity ` ⊗ νwn , where ` stands for the
Lebesgue measure on [0,∞). Next, for all j∈N∗ and all t∈ [0,∞), we introduce the following:

(247) Nwn
j (t)=

∑
k≥1

1{τnk ≤t ; Jnk=j} and Xwn
t =−t+

∑
k≥1

w(n)

Jnk
1[0,t](τ

n
k )=−t+

∑
j≥1

w(n)

j Nwn
j (t).

Observe that (Nwn
j )j≥1 are independent homogeneous Poisson processes with rates w(n)

j /σ1(wn)
and Xwn is a càdlàg spectrally positive Lévy process.

Let an, bn∈(0,∞), n∈N be two sequence that satisfy the following conditions.

(248) an and
bn
an
−−−→
n→∞

∞, bn
a2
n

−−−→
n→∞

β0∈ [0,∞), and sup
n∈N

w(n)
1

an
<∞.

It is important to note that these assumptions are weaker than (66): namely, we temporarily do not
assume that anbn

σ1(wn)→κ∈ (0,∞), which explains why the possible limits in the theorem below are
more general.

Theorem 6.19 Let wn ∈ ` ↓f and an, bn ∈ (0,∞), n∈N, satisfy (248). Recall from (247) the defini-
tion of Xwn

t , recall from (245) the definition of µwn and let (Z(n)

k )k∈?N be a Galton-Watson process
with offspring distribution µwn and initial state Z(n)

0 = banc. Then, the following convergences are
equivalent.

• (I)
(

1
anZ

(n)

bbnt/anc
)
t∈[0,∞)

−→(Zt)t∈[0,∞) weakly on D([0,∞),R).

• (II)
(

1
anX

wn
bnt

)
t∈[0,∞)

−→(Xt)t∈[0,∞) weakly on D([0,∞),R).
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If (I) or (II) hold true, then Z is necessarily a CSBP and X is an integrable (α, β, π)-spectrally
positive Lévy process (as defined at the beginning of Section 6.3.1) whose Laplace exponent is the
same as the branching mechanism of Z. Here (α, β, π) necessarily satisfies:

(249) β ≥ β0 and ∃r0∈(0,∞) such that π((r0,∞))=0 ,

which implies
∫

(0,∞) r
2 π(dr)<∞. Moreover, (I)⇔(II)⇔(IIIabc)⇔

(
(IIIa)&(IV)) where:

• (IIIa)
bn
an

(
1− σ2(wn)

σ1(wn)

)
−→ α.

• (IIIb)
bn

(an)2
σ3(wn)

σ1(wn)
−→ β +

∫
(0,∞)

r2 π(dr).

• (IIIc)
anbn
σ1(wn)

∑
j≥1

w
(n)
j

an
f
(
w

(n)
j /an

)
−→
∫
(0,∞)

f(r)π(dr), for all continuous bounded f : [0,∞)→R

vanishing in a neighbourhood of 0.

• (IV)
anbn
σ1(wn)

∑
j≥1

w
(n)
j

an

(
e−λw

(n)
j /an−1 + λw

(n)
j /an

)
−→ ψα,β,π(λ) − αλ, for all λ ∈ (0,∞),

where ψα,β,π is defined by (244).

Proof. We easily check that (Xwn
bnt
/an) is a (αn, βn, πn)-spectrally positive Lévy process where

αn=
bn
an

(
1−σ2(wn)

σ1(wn)

)
, βn=0 and πn =

anbn
σ1(wn)

∑
j≥1

w
(n)
j

an
δ
w

(n)
j /an

.

We immediately see that βn +
∫
r2πn(dr) = bnσ3(wn)/a2

nσ1(wn). Then, Theorem B.9 implies that
(II)⇔(IIIabc). We then apply Lemma A.3 to ∆n

k =(Xwn
k −Xwn

k−1)/an and qn=bbnc: it shows that
the weak limitXwn

1 →X1 is equivalent to the convergence of the Laplace exponents ψαn,βn,πn(λ)→
ψα,β,π(λ), for all λ ∈ [0,∞). Then note that the left member in (IV) is ψαn,β,πn(λ)−αnλ. This
shows that (II)⇔

(
(IIIa)&(IV)).

It remains to prove that β ≥ β0 and that (I) ⇔ (IIIabc). Let (ζnk )k∈N be a sequence of
i.i.d. random variables with law µwn as defined in (245). By Theorem B.11, (I) is equivalent to
the weak convergence on R of the r.v. Rn := 1

an

∑
1≤k≤bbnc

(
ζnk −1

)
. We next apply Lemma A.3

to ∆n
k := a−1

n (ζnk − 1): it asserts that (I) is equivalent to

(250) ∃ψ∈C([0,∞),R) : ψ(0)=0 and ∀λ∈ [0,∞), Ln(λ) :=E
[
e−λRn

]
−−−→
n→∞

eψ(λ).

Let (Wn
k )k∈N be an i.i.d. sequence of r.v. with the same law as w(n)

Jn1
, where Jn1 has law νwn . Namely,

for all all measurable function f : [0,∞)→ [0,∞),

E
[
f
(
Wn
k

)]
=

1

σ1(wn)

∑
j≥1

w(n)
j f

(
w(n)
j

)
.

Note that for all k∈N, µwn(k)=E[ (Wn
1 )ke−W

n
1/k! ], which implies:

(251) Ln(λ) = eλbbnc/an
(
E
[
e−λζ

n
1 /an

])bbnc = eλbbnc/an
(
E
[

exp
(
−Wn

1

(
1− e−λ/an

))])bbnc.
We next set Sn1 = 1

an

∑
1≤k≤bbnc

(
Wn
k −1

)
and Ln(λ)=E[exp(−λSn1 )]. By (251), we get:

∀λ∈ [0,∞), Ln
(
an
(
1− e−λ/an

))
= Ln(λ) exp

(
bbnc

(
1−e−λ/an

)
−λbbnc/an

)
Since bbnc

(
1−e−λ/an

)
−λbbnc/an + 1

2 bna
−2
n λ2 =O(bna

−3
n )→0, then (250) is equivalent to

(252) ∃ψ0∈C([0,∞),R) : ψ0(0)=0 and ∀λ∈ [0,∞), lim
n→∞

Ln(λ)=eψ0(λ),
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and if (250) or (252) holds true, then ψ(λ)=ψ0(λ) + 1
2β0λ

2, for all λ∈ [0,∞).
Next, by Lemma A.3 applied to ∆n

k := a−1
n (Wn

k − 1), we see that (252) is equivalent to the
weak convergence Sn1 → S1 in R and Theorem B.10 asserts that is equivalent to the conditions
(Rw3abc) with ξn1 =Wn

1 −1: namely, there exists a triplet (α∗, β∗, π∗) such that β∗, α∗ ∈ [0,∞),
such that there exists r0∈(0,∞) satisfying π∗([r0,∞))=0 and such that the following holds true

bn
an

E[ξn1 ]=
bn
an

(σ2(wn)

σ1(wn)
−1
)
→ −α∗, bn

a2
n

var(ξn1 )=
bn
a2
n

σ3(wn)

σ1(wn)
− bn
a2
n

(σ2(wn)

σ1(wn)

)2
→β∗+

∫
(0,∞)
r2π∗(dr)

and bnE
[
f
(
ξn1 /an

)]
=

anbn
σ1(wn)

∑
j≥1

w
(n)
j

an
f
(
w

(n)
j /an

)
→
∫

(0,∞)
f(r)π∗(dr),

for all continuous bounded f : [0,∞)→R vanishing in a neighbourhood of 0. It is easy to see that
these conditions are equivalent to (IIIabc) with α=α∗, β= β0 + β∗ and π= π∗. This completes
the proof of the theorem. �

We next recall from Section 4.1.2 that the Markovian wn-LIFO queueing system governed by
Xwn induces a Galton-Watson forest Twn with offspring distribution µwn : informally, the clients are
the vertices of Twn and the server is the root (or the ancestor); the j-th client to enter the queue is a
child of the i-th one if the j-th client enters when the i-th client is served; among siblings, the clients
are ordered according to their time of arrival. We denote by Hwn

t the number of clients waiting in
the line right after time t; recall from (32) how Hwn is derived from Xw

n: namely, for all s≤ t, if one
sets Iwn,st = infr∈[s,t]X

wn
r , then:

(253) Hwn
t = #

{
s∈ [0, t] : Iwn,s−t <Iwn,st

}
.

We recall from Section 4.1.2 that Xwn and Hwn are close to respectively the Lukasiewicz path and
the contour process of Twn . Therefore, the convergence results for Lukasiewicz paths and contours
processes of Galton-Watson trees in Le Gall & D. [21] (and recalled in Appendix Theorem B.12,
Section B.2.3) allow to prove the following theorem.

Theorem 6.20 Let X be an integrable (α, β, π)-spectrally positive Lévy process, as defined at the
beginning of Section 6.3.1. Assume that (249), that α≥ 0 and that

∫∞
dz/ψα,β,π(z)<∞, where

ψα,β,π is given by (244). Let (Ht)t∈[0,∞) be the continuous height process derived fromX as defined
by (45).

Let wn ∈ ` ↓f and an, bn ∈ (0,∞), n ∈ N, satisfy (248). Let (Z(n)

k )k∈?N be a Galton-Watson
process with offspring distribution µwn (defined by (245)), and initial state Z(n)

0 = banc. Assume
that the three conditions (IIIabc) in Theorem 6.19 hold true and assume the following:

(254) ∃ δ∈(0,∞), lim inf
n→∞

P
(
Z(n)

bbnδ/anc=0
)
> 0 .

Then, the following joint convergence holds true:

(255)
(

(
1

an
Xwn
bnt

)t∈[0,∞), (
an
bn
Hwn
bnt

)t∈[0,∞)

)
−−−−−→
n→∞

(X,H)

weakly on D([0,∞),R)×C([0,∞),R), equipped with the product topology. We also get:

(256) ∀t∈ [0,∞), lim
n→∞

P
(
Z(n)

bbnt/anc=0
)

= e−v(t) where
∫ ∞
v(t)

dz

ψα,β,π(z)
= t.

Proof. Recall from Section 4.1.2 the definition of the Lukasiewicz path, the height and the contour
process of Twn , that are respectively denoted by (V

Twn
k )k∈N, (Hght

Twn
k )k∈N and (C

Twn
t )t∈[0,∞). We

first assume that (IIIabc) in Theorem 6.19 and that (254) hold true. Then, Theorem B.12 applies
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with µn := µwn : namely, the joint convergence (302) holds true and we get (256). Now recall
from (119) the notation Nwn(t)=

∑
k≥1 1[0,t](τ

n
k ) that is a homogeneous Poisson process with unit

rate. Then, by Lemma B.6 (see Section B.1 in Appendix) the joint convergence (302) entails the
following.

Qn(6) =
( 1

an
VTwn(Nwn

bn·),
an
bn
HghtTwn(Nwn

bn·),
an
bn
C

Twn
bn·
)
−−−→
n→∞

(
X,H, (Ht/2)t∈[0,∞)

)
weakly on D([0,∞),R) × C([0,∞),R)2 equipped with the product topology. Here X is an in-
tegrable (α, β, π)-spectrally positive Lévy process (as defined at the beginning of Section 6.3.1)
and H is the height process derived from X by (45). By Theorem 6.19, the laws of the processes
1
anX

wn
bn· are tight in D([0,∞),R). Thus, if one sets Qn(7) = ( 1

anX
wn
bn·,Qn(6)), then the laws of

the Qn(7) are tight on D([0,∞),R)2 × C([0,∞),R)2. Thus, to prove the weak convergence
Qn(7) → (X,X,H,H·/2) := Q(7), we only need to prove that the law of Q(7) is the unique
limiting law: to that end, let (n(p))p∈N be an increasing sequence of integers such that

Qn(p)(7)−−−−→
p→∞

(
X ′, X,H,H·/2

)
.(257)

Actually, we only have to prove that X ′=X . Without loss of generality (but with a slight abuse of
notation), by Skorokod’s representation theorem we can assume that (257) holds P-almost surely.
We next use (121) in Lemma 4.1: fix t, ε, y∈ (0,∞), set Iwnt =infs∈[0,t]X

wn
s ; by applying (121) at

time bnt, with a=anε and x=any we get

P
(∣∣ 1

an
V

Twn

Nwn (bnt)
− 1

an
Xwn
bnt

∣∣>2ε
)
≤ 1∧ 4y

ε2an
+ P

(
− 1

an
Iwnbnt>y) + E

[
1 ∧

1
an

(Xwn
bnt
−Iwnbnt)

ε2an

]
.

By Lemma B.3 (ii), 1
an(p)

(X
wn(p)

bn(p)t
−Iwn(p)

bn(p)t
)→X ′t−I ′t and 1

an(p)
I
wn(p)

bn(p)t
→I ′t almost surely, where we

have set I ′t=infs∈[0,t]X
′
s. Thus,

lim sup
p→∞

P
(∣∣ 1
an(p)

V
Twn(p)

N
wn(p) (bn(p)t)

− 1
an(p)

X
wn(p)

bn(p)t

∣∣>2ε
)
≤ P

(
−I ′t>y/2) −−−−→

y→∞
0

and (257) entails that for all t∈ [0,∞) a.s. X ′t=Xt and thus, a.s. X ′=X .
We have proved that Qn(7)→(X,X,H,H·/2) :=Q(7), weakly on D([0,∞),R)2×C([0,∞),R)2.

Without loss of generality (but with a slight abuse of notation), by Skorokod’s representation theo-
rem we can assume that the convergence holds true P-almost surely. We next recall from (125) and
(126) that:

Mwn(t)=2Nwn(t)−Hwn
t , C

Twn

Mwn (t) =Hwn
t and sup

s∈[0,t]
Hwn
s ≤ 1 + sup

s∈[0,t]
Hght

Twn

Nwn (s).

Then, we fix t, ε∈(0,∞), and we apply (127) at time bnt, with a=bnε to get

P
(

sup
s∈[0,t]
| 1

bn
Mwn
bns
−2s| > 2ε

)
≤ 1∧ 16t

ε2bn
+ P

(
1 + sup

s∈[0,t]

an
bn
HghtTw

Nw(bns)
> εan

)
.

Since an
bn
HghtTw(Nw(bn·))→H a.s. in C([0,∞),R), it easily entails that 1

2bn
Mwn
bn· tends in prob-

ability to the identity map on [0,∞) in C([0,∞),R). Since Hwn
t = CTwn (Mwn(t)), and since

CTwn (bn·)→H(·/2) a.s. in C([0,∞),R), Lemma B.6 easily entails the joint convergence (255)
weakly in D([0,∞),R) × C([0,∞),R) equipped with the product topology. This completes the
proof of the theorem. �

As explained right after Theorem 2.3.1 in Le Gall & D. [21] (see Chapter 2, pp. 54-55) As-
sumption (254) is actually a necessary condition for the height process to converge. The following
proposition provides a practical criterion implying (254).
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Proposition 6.21 Let X be a an integrable (α, β, π)-spectrally positive Lévy process, as defined
at the beginning of Section 6.3.1. Assume that (α, β, π) satisfies (249), that α ≥ 0 and that∫∞

dz/ψα,β,π(z) <∞, where ψα,β,π is given by (244). Let H be the continuous height process
derived from X by (45). Let wn ∈` ↓f and an, bn ∈ (0,∞), n ∈N, satisfy (248). Recall from (247)
the definition of Xwn and denote by ψn the Laplace exponent of ( 1

an
Xwn
bnt

)t∈[0,∞): namely, for all
λ∈ [0,∞),

(258) ψn(λ)=
bn
an

(
1−σ2(wn)

σ1(wn)

)
λ+

anbn
σ1(wn)

∑
j≥1

w
(n)
j

an

(
e−λw

(n)
j /an−1 + λw

(n)
j /an

)
.

We assume that the three conditions (IIIabc) in Theorem 6.19 hold true. Then, (254) in Theorem
6.20 holds true if the following holds true,

(259) lim
y→∞

lim sup
n→∞

∫ an

y

dλ

ψn(λ)
= 0 .

To prove Proposition 6.21 we first prove a lemma that compares the total height of Galton-
Watson trees with i.i.d. exponentially distributed edge-lengths and the total height of their discrete
skeleton. More precisely, let ρ ∈ (0,∞) and let µ be a (sub)-critical offspring distribution whose
generating function is denoted by gµ(r) =

∑
l∈N µ(l)rl. Note that gµ([0, 1])⊂ [0, 1]; let g◦kµ be the

k-th iterate of gµ, with the convention that g◦0µ (r) = r, r ∈ [0, 1]. Let τ : Ω→ T be a random tree
whose distribution is characterised as follows.

– The number of children of the ancestor (namely the r.v. k∅(τ)) is a Poisson r.v. with mean ρ;

– For all l≥1, under P( · | k∅(τ)= l), the l subtrees θ[1]τ, . . . , θ[l]τ stemming from the ancestor
∅ are independent Galton-Watson trees with offspring distribution µ.

We next denote by Zk the number of vertices of τ that are situated at height k + 1: namely, Zk =
#{u ∈ τ : |u|= k + 1} (see Section 4.1.1 for the notation on trees). Then, (Zk)k∈N is a Galton-
Watson process whose initial value Z0 is distributed as a Poisson r.v. with mean ρ. We denote by
Γ(τ) the total height of τ : namely, Γ(τ)=maxu∈τ |u| is the maximal graph-distance from the root
∅ and we get (Γ(τ)− 1)+ =max{k∈N : Zk 6=0}, with the convention that max ∅=0. Thus,

(260) P
(
Γ(τ) < k + 1

)
=P(Zk=0)=exp

(
− ρ
(
1−g◦kµ (0)

))
.

We next equip each individual u of the family tree τ with an independent lifetime e(u) that is
distributed as follows.

– The lifetime e(∅) of ∅ is 0.

– Conditionnaly given τ , the r.v. e(u), u∈τ\{∅} are independent and exponentially distributed
r.v. with parameter q∈(0,∞).

Within our notation the genealogical order on τ is defined as follows: a vertex v∈ τ is an ancestor
of u ∈ τ , which is denoted v � u, if there exists v′ ∈ U such that u= v ∗ v′; � is a partial order
on τ : it is the genealogical order. For all u ∈ τ , we denote by ζ(u) =

∑
∅�v�u e(v), the date of

death of u; then, ζ(←−u ) is the date of birth of u (recall here that←−u stands for the direct parent of u).
For all t∈ [0,∞), we next set Zt=

∑
u∈τ\{∅} 1[ζ(←−u ),ζ(u))(t). Then (Zt)t∈[0,∞) is a continuous-time

Galton-Watson process (or a Harris process) with offspring distribution µ, with time parameter q
and with Poisson(ρ)-initial distribution. We denote by Γ = maxu∈τ ζ(u) the extinction time of the
population; then Γ = max{t∈ [0,∞) : Zt 6= 0}. Standard results on continuous-time GW-processes
imply the following. For all t∈(0,∞),

(261) P
(
Γ<t

)
= P(Zt=0) = e−ρr(t), where

∫ 1

r(t)

dr

gµ(1−r)−1 + r
= qt .
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For a formal proof, see for instance Athreya & Ney [5], Chapter III, Section 3, Equation (7) p. 106
and Section 4, Equation (1) p. 107.

We next compare Γ(τ) and Γ. To that end, we introduce (en)n≥1, a sequence of i.i.d. exponen-
tially distributed r.v. with mean 1, and we set:

(262) ∀ ε∈(0, 1), δ(ε) = sup
n≥1

P
(
n−1(e1 + . . .+ en) /∈ (ε, ε−1)

)
.

The law of large numbers easily implies that δ(ε)→0 as ε→0. Note that Z0 =Z0. We first assume
that Z0 6= 0. Let u∗ ∈ τ\{∅} be the first vertex in the lexicographical such that |u∗|= Γ(τ); since
ζ(u∗) ≤ Γ and since conditionally given τ , ζ(u∗) is the sum of |u∗| (conditionally) independent
exponential r.v. with parameter q, we get for all t∈(0,∞),

P
(
Γ<t ; Z0 6=0

)
≤
∑
n≥1

P
(

Γ(τ)=n; Z0 6=0
)
P
(
e1 + . . .+ en≤qt

)
.

Then, let ε∈(0, 1) and observe that P
(
e1 + . . .+ en≤qt

)
≤ δ(ε) + 1{n≤qt/ε}. Consequently,

P
(
Γ<t ; Z0 6=0

)
≤ δ(ε) + P

(
Γ(τ)≤bqt/εc ; Z0 6=0

)
.

If Z0 =Z0 =0, Γ=Γ(τ)=0, which implies that

P
(
Γ<t

)
≤ δ(ε) + P

(
Γ(τ)≤bqt/εc

)
.

Thus by (261) and (260), we have proved the following lemma.

Lemma 6.22 Let ρ, q∈(0,∞) and let µ be a (sub)-critical offspring distribution, whose generating
function is denoted by gµ; denote by g◦kµ the k-th iterate of gµ with the convention g◦kµ (r) = r,
r∈ [0, 1]. For all t∈(0,∞), let r(t) be such that

(263)
∫ 1

r(t)

dr

gµ(1−r)−1 + r
= qt .

For all ε∈(0, 1), recall from (262) the definition of δ(ε). Then, the following holds true.

(264) ∀ t∈(0,∞), e−ρr(t) −δ(ε) ≤ exp
(
−ρ
(
1−g◦btq/εcµ (0)

))
.

We are now ready to prove Proposition 6.21. Recall from (245) the definition of the offspring
distribution µwn . We apply Lemma 6.22 with µ=µwn , ρ= an, q= bn/an and we denote by rn(t)
the solution of (263): the change of variable λ=anr implies that rn(t) satisfies

(265)
∫ an

anrn(t)

dλ

bn
(
gµwn

(
1− λ

an

)
−1 + λ

an

) = t

Next, it is easy to check from (245) that bn
(
gµwn (1− λ

an
)−1 + λ

an

)
=ψn(λ), where ψn is defined in

(258). Then, Lemma 6.22 asserts for all t∈(0,∞) and for all ε∈(0, 1), that

(266) e−anrn(t)− δ(ε) ≤ exp
(
−an

(
1−g◦btbn/anεcµwn

(0)
))

where
∫ an

anrn(t)

dλ

ψn(λ)
= t .

Next, fix t∈(0,∞) and set C :=lim supn→∞ anrn(t)∈ [0,∞]. Suppose that C=∞. Then, there is
an increasing sequence of integers (nk)k∈N such that limk→∞ ankrnk(t)=∞. Let y∈(0,∞); then,
for all sufficiently large k, we have ankrnk(t)≥y, which entails

t =

∫ ank

ankrnk (t)

dλ

ψnk(λ)
≤
∫ ank

y

dλ

ψnk(λ)
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Thus, for all y∈(0,∞), t≤ lim supn→∞
∫∞
y dλ/ψn(λ), which contradicts Assumption (259). This

proves that C <∞. Since limε→0 δ(ε) = 0, we can choose ε such that δ(ε)< 1
2 e
−C ; then, we set

δ= t/ε and (266) implies that

(267) lim sup
n→∞

an(1−g◦bδbn/ancµwn
(0)) <∞ .

Recall that (Z(n)

k )k∈N stands for a Galton-Watson branching process with offspring distribution µwn
such that Z(n)

0 =banc. Then,

P
(
Z(n)

bδbn/anc=0
)

=
(
g◦bδbn/ancµwn

(0)
)banc

and (267) easily implies that lim infn→∞P
(
Z(n)

bδbn/anc= 0
)
> 0, which completes the proof of

Proposition 6.21. �

6.3.2 Proof of Propositions 2.11 and 2.12.

In this section we shall assume that the sequence an, bn ∈ (0,∞) satisfy (248) and that anbn
σ1(wn) →

κ ∈ (0,∞). This dramatically restricts the possible limiting triplets (α, β, π). To see this point, we
first prove the following lemma.

Lemma 6.23 For all n ∈ N, let vn=(v(n)

j )j≥1∈` ↓f and set φn(λ)=
∑

j≥1 v
(n)

j

(
e−λv

(n)
j −1+λv(n)

j

)
,

for all λ ∈ [0,∞). Then, the following assertions are equivalent.

(L) For all λ∈ [0,∞), there exists φ(λ)∈ [0,∞) such that limn→∞ φn(λ)=φ(λ).

(S) There are c ∈ ` ↓3 and β′∈ [0,∞) such that

∀j∈N∗, lim
n→∞

v(n)

j =cj and lim
n→∞

σ3(vn)−σ3(c)=β′.

Moreover, if (L) or (S) hold true, then β′ is necessarily nonnegative and φ in (L) is given by

(268) ∀λ ∈ [0,∞), φ(λ) =
1

2
β′λ2 +

∑
j≥1

cj
(
e−λcj − 1 + λcj

)
.

Proof. We first prove (S) ⇒ (L). We set f(x) = e−x−1 + x for all x ∈ [0,∞). By elementary
arguments,

(269) ∀x∈ [0,∞) 0 ≤ 1

2
x2−f(x) ≤ 1

2
x2(1−e−x)

We set η(x)=supy∈[0,x] y
−2| 12 y2−f(y)|; thus, η(x)≤ 1

2(1−e−x)≤1∧x and η(x)↓0 as x↓0.
Fix λ∈ [0,∞) and define φ(λ) by (268). Fix j0 ≥ 2 and observe the following.

φn(λ)−φ(λ) =
∑

1≤j≤j0

(
v(n)
j f(λv(n)

j )−cjf(λcj)
)

+ 1
2 λ

2
(
σ3(vn)−σ3(c)−β′ +

∑
1≤j≤j0

(
c3
j−(v(n)

j )3
))

+
∑
j>j0

(
v(n)
j f(λv(n)

j )− 1
2 λ

2(v(n)
j )3

)
+
∑
j>j0

(
1
2 λ

2c3
j−cjf(λcj)

)
.

Then, note that: ∑
j>j0

∣∣v(n)
j f(λv(n)

j )− 1
2 λ

2(v(n)
j )3

∣∣ ≤ λ2η
(
λv(n)

j0

)
σ3(vn) .

Similarly,
∑

j>j0

∣∣ 1
2 λ

2c3
j − cjf(λcj)

∣∣ ≤ λ2η
(
λcj0

)
σ3(c). Thus

lim sup
n→∞

∣∣φn(λ)− φ(λ)
∣∣ ≤ (β′ + 2σ3(c))λ2η

(
λcj0

)
−−−−→
j0→∞

0 ,
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since cj0 → 0 as j0 →∞. This proves (L) and (268).
Conversely, we assume (L). Note that v(n)

1 f(v(n)

1 ) ≤ φn(1). Thus, x0 = supn∈N v
(n)

1 < ∞.
By (269), for all y ∈ [0, x], f(y) ≥ 1

2 e
−xy2, which implies σ3(vn) ≤ 2ex0 supn∈N φn(1) =: z0.

Consequently, for all n ∈ N, (σ3(vn), vn) belongs to the compact space [0, z0]× [0, x0]N
∗
. Let

(qn)n∈N be an increasing sequence of integers such that limn→∞ σ3(vqn) = a and such that for all
j ≥ 1, limn→∞ v

(qn)

j = c′j . By Fatou, σ3(c′) ≤ a and we then set β′ = a−σ3(c′). By applying
(S)⇒ (L) to (vqn)n∈N, we get φ(λ)= 1

2β
′λ2 +

∑
j≥1 c

′
j

(
exp(−λc′j)−1+λc′j

)
, for all λ ∈ [0,∞).

We easily show that it characterises β′ and c′. Thus, ((σ3(vn), vn))n∈N, has a unique limit point in
[0, z0]×[0, x0]N

∗
, which easily entails (S). �

Lemma 6.24 Let wn∈` ↓f and an, bn∈(0,∞), n∈N, satisfy (66). Namely

(270) an and
bn
an
−−→
n→∞

∞, bn
a2
n

−−→
n→∞

β0∈ [0,∞),

sup
n∈N

w(n)
1

an
<∞ and

anbn
σ1(wn)

−−→
n→∞

κ∈(0,∞).

Recall from (247) the definition of Xwn. Then the following assertions hold true.

(i) Let us suppose that (II) in Theorem 6.19 holds true; namely, 1
an
Xwn
bn· −→ X weakly on

D([0,∞),R). Then, X is an integrable (α, β, π) spectrally Lévy process (as defined at the
beginning of Section 6.3.1) and (α, β, π) necessarily satisfies:

(271) β≥β0 and ∃ c=(cj)j≥1∈` ↓3 : π=
∑
j≥1

κcjδcj

and the following hold true:

(C1) :
bn
an

(
1− σ2(wn)

σ1(wn)

)
−−−→
n→∞

α (C2) :
bn
a2
n

·σ3(wn)

σ1(wn)
−−−→
n→∞

β + κσ3(c) ,

(C3) : ∀j ∈ N∗,
w

(n)
j

an
−−−→
n→∞

cj .

(ii) Conversely, (C1)–(C3) are equivalent to (II), and by Theorem 6.19, it is equivalent to (I),
or to (IIIabc) or to ((IIIa) & (IV)).

Proof. To simplify notation, we set κn = anbn/σ(wn). By the last point of (66) (that is recalled in
(270)), κn→κ∈ (0,∞). We also set v(n)

j =w(n)

j /an for all j≥1. We first prove (i), so we suppose
Theorem 6.19 (II), which first implies that β≥β0; then recall that Theorem 6.19 (II) is equivalent
to ((C1) & (IV)) and Theorem 6.19 ((IV)) can be rewritten as follows: for all λ∈ [0,∞),

κn
∑
j≥1

v(n)

j

(
e−λv

(n)
j −1 + λv(n)

j

)
−−−→
n→∞

ψα,β,π(λ)− αλ .

This entails Condition (L) in Lemma 6.23 with φ(λ) = (ψα,β,π(λ) − αλ)/κ. Lemma 6.23 then
implies that there are c ∈ ` ↓3 and β′ ∈ [0,∞) such that for all j ∈ N∗, limn→∞ v

(n)

j = cj and
limn→∞ σ3(vn)−σ3(c)=β′ and that

1

2
κ−1βλ2+κ−1

∫
(0,∞)
(e−λr−1+λr)π(dr)=

ψα,β,π(λ)−αλ
κ

=φ(λ) =
1

2
β′λ2+

∑
j≥1

cj
(
e−λcj−1+λcj

)
.

This easily entails that κβ′=β, π=
∑

j≥1 κcjδcj and we easily get (C2) and (C3).
We next prove (ii): we assume that α ∈ [0,∞), that β ≥ β0 and that π =

∑
j≥1 κcjδcj where

c=(cj)j≥1∈` ↓3 . Then observe that (C1) is (IIIa) in Theorem 6.19, that (C2) is (IIIb) in Theorem

83



6.19; moreover, (C3) easily entails (IIIc) in Theorem 6.19. Then Theorem 6.19 easily entails (ii).
This completes the proof of the lemma. �

Lemma 6.24 combined with Theorem 6.19 implies Proposition 2.11 (i), (ii) and (iii), and
Lemma 6.24 combined with Theorem 6.20 implies Proposition 2.12.

It only remains to prove Proposition 2.11 (iv). Namely, fix α∈R, β ∈ [0,∞), κ∈ (0,∞), and
c=(cj)j≥1∈` ↓3 . We prove that there are sequences an, bn∈(0,∞), wn∈` ↓f , n∈N, that satisfy (66)
(recalled in (270)) with β0 ∈ [0, β] and (C1), (C2) and (C3): first let (ρn)n∈N be a sequence of
positive integers such that limn→∞ ρn=∞ and

∑
1≤j≤ρn cj + c2

j ≤ n, for all n≥c1 + c2
1. We then

define the following.

(272) q(n)
j =


cj if j∈

{
1, . . . , ρn

}
,

((β−β0)/κ)
1
3n−1 if j∈

{
ρn + 1, . . . , ρn + n3

}
,

un if j∈
{
ρn + n3 + 1, . . . , ρn + n3 + n8

}
,

0 if j > ρn + n3 + n8,

where un = n−3 if β0 = 0 and un = (β0/κ)
1
3n−8/3 if β0 > 0. We denote by vn = (v(n)

j )j≥1 the
non-increasing rearrangement of qn= (q(n)

j )j≥1. Thus, we get σp(vn) =σp(qn) for any p∈ (0,∞)
and we observe the following.

(273) κσ1(vn) ∼
{
κn5 if β0 =0,

κ
2
3β

1
3
0 n

16
3 if β0>0,

κσ2(vn) ∼
{
κn2 if β0 =0,

κ
1
3β

2
3
0 n

8
3 if β0>0,

and κσ3(vn) ∼ κσ3(c) + β .

We next set:

(274) bn = κσ1(vn), an =
κσ1(vn)

κσ2(vn) + α
and w(n)

j = anv
(n)
j , j≥1.

We then see that anbn/σ1(wn)=κ, that supn∈Nw
(n)
1 /an<∞. Moreover, we get

bn
an

(
1− σ2(wn)

σ1(wn)

)
= α, lim

n→∞

bn
a2
n

·σ3(wn)

σ1(wn)
=β + κσ3(c) and lim

n→∞

w(n)
j

an
= cj

which are the limits (C1), (C2) and (C3). It is easy to derive from (273) and (274) that an and
bn/an tend to∞ and that bn/a2

n tends to β0. This completes the proof of Proposition 2.11 (iv). �

6.3.3 Proof of Proposition 2.13 (i).

Fix α, β ∈ [0,∞), κ∈ (0,∞) and c = (cj)j≥1 ∈ ` ↓3 . For all λ∈ [0,∞), set ψ(λ) = αλ + 1
2βλ

2 +∑
j≥1 κcj

(
e−λcj−1 +λcj

)
and we assume that

∫∞
dλ/ψ(λ)<∞. Let an, bn∈(0,∞) and wn∈` ↓f ,

n∈N, satisfy (66) (recalled in (270)), (C1), (C2) and (C3) (as recalled in Lemma 6.24). Recall
from (247) the definition of Xwn ; we denote by ψn the Laplace exponent of 1

an
Xwn
bn·. Namely,

(275) ∀λ∈ [0,∞), ψn(λ)=αnλ+
anbn
σ1(wn)

∑
j≥1

w
(n)
j

an

(
e−λw

(n)
j /an−1 + λw

(n)
j /an

)
.

where we have set αn= bn
an

(
1− σ2(wn)

σ1(wn)

)
. Proposition 6.21 and Lemma 6.24 prove that (75) Proposi-

tion 2.13 (i) entails (C4).
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It only remains to prove the last point of Proposition 2.13 (i): assume that β0 > 0 in (66); let
Vn :Ω→ [0,∞) be a r.v. with law 1

σ1(wn)

∑
j≥1w

(n)

j δ
w

(n)
j /an

. First, observe the following.

E[Vn]=
σ2(wn)

anσ1(wn)
=

1

an

(
1−αn

an
bn

)
and ψn(λ)−αnλ = bnE

[
f
(
λVn

)]
,

where we recall that f(x) = e−x−1 + x. Since f is convex and since αn ≥ 0, by Jensen’s in-
equality entails ψn(λ)≥ bnE[f(λVn)]≥ bnf(λE[Vn]). Next, recall from (269) that f(λE[Vn]) ≥
1
2(λE[Vn])2 exp(−λE[Vn]). Then, note that for all λ ∈ [0, an], λE[Vn] ≤ 1 and observe that
E[Vn]∼1/an since αn→α by (C1). Therefore, there exists n0 such that for all n≥n0 and for all
λ∈ [0, an], ψn(λ)≥ (8e)−1(bn/a

2
n)λ2. Since β0> 0, there exists n1≥n0 such that bn/a2

n≥β0/2.
Thus, we have proved that

∃n1∈N : ∀n≥n1, ∀λ∈ [0, an], ψn(λ) ≥ 1

16e
β0λ

2 ,

which clearly implies (75). This completes the proof of Proposition 2.13 (i). �

6.3.4 Proof of Proposition 2.13 (ii).

Let us mention that, here, we closely follows the counterexample given in Le Gall & D. [21],
p. 55. Fix α, β ∈ [0,∞), κ ∈ (0,∞) and c = (cj)j≥1 ∈ ` ↓3 . For all λ ∈ [0,∞), set ψ(λ) =
αλ+ 1

2βλ
2 +

∑
j≥1 κcj

(
e−λcj−1 + λcj

)
; assume that

∫∞
dλ/ψ(λ)<∞. For all positive integers

n, we next define cn=(c(n)

j )j≥1 by setting

c(n)

j =cj if j≤n, c(n)

j =(β/(κn))
1
3 if n<j≤2n and c(n)

j =0 if j>n.

We also set ψn(λ) = αλ +
∑

j≥1 κc
(n)

j

(
exp(−λc(n)

j )−1 + λc(n)

j

)
, λ ∈ [0,∞). Let (Unt )t∈[0,∞),

be a CSBP with branching mechanism ψn and with initial state Un0 = 1. As λ→∞, observe that
ψn(λ) ∼ (α + κσ2(cn))λ. Thus,

∫∞
dλ/ψn(λ) =∞; by standard results on CSBP (recalled in

Section B.2.2 in Appendix), we therefore get

(276) ∀n ∈ N, ∀t∈ [0,∞), P
(
Unt >0

)
=1 .

Let Z = (Zt)t∈[0,∞) stands for a CSBP with branching mechanism ψ and with initial state Z0 = 1.
Observe that for all λ∈ [0,∞), limn→∞ ψn(λ) =ψ(λ). By standard results on CSBP (see Helland
[28], Theorem 6.1, p. 96), we get

(277) Un −−−−→
n→∞

Z weakly on D([0,∞),R).

Next, let us fix n∈N. By Proposition 2.11 (iv) there exist sequences wn,p = (w(n,p)
j )j≥1 ∈ ` ↓f and

an,p, bn,p∈(0,∞), p∈N, such that

(278)
an,pbn,p
σ1(wn,p)

→ κ, an,p,
bn,p
an,p

and
a2
n,p

bn,p
−−−→
p→∞

∞, bn,p
an,p

(
1− σ2(wn,p)

σ1(wn,p)

)
−−−→
p→∞

α

(279)
bn,p
a2
n,p

·σ3(wn,p)

σ1(wn,p)
−−−→
p→∞

κσ3(cn) and ∀j ∈ N∗,
w(n,p)

j

an,p
−−−→
p→∞

c(n)

j ,

and the following weak limit holds true on D([0,∞),R):

(280)
(

1
an,p

Z(n,p)

bbn,pt/an,pc

)
t∈[0,∞)

−−−−→
p→∞

(Unt )t∈[0,∞)
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where (Z(n,p)
k )k∈N is a Galton-Watson process with initial state Z(n,p)

0 = ban,pc and with offspring
distribution µwn,p given by

(281) ∀k∈N, µwn,p(k) =
∑
j≥1

(w(n,p)
j )k+1

σ1(wn,p) k!
e
−w(n,p)

j .

By Portemanteau’s theorem for all t∈ [0,∞), lim infp→∞P
(
Z(n,p)

bbn,pt/an,pc> 0
)
≥P(Unt > 0) = 1,

by (276). Thus, there exists pn∈N, such that

(282) ∀p≥pn, P
(
Z(n,p)

bbn,pn/an,pc>0
)
≥ 1− 2−n .

Without loss of generality we can furthermore assume the following:

an,pn ,
bn,pn
an,pn

and
a2
n,pn

bn,pn
≥ 2n,

∣∣∣ bn,pn
an,pn

(
1− σ2(wn,pn)

σ1(wn,pn)

)
− α

∣∣∣ ≤ 2−n,
∣∣∣ an,pbn,p
σ1(wn,p)

− κ
∣∣∣ ≤ 2−n

∣∣∣ bn,pn
a2
n,pn

·σ3(wn,pn)

σ1(wn,pn)
− κσ3(cn)

∣∣∣ ≤ 2−n and ∀j∈{1, . . . , n},
∣∣∣w(n,pn)

j

an,pn
− c(n)

j

∣∣∣ ≤ 2−n.

Set an = an,pn , bn = bn,pn and wn = wn,pn . Note that κσ3(cn)→ β + κσ3(c) as n→∞. Thus,
an, bn and wn satisfy satisfy (66) (recalled in (270)) with β0 = 0, (C1), (C2) and (C3). Set
Z(n)

k = Z(n,pn)

k . By (282), for all δ ∈ (0,∞), and all integers n≥ δ, we easily get P
(
Z(n)

bbnδ/anc =

0
)
≤ P

(
Z(n)

bbnn/anc= 0
)
≤ 2−n. Consequently, limn→∞P

(
Z(n)

bbnδ/anc= 0
)

= 0, for all δ ∈ (0,∞).
Namely, (C4) is not satisfied, which completes the proof of Proposition 2.13 (ii). �

6.3.5 Proof of Proposition 2.13 (iii).

Fix α, β ∈ [0,∞), κ∈ (0,∞) and c = (cj)j≥1 ∈ ` ↓3 . For all λ∈ [0,∞), set ψ(λ) = αλ + 1
2βλ

2 +∑
j≥1 κcj

(
e−λcj−1 + λcj

)
; assume that

∫∞
dλ/ψ(λ)<∞. We consider several cases.

• Case 1: we first assume that β≥β0>0. By Proposition 2.11 (iv) there exists an, bn, wn satisfying
(66) (recalled in (270)) with β0 > 0, (C1), (C2) and (C3). But Proposition 2.13 (i) (proved in
Section 6.3.3) asserts that an, bn, wn necessarily satisfy (C4). This proves Proposition 2.13 (iii) in
Case 1.

• Case 2: we next assume that β>0 and β0 =0, and we set:

(283) q(n)
j =


cj if j∈

{
1, . . . , n

}
,

(β/κ)
1
3n−1 if j∈

{
n+ 1, . . . , n+ n3

}
,

n−3 if j∈
{
n+ n3 + 1, . . . , n+ n3 + n8

}
,

0 if j > n+ n3 + n8.

Denote by vn = (v(n)
j )j≥1 the non-increasing rearrangement of qn = (q(n)

j )j≥1. Thus, σp(vn) =
σp(qn) for any p∈ (0,∞). Since

∑
1≤j≤n c

p
j ≤ cp1n, we easily get κσ1(vn)∼κn5, κσ2(vn)∼κn2

κσ3(vn) → β + κσ3(c). We next set bn = κσ1(vn), an = κσ1(vn)/(κσ2(vn) + α) and for all
j ≥ 1, w(n)

j = anv
(n)

j . Note that an ∼ n3. Then, it is easy to check that an, bn and wn satisfy (66)
(recalled in (270)) with β0 = 0, (C1), (C2) and (C3). Here observe that κ = anbn/σ1(wn) and
bn
(
1−(σ2(wn)/σ1(wn))

)
/an=α.

We next prove that (C4) holds true by proving that (75) in Proposition 2.13 (i) holds true. To
that end, we introduce fλ(x) = x

(
e−λx−1 + λx

)
, for all x, λ∈ [0,∞), and we recall from (247)

the definition of Xwn ; we denote by ψn the Laplace exponent of 1
an
Xwn
bn·. We first observe that for

all λ∈ [0,∞)

(284) ψn(λ) = αλ+ κ
∑
j≥1

fλ(q(n)
j )=αλ+ κ

∑
1≤j≤n

fλ(cj) + κn3fλ((β/κ)
1
3n−1) + κn8fλ(n−3).
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Set s0 =(β/κ)1/3 and recall from (269) that fλ(x)≥ 1
2x

3λ2e−λx. Thus, if λ∈ [1, 2n/s0], then

ψn(λ) ≥ κn3fλ((β/κ)
1
3n−1) ≥ 1

2
e−2βλ2 =: s1λ

2.

Next observe that, fλ(x)≥x(λx− 1); thus, if λ∈ [2n/s0, n
3], then

ψn(λ) ≥ κn3fλ((β/κ)
1
3n−1) ≥ κs0n

2(s0n
−1λ−1).

Thus, for all y>1,∫ n3

y

dλ

ψn(λ)
≤
∫ 2n

s0

y

dλ

s1λ2
+

∫ n3

2n
s0

dλ

κs0n2
(
s0n−1λ−1)

≤ 1

s1y
+

log(s0n
2−1)

κs2
0n

.

Since an ∼ n3, it proves that ψn satisfies (75), and (C4) holds true. This proves Proposition 2.13
(iii) in Case 2.
• Case 3: We now assume that β=β0 = 0. Let βn∈ (0,∞) be a sequence decreasing to 0. For all
n∈N∗, we set Ψn(λ)=ψ(λ) + 1

2βnλ
2 =αλ+ 1

2βnλ
2 +

∑
j≥1 κcj

(
e−λcj−1 + λcj

)
. We now fix

n∈N∗; by Case 2, there exists wn,p=(w(n,p)
j )j≥1∈` ↓f and an,p, bn,p∈(0,∞), p∈N, that satisfy

(285)
an,pbn,p
σ1(wn,p)

= κ, an,p,
bn,p
an,p

and
a2
n,p

bn,p
−−−→
p→∞

∞, bn,p
an,p

(
1− σ2(wn,p)

σ1(wn,p)

)
= α

(286)
bn,p
a2
n,p

·σ3(wn,p)

σ1(wn,p)
−−−→
p→∞

βn + κσ3(c) and ∀j ∈ N∗,
w(n,p)

j

an,p
−−−→
p→∞

cj .

and

(287) ∀n∈N∗, ∀t∈ [0,∞), lim
n→∞

P
(
Z(n,p)

bbn,pt/an,pc=0
)

= e−vn(t) where
∫ ∞
vn(t)

dλ

Ψn(λ)
= t.

Here, (Z(n,p)

k )k∈N is a Galton-Watson process with offspring distribution µwn,p given by (245) and
where Z(n,p)

0 = ban,pc. Let v : (0,∞)→ (0,∞) be such that t=
∫∞
v(t) dλ/ψ(λ) for all t ∈ (0,∞).

Since Ψn(λ)≥ ψ(λ), we get
∫∞
v(t) dλ/ψ(λ) = t≤

∫∞
vn(t) dλ/ψ(λ); thus vn(t)≤ v(t). Thus, there

exists pn ∈N such that for all p ≥ pn, P
(
Z(n,p)

bbn,p/an,pc = 0
)
≥ 1

2 exp(−vn(1)) ≥ 1
2 exp(−v(1)).

Without loss of generality, we can assume that an,pn , bn,pn/an,pn and a2
n,pn/bn,pn ≥ 2n, that for all

1≤j≤n, |w(n,pn)

j /an,pn−cj | ≤ 2−n and∣∣∣ bn,pn
a2
n,pn

·σ3(wn,pn)

σ1(wn,pn)
− κσ3(c)

∣∣∣ ≤ 2βn −→ 0.

If one set an=an,pn , bn,pn and wn=wn,pn , then we have proved that an, bn, wn satisfy (66) (recalled
in (270)) with β = β0 = 0, and (C1)–(C4), which proves Proposition 2.13 (iii) in Case 3. This
completes the proof of Proposition 2.13 (iii). �

7 Proof of Lemma 2.18.

We first prove the following lemma.

Lemma 7.1 Let ` : (0, 1] → (0,∞) be a measurable slowly varying function such that for all
x0 ∈ (0, 1), supx∈[x0,1] `(x)<∞. Then, for all δ ∈ (0,∞), there exist ηδ ∈ (0, 1] and cδ ∈ (1,∞)
such that

(288) ∀y∈(0, ηδ), ∀z∈(y, 1],
1

cδ

(z
y

)−δ
≤ `(z)

`(y)
≤ cδ

(z
y

)δ
.
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Proof. The measurable version of the representation theorem for slowly varying functions (see for
instance [16]) implies that there exist two measurable functions c : (0, 1]→R and ε : (0, 1]→ [−1, 1]
such that limx→0+ c(x) = γ ∈ R, such that limx→0+ ε(x) = 0, and such that `(x) = exp(c(x) +∫ 1
x ds ε(s)/s), for all x ∈ (0, 1]. Since, supx∈[x0,1] `(x) < ∞, for all x0 ∈ (0, 1), we can as-

sume without loss of generality that c is bounded. Fix δ ∈ (0,∞) and let ηδ ∈ (0, 1] be such that
sup(0,ηδ]

|ε| ≤ δ. Fix y∈(0, ηδ) and z∈(y, 1]; if z≤ηδ, then note that
∫ z
y ds |ε(s)|/s ≤ δ log(z/y);

if ηδ≤z, then observe that
∫ z
y ds |ε(s)|/s ≤ δ log(ηδ/y)+

∫ 1
ηδ
ds |ε(s)|/s≤δ log(z/y)+log(1/ηδ).

Thus

ηδe
−2‖c‖∞

(z
y

)−δ
≤ `(z)

`(y)
= exp

(
c(z)−c(y)−

∫ z

y
ds
ε(s)

s

)
≤ η−1

δ e2‖c‖∞
(z
y

)δ
,

which implies the desired result. �

Recall from (84) that W : Ω→ [0,∞) is a r.v. such that r := E[W ] = E[W 2] <∞ and such
that P(W ≥ x) =x−ρL(x) where L is a slowly varying function at∞ and ρ∈ (2, 3). Recall from
(85) that for all y∈ [0,∞), we have set G(y) = sup{x∈ [0,∞) : P(W ≥x)≥ 1∧y}. Note that G
is non increasing and that it is null on [1,∞). Then, G(y) = y−1/ρ `(y), where ` is slowly varying
at 0. Recall from (87) that κ, q ∈ (0,∞) and that an ∼ q−1G(1/n), w(n)

j = G(j/n), j ≥ 1, and
bn∼κσ1(wn)/an.

Fix a ∈ [1, 2] and observe that σa(wn) =
∑

1≤j<n
∫ G(1/n)

0 dz aza−11{z≤G(j/n)}. But observe
that z<G(y) implies y≤P (W ≥z), which implies z≤G(y). Thus,

σa(wn) =
∑

1≤j<n

∫ G(1/n)

0
dz aza−11{j≤nP(W≥z)} =

∫ G(1/n)

0
dz aza−1

∑
1≤j<n

1{j≤nP(W≥z)}

=

∫ G(1/n)

0
dz aza−1bnP(W ≥z)c =

∫ G(1/n)

0
dz aza−1nP(W ≥z)−

∫ G(1/n)

0
dz aza−1{nP(W ≥z)}

= n

∫ ∞
0
dz aza−1P(W ≥z)−

∫ ∞
G(1/n)
dz aza−1nP(W ≥z)−

∫ G(1/n)

0
dz aza−1{nP(W ≥z)}.(289)

Note that
∫∞

0 dz aza−1P(W ≥z)=E[W a]<∞. Recall from (86) that P(W =G(1/n))=0, which
easily implies that P(W ≥G(1/n))=1/n. Thus,

nP(W ≥ z)=P(W ≥ z)/P(W ≥ G(1/n)) = (z/G(1/n))−ρL(z)/L(G(1/n))

and by (289) and the change of variable z 7→z/G(1/n), we get

σa(wn)=nE[W a]−G
( 1

n

)a∫ ∞
1
dz aza−1−ρL(zG( 1

n ))

L(G( 1
n ))
−G

( 1

n

)a∫ 1

0
dz aza−1

{
z−ρ

L(zG( 1
n ))

L(G( 1
n ))

}
.

The measurable version of the representation theorem for slowly varying functions (see for instance
[16]) implies that there exist two measurable functions c : (0,∞)→ R and ε : (0,∞)→ [−1, 1]
such that limx→∞ c(x) = γ ∈ R, such that limx→∞ ε(x) = 0, and such that L(x) = exp(c(x) +∫ x

1 ds ε(s)/s), for all x∈ (0,∞). We then set u=(ρ−a)/2 that is a strictly positive quantity since
a≤2<ρ. Let n0 be such that for all n≥n0, sups∈[1,∞) |ε(sG(1/n))|≤u. Thus, for all z∈ [1,∞),

0 ≤za−1−ρL(zG( 1
n ))

L(G( 1
n ))

=za−1−ρ exp
(
c
(
zG
( 1

n

))
−c
(
G
( 1

n

))
+

∫ z

1
ds
ε
(
sG
(

1
n

))
s

)
≤ e2‖c‖∞z−1−u

Since for all z∈ [1,∞), L(zG(1/n))/L(G(1/n))→1, dominated convergence entails:

lim
n→∞

∫ ∞
1
dz aza−1−ρL(zG( 1

n ))

L(G( 1
n ))

=
a

ρ−a and lim
n→∞

∫ 1

0
dz aza−1

{
z−ρ

L(zG( 1
n ))

L(G( 1
n ))

}
=

∫ 1

0
dz aza−1{z−ρ}.
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We then set Qa=a/(ρ−a) +
∫ 1

0 dz az
a−1{z−ρ} and since an ∼ q−1G(1/n), we have proved that

(290) σa(wn)=nE[W a]− qaQa(an)a + o((an)a).

Recall that r=E[W ]=E[W 2] and take (290) with a=1 to get σ1(wn)−rn∼−Q1n
1/ρ`(1/n) since

an ∼ q−1n1/ρ`(1/n); thus bn ∼ κqrn1−1/ρ/`(1/n). It implies that an and bn/an go to∞ and that
bn/a

2
n→0. Moreover for all j≥ 1, w(n)

j /an→qj−1/ρ. This implies that an, bn and wn satisfy (66)
with β0 =0 (and (C3)). Since anbn ∼ κσ1(wn) ∼ κrn, (290) with a=1 and 2 implies

(291)
σ2(wn)

σ1(wn)
=
nr−q2Q2a

2
n + o(a2

n)

nr−qQ1an + o(an)
=1−κq2Q2

an
bn

+ o
(an
bn

)
=1−α0

an
bn

+ o
(an
bn

)
,

where α0 =κq2Q2 as defined in (88).
Next recall that for all α ∈ [0,∞), w(n)

j (α) = (1− an
bn

(α − α0))w(n)
j . Then, (291) entails

that σ2(wn(α))/σ1(wn(α)) = 1 − αan/bn + o(an/bn). Namely, wn(α) satisfies (C1). Since
w(n)
j (α) ∼n w(n)

j , wn(α) also satisfies (C3) with cj =qj−1/ρ, j≥1.
Let us proves that (wn(α)) satisfies (C2). First observe that σ3(wn(α)) ∼ σ3(wn). So we

only need to prove that the wn satisfy (C2). To that end, for all n and j ≥ 1, we set fn(j) =
(G(j/n)/G(1/n))3 = j−3/ρ`3(j/n)/`3(1/n) and δ = 1

2 ( 3
ρ −1) that is strictly positive. We apply

Lemma 7.1 to `3: let cδ ∈ (1,∞) and ηδ ∈ (0, 1] such that (288) holds true; then, for all n> 1/ηδ,
0≤fn(j)≤cδj−1−δ. Since for all j≥1, limn→∞ fn(j)=j−3/ρ, by dominated convergence we get:

G(1/n)−3σ3(wn) =
∑

1≤j≤n
fn(j) −−−−→

n→∞

∑
j≥1

j−3/ρ = q−3σ3(c),

which easily implies (C2).
Let us prove that wn(α) satisfies (C4) thanks to (75) in Proposition 2.13. To that end, we fix

n∈N∗ and λ∈ [0,∞) such that λ∈ [1, an]. For all x∈ [0,∞), recall that fλ(x)=x(e−λx−1 + λx)
and for all j≥1, set

φn(j)=fλ

(w(n)
j (α)

an

)
=fλ

(
qnj
−1/ρ `(j/n)

`(1/n)

)
where qn=

(
1− an

bn
(α−α0)

)
G(1/n)

an
∼ q .

To simplify, we also set κn = anbn/σ1(wn(α)); note that κn ∼ κ. Let δ ∈ (0,∞) to be specified
further; by Lemma 7.1 and the previous arguments, there exists cδ∈ (0,∞) and nδ such that for all
n≥nδ, w(n)

j (α)/an≥cδj−δ−1/ρ and κn≥ 1
2κ, which entails κnφn(j)≥ 1

2κfλ(cδj
−δ−1/ρ). We next

set:

αn :=
bn
an

(
1−σ2(wn(α))

σ1(wn(α))

)
∼ α

Recall from (74) that ψn stands for the the Laplace exponent of ( 1
an
X

wn(α)
bnt

)t∈[0,∞). The previous
inequalities then imply that

ψn(λ)−αnλ =
∑

1≤j<n
κnφn(j) ≥ 1

2
κ
∑

1≤j<n
fλ(cδj

−δ− 1
ρ ) ≥ 1

2
κ

∫ n

1
dx fλ(cδx

−δ− 1
ρ ) .

We set a=ρ/(1 + ρδ), namely 1/a=δ+ 1/ρ and we use the change of variables y=λx−1/a in the
last member of the inequality to get

∀n≥nδ, ∀λ∈ [1, an], ψn(λ)−αnλ ≥ 1

2
κaλa−1

∫ λ

λn−1/a

dy y−a−1f1(cδy)

≥ 1

2
κaλa−1

∫ 1

ann−1/a

dy y−a−1f1(cδy).

Now observe that ann−1/a ∼ q−1n−δ`(1/n)→0. Thus, without loss of generality, we can assume
that for all n≥ nδ, ann−1/a ≤ 1/2. Then, we set Kδ = 1

2κa
∫ 1

1/2dy y
a−1f1(cδy)> 0 and we have

proved that for all n≥nδ, and for all λ∈ [1, an], ψn(λ)−αnλ≥Kδλ
a−1. Since ρ > 2 it is possible

to choose a sufficiently small δ > 0 such that a−1 = ρ/(1 + ρδ)−1 > 1. Then, we get (75) in
Proposition 2.13 (i) which implies (C4). This completes the proof of Lemma 2.18. �
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A Laplace exponents.

We state here a proposition on the Laplace transform of measures on R. To that end, we briefly recall
standard results on the Laplace transform of finite measures on [0,∞) and on [0,∞]. Namely, let
µ be a Borel-measure on the compact space [0,∞]; its Laplace transform is given by Lµ(λ) =∫

[0,∞) e
−λx µ(dx), for all λ∈ (0,∞). In particular, we take Lµ(0)=Lµ(0+)=µ([0,∞)). Let µ, ν

be finite Borel measures on [0,∞]. Recall that if µ([0,∞]) = ν([0,∞]) and if I = {λ ∈ (0,∞) :
Lµ(λ) = Lν(λ)} has a limit point in (0,∞), then µ = ν. The continuity theorem for Laplace
transform can stated as follows: let µ and µn, n∈N, be finite Borel measures on [0,∞]. Then, the
following holds true.

(292) µn
weak
−−−→
n→∞

µ ⇐⇒ lim
n→∞

µn([0,∞])=µ([0,∞]) and lim
n→∞

Lµn(λ)=Lµ(λ), λ∈ [0,∞).

We next easily deduce from (292) the following lemma.

Lemma A.1 Let (µn)n∈N be a sequence of probability measures on [0,∞). Let I⊂ (0,∞) having
a limit point in (0,∞); let L : I → [0,∞) be such that for all λ∈I , limn→∞ Lµn(λ)=L(λ). Then,
there exists a probability measure µ on [0,∞] such that µn→ µ weakly on [0,∞]. If furthermore
the µn are tight on [0,∞), then µ({∞})=0.

Proof. Since [0,∞] is compact, {µn;n∈N} is tight on [0,∞]; by (292), the Laplace transform of
two limiting probability measures coincide on I: there are therefore equal. �

Let µ be a finite Borel-measure on R; we extends its Laplace transform on R by simply setting
for all λ∈R, Lµ(λ)=

∫
Re
−λxµ(dx)∈ [0,∞]. Let us mention that if in a right-neighbourhood of 0,

Lµ and Lν are finite and coincide, then µ=ν. We easily prove the following result.

Lemma A.2 Let (µn)n∈N be a sequence of probability measures on [0,∞). Suppose that there
exists λ∗∈(0,∞) such that for all λ∈ [0, λ∗], Λ(λ) := limn→∞ Lµn(−λ) exists and is finite. Then,
µn → µ weakly on [0,∞), Λ(λ)=Lµ(−λ), λ∈ [0, λ∗), wich implies that limλ→0+ Λ(λ)=1.

Proof. For all λ0∈(0, λ∗), set νn,λ0(dx)=eλ0xµn(dx)/Lµn(−λ0) that is a well-defined probability
measure. Note that for all λ∈ [λ0−λ∗, λ0], Lνn,λ0

(λ)=Lµn(λ−λ0)/Lµn(−λ0)→Λ(λ0−λ)/Λ(λ0).
This limit for λ < 0 entails that the νn,λ0 are tight on [0,∞); the same limit for λ > 0 combined
with Lemma A.1 implies that there is a probability measure νλ0 on [0,∞) such that νn,λ0 → νλ0

weakly on [0,∞). Since µn(dx) = Lµn(−λ0)e−λ0xνn,λ0(dx), we easily see that µn → µ :=
Λ(λ0)e−λ0xνλ0(dx) weakly on [0,∞) we easily check that Lµ(−λ)=Λ(−λ) for all λ∈ [0, λ∗). �

We next recall a result essentially due to Grimvall [27] (Theorem 2.1, p. 1029).

Lemma A.3 For all n ∈ N, let (∆n
k)k∈N be an i.i.d. sequence of real valued r.v. such that there

exists a∈(0,∞) such that:

(293) ∀n, k ∈ N, P(∆n
k ≥ −a) = 1 .

Let (qn)n∈N be a sequence of integers that tends to∞. We then set Yn=
∑

0≤k≤qn ∆n
k and Ln(λ) =

E
[
e−λYn

]
that is well-defined for all λ∈ [0,∞) thanks to (293). Then, the following assertions are

equivalent.

(a) The r.v. Yn converge in law to a real-valued r.v. Y .

(b) There exists a function L : [0,∞)→ [0,∞) that is right-continuous at 0, such that L(0) = 1
and such that limn→∞ Ln(λ)=L(λ) for all λ∈ [0,∞).
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Moreover, if (a) or (b) is satisfied, then L(λ) = E[exp(−λY )] and L is positive and continuous.
Furthermore, the convergence limn→∞ Ln = L holds true uniformly on every compact subset of
(0,∞).

Proof. Grimvall’s Theorem 2.1 [27] (p. 1029) asserts (a)⇒(b). It also asserts that if (a) holds true,
then L(λ)=E[exp(−λY )] and limn→∞ Ln=L uniformly on every compact subset of (0,∞).

It only remains to prove that (b)⇒(a): first suppose that Ypn is a subsequence that converges in
distribution to Y ′: by applying (a)⇒ (b), we get L(λ) =E[exp(−λY ′)], λ∈ [0,∞); as mentioned
earlier, if the Laplace transform of a real-valued random variable is finite in a right-neighbourhood
of 0, then it characterizes its law. Consequently, the laws of Yn have at most one weak limit.
Therefore, we only need to prove that the laws of the Yn are tight on R.

Since [−∞,∞] is compact, the laws of the Yn are tight on [−∞,∞] and we only need to prove
that for all increasing sequence of integers (np)p∈N such that Ynp → Y in law on [−∞,∞], we
necessarily get P(|Y |=∞) = 0. To that end, first note that the convergence Ynp → Y in law on
[−∞,∞] implies that (Ynp)+/−→(Y )+/− in law on [0,∞]. By (292), we get

lim
p→∞

E
[

exp(−λ(Ynp)+)
]
=E

[
exp(−λ(Y )+)

]
for all λ∈ [0,∞). Since Ln(λ)=E

[
exp(λ(Yn)−)

]
+ E

[
exp(−λ(Yn)+)

]
−1, we get

lim
p→∞

E
[

exp(λ(Ynp)−)
]
=L(λ) + 1−E

[
exp(−λ(Y )+)

]
.

This easily entails that the laws of the (Ynp)− are tight on [0,∞). Thus P(Y = −∞) = 0. We
then apply Lemma A.2 to the laws of the r.v. (Ynp)− and as p→∞ we get E

[
exp(λ(Y )−)

]
=

L(λ) + 1−E
[

exp(−λ(Y )+)
]

and as λ→ 0+, since E
[

exp(λ(Y )−)
]

and L(λ) tend to 1, we get
P((Y )+<∞) = limλ→0+ E

[
exp(−λ(Y )+)

]
=1, which completes the proof of the lemma. �

B Skorokod’s topology.

B.1 General results.

In this section, we adapt and we recall from Jacod & Shiryaev’s book [30] results on Skorokod’s
topology and weak convergence on D([0,∞),Rd) that are used in the proofs.

Lemma B.1 (Propositions 2.1 & 2.2 in [30]) Let xn → x in D([0,∞),Rd) and let yn → y in
D([0,∞),Rd′). Then, the following holds true.

(i) For all t ∈ [0,∞), there exists a sequence of times tn → t such that xn(tn−) → x(t−),
xn(tn)→x(t) and thus, ∆xn(tn)→∆x(t).

(ii) For all t ∈ [0,∞) such that ∆x(t) = 0 and for all sequences of times sn → t, we get
xn(sn−)→x(t) and xn(sn)→x(t), and thus ∆xn(sn)→0.

(iii) Assume for all t∈(0,∞) that there is a sequence of times tn→ t such that ∆xn(tn)→∆x(t)
and ∆yn(tn)→∆y(t). Then ((xn(t), yn(t))t∈[0,∞)−→ ((x(t), y(t))t∈[0,∞) for the Skorokod
topology on D

(
[0,∞),Rd+d′

)
. In particular, this joint convergence holds true whenever x

and y have no common jump-time.

Proof. See Jacod & Shiryaev [30], Chapter VI, Section 2, pp. 337-338. More precisely, for (i)
(resp. (ii)), see [30], Proposition 2.1 a) (resp. (b.5)); for (iii), see [30], Proposition 2.2 b). �

As an immediate consequence of the Lemma B.1 (iii), we get the following lemma.

Lemma B.2 Let k ∈ N∗. For all n ∈ N and j ∈ {1, . . . , k}, let Rnj (·) and Rj(·) be Rdj -valued
càdlàg processes. Assume that (Rn1 , . . . , R

n
k )→ (R1, . . . , Rk) weakly on D([0,∞),Rd1)× . . .×
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D([0,∞),Rdk) equipped with the product topology. Assume that a.s. the processes R1, . . . , Rk
have no (pairwise) common jump-times. Then,

((Rn1 (t), . . . , Rnk (t)))t∈[0,∞) −−−→
n→∞

((R1(t), . . . , Rk(t)))t∈[0,∞)

weakly on D([0,∞),Rd), where d = d1 + . . .+ dk.

Lemma B.3 Let yn→y in D([0,∞),R). Then the following holds true.
(i) Let s, t∈ [0,∞) be such that s<t and such that ∆y(s)=∆y(t)=0. Then, for all (sn, tn)→

(s, t), we get inf [sn,tn] yn→ inf [s,t] y.
(ii) Suppose that t ∈ [0,∞) 7→ infs∈[0,t] y(s) is a continuous function. Then, the following con-

vergence (infs∈[0,t] yn(s))t∈[0,∞)→(infs∈[0,t] y(s))t∈[0,∞) holds uniformly on every compact
subsets.

Next, for all r∈ [0,∞) and all z∈D([0,∞),R). We set γr(z)=inf{t∈ [0,∞) :z(t)<−r}, with the
convention that inf ∅=∞. Note that r 7→ γr(z) is a non-decreasing [0,∞]-valued càdlàg function.
Then, we get the following.
(iii) Suppose that t ∈ [0,∞) 7→ infs∈[0,t] y(s) is continuous. Then, for all r ∈ [0,∞) such that

γr(y)<∞ and ∆γr(y)=0, we get γr(yn)→γr(y).
For all t∈ [0,∞), all r∈R and all z∈D([0,∞),R) we next set

(294) τ(z, t, r)=inf
{
s∈ [0, t] : inf

u∈[s,t]
z(u) > r

}
with the the convention that inf ∅=∞.

Then, the following holds true.
(iv) Suppose that y(t)> 0 = y(0). Then, r ∈ [0, y(t)) 7→ τ(y, t, r) is right-continuous and non-

decreasing. Furthermore, suppose that ∆y(t)=0 and that r∈(0, y(t)) satisfies τ(y, t, r−)=
τ(y, t, r). Then, for all (tn, rn)→(t, r), τ(yn, tn, rn)→τ(y, t, r).

Proof: since yn→ y in D([0,∞),R) there is a sequence of continuous increasing functions λn :
[0,∞)→ [0,∞), n ∈ N, such that λn(0) = 0, such that supt∈[0,∞)

∣∣λn(t)− t
∣∣→ 0 and such that

sups∈[0,p] |yn−y(λn(s))| → 0 as n→∞ for all p ∈ N (take the inverse of λn in Theorem 1.14
in Jacod & Shiryaev [30], Chapter VI, Section 1.b, p. 328). To simplify we set s′n = λn(sn) and
t′n=λn(tn); note that (s′n, t

′
n)→ (s, t) and that inf [sn,tn] yn−inf [s′n,t

′
n] y→0. Next observe that for

all ε > 0,
inf

[s−ε,t+ε]
y ≤ lim inf

n→∞
inf

[s′n,t
′
n]
y ≤ lim sup

n→∞
inf

[s′n,t
′
n]
y ≤ inf

[s+ε,t−ε]
y.

Since ∆y(s) = ∆y(t) = 0, we get limε→0 inf [s−ε,t+ε] y = limε→0 inf [s+ε,t−ε] y = inf [s,t] y, which
entails (i). The point (ii) is an immediate consequence of a well-known theorem due to Dini.

Under the assumption that t ∈ [0,∞) 7→ infs∈[0,t] y(s) is continuous, (iii) is a consequence
of Proposition 2.11, Chapter VI, Section 2a p. 341 in Jacod & Shiryaev [30] applied to the func-
tions t ∈ [0,∞) 7→ infs∈[0,t] yn(s): to be specific, for all r ∈ [0,∞), set Snr = inf{t ∈ [0,∞) :
infs∈[0,t] yn(s)≤−r} and Sr=inf{t∈ [0,∞) : infs∈[0,t] y(s)≤−r}; then r 7→Sr is left continuous
with right-limits (see Lemma 2.10 (b) [30], p. 340) and Proposition 2.11 [30] p. 341 asserts the
following: if Sr =Sr+, then Snr →Sr. Now, observe that Sr+ =γr(y), Snr+ =γr(yn), Sr =γr−(y)
and Sr=γr−(yn), which implies (iii).

Let us prove (iv): suppose y(t) > 0 = y(0); it is easy to check that r ∈ [0, y(t)) 7→ τ(y, t, r)
is right-continuous and nondecreasing. Suppose next that ∆y(t) = 0 and that r∈ (0, y(t)) satisfies
τ(y, t, r−) = τ(y, t, r). Let q ∈ (τ(y, t, r), t) be such that ∆y(q) = 0; then inf [q,t] y > r; by (i),
for all sufficiently large n, we get inf [q,tn] yn > rn and thus, τ(yn, tn, rn) ≤ q < tn. This easily
entails that lim supn→∞ τ(yn, tn, rn)≤ τ(y, t, r). Next, fix q < τ(y, t, r−) such that ∆y(q) = 0:
then, there exists r′∈ (0, r) such that q<τ(y, t, r′), which implies that inf [q,t] y≤r′<r; by (i), for
all sufficiently large n, we get inf [q,tn] yn < rn and thus, q≤ τ(yn, tn, rn). This easily entails that
lim infn→∞ τ(yn, tn, rn)≥τ(y, t, r−), which implies the desired result. �
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Lemma B.4 Let rn → r in [0,∞) and let yn→ y in D([0,∞),R). Assume that ∆y(r) = 0. Then
the following holds true.

(i) (yn(t ∧ rn))t∈[0,∞)→(y(t ∧ r))t∈[0,∞) in D([0,∞),R).

(ii) (yn(rn + t))t∈[0,∞)→(y(r + t))t∈[0,∞) in D([0,∞),R).

(iii) Let ln∈ [0, rn] be such that ln→ l. Assume that ∆y(l)=0. Then (yn((ln + t)∧rn))t∈[0,∞)→
(y((l + t)∧r))t∈[0,∞) in D([0,∞),R).

Proof. Denote by Λ the set of continuous increasing functions λ : [0,∞) → [0,∞), such that
λ(0) = 0. Recall from Jacod & Shiryaev [30] (Theorem 1.14, Chapter VI, Section 1.b, p. 328) that
yn→y in D([0,∞),R) if and only if there exists λn∈Λ, n∈N, such that supt∈[0,∞) |λn(t)−t|→0
and for all positive integers p, supt∈[0,p] |yn(t)−y(λn(t))| → 0. Let p≥ 1 + supn≥1 rn; set εn =
supt∈[0,p] |yn(t)−y(λn(t))|.

We first prove (i): first observe that for all t∈ [0,∞), |yn(t ∧ rn)−y(r ∧ λn(t))|≤ εn + δn(t)
where δn(t) = |y(r ∧ λn(t))−y(λn(rn ∧ t))|. Observe that δn(t) = 0 if t ≤ rn ∧ λ−1

n (r). Set
ηn = sup{|r− r∧λn(t)| + |r−λn(rn ∧ t)|; t ≥ rn ∧ λ−1

n (r)}. Then observe that ηn→ 0 and that
δn(t)≤ osc(y, [r−ηn, r + ηn]) that is the oscillation of y on [r−ηn, r + ηn] as defined in (142).
Since ∆y(r) = 0, we get osc(y, [r−ηn, r + ηn])→ 0 (see for instance Jacod & Shiryaev [30],
Proposition 2.1, Chapter VI, Section 2.a, p. 337). Thus, supt∈[0,∞) |yn(t ∧ rn)−y(r ∧ λn(t))|→0,
which implies (i).

Let us prove (ii). Set φn(t) = λn(rn + t)−r and ρn = |rn−r| + supt∈[0,∞) |λn(t)−t|. Then
supt∈[0,∞) |φn(t)−t| ≤ ρn→ 0; note that φn is continuous, increasing but φn(0) may be distinct
from 0. We modify φn in the following way: for all t∈ [0, ρn], set ϕn(t)= t, for all t∈ [ρn, 3ρn], set
ϕn(t)=ρn + (2ρn)−1(t−ρn)(φn(3ρn)−ρn) and for all t≥3ρn, set ϕn(t)=φn(t). Clearly, ϕn∈Λ
and we check that supt∈[0,∞) |ϕn(t)−t| ≤ 3ρn→0. Then observe that for all t∈ [0,∞),

|yn(rn + t)−y(r + ϕn(t))| ≤ |yn(rn + t)−y(λn(rn + t))|+ |y(r + φn(t))−y(r + ϕn(t))|
≤ εn + osc(y, [r−6ρn, r + 6ρn])

which implies (ii) since εn + osc(y, [r−6ρn, r + 6ρn])→0. Then note that (iii) is an immediate
consequence of (i) and (ii). This completes the proof. �

Theorem B.5 (Theorem 3.1 in Whitt [42]) Let hn→h and λn→λ in D([0,∞),R). We assume
that λn(0)=0 and that λn is nondecreasing. Then, the following holds true.

(i) If hn→h in C([0,∞),R), then hn ◦ λn→h ◦ λ in D([0,∞),R).

(ii) If λn→λ in C([0,∞),R) and if λ is strictly increasing, then hn◦λn→h◦λ in D([0,∞),R).

Proof: See Whitt [42], Theorem 3.1, p. 75. �

We use Theorem B.5 (ii) several times under the following form.

Lemma B.6 Let (βn)n∈N be a sequence of nonnegative real numbers such that βn→∞. For all
n ∈ N, let (σnk )k≥1 be an increasing sequence of random times such that limk→∞ σ

n
k =∞; then,

for all t ∈ [0,∞), we set Mn
t =

∑
k≥1 1[0,t](σ

n
k ). Let (Rn)n∈N be a sequence of R-valued càdlàg

processes. We first assume that Rn → R weakly on D([0,∞),R). We also assume that there is a
deterministic strictly increasing λ∈C([0,∞),R) such that 1

βn
Mn
βn·→λ weakly on C([0,∞),R).

Then,

(295)
(
Rn
β−1
n Mn

βnt

)
t∈[0,∞)

−−−−→
n→∞

(Rλ(t))t∈[0,∞)

weakly on D([0,∞),R). In particular, this result applies ifMn are homogeneous Poisson processes
with unit rate and λ is the identity map.
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Proof. We set λn(t) = Mn(βnt)/βn. Since λ is deterministic, Slutzky’s argument implies that
(Rn, λn)→(R, λ) weakly on D([0,∞),R)×C([0,∞),R) and Theorem B.5 (ii) implies (295). To
complete the proof of the Lemma, assume that Mn are homogeneous Poisson processes with unit
rate. By Doob’s L2 inequality, (β−1

n Mn
βnt

)t∈[0,∞)→ Id, weakly on D([0,∞),R), where Id stands
for the identity map on [0,∞). �

We next recall the following elementary lemma whose proof is left to the reader.

Lemma B.7 Let E be a Polish space. For all n, k ∈N, let Xk and Xn
k be E-valued r.v. such that

for all k∈N, (Xn
0 , . . . , X

n
k )→ (X0, . . . , Xk) weakly on Ek+1 equipped with the product topology.

Then (Xn
k )k∈N→(Xk)k∈N weakly on EN equipped with the product topology.

B.2 Weak limits of Lévy processes, of random walks and of branching processes.

B.2.1 Lévy processes and rescaled random walks.

We first recall from Jacod & Shiryaev [30] the following standard theorem on functional limits of
Lévy processes that is used several times in the proofs.

Theorem B.8 Let (Rnt )t∈[0,∞), n∈N, be of R-valued Lévy processes with initial value 0. Then, the
following assertions are equivalent.

(a) There exists a time t∈(0,∞) such that the r.v. Rnt converge weakly on R.

(b) The processes Rn weakly converge on D([0,∞),R).

Moreover, if (a) or (b) holds true, then the limit of the process Rn is necessarily a Lévy process.

Proof. This is a consequence of Corollary 3.6 in Jacod & Shiryaev [30], Chapter VII, Section 3.a,
p. 415. To understand the notation and the terminology, let us mention that in [30], a PIIS stands for
a Lévy process and that the form of the characteristics of a PIIS is given in Corollary 4.19, Chapter
II, Section 4.c, p. 107. �

Let us briefly recall some notation. Let (Rt)t∈[0,∞) be a R-valued Lévy process with initial
value R0 = 0. We assume it is spectrally positive, namely that R has no negative jump: a.s. for
all t ∈ [0,∞), ∆Rt ≥ 0. We also assume that the process is integrable: namely, we assume that
there exists a certain t ∈ (0,∞) such that E[|Rt|] < ∞. Let us mention that if R is integrable,
then E[|Rt|] <∞ for all t ∈ [0,∞). There is a one-to-one correspondence between the laws of
integrable spectrally positive Lévy processes and triplets (α, β, π) where α∈R, β∈ [0,∞) and π is
a Borel-measure on (0,∞) such that

∫
(0,∞)π(dr) (r∧r2)<∞; the correspondence is given via the

Laplace exponent of R (that is well-defined): namely, for all t, λ ∈ [0,∞),

(296) E
[
e−λRt

]
=etψα,β,π(λ), where ψα,β,π(λ)=αλ+

1

2
βλ2 +

∫
(0,∞)

(e−λr−1 + λr)π(dr).

We shall say that R is an integrable (α, β, π)-spectrally Lévy process to mean that its Laplace
exponent is given by (296). We next recall the following specific version of a standard limit-theorem
for Lévy processes.

Theorem B.9 Let (Rn)n∈N be a sequence of integrable (αn, βn, πn)-spectrally positive Lévy pro-
cesses. Assume that there exists r0∈(0,∞) such that for all n∈N, πn([r0,∞))=0, which implies:∫

(0,∞) r
2 πn(dr) <∞. Let R be a R-valued càdlàg process. Then, the following assertions are

equivalent:

• (Lv1) : Rn1 −→R1 weakly on R.

• (Lv2) : Rn−→R weakly on D([0,∞,R).
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If (Lv1) or (Lv2) hold true, then R is necessarily an integrable (α, β, π)-spectrally positive Lévy
process such that π([r0,∞))=0, which entails

∫
(0,∞) r

2 π(dr)<∞. Moreover, (Lv1) or (Lv2) are
equivalent to the following conditions:

• (Lv3a) : αn−→α.

• (Lv3b) : βn +
∫

(0,∞) r
2πn(dr)−→β +

∫
(0,∞) r

2 π(dr).

• (Lv3c) :
∫

(0,∞) f(r)πn(dr) −→
∫

(0,∞) f(r)π(dr), for all bounded continuous f : R→ R
vanishing on a neighbourhood of 0.

Proof. (Lv1)⇔ (Lv2) is a specific case of Corollary 3.6 in Jacod & Shiryaev [30], Chapter VII,
Section 3.a, p. 415 (already recalled in Theorem B.8). For the proof of (Lv1)⇔ (Lv3abc), see
Theorem 2.14 in Jacod & Shiryaev [30], Chapter VII, Section 2.a, p. 398. �

Here is the random walk version of the previous theorem.

Theorem B.10 Let an, bn ∈ (0,∞), n∈N, that both tend to∞. For all n∈N, let (ξnk )k∈N be an
i.i.d. sequence of real-valued r.v. Assume that there exists r0 ∈ (0,∞) such that for all n, k ∈ N,
P(anr0 ≥ ξnk ≥−r0) = 1. For all t ∈ [0,∞), set Rnt = a−1

n

∑
1≤k≤bbntc ξ

n
k . Let R be a R-valued

càdlàg process. Then, the following assertions are equivalent:

• (Rw1) : Rn1 −→R1 weakly on R.

• (Rw2) : Rn−→R weakly on D([0,∞,R).

If (Rw1) or (Rw2) hold true, then R is necessarily an integrable (α, β, π)-spectrally positive Lévy
process such that π([r0,∞)) = 0, which entails

∫
(0,∞) r

2 π(dr)<∞. Moreover, (Rw1) or (Rw2)
are equivalent to the following conditions:

• (Rw3a) : bna
−1
n E

[
ξn1
]
−→ −α.

• (Rw3b) : bna
−2
n var(ξn1 )−→β +

∫
(0,∞) r

2π(dr).

• (Rw3c) : bnE
[
f
(
ξn1 /an

)]
−→

∫
(0,∞) f(r)π(dr), for all bounded continuous f : R → R

vanishing on a neighbourhood of 0.

Proof. (Rw1)⇔ (Rw3abc) is a specific case of Theorem 2.36 Jacod & Shiryaev [30], Chapter VII,
Section 2.c p. 404. The equivalence (Rw1)⇔ (Rw2) is standard: see for instance Theorem 3.2
p. 342 in Jacod [29]. �

B.2.2 Continuous state branching processes and rescaled Galton-Watson processes.

We next recall converge theorems for rescaled Galton-Watson processes to integrable Continuous
State Branching Processes (CSBP for short). Recall that (Zt)t∈[0,∞) is an integrable CSBP if it is
a [0,∞)-valued Feller Markovian process whose absorbing state is 0 and that satisfies E[Zt]<∞
for all t∈ [0,∞); transition probabilities are characterised by a function ψ : [0,∞)→R called the
branching mechanism; ψ is necessarily the Laplace exponent of an integrable spectrally positive
process: namely, it is the form ψ=ψα,β,π as in (296). The branching mechanism characterises the
transition probabilities as follows: for all t, s, λ∈ [0,∞),

(297) E
[
e−λZs+t

∣∣Zs]=e−Zs ut(λ), where ut(λ)=λ−
∫ t

0
ψ(us(λ)) ds.

Since ψ = ψα,β,π is as in (296), ψ′(0+) = α and the equation on the right-hand side has a unique
solution. Since ψ is convex and since ψ(0) = 0, it has at most one positive root; denote by q the
largest root of ψ; then, the equation on the right hand side of (297) is equivalent to the following.

(298) ∀t∈ [0,∞), ∀λ∈(0,∞)\{q},
∫ λ

ut(λ)

dz

ψ(z)
= t.
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This easily implies the following conditions of non-absorption in 0:

(299) P
(
∃t :Zt=0

)
=0 ⇐⇒

∫ ∞ dz

ψ(z)
=∞.

We shall say that Z satisfies the Grey condition if it has a positive probability to be absorbed in 0,
namely if

∫∞
dz/ψ(z)<∞; in that case, one can show that P(∃t :Zt = 0) = P(limt→∞ Zt = 0)

and if a.s. Z0 =x, then we get:

(300) P(Zt=0)=e−xv(t) where v satisfies
∫ ∞
v(t)

dz

ψ(z)
= t.

We refer to Bingham [15] for more details on CSBP. We next recall the following convergence result
from Grimvall [27].

Theorem B.11 (Theorems 3.1 & 3.4 [27]) Let an, bn∈(0,∞), n∈N, such that both an and bn/an
tend to ∞. For all n ∈ N, let µn be a probability measure on N, let (Z(n)

k )k∈N be a Galton-
Watson process with offspring distribution µn and initial state Z(n)

0 = banc, and let (ζnk )k∈N be an
i.i.d. sequence of r.v. with law µn. Then, the following assertions are equivalent.

(Br1): 1
an

∑
1≤k≤bbnc

(
ζnk −1

)
−→R1 weakly on R, and R1 is integrable and it has a spec-

trally positive infinitely divisible law whose Laplace exponent ψ.

(Br2):
(

1
anZ

(n)

bbnt/anc
)
t∈[0,∞)

−→ (Zt)t∈[0,∞) weakly on D([0,∞),R) and Z is an integrable
CSBP with branching mechanism ψ.

Proof. See Theorem 3.1 p. 1030 and Theorem 3.4 p. 1040 in Grimvall [27]; in [27], bn/an = n,
however, the above extension is straightforward. �

B.2.3 Height and contour processes of Galton-Watson trees.

Let (µn)n∈N be a sequence of (sub)critical offspring distributions. For all µn, we denote by Tn a
Galton-Watson forest with offspring µn as defined in Section 4.1.1. Recall from this section the
definition of the Lukasiewicz path, the height and the contour processes of Tn that are denoted
respectively by (V Tn

k )k∈N, (HghtTn
k )k∈N and (CTn

t )t∈[0,∞). We shall use the following result from
Le Gall & D. [21].

Theorem B.12 Let X be an integrable (α, β, π)-spectrally positive Lévy process, as defined at the
beginning of Section 6.3.1. Assume that α≥0 and that

∫∞
dz/ψα,β,π(z)<∞, where ψα,β,π is given

by (296). LetH be the continuous height process derived fromX by (45). Let an, bn∈(0,∞), n∈N,
be two sequences tending to∞; for all n∈N, let Tn be a GW(µn)-forest, where µn is a (sub)critical
offspring distribution. Let (Z(n)

k )k∈N be a Galton-Watson process with offspring distribution µn and
initial state Z(n)

0 =banc. We assume the following

(301) 1

an
V Tn
bbnc

weakly on R
−−−−−−→

n→∞
X1 and ∃ δ∈(0,∞), lim inf

n→∞
P
(
Z(n)

bbnδ/anc=0
)
> 0 .

Then, the following joint convergence holds true:

(302)
(( 1

an
V Tn
bbntc

)
t∈[0,∞)

,
(an
bn
HghtTn

bbntc
)
t∈[0,∞)

,
(an
bn
CTn
bnt

)
t∈[0,∞)

)
−−−−−→
n→∞

(
(Xt)t∈[0,∞), (Ht)t∈[0,∞), (Ht/2)t∈[0,∞)

)
weakly on D([0,∞),R)×C([0,∞),R)2 equiped with the product topology. We also get

(303) ∀t∈ [0,∞), lim
n→∞

P
(
Z(n)

bbnt/anc=0
)

= e−v(t) where
∫ ∞
v(t)

dz

ψα,β,π(z)
= t.
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Proof. Convergence (302) is a direct consequence of Corollary 2.5.1 in Le Gall & D. [21], Chapter
2, p. 69. Moreover, set γn = inf

{
k ∈N : V Tn(k) =−banc

}
. Then, sup1≤k≤γn Hght

Tn(k) is the
total height of the banc first independent Galton-Watson trees θ[1]Tn, . . . , θ[banc]Tn. It is easy to
deduce from the joint convergence (302) and Lemma B.3 (iii) that

P
(
Z(n)

bbnt/anc=0
)

=P
(

sup
1≤k≤γn

HghtTn
k <bbnt/anc

)
−−−−→
n→∞

P
(

sup
s∈[0,γ]

Hs≤ t
)

=P(Zt=0),

where γ = inf{t∈ [0,∞) : Xt <−1} and where Z is a CSBP with branching mechanism ψα,β,π.
Then, (300) implies (303). �

C Metric spaces: pinching, coding and convergence.

C.1 Pinched metric spaces and their fractal dimensions.

Let (E, d) be a metric space. We briefly recall from section 2.2.2 the definition of pinched met-
rics: for all i ∈ {1, . . . , p}, let (xi, yi) ∈ E2; set Π = ((xi, yi))1≤i≤p; let ε ∈ [0,∞). Set
AE ={(x, y);x, y∈E} and for all e=(x, y)∈AE , we set e=x and e=y. A path γ joining x to y
is a sequence of e1, . . . , eq ∈AE such that e1 = x, eq = y and ei = ei+1, for all i∈{1, . . . , q − 1}.
Next, we set AΠ ={(xi, yi), (yi, xi); 1≤ i≤p} and we define the length le of an edge e by setting
le=ε∧d(e, e) if e∈AΠ and le=d(e, e) otherwise. The length of a path γ=(e1, . . . , eq) is given by
l(γ) =

∑
1≤i≤q lei . Then, recall from (52), that the (Π, ε)-pinched pseudo-distance between x and

y in E is given by dΠ,ε(x, y)=inf{l(γ); γ is a path joining x to y}. We easily check that

(304) dΠ,ε(x, y)=d(x, y) ∧min
{
l(γ) ; γ=(e0, e

′
0, . . . , er−1, e

′
r−1, er),

a path joining x to y such that e′0, . . . e
′
r−1∈AΠ and r≤p

}
.

Clearly, dΠ,ε is a pseudo-metric and we denote the equivalence relation dΠ,ε(x, y)=0 by x ≡Π,ε y;
the quotient space E/≡Π,ε equipped with dΠ,ε is the (Π, ε)-pinched metric space associated with
(E, d). Recall that $Π,ε :E→E/≡Π,ε stands for the canonical projection that is 1-Lipschitz. Note
of course that if ε> 0, then dΠ,ε is a true metric on E, which is obviously identified with E/≡Π,ε

and $Π,ε is the identity map on E.
Next, set S = {xi, yi; 1≤ i≤ p} and for all x∈E, set d(x, S) = miny∈S d(x, y). Then, (304)

immediately entails that

(305) ∀x, y∈E, d(x, y)≤d(x, S) + d(y, S) =⇒ d(x, y)=dΠ,ε(x, y).

Then, for all r ∈ (0,∞), denote by Bd(x, r) (resp. by BdΠ,ε
($Π,ε(x), r)) the open ball in (E, d)

(resp. in (E/≡Π,ε, dΠ,ε)) with center x (resp. $Π,ε(x)) and radius r. Then, (305) entails the
following: if x∈E\S and if 0<r< 1

4d(x, S)), then

(306) $Π,ε :Bd(x, r)→BdΠ,ε
($Π,ε(x), r) is a sujective isometry.

Namely, outside the pinching points, the metric is locally unchanged.
We now prove a result on Hausdorff and packing dimensions that is used in the proof of Proposi-

tion 2.8. To that end, we suppose that there exists (E0, d), a compact metric space such that E⊂ E0

and such that E is a compact subset of E0. To simplify notation we set (E′, d′, $) =
(
E/≡Π,ε

, dΠ,ε, $Π,ε

)
. We denote by dimH and dimp resp. the Hausdorff and the packing dimensions.

Lemma C.1 We keep the notations from above. We first assume that dimH(E0) ∈ (0,∞) and
dimp(E0)∈ (0,∞). Let a∈ (0, dimH(E0)) and b∈ (0, dimp(E0)); we assume that there is a finite
measure m0 on the Borel subsets of E0 such that m0(E)>0 and

(307) for m0-almost all x∈E0 lim sup
r→0

m0(Bd(x, r))

ra
<∞ and lim inf

r→0

m0(Bd(x, r))

rb
<∞.

Then, a≤dimH(E′)≤dimH(E0) and b≤dimp(E′)≤dimp(E0).
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Proof. Since $ is Lipschitz, dimH(E′) ≤ dimH(E) ≤ dimH(E0), with the same inequality for
packing dimensions. We set m=m0(· ∩ E) and m′ =m ◦ $−1 that is the pushforward measure
of m via $. Since m(E)> 0, (307) holds true with m0 replace by m. Observe that (307) implies
that m0 has no atom. Thus, m has no atom and since there is a finite number of pinching points,
(306) entails that (307) holds true form′ which entails dimH(E′)≥a and dimp(E′)≥b by standard
comparison results on Hausdorff and packing measures due to Rogers & Taylor in [37] (Hausdorff
case) and Taylor & Tricot in [38] (packing case) in Euclidian spaces and that have been extended in
Edgar [23] (see Thm 4.15 and Proposition 4.24 for the Hausdorff case and see Theorem 5.9 for the
packing case). �

C.2 Proof of Lemma 2.10.

Let h, h′ : [0,∞) → [0,∞) be two càdlàg processes. Recall from (48) the definition of ζh and
ζh′ ; we assume that ζh and ζh′ are finite. Recall from Section 2.2.2 the definition of the rooted
measured tree-like metric spaces coded by a function. We assume that h and h′ are as in (a) or (b) in
Remark 2.3, namely, either a pure-jump function with finitely many jumps, or a continuous function.
Consequently, Th and Th′ are compact spaces. Let Π = ((si, ti))1≤i≤p and Π′= ((s′i, t

′
i))1≤i≤p be

two sequences such that 0≤ si ≤ ti < ζh and 0≤ s′i ≤ t′i < ζh′ ; let ε, ε′ ∈ [0,∞). We assume that
δ∈(0,∞) is such that

(308) ∀i∈{1, . . . , p}, |si−s′i|≤δ and |ti−t′i|≤δ .

Recall from (53) the definition of the pinched (compact measured) metric spaces G :=G(h,Π, ε)
and G′ :=G(h′,Π′, ε′). We want to prove that

(309) δGHP(G,G′) ≤ 6(p+ 1)
(
‖h−h′‖∞ + ωδ(h)

)
+ 3p(ε∨ε′) + |ζh−ζh′ | ,

where δGHP stands for the pointed Gromov-Hausdorff-Prohorov distance (see (63) for a definition),
where ωδ(h)=max

{
|h(s)−h(t)| ; s, t∈ [0,∞) : |s−t|≤δ

}
and where ‖·‖∞ stands for the uniform

norm on [0,∞). Note that h or h′ are not necessarily continuous. Several key arguments of the
proofs can be found in Le Gall & D. [22] (Lemma 2.3, p. 563), Addario-Berry, Goldschmidt &
Broutin [2] (Lemma 21, p. 390) and Abraham, Delmas & Hoscheit [1] (Proposition 2.4); therefore
our proof is brief.

We get (308) by bounding the distorsion of an explicit correspondence between G and G′.
Namely, recall that a correspondence R between the two metric spaces (E, d) and (E′, d′) is a
subsetR⊂E×E′ such that for all (x, x′)∈E×E′,R∩({x}×E′) andR∩(E×{x′}) are not empty;
the distorsion ofR is then given by dis(R)=sup{|d(x, y)−d′(x′, y′)|; (x, x′)∈R, (y, y′)∈R}. We
first define a correspondence between Th and Th′ . Recall that ph : [0, ζh)→Th and ph′ : [0, ζh′)→Th′

are the canonical projections and recall that the roots are defined by ph(0) = ρh and ph′(0) = ρh′ .
We first set

R0 =
{

(ph(t), ph′(t)); t∈ [0,∞)
}
∪
{

(ph(si), ph′(s
′
i)), (ph(ti), ph′(t

′
i)); 1≤ i≤p

}
,

where we have adopted the convention that ρh = ph(t) if t ≥ ζh and ρh′ = ph′(t) if t ≥ ζh′ :
indeed, recall that for all t ≥ ζh (resp. t ≥ ζh′), h(t) = 0 (resp. h′(t) = 0), which implies t ∼h 0
(resp. t ∼h′ 0). Then,R0 is clearly a correspondence between (Th, dh) and (Th′ , dh′) and we easily
check that dis(R0) ≤ 4

(
‖h−h′‖∞ + ωδ(h)

)
.

We next set Π = ((ph(si), ph(ti)))1≤i≤p and Π′ = ((ph′(s
′
i), ph′(t

′
i)))1≤i≤p; recall that (G, d)

(resp. (G′, d′)) stands for the (Π, ε)-pinched metric space associated with (Th, dh) (resp. the (Π′, ε′)-
pinched metric space associated with (Th′ , dh′)); recall that d=dΠ,ε (resp. d′=dΠ′,ε′) is given by
(304); we denote by $ :Th→G and $′ :Th′→G′ the canonical projections and we set

R =
{

($(x), $′(x′)); (x, x′)∈R0

}
.
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It is easy to check that R is a correspondence between (G, d) and (G′, d′). Moreover, since the
pinched metric can be expressed by finite sums as in (304) with at most 2p + 1 terms, we easily
check that

dis(R)≤(p+ 1)dis(R0) + 2p(ε∨ε′) ≤ 4(p+ 1)
(
‖h−h′‖∞+ ωδ(h)

)
+ 2p(ε∨ε′) .

We next construct an ambient space into whichG andG′ are embedded: we first set E=GtG′
and we define dE :E2→ [0,∞) as follows: first dE |G×G = d, dE |G′×G′ = d′ and for all x∈G and
all x′∈G′,

dE(x, x′) = inf
{
d(x, z) + 1

2 dis(R) + d′(z′, x′) ; (z, z′)∈R
}
.

Standard arguments easily imply that dE is a distance on E. Note that the inclusion maps of resp.G
and G′ into E are isometries. Since G and G′ are compact, so is (E, dE). Moreover, we easily
check that dHaus

E (G,G′)≤ 1
2 dis(R). Recall that ρ=$(ρh), that ρ′=$′(ρh′) and that (ρ, ρ′)∈R;

thus, dE(ρ, ρ′)≤ 1
2 dis(R).

Denote byMf (E) the space of finite Borel measures; recall that for all µ, ν ∈Mf (E), their
Prohorov distance is dPro

E (µ, ν) = inf{η ∈ (0,∞) : ν(K) ≤ µ(Kη) + η and µ(K) ≤ ν(Kη) +
η, for all K⊂E compact}; here, Kη = {y ∈ E : dE(y,K) ≤ η}. Recall that m (resp. m′) is the
pushforward measure of the Lebesgue measure Leb on [0, ζh) (resp. on [0, ζh′)) via the function
$◦ph (resp. $′ ◦ph′). Let K ⊂ G be compact; set C = ($◦ph)−1(K) ∩ [0, ζh]: if h is a pure-
jump function with finitely many jumps, C is a finite union of half-open half closed intervals; if h
is continuous, so is $◦ph and C is also a compact of [0, ζh]. We next set C ′ = [0, ζh′ ] ∩ C and
K ′=$′◦ph′(C ′): if h′ is continuous, then K ′ is a compact subset of G′; if h′ is pure-jump function
with finitely many jumps, then K ′ is a finite subset of G′: it is also a compact subset. Note that
C ′⊂($′◦ph′)−1(K ′). Thus, we get

m(K) = Leb(C) ≤ Leb(C ′)+ |ζh−ζh′ |≤Leb
(
($′◦ph′)−1(K ′)

)
+ |ζh−ζh′ | = m′(K ′)+ |ζh−ζh′ |.

Then, observe that for all x′ ∈K ′, there is x∈K such that (x, x′)∈R, which implies dE(x, x′)≤
1
2 dis(R). It implies that K ′⊂Kη, where η= 1

2 dis(R). By exchanging the roles of m and m′, we
get dPro

E (m,m′)≤ 1
2 dis(R) + |ζh−ζh′ |. Thus,

δGHP(G,G′) ≤ dHaus
E (G,G′) + dE(ρ, ρ′) + dPro

E (m,m′) ≤ 3

2
dis(R) + |ζh−ζh′ |

which entails (309). This completes the proof of Lemma 2.10. �
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