The scaling limit of critical random graphs

L. Addario–Berry ¹ **N. Broutin** ² C. Goldschmidt ³

¹Département de Mathématiques et Statistiques Université de Montréal

> ²Projet Algorithms INRIA Paris-Rocquencourt

³Department of Statistics University of Oxford

March 18, 2009

Plan

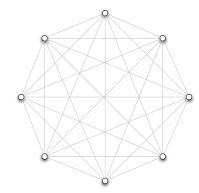
- Random graphs
- Exploration and branching processes
- Large random trees
- Comparing trees and Gromov–Hausdorff distance
- Ontinuum random tree
- Depth-first search
- Cycle structure and distances

Erdős-Rényi random graphs

- n labelled vertices $\{1, 2, \dots, n\}$
- $G_{n,p}$: each edge is present with probability $p \in [0, 1]$

Possible construction:

- each edge e gets an independent [0, 1]-uniform weight w_e
- G = (V, E) with $V = \{1, ..., n\}$ and $E = \{e : w_e \le p\}$.

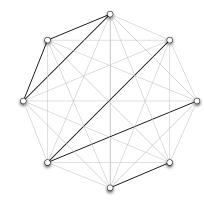


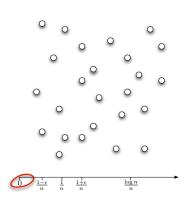
Erdős-Rényi random graphs

- n labelled vertices $\{1, 2, \dots, n\}$
- $G_{n,p}$: each edge is present with probability $p \in [0, 1]$

Possible construction:

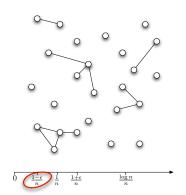
- each edge *e* gets an independent [0, 1]-uniform weight *w_e*
- G = (V, E) with $V = \{1, ..., n\}$ and $E = \{e : w_e \le p\}$.



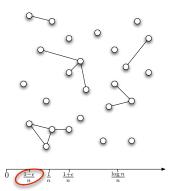


Different regimes:

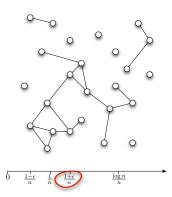
• $p = \frac{1-\epsilon}{n}$: small trees and unicyclic components of size $O(\log n)$



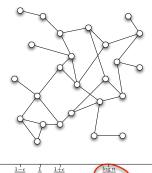
- $p = \frac{1-\epsilon}{n}$: small trees and unicyclic components of size $O(\log n)$
- $p = \frac{1}{n}$: many components of size $\Theta(n^{2/3})$

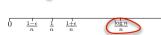


- $p = \frac{1-\epsilon}{n}$: small trees and unicyclic components of size $O(\log n)$
- $p = \frac{1}{n}$: many components of size $\Theta(n^{2/3})$
- $p = \frac{1+\epsilon}{n}$: one giant component of size $\Theta(n)$ and the second largest has size $O(\log n)$



- $p = \frac{1-\epsilon}{n}$: small trees and unicyclic components of size $O(\log n)$
- $p = \frac{1}{n}$: many components of size $\Theta(n^{2/3})$
- $p = \frac{1+\epsilon}{n}$: one giant component of size $\Theta(n)$ and the second largest has size $O(\log n)$
- $p = \frac{\log n}{n}$: the graph is connected





Exploration of the component structure:

- Active \underline{A} , Explored \underline{E}
- Start from one active vertex $E_0 = 0$, $A_0 = 1$, $U_0 = n 1$
- $E_{i+1} = E_i + 1$ and $A_{i+1} = A_i 1 + Bin(n A_i i, p)$

Explanation of the regimes for p = c/n

- c < 1: subcritical
- c = 1: critical
- c > 1: supercritical

Exploration of the component structure:

- Active \underline{A} , Explored \underline{E}
- Start from one active vertex $E_0 = 0$, $A_0 = 1$, $U_0 = n 1$
- $E_{i+1} = E_i + 1$ and $A_{i+1} = A_i 1 + Bin(n A_i i, p)$

Explanation of the regimes for p = c/n

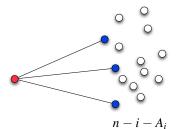
- c < 1: subcritical
- c = 1: critical
- c > 1: supercritical

Exploration of the component structure:

- Active \underline{A} , Explored \underline{E}
- Start from one active vertex $E_0 = 0$, $A_0 = 1$, $U_0 = n 1$
- $E_{i+1} = E_i + 1$ and $A_{i+1} = A_i - 1 + Bin(n - A_i - i, p)$

Explanation of the regimes for p = c/n

- c < 1: subcritical
- c = 1: critical
- c > 1: supercritical

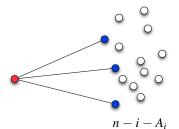


Exploration of the component structure:

- Active A, Explored E
- Start from one active vertex $E_0 = 0$, $A_0 = 1$, $U_0 = n 1$
- $E_{i+1} = E_i + 1$ and $A_{i+1} = A_i - 1 + Bin(n - A_i - i, p)$

Explanation of the regimes for p = c/n

- c < 1: subcritical
- c = 1: critical
- c > 1: supercritical



Exploration of the component structure:

- Active \underline{A} , Explored \underline{E}
- Start from one active vertex $E_0 = 0$, $A_0 = 1$, $U_0 = n 1$
- $E_{i+1} = E_i + 1$ and $A_{i+1} = A_i - 1 + Bin(n - A_i - i, p)$

Explanation of the regimes for p = c/n

- c < 1: subcritical
- c = 1: critical
- c > 1: supercritical

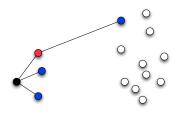
Exploration of the component structure:

- Active \underline{A} , Explored \underline{E}
- Start from one active vertex $E_0 = 0$, $A_0 = 1$, $U_0 = n 1$
- $E_{i+1} = E_i + 1$ and $A_{i+1} = A_i - 1 + Bin(n - A_i - i, p)$

Explanation of the regimes for p = c/n

Number of new vertices $\mathbb{E}Bin(n-i,p) \approx c$:

- c < 1: subcritical
- c = 1: critical
- c > 1: supercritical



Exploration of the component structure:

- Active \underline{A} , Explored \underline{E}
- Start from one active vertex $E_0 = 0$, $A_0 = 1$, $U_0 = n 1$
- $E_{i+1} = E_i + 1$ and $A_{i+1} = A_i - 1 + Bin(n - A_i - i, p)$

Explanation of the regimes for p = c/n

Number of new vertices $\mathbb{E}Bin(n-i,p) \approx c$:

- c < 1: subcritical
- c = 1: critical
- c > 1: supercritical

Exploration of the component structure:

- Active \underline{A} , Explored \underline{E}
- Start from one active vertex $E_0 = 0$, $A_0 = 1$, $U_0 = n 1$
- $E_{i+1} = E_i + 1$ and $A_{i+1} = A_i - 1 + Bin(n - A_i - i, p)$

Explanation of the regimes for p = c/n

Number of new vertices $\mathbb{E}Bin(n-i,p) \approx c$:

- c < 1: subcritical
- c = 1: critical
- c > 1: supercritical

Exploration of the component structure:

- Active \underline{A} , Explored \underline{E}
- Start from one active vertex $E_0 = 0$, $A_0 = 1$, $U_0 = n 1$
- $E_{i+1} = E_i + 1$ and $A_{i+1} = A_i - 1 + Bin(n - A_i - i, p)$

Explanation of the regimes for p = c/n

Number of new vertices $\mathbb{E}Bin(n-i,p) \approx c$:

- c < 1: subcritical
- c = 1: critical
- c > 1: supercritical

Exploration of the component structure:

- Active \underline{A} , Explored \underline{E}
- Start from one active vertex $E_0 = 0$, $A_0 = 1$, $U_0 = n 1$
- $E_{i+1} = E_i + 1$ and $A_{i+1} = A_i 1 + Bin(n A_i i, p)$

Explanation of the regimes for p = c/n

Number of new vertices $\mathbb{E}Bin(n-i,p) \approx c$:

- c < 1: subcritical
- c = 1: critical
- c > 1: supercritical

Exploration of the component structure:

- Active A, Explored E
- Start from one active vertex $E_0 = 0$, $A_0 = 1$, $U_0 = n 1$
- $E_{i+1} = E_i + 1$ and $A_{i+1} = A_i 1 + Bin(n A_i i, p)$

Explanation of the regimes for p = c/n

- c < 1: subcritical
- c = 1: critical
- c > 1: supercritical

Exploration of the component structure:

- Active A, Explored E
- Start from one active vertex $E_0 = 0$, $A_0 = 1$, $U_0 = n 1$
- $E_{i+1} = E_i + 1$ and $A_{i+1} = A_i - 1 + Bin(n - A_i - i, p)$

Explanation of the regimes for p = c/n

Number of new vertices $\mathbb{E}Bin(n-i,p) \approx c$:

- c < 1: subcritical
- c = 1: critical
- c > 1: supercritical

n-i-A:

Exploration of the component structure:

- Active A, Explored E
- Start from one active vertex $E_0 = 0$, $A_0 = 1$, $U_0 = n 1$
- $E_{i+1} = E_i + 1$ and $A_{i+1} = A_i 1 + Bin(n A_i i, p)$

Explanation of the regimes for p = c/n

- c < 1: subcritical
- c = 1: critical
- c > 1: supercritical

$$n-i-A_i$$

Inside the critical window

Bollobás, Aldous, Łuczak–Pittel–Wierman

Correct scaling

$$p = 1/n + \lambda n^{-4/3}$$
 with $\lambda \in \mathbb{R}$

Analyze the walk (i, A_i) , $i \ge 1$. The steps are independent and

$$A_{i+1} - A_i \approx Bin(n-i,p) - 1$$

So for
$$i \sim tn^{2/3}$$
,

$$\frac{\mathbf{E}A_{tn^{2/3}}}{n^{1/3}} = \lambda t - \frac{t^2}{2} + o(1)$$

And CLT for martingales:

$$\frac{A_{tn^{2/3}}}{n^{1/3}} \to \lambda t - \frac{t^2}{2} + W(t)$$

Inside the critical window

Bollobás, Aldous, Łuczak-Pittel-Wierman

Correct scaling

$$p = 1/n + \lambda n^{-4/3}$$
 with $\lambda \in \mathbb{R}$

Analyze the walk (i, A_i) , $i \ge 1$. The steps are independent and

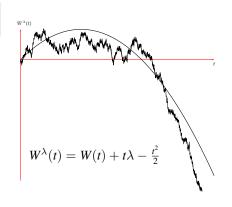
$$A_{i+1} - A_i \approx Bin(n-i,p) - 1$$

So for $i \sim tn^{2/3}$,

$$\frac{\mathbf{E}A_{tn^{2/3}}}{n^{1/3}} = \lambda t - \frac{t^2}{2} + o(1)$$

And CLT for martingales:

$$\frac{A_{tn^{2/3}}}{n^{1/3}} \to \lambda t - \frac{t^2}{2} + W(t)$$



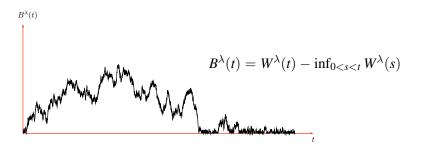
Inside the critical window: what happens

 S_i^n size of the *i*-th largest component of $G_{n,p}$

Theorem (Aldous)

$$n^{-2/3}\mathbf{S}^n = (n^{-2/3}S_1^n, n^{-2/3}S_2^n, \dots) \xrightarrow[n \to \infty]{d} S = (S_1, S_2, \dots) \text{ as a sequence in}$$

 $\ell^2_{\searrow} = \{x = (x_1, x_2, \dots) : x_1 \ge x_2 \ge \dots \ge 0, \sum_{i \ge 1} x_i^2 < \infty\}.$



Strategy to describe random graphs

- Decompose into components
- Extract a tree from each component
- Describe the trees
- Describe how to put back surplus edges

Random Cayley trees

Rényi-Szekeres, Flajolet-Odlyzko

Cayley tree: tree on $\{1, ..., n\}$ picked uniformly among n^{n-2} labelled trees

- Iteration $T_{h+1}(z) = z \exp(T_h(z))$ and $T_0 = z$
- Galton–Watson with Poisson(1) progeny conditioned on the size
- Aldous–Broder random walk construction

Distribution of distances $D_{i,j}$ between nodes i and j

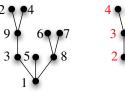
$$\mathbf{P}\left\{D_{1,2} \le x\sqrt{n}\right\} \to \int_0^x y e^{-y^2/2} dy$$
 (Rayleigh)

$$\mathbf{P}\left\{\max_{i} D_{1,i} \le x\sqrt{2n}\right\} \to 4x^{-3}\pi^{5/2} \sum_{i>1} k^{2} e^{-\pi^{2}k^{2}/x^{2}}$$
 (theta)

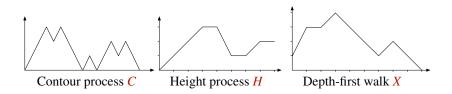
Representation of trees

A canonical order of nodes:

- sort children by increasing label
- Depth-first order



Three different encodings of trees as nonnegative paths:



Walks associated with large random trees

Let T_n be a Cayley tree of size n.

Theorem (Marckert-Mokkadem)

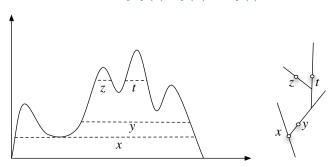
Let $e = (e(t), 0 \le t \le 1)$ be a standard Brownian excursion. Then,

$$\left(\frac{X(\lfloor n \cdot \rfloor)}{\sqrt{n}}; \frac{H(\lfloor n \cdot \rfloor)}{2\sqrt{n}}; \frac{C(\lfloor 2n \cdot \rfloor)}{2\sqrt{n}}\right) \xrightarrow[n \to \infty]{d} (e(\cdot); e(\cdot); e(\cdot))$$

Real trees

Aldous, Le Gall, Evans, ...

Continuous excursion f: $f(0) = f(\sigma) = 0$, f(s) > 0, $0 < s < \sigma$.



Comparing metric spaces

Comparing subsets P and Q of a metric space: Hausdorff distance

$$d_H(P,Q) = \inf\{\epsilon > 0 : P \subset \cup_{x \in Q} B(x,\epsilon) \text{ and } Q \subset \cup_{y \in P} B(y,\epsilon)\}.$$

Comparing metric spaces: Gromov-Hausdorff distance

$$d_{GH}((M_1, d_1); (M_2, d_2)) = \inf d_H(M_1, M_2),$$

where the infimum is over all metric spaces M containing both (M_1, d_1) and (M_2, d_2) .

Comparing metric spaces

Comparing subsets P and Q of a metric space: Hausdorff distance

$$d_H(P,Q) = \inf\{\epsilon > 0 : P \subset \cup_{x \in Q} B(x,\epsilon) \text{ and } Q \subset \cup_{y \in P} B(y,\epsilon)\}.$$

Comparing metric spaces: Gromov–Hausdorff distance

$$d_{GH}((M_1, d_1); (M_2, d_2)) = \inf d_H(M_1, M_2),$$

where the infimum is over all metric spaces M containing both (M_1, d_1) and (M_2, d_2) .

The Brownian continuum random tree (CRT)

Let $\mathcal{T}(2e)$ be the real tree encoded by a standard Brownian excursion e

Theorem (Aldous)

Let T_n be a Cayley tree of size n, seen as a metric space with the graph distance. Then,

$$n^{-1/2}T_n \xrightarrow[n\to\infty]{d} \mathcal{T}(2e)$$

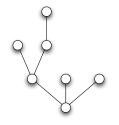
with the Gromov-Hausdorff distance.

Some remarks:

- extends to all Galton–Watson trees with finite variance progeny
- the trees in random maps
- if infinite variance: Lévy trees, stable trees.

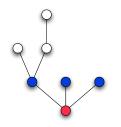
Understanding Depth-first search in graphs

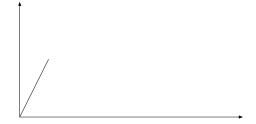
$$X(0) = 0$$
 and $X(i + 1) - X(i) = \#$ children of i minus 1



Understanding Depth-first search in graphs

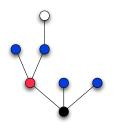
$$X(0) = 0$$
 and $X(i + 1) - X(i) = \#$ children of i minus 1



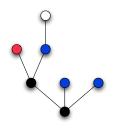


Understanding Depth-first search in graphs

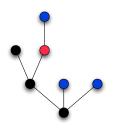
$$X(0) = 0$$
 and $X(i + 1) - X(i) = \#$ children of i minus 1

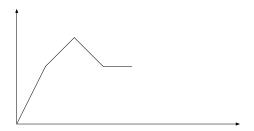


$$X(0) = 0$$
 and $X(i + 1) - X(i) = \#$ children of i minus 1

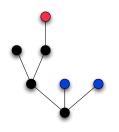


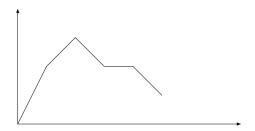
$$X(0) = 0$$
 and $X(i + 1) - X(i) = \#$ children of i minus 1



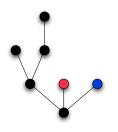


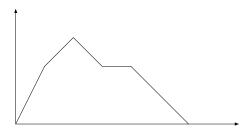
$$X(0) = 0$$
 and $X(i + 1) - X(i) = \#$ children of i minus 1



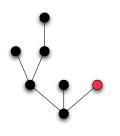


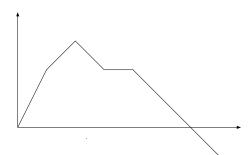
$$X(0) = 0$$
 and $X(i + 1) - X(i) = \#$ children of i minus 1



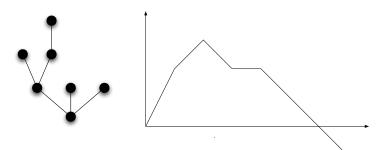


$$X(0) = 0$$
 and $X(i + 1) - X(i) = \#$ children of i minus 1



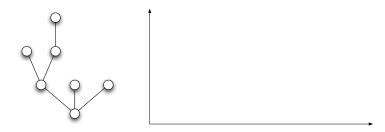


$$X(0) = 0$$
 and $X(i + 1) - X(i) = \#$ children of i minus 1



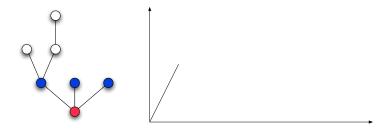
Question:

$$X(0) = 0$$
 and $X(i + 1) - X(i) = \#$ children of i minus 1



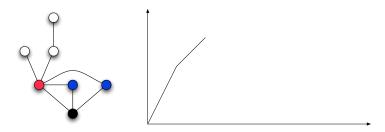
Question:

$$X(0) = 0$$
 and $X(i + 1) - X(i) = \#$ children of i minus 1



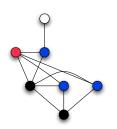
Question:

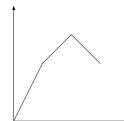
$$X(0) = 0$$
 and $X(i + 1) - X(i) = \#$ children of i minus 1



Question:

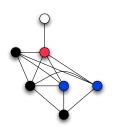
$$X(0) = 0$$
 and $X(i + 1) - X(i) = \#$ children of i minus 1

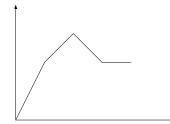




Question:

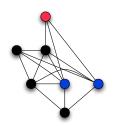
$$X(0) = 0$$
 and $X(i + 1) - X(i) = \#$ children of i minus 1

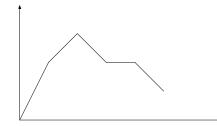




Question:

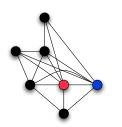
$$X(0) = 0$$
 and $X(i + 1) - X(i) = \#$ children of i minus 1

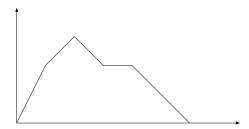




Question:

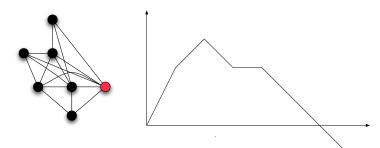
$$X(0) = 0$$
 and $X(i + 1) - X(i) = \#$ children of i minus 1





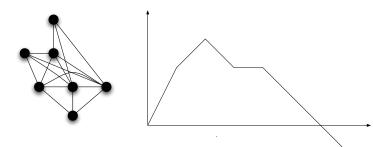
Question:

$$X(0) = 0$$
 and $X(i + 1) - X(i) = \#$ children of i minus 1



Question:

$$X(0) = 0$$
 and $X(i + 1) - X(i) = \#$ children of i minus 1



Question:

Canonical tree and its area

Partition the graphs G according to their canonical tree T(G)

- Each graph $G \Rightarrow$ one canonical tree T
- Each canoninal tree $T \Rightarrow 2^{a(T)}$ graphs

Uniform connected graph with *m* vertices

- Pick $\tilde{T}_m = T$ with probability $\propto 2^{a(T)}$
- Add allowed edges each with probability 1/2.

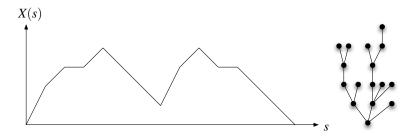
Uniform connected component of $G_{n,p}$ with m vertices

- Pick $\tilde{T}_m = T$ with probability $\propto (1-p)^{-a(T)}$
- Add each allowed edge with probability *p*.

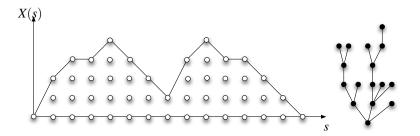
Uniform connected connected graph with m vertices and m-1+s edges

- Pick $\tilde{T}_m = T$ with probability $\propto \binom{a(T)}{s}$
- Add s random allowed edges.

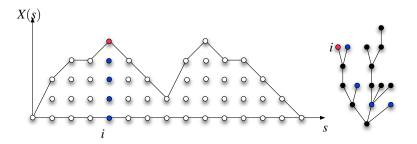
- Excursion of length m with some points (X, \mathcal{P}) .
- Connected graphs on *m* vertices $G^X(X, \mathcal{P})$



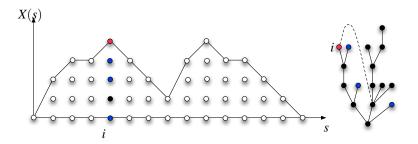
- Excursion of length m with some points (X, \mathcal{P}) .
- Connected graphs on m vertices $G^X(X, \mathcal{P})$



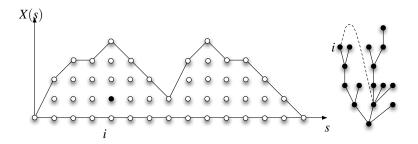
- Excursion of length m with some points (X, \mathcal{P}) .
- Connected graphs on m vertices $G^X(X, \mathcal{P})$



- Excursion of length m with some points (X, \mathcal{P}) .
- Connected graphs on m vertices $G^X(X, \mathcal{P})$



- Excursion of length m with some points (X, \mathcal{P}) .
- Connected graphs on *m* vertices $G^X(X, \mathcal{P})$



Limit of canonical trees

In the critical regime: $p \sim 1/n$ and $m \sim n^{2/3}$:

$$(1-p)^{-a(T_m)} \sim \exp(m^{-3/2}a(T_m)) \sim \exp(\int_0^1 e(s)ds)$$

Definition (Tilted excursion)

Let *e* be a standard Brownian excursion:

$$\mathbf{P}\left\{\tilde{e} \in \mathcal{B}\right\} = \frac{\mathbf{E}\left[\mathbf{1}[e \in \mathcal{B}] \exp(\int_0^1 e(s)ds)\right]}{\mathbf{E}\left[\exp(\int_0^1 e(s)ds)\right]}.$$

Let \tilde{T}_m be picked such that $\mathbf{P} \{ \tilde{T}_m = T \} \propto (1 - m^{-3/2})^{-a(T)}$

Theorem

$$\left(\frac{\tilde{X}^n(\lfloor n \cdot \rfloor)}{\sqrt{n}}; \frac{\tilde{C}^n(\lfloor 2n \cdot \rfloor)}{2\sqrt{n}}; \frac{\tilde{H}^n(\lfloor n \cdot \rfloor)}{2\sqrt{n}}\right) \xrightarrow[n \to \infty]{d} (\tilde{e}(\cdot); \tilde{e}(\cdot)).$$

The limit of tilted trees

Let $\mathcal{T}(\tilde{e}^{(\sigma)})$ the real tree encoded by a tilted excursion $\tilde{e}^{(\sigma)}$ of length σ .

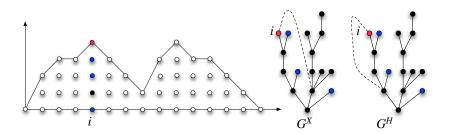
Theorem

Let $p \sim 1/n$ and $m \sim \sigma n^{2/3}$, $\sigma > 0$. Let G_m^p be a uniform connected component of $G_{n,p}$ on m vertices.

$$\frac{T(G_m^p)}{n^{1/3}} \xrightarrow[n \to \infty]{d} \mathcal{T}(2\tilde{e}^{(\sigma)}),$$

with the Gromov-Hausdorff distance.

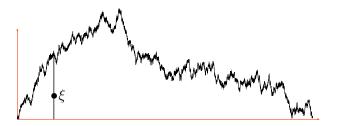
The limit of connected components: convergence



Limit using G^X

 $m^{-1/2}\tilde{X}^m(\lfloor m \cdot \rfloor) \to \tilde{e}$ and marks converge to a Poisson point process \mathcal{P}

Limit of connected components: construction



Characterization using G^X

 $T(\tilde{e})$ where each point (ξ_x, ξ_y) of \mathcal{P} identifies the leaf ξ_x with the point at distance ξ_y from the root on the path $[[0, \xi_x]]$.

On reordering components

Representing a reflecting Brownian motion

- sequence of excursions above zero
- collection indexed by local time at zero

• Poisson point process in $(\mathbb{R}^+, \mathcal{E})$, Itô's measure N

$$\mathcal{E} = \{ f \in C(\mathbb{R}^+, \mathbb{R}^+) : f(0) = 0, \exists \, \sigma < \infty \text{ such that } f(x) > 0 \, \forall \, x \in (0, \sigma), f(x) = 0, x > \sigma \}.$$

 B^{λ} is inhomogeneous. Mesure \mathbb{N}_{t}^{λ} for excursion starting at t.

$$\mathbb{N}_0^{\lambda}[\mathbf{1}[\mathcal{B}]|\sigma=x] = \frac{\mathbb{N}\left[\exp\left(\int_0^x W(s)ds\right)\mathbf{1}[\mathcal{B}]|\sigma=x\right]}{\mathbb{N}\left[\exp\left(\int_0^x W(s)ds\right)|\sigma=x\right]}.$$

The limit of critical random graphs

 M_i^n the *i*-th largest connected component of $G_{n,p}$ and S_i^n its size. $\mathbf{M}^n = (M_1^n, M_2^n, \dots)$ as a sequence of metric spaces, with distance

$$d(\mathbf{A}, \mathbf{B}) = \left(\sum_{i \ge 1} d_{GH}(A_i, B_i)^4\right)^{1/4}$$

$$n^{-2/3}S^n = (n^{-2/3}S_1^n, \dots) \text{ in } \ell_{\searrow}^2 = \{(x_1, x_x, \dots) : x_1 \ge \dots, \sum_{i \ge 1} x_i^2 < \infty\}.$$

Theorem

$$(n^{-1/3}\mathbf{M}^n, n^{-2/3}\mathbf{S}^n) \xrightarrow[n \to \infty]{d} (\mathbf{M}, \mathbf{S})$$
 where

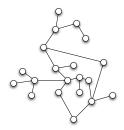
- S is the ordered sequence of excursion lengths of B^{λ}
- Given $S = (S_1, S_2, ...), (M_1, M_2, ...)$ are independent $g(\tilde{e}^{(S_i)}, \mathcal{P}_i)$.

The diameter of critical random graphs

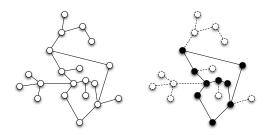
$$D^{(n)} = \max \left\{ n^{-1/3} \operatorname{diam}(M_i^{(n)}) : M_i^{(n)} \in \mathbf{M}^{(n)} \right\}.$$

Theorem

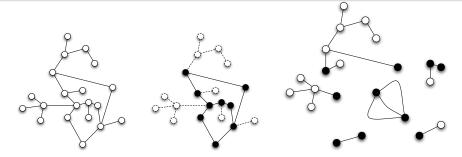
- $\forall i$ there is $D_i \geq 0$ with $\mathbf{E}D_i < \infty$ such that $D_i^{(n)} \xrightarrow{d} D_i$
- there exists $D \ge 0$ with $ED < \infty$ such that $D^{(n)} \xrightarrow{d} D$.



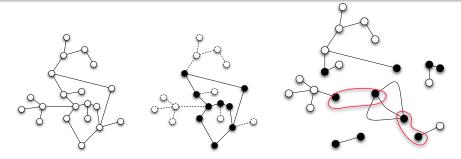
- one kernel (multigraph) *K*
- one rooted tree per vertex of K: vertex-trees
- one doubly rooted tree per edge of K: edge-trees



- one kernel (multigraph) *K*
- one rooted tree per vertex of K: vertex-trees
- one doubly rooted tree per edge of K: edge-trees



- one kernel (multigraph) *K*
- one rooted tree per vertex of K: vertex-trees
- one doubly rooted tree per edge of K: edge-trees



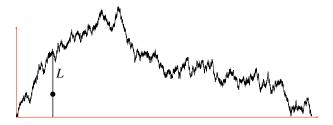
- one kernel (multigraph) *K*
- one rooted tree per vertex of K: vertex-trees
- one doubly rooted tree per edge of K: edge-trees

Unicyclic components

Connected component of $G_{n,p}$ with m vertices exactly 1 cycle L_m the length of the unique cycle

Theorem

$$\mathbf{P}\{L_m \le x\sqrt{m}\} \to \mathbf{P}\{L \le x\} = \sqrt{\frac{2}{\pi}} \int_0^x e^{-y^2/2} dy$$



Limit distributions in random graphs

C a connected component of $G_{n,p}$ with m vertices and ≥ 2 cycles

K(C) the kernel (unlabelled multigraph) with k edges

 N_0 : total number of vertices in vertex-trees

 N_1, N_2, \ldots, N_k : number of vertices of the edge-trees $T(e_1), T(e_2), \ldots, T(e_k)$

Theorem

- $P\{K(C) \text{ is } 3 \text{regular}\} = 1 O(\sqrt{m})$
- N_0 is bounded in probability
- Given any kernel K with k edges,

$$(\frac{N_1}{m}, \frac{N_2}{m}, \dots, \frac{N_k}{m}) \xrightarrow[n \to \infty]{d} \text{ Dirichlet}(\frac{1}{2}, \frac{1}{2}, \dots, \frac{1}{2})$$

• Given the sizes (N_1, \ldots, N_k) the trees $T(e_1), T(e_2), \ldots, T(e_k)$ are independent Cayley trees.