Année 2022 – 2023

TD0. Prérecquis et rappels

Exercice 1 Soit ξ une variable aléatoire suivant la loi gaussienne $\mathcal{N}(0, 1)$. Soit x > 0 un réel strictement positif.

- (i) Montrer que $\frac{1}{(2\pi)^{1/2}} \left(\frac{1}{x} \frac{1}{x^3} \right) e^{-x^2/2} \le \mathbb{P}(\xi > x) \le \frac{1}{(2\pi)^{1/2}} \frac{1}{x} e^{-x^2/2}$.
- (ii) Montrer que ¹ $\mathbb{P}(\xi > x) \le e^{-x^2/2}$.

Exercice 2 Soit ξ une variable aléatoire suivant la loi gaussienne $\mathcal{N}(0, 1)$.

- (i) Calculer $\mathbb{E}(\xi^4)$ et $\mathbb{E}(|\xi|)$.
- (ii) Calculer $\mathbb{E}(e^{a\xi})$, $\mathbb{E}(\xi e^{a\xi})$ et $\mathbb{E}(e^{a\xi^2})$, où $a \in \mathbb{R}$ est un réel.
- (iii) Soit $b \ge 0$ un réel positif. Soit η une variable aléatoire suivant la loi gaussienne $\mathcal{N}(0, 1)$, indépendante de ξ . Montrer que $\mathbb{E}(e^{b\xi^2}) = \mathbb{E}(e^{\lambda\xi\eta})$, où $\lambda := (2b)^{1/2}$.

Exercice 3 Soient ξ , ξ_1 , ξ_2 , \cdots des variables aléatoires réelles. On suppose que pour tout n, ξ_n suit la loi gaussienne $\mathcal{N}(\mu_n, \sigma_n^2)$, où $\mu_n \in \mathbb{R}$ et $\sigma_n \geq 0$, et que ξ_n converge en loi vers ξ . Montrer que ξ suit une loi gaussienne.

Exercice 4 Soient ξ , ξ_1 , ξ_2 , \cdots des variables aléatoires réelles. On suppose que pour tout n, ξ_n suit la loi gaussienne $\mathcal{N}(\mu_n, \sigma_n^2)$, où $\mu_n \in \mathbb{R}$ et $\sigma_n \geq 0$, et que ξ_n converge en probabilité vers ξ . Montrer que ξ_n converge dans L^p , pour tout $p \in [1, \infty[$.

Exercice 5 Soit (ξ, η, θ) un vecteur gaussien à valeurs dans \mathbb{R}^3 . On suppose $\mathbb{E}(\xi) = \mathbb{E}(\eta) = \mathbb{E}(\xi\eta) = 0$, $\sigma_{\xi}^2 := \mathbb{E}(\xi^2) > 0$ et $\sigma_{\eta}^2 := \mathbb{E}(\eta^2) > 0$.

- 1. Montrer que $\mathbb{E}(\theta \mid \xi) = \mathbb{E}(\theta) + \frac{\mathbb{E}(\theta\xi)}{\mathbb{E}(\xi^2)} \xi$.
- 2. Montrer que $\mathbb{E}(\theta \mid \xi, \eta) = \mathbb{E}(\theta \mid \xi) + \mathbb{E}(\theta \mid \eta) \mathbb{E}(\theta)$.
- 3. Montrer que $\mathbb{E}(\xi \mid \xi \eta) = 0$.
- 4. Montrer que $\mathbb{E}(\theta \mid \xi \eta) = \mathbb{E}(\theta)$.

Exercice 6 Soient ξ et η deux variables aléatoires intégrables, et soit $\mathscr G$ une sous-tribu de $\mathscr F$.

^{1.} Plus tard, on verra que $\mathbb{P}(\xi > x) \leq \frac{1}{2} e^{-x^2/2}$.

- (i) Montrer que $\mathbb{E}(\xi \mid \mathcal{G}) \leq \mathbb{E}(\eta \mid \mathcal{G})$, p.s., si et seulement si $\mathbb{E}(\xi \mathbf{1}_A) \leq \mathbb{E}(\eta \mathbf{1}_A)$ pour tout $A \in \mathcal{G}$.
- (ii) Montrer que $\mathbb{E}(\xi \mid \mathcal{G}) = \mathbb{E}(\eta \mid \mathcal{G})$, p.s., si et seulement si $\mathbb{E}(\xi \mathbf{1}_A) = \mathbb{E}(\eta \mathbf{1}_A)$ pour tout $A \in \mathcal{G}$.

Exercice 7 Soit $(X_{\alpha}, \alpha \in A)$ une famile de variables aléatoires réelles, indexée par un ensemble non vide A quelconque. On rappelle la définition suivante : $(X_{\alpha}, \alpha \in A)$ est dite uniformément intégrable si

$$\lim_{K \to +\infty} \sup_{\alpha \in A} \mathbb{E}(|X_{\alpha}| \, \mathbb{1}_{(|X_{\alpha}| > K)}) = 0.$$

Montrer que $(X_{\alpha}, \alpha \in A)$ est uniformément intégrable si et seulement si les deux conditions suivantes sont satisfaites :

- (i) $\sup_{\alpha \in A} \mathbb{E}(|X_{\alpha}|) < \infty$;
- (ii) pour tout $\varepsilon > 0$, il existe $\delta > 0$ tel que $\forall B \in \mathscr{F}, \mathbb{P}(B) < \delta \Rightarrow \sup_{\alpha \in A} \mathbb{E}(|X_t| \mathbf{1}_B) < \varepsilon$.

Exercice 8 Soit ξ une variable aléatoire réelle telle que $\mathbb{E}(|\xi|) < \infty$. Montrer que la famille $(\mathbb{E}(\xi | \mathcal{G}), \mathcal{G} \subset \mathcal{F}$ sous-tribu) est uniformément intégrable.

Exercice 9 Soit $(X_{\alpha}, \alpha \in A)$ une famile de variables aléatoires réelles. On suppose qu'il existe un réel p > 1 tel que $\sup_{\alpha \in A} \mathbb{E}(|X_{\alpha}|^p) < \infty$. Montrer que $(X_{\alpha}, \alpha \in A)$ est uniformément intégrable.

Exercice 10 Soit $(X_{\alpha}, \alpha \in A)$ une famile de variables aléatoires réelles. On suppose qu'il existe une variable aléatoire réelle intégrable Y telle que p.s. $\sup_{\alpha \in A} |X_{\alpha}| \leq Y$. Montrer que $(X_{\alpha}, \alpha \in A)$ est uniformément intégrable.

Exercice 11 Soit $(X_{\alpha}, \alpha \in A)$ une famile de variables aléatoires réelles intégrables. Montrer qu'elle est uniformément intégrable s'il existe une fonction mesurable $h : \mathbb{R}_+ \to \mathbb{R}_+$ avec $\lim_{t\to\infty} \frac{h(t)}{t} = \infty$ telle que $\sup_{\alpha\in A} \mathbb{E}[h(|X_{\alpha}|)] < \infty$.

Exercice 12 Soit $(X_t, t \ge 0)$ une famille de variables aléatoires réelles indexée par \mathbb{R}_+ , et soit X_{∞} une variable aléatoire réelle. On suppose que $X_t \to X_{\infty}$ en probabilité (quand $t \to \infty$), et que $(X_t, t \ge 0)$ est uniformément intégrable. Montrer que $X_t \to X_{\infty}$ dans L^1 .

Exercice 13 Soit $(X_n, n \ge 0)$ une famille de variables aléatoires réelles indexée par \mathbb{Z}_+ , et soit X_{∞} une variable aléatoire réelle. Montrer que $X_n \to X_{\infty}$ dans L^1 (quand $n \to \infty$) si et seulement si $X_n \to X_{\infty}$ en probabilité et $(X_n, n \ge 0)$ est uniformément intégrable.

^{2.} En particulier, si $\sup_{\alpha \in A} |X_{\alpha}|$ est mesurable et intégrable, alors $(X_{\alpha}, \alpha \in A)$ est uniformément intégrable.

Année 2022 - 2023

Chapitre I. Construction du mouvement brownien

Exercice 1 Soit $(B_t^m, t \in [0, 1])$, pour $m \geq 0$, une suite de mouvements browniens indépendants définis sur [0, 1]. On pose

$$B_t := B_{t-\lfloor t\rfloor}^{\lfloor t\rfloor} + \sum_{0 \le m < \lfloor t\rfloor} B_1^m, \qquad t \ge 0.$$

Montrer que $(B_t, t \geq 0)$ est un mouvement brownien.

Dans les exercices suivants, $(B_t, t \ge 0)$ est un mouvement brownien.

Exercice 2 Soit $T := \inf\{t \ge 0 : B_t = 1\}$ (avec la convention $\inf \varnothing := \infty$). Montrer que ¹ $\mathbb{P}(T < \infty) \geq \frac{1}{2}$. (On pourra comparer $\mathbb{P}(B_t \geq 1)$ et $\mathbb{P}(T \leq t)$.)

Exercice 3 Soit $\xi := \int_0^1 B_t dt$. Quelle est la loi de ξ ?

Exercice 4 Soit $\eta := \int_0^2 B_t dt$. Calculer l'espérance conditionnelle $\mathbb{E}(B_1 \mid \eta)$.

Exercice 5 Montrer que $B_7 - B_2$ est indépendante de $\sigma(B_s, s \in [0, 1])$.

Exercice 6 Soit $\mathscr{F}_1 := \sigma(B_s, s \in [0, 1])$. Calculer les espérances conditionnelles $\mathbb{E}(B_5 \mid \mathscr{F}_1)$ et $\mathbb{E}(B_5^2 \mid \mathscr{F}_1)$.

Exercice 7 (i) Montrer que pour tout t > 0, $\int_0^t B_s^2 ds$ a la même loi que $t^2 \int_0^1 B_s^2 ds$. (ii) Montrer que les processus $(\int_0^t B_s^2 ds, t \ge 0)$ et $(t^2 \int_0^1 B_s^2 ds, t \ge 0)$ n'ont pas la même loi.

Exercice 8 Soit T une variable aléatoire suivant la loi exponentielle de paramètre 1, indépendante de B. Quelle est la loi de B_T ?

Exercice 9 Montrer que $\int_0^1 \frac{B_s}{s} ds$ est bien définie p.s.

Exercice 10 Soit $\beta_t := B_t - \int_0^t \frac{B_s}{s} ds$. Montrer que $(\beta_t, t \ge 0)$ est un mouvement brownien.

^{1.} Plus tard, on verra que $T < \infty$ p.s.

Exercice 11 Montrer que $\int_0^\infty |B_s| ds = \infty$ p.s. (indication : étudier d'abord $X_t := \int_0^t |B_s| ds$ et $\mathbb{P}(X_t \ge x)$ en utilisant la propriété de scaling).

Exercice 12 Soit $B := (B_t, t \in [0, 1])$ un mouvement brownien standard indexé par [0, 1]. Pour tout $t \in [0, 1]$, on pose

$$\mathscr{F}_t := \sigma(B_s, s \in [0, t]),$$

 $\mathscr{G}_t := \mathscr{F}_t \vee \sigma(B_1) = \sigma(\{C; C \in \mathscr{F}_t \text{ ou } C \in \sigma(B_1)\}).$

(i) Soient $0 \le s < t \le 1$. Montrer que la v.a.

$$\frac{1-t}{1-s}(B_t-B_s)-\frac{t-s}{1-s}(B_1-B_t)$$

est indépendante de \mathcal{G}_s . En déduire que

$$\mathbb{E}[(B_t - B_s) \mid \mathscr{G}_s] = \frac{t - s}{1 - s} (B_1 - B_s).$$

(ii) Considérons le processus $\beta := (\beta_t, t \in [0, 1])$ défini par

$$\beta_t := B_t - \int_0^t \frac{B_1 - B_s}{1 - s} \, \mathrm{d}s, \qquad t \in [0, 1].$$

Montrer que pour $0 \le s < t \le 1$, $\mathbb{E}(\beta_t | \mathcal{G}_s) = \beta_s$ p.s.

(iii) Montrer que

$$\beta_t = B_t - tB_1 + \int_0^t \frac{B_s - sB_1}{1 - s} \, ds, \qquad t \in [0, 1].$$

- (iv) Montrer que $(B_t tB_1)_{t \in [0,1]}$ et $(\beta_t)_{t \in [0,1]}$ sont indépendants de B_1 .
- (v) Montrer que $(\beta_t)_{t\in[0,1]}$ est un mouvement brownien. En déduire que le pont brownien défini par $b_t := B_t tB_1$, $t \in [0,1]$, satisfait

$$b_t = -\int_0^t \frac{b_s}{1-s} \, \mathrm{d}s + \beta_t, \qquad t \in [0, 1].$$

Année 2022 - 2023

Chapitre II. Mouvement brownien et propriété de Markov

Dans tous les exercices, $B = (B_t, t \ge 0)$ est un mouvement brownien.

Exercice 1 Soient (X,Y) un couple aléatoire défini sur $(\Omega, \mathcal{F}, \mathbb{P})$ à valeurs dans $E \times F$. Soit $\mathcal{A} \subset \mathcal{F}$ une sous-tribu telle que X soit \mathcal{A} -mesurable et Y soit indépendant de \mathcal{A} . Prouver que si $\varphi : E \times F \to \mathbb{R}$ est mesurable bornée, alors

$$\mathbb{E}[\varphi(X,Y) \mid \mathcal{A}] = \Phi(X),$$

où $\Phi: E \to \mathbb{R}$ est donnée par $\Phi(x) := \mathbb{E}[\varphi(x, Y)], x \in E$.

Exercice 2 On définit $d_1 := \inf\{t \ge 1 : B_t = 0\}$ et $g_1 := \sup\{t \le 1 : B_t = 0\}$.

- (i) Les variables aléatoires d_1 et g_1 sont-elles des temps d'arrêt ?
- (ii) Calculer la loi de d_1 et celle de g_1 (indication : utiliser la propriété de Markov au temps 1 et une formule obtenue dans le cours pour la loi de τ_x , $x \in \mathbb{R}$).

Exercice 3 On pose $\tau_1 := \inf\{t > 0 : B_t = 1\}$ et $\tau := \inf\{t \ge \tau_1 : B_t = 0\}$. Calculer la loi de τ à l'aide de la propriété de Markov forte.

Exercice 4 (i) Étudier la convergence en loi et probabilité de $\frac{\log(1+B_t^2)}{\log t}$ (quand $t \to \infty$).

(ii) Étudier la convergence p.s. de $\frac{\log(1+B_t^2)}{\log t}$.

Exercice 5 (i) Soient [a, b] et [c, d] deux intervalles disjoints de \mathbb{R}_+ . Montrer que presque sûrement, $\sup_{t \in [a,b]} B_s \neq \sup_{t \in [c,d]} B_s$.

(ii) En déduire que p.s., chaque maximum local de B est un maximum local au sens strict.

Exercice 6 En utilisant la propriété de scaling, montrer que $(\int_0^t e^{B_s} ds)^{1/t^{1/2}} \to e^{|N|}$ en loi lorsque $t \to \infty$, où N suit la loi gaussienne $\mathcal{N}(0, 1)$.

Exercice 7 (i) Soit a > 0 et soit $\tau_a := \inf\{t \ge 0 : B_t = a\}$. Nous avons vu dans le chapitre 2 du poly la densité explicite de τ_a , qui permet de montrer que $\mathbb{E}[e^{-\lambda \tau_a}] = e^{-a\sqrt{2\lambda}}$, $\forall \lambda \ge 0$ (on donnera une preuve alternative dans le chapitre 3). En déduire que $\mathbb{P}(\tau_a \le t) \le \exp(-\frac{a^2}{2t})$, pour tout t > 0.

(ii) Montrer que si ξ est une variable aléatoire suivant la loi gaussienne $\mathcal{N}(0, 1)$, alors $\mathbb{P}(\xi \geq x) \leq \frac{1}{2} \mathrm{e}^{-x^2/2}$, $\forall x > 0$ (à comparer avec l'exercice 1 de la feuille n. 0).

Exercice 8 Soit $S_t := \sup_{s \in [0,t]} B_s$, $t \ge 0$. Montrer que $S_2 - S_1$ a la même loi que $\max\{|N| - |\widetilde{N}|, 0\}$, où N et \widetilde{N} désignent deux variables aléatoires indépendantes suivant la même loi gaussienne $\mathcal{N}(0, 1)$.

Exercice 9 Montrer que p.s. $\int_0^\infty \sin^2(B_t) dt = \infty$ en utilisant une suite $(\tau_i)_{i\geq 0}$ de temps aléatoires définis par récurrence : $\tau_0 := 0$, $\tau_{2i+1} := \inf\{t > \tau_{2i} : |B_t| = 1\}$ et $\tau_{2i+2} := \inf\{t > \tau_{2i+1} : B_t = 0\}$ pour $i \geq 0$.

Exercice 10 (loi du logarithme itéré) On pose $S_t := \sup_{s \in [0,t]} B_s, h(t) := \sqrt{2t \log \log t}$.

- (i) Soit $\varepsilon > 0$. Montrer que la série numérique $\sum_{n} \mathbb{P}\{S_{t_{n+1}} \geq (1+\varepsilon)h(t_n)\}$ est convergente, où $t_n = (1+\varepsilon)^n$. En déduire que $\limsup_{t\to\infty} \frac{S_t}{h(t)} \leq 1$, p.s.
 - (ii) Montrer que

$$\limsup_{t \to \infty} \frac{\sup_{s \in [0,t]} |B_s|}{h(t)} \le 1, \quad \text{p.s.}$$

- (iii) Soit $\theta > 1$, et soit $s_n = \theta^n$. Montrer que pour tout $\alpha \in]0, \sqrt{1 \theta^{-1}}[$, la série numérique $\sum_n \mathbb{P}\{B_{s_n} B_{s_{n-1}} > \alpha \, h(s_n)\}$ est divergente. En déduire que $\limsup_{t \to \infty} \frac{B_t}{h(t)} \ge \alpha \frac{2}{\sqrt{\theta}}$, p.s.
 - (iv) Montrer que

$$\limsup_{t \to \infty} \frac{B_t}{h(t)} = 1, \quad \text{p.s.}$$

- (v) Soient $X_1(t):=|B_t|,~X_2(t):=S_t,$ et $X_3(t):=\sup_{s\in[0,t]}|B_s|.$ Que peut-on dire de $\limsup_{t\to\infty}\frac{X_i(t)}{h(t)}$ pour i=1,~2, ou 3?
 - (vi) Que peut-on dire de $\liminf_{t\to\infty} \frac{B_t}{h(t)}$? Et de $\limsup_{t\to0} \frac{B_t}{\sqrt{2t\log\log(1/t)}}$?

Année 2022 - 2023

Exercice 1 (i) Soit (M_t) une martingale continue et positive, telle que $M_t \to 0$, p.s. $(t \to \infty)$. Montrer que pour tout x > 0, $\mathbb{P}(\sup_{t>0} M_t \ge x \mid \mathscr{F}_0) = 1 \land \frac{M_0}{x}$, p.s.

- (ii) Soit B un mouvement brownien. Calculer la loi de $\sup_{t>0} (B_t t)$.
- (ii) Soit B un mouvement brownien issu de x > 0. Calculer la loi de $\sup_{t \le \tau_0} B_t$, où $\tau_0 := \inf\{t > 0 : B_t = 0\}$.

Dans les exercices suivants, B est un (\mathscr{F}_t) -mouvement brownien.

Exercice 2 Soient $\sigma \leq \tau$ deux temps d'arrêt bornés. Montrer que $\mathbb{E}[(B_{\tau} - B_{\sigma})^2] = \mathbb{E}(B_{\tau}^2) - \mathbb{E}(B_{\sigma}^2) = \mathbb{E}(\tau - \sigma)$.

Exercice 3 Soient a > 0 et b > 0.

(i) Soit $\tau_{a,b} := \inf\{t \geq 0 : B_t = -a \text{ ou } B_t = b\} = \tau_{-a} \wedge \tau_b$. En étudiant $M_t := \operatorname{sh}(\theta(B_t + a)) \exp(-\frac{\theta^2}{2}t)$, montrer que

$$\mathbb{E}\left[e^{-\lambda\tau_{a,b}}\right] = \frac{\operatorname{ch}\left(\frac{a-b}{2}\sqrt{2\lambda}\right)}{\operatorname{ch}\left(\frac{a+b}{2}\sqrt{2\lambda}\right)}, \qquad \lambda \ge 0.$$

- (ii) Montrer que $\mathbb{P}(\tau_b < \tau_{-a}) = \frac{a}{a+b}$ et que $\mathbb{P}(\tau_b > \tau_{-a}) = \frac{b}{a+b}$.
- (iii) Quelle est la loi de $\sup_{0 \le t \le \tau_{-1}} B_t$?

Exercice 4 Soient $\gamma \neq 0$, a > 0 et b > 0 trois réels. Posons $\tau_x := \inf\{t > 0 : B_t + \gamma t = x\}$, x = -a ou b. Calculer $\mathbb{P}(\tau_{-a} > \tau_b)$.

Indication : on pourra considérer la martingale $\exp\{-2\gamma(B_t + \gamma t)\}$.

Exercice 5 Dans cet exercice (\mathscr{F}_t) est une filtration et τ, σ sont des (\mathscr{F}_t) -temps d'arrêt. On rappelle les définitions

$$\mathscr{F}_{\tau} := \{ A \in \mathscr{F}_{\infty} : \ \forall t \ge 0, \ A \cap \{ \tau \le t \} \in \mathscr{F}_t \}$$

$$\mathscr{F}_{\tau+} := \{ A \in \mathscr{F}_{\infty} : \forall t \ge 0, A \cap \{ \tau < t \} \in \mathscr{F}_t \}$$

- (i) Si $\sigma \leq \tau$ alors $\mathscr{F}_{\sigma} \subset \mathscr{F}_{\tau}$.
- (ii) $\sigma \wedge \tau$ et $\sigma \vee \tau$ sont des temps d'arrêt, et on a $\mathscr{F}_{\sigma \wedge \tau} = \mathscr{F}_{\sigma} \cap \mathscr{F}_{\tau}$. En plus, $\{\sigma \leq \tau\} \in \mathscr{F}_{\sigma \wedge \tau}$ et $\{\sigma = \tau\} \in \mathscr{F}_{\sigma \wedge \tau}$ (et donc $\{\sigma < \tau\} \in \mathscr{F}_{\sigma \wedge \tau}$).
 - (iii) Si σ et τ sont des temps d'arrêt, alors $\sigma + \tau$ est un temps d'arrêt.

(iv) Si (τ_n) est une suite croissante de temps d'arrêt, alors $\tau := \lim_n \uparrow \tau_n$ est aussi un temps d'arrêt, et

$$\mathscr{F}_{\tau-} = \bigvee_{n} \mathscr{F}_{\tau_n-}.$$

(iv) Si (τ_n) est une suite décroissante de temps d'arrêt, alors $\tau := \lim_n \downarrow \tau_n$ est un (\mathscr{F}_{t+}) -temps d'arrêt, et

$$\mathscr{F}_{\tau+} = \bigcap_{n} \mathscr{F}_{\tau_n+}.$$

- (v) Si $(\tau_n)_{n\geq 1}$ est une suite de temps d'arrêt, alors $\sup_{n\geq 1} \tau_n$ est un temps d'arrêt.
- (vi) Si $\mathscr{G}_t := \mathscr{F}_{t+}$ alors $\mathscr{G}_{\tau} = \mathscr{F}_{\tau+}$.

Exercice 6 Soit $M = (M_t, t \ge 0)$ une sous-martingale. Soit (\mathcal{G}_t) une sous-filtration 1 de (\mathcal{F}_t) . Montrer que 2 $N_t := \mathbb{E}(M_t | \mathcal{G}_t)$, $t \ge 0$, est une (\mathcal{G}_t) -sous-martingale.

Exercice 7 Soit $M = (M_t, t \ge 0)$ une martingale telle que $\sup_{t \ge 0} \mathbb{E}(|M_t|) < \infty$.

- (i) Soit $t \geq 0$ fixé et $\xi_n := \mathbb{E}(M_n^+ | \mathscr{F}_t)$, $n \geq t \geq 0$. Montrer que si $n \geq m \geq t$ alors p.s. $\xi_n \geq \xi_m$. Montrer que $\mathbb{E}(M_n^+ | \mathscr{F}_t)$ converge (lorsque $n \to \infty$) p.s. vers une variable aléatoire réelle, notée X_t .
 - (ii) Montrer que $(X_t, t \ge 0)$ est une martingale.
 - (iii) Montrer que M s'écrit comme différence de deux martingales positives.

Exercice 8 Soit $M := (M_t, t \in [0, 1])$ une sous-martingale telle que $\mathbb{E}(M_0) = \mathbb{E}(M_1)$. Montrer que M est une martingale.

Exercice 9 Soit M une martingale continue. Soit $t \geq 0$. Montrer que $M_{t+\varepsilon} \to M_t$ (lorsque $\varepsilon \downarrow 0$) dans L^1 .

Exercice 10 Soit ξ une variable aléatoire réelle. Soit $M_t := \mathbb{P}(\xi \leq t \mid \mathscr{F}_t)$. Montrer que $(M_t, t \geq 0)$ est une sous-martingale.

Exercice 11 Soit τ un temps d'arrêt et $(M_t, t \geq 0)$ une martingale continue à droite et uniformément intégrable. Montrer que $(M_{\tau \wedge t}, t \geq 0)$ est une martingale uniformément intégrable.

^{1.} C'est-à-dire, une filtration telle que $\mathscr{G}_t \subset \mathscr{F}_t, \forall t \geq 0$.

^{2.} En particulier, toute (sous-)martingale est une (sous-)martingale par rapport à sa filtration canonique.

Chapitre IV. Semimartingales continues

Exercice 1. (i) Soient M et N deux martingales locales continues. Montrer que si M et N sont indépendantes, alors elles sont orthogonales (c'est-à-dire, $\langle M, N \rangle = 0$). On pourra considérer d'abord le cas de M et N martingales dans L^2 .

(ii) Montrer que la réciproque est fausse. (On pourra, par exemple, considérer M^{τ} et $M-M^{\tau}$.)

Exercice 2. Soit M une martingale locale continue telle que $M_0 = 0$ p.s.

- (i) Montrer que pour tout temps d'arrêt p.s. fini τ , on a $\mathbb{E}(M_{\tau}^2) \leq \mathbb{E}(\langle M \rangle_{\tau})$.
- (ii) Soit a > 0 et soit $\tau_a := \inf\{t \ge 0 : |M_t| \ge a\}$. Montrer que $\mathbb{E}(\langle M \rangle_{\tau_a \wedge t}) \ge a^2 \mathbb{P}(\tau_a \le t)$, $\forall t > 0.$
 - (iii) Montrer que $\mathbb{P}(\sup_{s \in [0, t]} |M_s| \ge a) \le a^{-2} \mathbb{E}(\langle M \rangle_t)$.

Exercice 3. Soit M une martingale locale continue telle que $M_0 = 0$ p.s.

(i) Soit a > 0 et soit $\sigma_a := \inf\{t \ge 0 : \langle M \rangle_t \ge a^2\}$. Montrer que

$$\mathbb{P}\Big(\sup_{s\in[0,\,\sigma_a]}|M_s|>a\Big)\leq \frac{1}{a^2}\mathbb{E}(a^2\wedge\langle M\rangle_\infty).$$

- (ii) Montrer que $\mathbb{P}(\sup_{t\geq 0} |M_t| > a) \leq \mathbb{P}(\langle M \rangle_{\infty} \geq a^2) + a^{-2}\mathbb{E}(a^2 \wedge \langle M \rangle_{\infty}).$
- (iii) Montrer que $\mathbb{E}(\sup_{t>0} |M_t|) \leq 3 \mathbb{E}(\sqrt{\langle M \rangle_{\infty}})$.
- (iv) Montrer que si $\mathbb{E}(\sqrt{\langle M \rangle_{\infty}}) < \infty$, alors M est une (vraie) martingale uniformément intégrable.
 - (v) Montrer que si $\mathbb{E}(\sqrt{\langle M \rangle_t}) < \infty$ pour tout t, alors M est une (vraie) martingale.

Exercice 4. Soit M une martingale locale continue. Montrer qu'il existe une suite de temps d'arrêt $(\tau_n) \uparrow \infty$ telle que pour tout $n, M^{\tau_n} - M_0$ soit une martingale continue bornée.

Exercice 5. Soit M un processus continu et adapté. On suppose qu'il existe une suite de temps d'arrêt $(\tau_n) \uparrow \infty$ telle que pour tout n, M^{τ_n} est une martingale locale. Montrer que M est une martingale locale.

Exercice 6. Soit M une martingale locale continue. Montrer qu'il existe $A \in \mathscr{F}$ avec $\mathbb{P}(A) = 1$ tel que pour tout $\omega \in A$ et tous s < t,

$$\langle M \rangle_s(\omega) = \langle M \rangle_t(\omega) \iff M_u(\omega) = M_s(\omega), \forall u \in [s, t].$$

Exercice 7. Soit M une martingale locale continue. Montrer que M est une martingale uniformément intégrable si et seulement si $(M_{\tau} \mathbf{1}_{\{\tau < \infty\}}, \tau \text{ temps d'arrêt})$ est uniformément intégrable.

Exercice 8. Soit M une martingale locale continue telle que $M_0 = 0$ p.s. Soit (τ_n) une suite de temps d'arrêt finis qui réduit M.

- (i) Soit τ un temps d'arrêt fini. Montrer que pour tout n, $\mathbb{E}(|X_{\tau \wedge \tau_n}|) \leq \mathbb{E}(|X_{\tau_n}|)$.
- (ii) Montrer que $\sup_n \mathbb{E}(|X_{\tau_n}|) = \sup\{\mathbb{E}(|X_{\tau}|), \ \tau \text{ temps d'arrêt fini}\}.$

Exercice 9. Donner un exemple de martingale locale M continue et bornée telle que $\langle M \rangle$ ne soit pas borné.

Exercice 10. Soit M une martingale locale continue, et soit A un processus à variation finie tel que $M^2 - A$ est une martingale locale. Montrer que A est indistinguable de $\langle M \rangle$.

Exercice 11. Soit M, N des martingales locales continues, et soit τ un temps d'arrêt. Montrer que $\langle M^{\tau} \rangle = \langle M \rangle^{\tau}$, $\langle N, M^{\tau} \rangle = \langle N^{\tau}, M^{\tau} \rangle = \langle N, M \rangle^{\tau}$ et $\langle M - M^{\tau} \rangle = \langle M \rangle - \langle M \rangle^{\tau}$.

Exercice 12. Soient M et N des martingales locales et continues, et soit H un processus mesurable tel que pour tout t, $\int_0^t H_s^2 d\langle M \rangle_s < \infty$ et $\int_0^t H_s^2 d\langle N \rangle_s < \infty$ p.s. Montrer que pour tout t, $\int_0^t H_s^2 d\langle M + N \rangle_s < \infty$ p.s.

Exercice 13. Soit M une martingale locale continue, et soit T un temps d'arrêt fini. Soit $\mathscr{G}_t := \mathscr{F}_{t+T}, \ t \geq 0$.

- (i) Montrer que si τ est un temps d'arrêt, alors $(\tau T)^+$ est un (\mathcal{G}_t) -temps d'arrêt.
- (ii) Montrer que $(M_{t+T}, t \ge 0)$ est une (\mathcal{G}_t) -martingale locale, et calculer sa variation quadratique.

Année 2022 – 2023

Chapitre V. Intégrale stochastique

Exercice 1 (Intégrale de Wiener) Soit H un espace d'Hilbert séparable, $(e_k)_k$ une base hilbertienne de H et $(\xi_k)_k$ une suite iid définies sur $(\Omega, \mathcal{F}, \mathbb{P})$ telle que $\xi_k \sim \mathcal{N}(0, 1)$. On définit pour tout $h \in H$

$$W^n(h) = \sum_{k=1}^n \xi_k \langle e_k, h \rangle_H, \qquad n \ge 1.$$

- 1. Montrer que $W^n(h)$ converge dans $L^2(\Omega)$ vers une v.a. W(h) quand $n \to +\infty$.
- 2. Montrer que $W(h) \sim \mathcal{N}(0, ||h||_H^2)$ et $\mathbb{E}(W(h_1)W(h_2)) = \langle h_1, h_2 \rangle_H$. L'application $H \ni h \mapsto W(h)$ est une immersion isométrique de H dans un sous-espace de variables gaussiennes dans $L^2(\Omega)$.
- 3. Soit $H = L^2(\mathbb{R}_+, dt)$. On rappelle que dans le Théorème 1.2.7 du polycopié nous avons construit $W(\mathbb{1}_{[0,t]})$ et nous l'avons appelé B_t . Par analogie avec cette notation nous notons

$$\int_{\mathbb{R}_+} h_u \, dB_u := W(h), \qquad h \in L^2(\mathbb{R}_+, dt),$$

et nous appelons cette variable l'intégrale de Wiener de h.

Soit $E_n \subset \mathcal{B}(\mathbb{R}_+)$ avec $E_i \cap E_j = \emptyset$ si $i \neq j$ et $E := \bigcup_n E_n$. Si $|E| < +\infty$, |E| est la mesure de Lebesgue de E, montrer que $W(\mathbb{1}_E) = \sum_n W(\mathbb{1}_{E_n})$, où la série converge dans $L^2(\Omega)$.

Exercice 2 (Le processus d'Ornstein-Uhlenbeck) Soit $\lambda > 0$ et $(B_t)_{t\geq 0}$ un mouvement brownien standard. Soit $x \in \mathbb{R}$. On veut construire un processus $(X_t, t \geq 0)$ p.s. continu et solution de

$$X_t = x - \lambda \int_0^t X_s \, \mathrm{d}s + B_t, \qquad t \ge 0. \tag{0.1}$$

- 1. Appliquer la formule d'intégration par parties à $(e^{\lambda t}X_t)_{t\geq 0}$ pour obtenir une expression explicite pour $(X_t)_{t\geq 0}$. En déduire existence et unicité de solutions de $(\ref{eq:total_t$
- 2. Montrer que $(X_t)_{t\geq 0}$ est un processus gaussien et que la loi de X_t est gaussienne de moyenne $e^{-\lambda t}x$ et variance $\frac{(1-e^{-2\lambda t})}{2\lambda}$ pour tout $t\geq 0$.

3. Pour toute function $f \in C_b(\mathbb{R})$ soit

$$P_t f(x) := \int f(y) \,\mathcal{N}\left(e^{-\lambda t} x, \frac{(1 - e^{-2\lambda t})}{2\lambda}\right), \qquad t \ge 0, x \in \mathbb{R}.$$

Montrer que $P_t P_s = P_{t+s}$. En prenant la limite $s \to +\infty$, montrer que, si $\mu := \mathcal{N}(0, (2\lambda)^{-1})$, alors

$$\int P_t f \, \mathrm{d}\mu = \int f \, \mathrm{d}\mu.$$

4. Soit $B_t := W(\mathbb{1}_{[0,t]})$ un mouvement brownien construit comme dans l'exercice 1. Soit $t \ge 0$ et $f^t(s) := \exp(-\lambda(t-s))\mathbb{1}_{[0,t]}(s)$. Montrer que p.s. $X_t = e^{-\lambda t}x + W(f^t)$.

Exercice 3 (Le pont brownien) Soit $(B_t)_{t\geq 0}$ un MB standard et $(X_t, t \in [0, 1])$ un processus continu adapté solution de

$$X_t = -\int_0^t \frac{X_s}{1-s} \, \mathrm{d}s + B_t, \qquad t \in [0,1]. \tag{0.2}$$

- 1. Appliquer la formule d'intégration par partie à $(\frac{X_t}{1-t})_{t\in[0,1[}$ et obtenir une expression explicite pour $(X_t,t\in[0,1[)$.
- 2. Montrer que $(X_t, t \in [0, 1[)$ a même loi que le pont brownien $(b_t, t \in [0, 1[)$ où $b_t := B_t tB_1$ et en déduire que p.s. $X_t \to X_1 := 0$ si $t \to 1$.
- 3. Soit $y \in \mathbb{R}$. Avec les mêmes arguments, montrer que la seule solution de l'équation

$$X_t^y = -\int_0^t \frac{X_s^y - y}{1 - s} \, \mathrm{d}s + B_t, \qquad t \in [0, 1], \tag{0.3}$$

a même loi que $(b_t^y, t \in [0, 1])$, où $b_t^y := B_t - tB_1 + ty$, $t \in [0, 1]$.

4. Montrer que $(b_t^y, t \in [0, 1])$ est indépendant de B_1 . En déduire que pour tous $0 < t_1 < \cdots < t_n < 1$ la loi de $(b_{t_1}^y, \ldots, b_{t_n}^y)$ est

$$\frac{p_{t_1}(x_1) p_{t_2-t_2}(x_2-x_1) \cdots p_{t_n-t_{n-1}}(x_n-x_{n-1}) p_{1-t_n}(y-x_n)}{p_1(y)} dx_1 \cdots dx_n,$$

où
$$p_t(x) := \frac{1}{\sqrt{2\pi t}} e^{-x^2/2t}, x \in \mathbb{R}, t > 0.$$

5. Montrer que pour tout $A \in \mathcal{B}(\mathbb{R}^n)$ et $E \in \mathcal{B}(\mathbb{R})$

$$\mathbb{P}((B_{t_1}, \dots, B_{t_n}) \in A, B_1 \in E) = \int_E p_1(y) \, \mathbb{P}((b_{t_1}^y, \dots, b_{t_n}^y) \in A) \, dy.$$

Donc la loi de $(b_t^y, t \in [0, 1])$ donne une version de la loi conditionnelle de $(B_t, t \in [0, 1])$ sachant $\{B_1 = y\}$ (où l'on remarque que $\mathbb{P}(B_1 = y) = 0$).

Chapitre VI. Formule d'Itô et applications

Exercice 1. Soient X et Y deux (\mathscr{F}_t) -mouvements browniens réels indépendants, et soit H un processus progressif. On pose

$$\beta_t = \int_0^t \cos(H_s) dX_s - \int_0^t \sin(H_s) dY_s,$$

$$\gamma_t = \int_0^t \sin(H_s) dX_s + \int_0^t \cos(H_s) dY_s.$$

Montrer que β et γ sont des (\mathscr{F}_t) -mouvements browniens indépendants.

Exercice 2. (intégrale de Stratonovich). Soient X et Y deux semimartingales continues. L'intégrale de Stratonovich $\int_0^{\bullet} Y \circ dX$ est définie par

$$\int_0^t Y_s \circ dX_s := \int_0^t Y_s dX_s + \frac{1}{2} \langle X, Y \rangle_t.$$

(i) Montrer que pour tout t > 0 et toute suite $0 = t_0^n < t_1^n < \cdots < t_{p_n}^n = t$ de subdivisions emboîtées de [0, t] dont le pas tend vers 0,

$$\lim_{n \to \infty} \sum_{i=0}^{p_n - 1} \frac{Y_{t_{i+1}^n} + Y_{t_i^n}}{2} (X_{t_{i+1}^n} - X_{t_i^n}) = \int_0^t Y_s \circ dX_s \quad \text{en probabilit\'e.}$$

(ii) Montrer que si $F: \mathbb{R} \to \mathbb{R}$ est une fonction de classe C^3 , alors

$$F(X_t) = F(X_0) + \int_0^t F'(X_s) \circ dX_s.$$

Exercice 3. Soit B un (\mathscr{F}_t) -mouvement brownien. Montrer que $\int_0^t \mathbf{1}_{\{B_s=0\}} dB_s = 0$.

Exercice 4. On note \mathbb{P}^x la loi du mouvement brownien $(B_t, t \geq 0)$ issu de x > 0, et on pose $\tau := \inf\{t \geq 0 : B_t = 0\}$. Soit $f : \mathbb{R}_+ \to \mathbb{R}$ continue à support compact. Calculer $\mathbb{E}^x(\int_0^\tau f(B_s) \, \mathrm{d}s)$.

Exercice 5. Soit Z=X+iY un mouvement brownien complexe issu de 0. On pose $\tau:=\inf\{t:\,|Y_t|\geq \frac{\pi}{2}\}$. À l'aide de la martingale e^Z , déterminer la loi de X_τ .

Exercice 6. (i) Soit $g: \mathbb{R}_+ \to \mathbb{R}_+$ une fonction continue. Soit $f: \mathbb{R}_+ \to]0$, $\infty[$ une fonction de classe C^2 telle que f'' = 2gf sur \mathbb{R}_+ et que f(0) = 1, f'(1) = 0. On pose

$$u(t):=\frac{f'(t)}{2f(t)}, \qquad t\geq 0.$$

Montrer que $u' + 2u^2 = g$ sur \mathbb{R}_+ .

(ii) Soit β un (\mathscr{F}_t) -mouvement brownien réel standard. Soient $x_0 \geq 0$ et $a \geq 0$ des réels positifs. Soit $(X_t, t \ge 0)$ un processus continu et adapté, à valeurs dans \mathbb{R}_+ , tel que

$$X_t = x_0 + 2 \int_0^t \sqrt{X_s} \, \mathrm{d}\beta_s + at.$$

Montrer que $u(t)X_t - \int_0^t g(s)X_s \, ds = u(0)x_0 + \int_0^t u(s) \, dX_s - 2 \int_0^t u(s)^2 X_s \, ds, \ t \ge 0.$ (iii) Posons $M_t := u(0)x_0 + 2 \int_0^t u(s) \sqrt{X_s} \, d\beta_s, \ t \ge 0.$ Montrer que

$$f(t)^{-a/2} \exp\left(u(t)X_t - \int_0^t g(s)X_s \,\mathrm{d}s\right) = \mathscr{E}(M)_t.$$

(iv) Montrer que f est décroissante sur [0, 1]. Montrer que

$$\mathbb{E}\Big[\exp\Big(-\int_0^1 g(s)X_s \,\mathrm{d}s\Big)\Big] = f(1)^{a/2} e^{x_0 f'(0)/2}.$$

(v) Montrer que

$$\mathbb{E}\Big[\exp\Big(-\frac{\theta^2}{2}\int_0^1 X_s \,\mathrm{d}s\Big)\Big] = \frac{1}{(\mathrm{ch}\theta)^{a/2}} \exp\Big(-\frac{x_0}{2}\,\theta \mathrm{th}\theta\Big), \qquad \forall \theta \in \mathbb{R}.$$

(vi) Soit B un mouvement brownien réel standard. Montrer que pour tout $x \in \mathbb{R}$,

$$\mathbb{E}\Big[\exp\Big(-\frac{\theta^2}{2}\int_0^1 (B_s+x)^2 \,\mathrm{d}s\Big)\Big] = \frac{1}{(\mathrm{ch}\theta)^{1/2}} \exp\Big(-\frac{x^2}{2}\,\theta \mathrm{th}\theta\Big), \qquad \forall \theta \in \mathbb{R}.$$

(vii) Soient B et \widetilde{B} des mouvements browniens réels standard indépendants. Montrer que pour tout t > 0 fixé, $\inf\{s \ge 0 : |B_s| = t\}$ et $\int_0^t B_s^2 ds + \int_0^t \widetilde{B}_s^2 ds$ ont la même loi.

Exercice 7. Soit $(B_t, t \in [0,1])$ un mouvement brownien issu de 0, et soit $(\mathscr{F}_t, t \in [0,1])$ (l'augmentation habituelle de) la tribu canonique de B. On se donne $f: \mathbb{R} \to \mathbb{R}$ une fonction borélienne bornée, et on pose $M_t := \mathbb{E}[f(B_1) | \mathcal{F}_t], t \in [0, 1]$. Écrire explicitement une constante c et un processus progressif H tels que $M_t = c + \int_0^t H_s dB_s$.

Exercice 8. (troisième identité de Wald). Soit B un (\mathscr{F}_t) -mouvement brownien standard, et soit τ un temps d'arrêt tel que $\mathbb{E}(e^{\tau/2}) < \infty$. Montrer que $\mathbb{E}[\exp(B_{\tau} - \frac{\tau}{2})] = 1$.

Exercice 9. Soit B un (\mathscr{F}_t) -mouvement brownien, et soit $S_t := \sup_{s \in [0,t]} B_s$. On pose $X_t := S_t - B_t.$

- (i) Montrer que $\int_0^t \mathbf{1}_{\{X_u \neq 0\}} dS_u = 0$.
- (ii) Montrer que $Y_t := X_t^2 t$ est une (vraie) martingale.
- (iii) Soit $\tau := \inf\{t \geq 0 : X_t = 1\}$. Calculer $\mathbb{E}(\tau)$.

Exercice 10. Soit B un mouvement brownien issu de 0.

- (i) Soit \mathbb{Q} la probabilité sur \mathscr{F}_{∞} telle que pour tout t, $\mathbb{Q}|_{\mathscr{F}_t} = \mathrm{e}^{\gamma B_t \frac{\gamma^2}{2} t} \bullet \mathbb{P}|_{\mathscr{F}_t}$. Soit τ un temps d'arrêt fini \mathbb{P} -p.s. Montrer que $\mathbb{E}[e^{\gamma B_{\tau} - \frac{\gamma^2}{2}\tau}] = 1$ si et seulement si $\tau < \infty$ \mathbb{Q} -p.s.
- (ii) Soit $\gamma \in \mathbb{R}$ et $a \in \mathbb{R}$ des réels tels que $\gamma a \geq 0$. Si $\tau_a^{(\gamma)} := \inf\{t \geq 0 : B_t + \gamma t = a\}$, alors pour tout $\lambda \geq 0$, $\mathbb{E}[e^{-\lambda \tau_a^{(\gamma)}}] = e^{\gamma a \sqrt{(\gamma^2 + 2\lambda)a^2}}$.

Exercice 11. Soit B un (\mathscr{F}_t) -mouvement brownien standard, et soit H un processus progressif. On suppose qu'il existe des constantes $0 < c \le C < \infty$ telles que $c \le H_t(\omega) \le C$ pour tout $(t,\omega) \in \mathbb{R}_+ \times \Omega$. Montrer que pour toute fonction mesurable $f: \mathbb{R}_+ \to \mathbb{R}$ telle que $\int_0^\infty f^2(t) dt < \infty$, on a

$$\exp\left(\frac{c^2}{2}\int_0^\infty f^2(t)\,\mathrm{d}t\right) \le \mathbb{E}\Big\{\exp\left(\int_0^\infty f(t)H_t\,\mathrm{d}B_t\right)\Big\} \le \exp\left(\frac{C^2}{2}\int_0^\infty f^2(t)\,\mathrm{d}t\right).$$

Exercice 12. Soit B un mouvement brownien issu de 0, et soit $\gamma \in \mathbb{R}$. On pose $\tau := \inf\{t \geq 0 : |B_t + \gamma t| = 1\}$. Montrer que $B_\tau + \gamma \tau$ et τ sont indépendantes.

Exercice 13. Soit B un mouvement brownien standard, et soit $f:[0,1] \to \mathbb{R}$ une fonction convexe de classe C^2 telle que f(0) = 0 et $b := \int_0^1 (f'(t))^2 dt < \infty$. Montrer que pour tout x > 0,

$$\mathbb{P}\Big(\sup_{t \in [0,1]} |B_t + f(t)| \le x\Big) \le e^{ax - (b/2)} \, \mathbb{P}\Big(\sup_{t \in [0,1]} |B_t| \le x\Big),$$

où $a := |f'(1)| + \int_0^1 f''(t) dt$.

Exercice 14. Soit B un (\mathscr{F}_t) -mouvement brownien réel standard. Soit U une variable aléatoire réelle \mathscr{F}_1 -mesurable indépendante de B telle que $\mathbb{E}(e^{aU}) < \infty$, $\forall a \in \mathbb{R}$. On pose $f(t,x) := \mathbb{E}(e^{xU-tU^2/2})$, $g(t,x) := \mathbb{E}(Ue^{xU-tU^2/2})$ et $h(t,x) := \frac{g(t,x)}{f(t,x)}$.

- (i) Soit \mathbb{Q} la probabilité sur \mathscr{F}_1 définie par $\mathbb{Q} := f(1, B_1) \bullet \mathbb{P}|_{\mathscr{F}_1}$. Montrer que $B_t \int_0^t h(s, B_s) \, \mathrm{d}s$, $t \in [0, 1]$, est un \mathbb{Q} -mouvement brownien.
- (ii) On pose $\xi_t := B_t + tU$, $t \in [0,1]$. Montrer que pour toute $F : C([0,1], \mathbb{R}) \to \mathbb{R}_+$ mesurable,

$$\mathbb{E}\Big\{F(\xi_t,\ t\in[0,1])\Big\} = \mathbb{E}\Big\{f(1,B_1)F(B_t,\ t\in[0,1])\Big\}.$$

En déduire que $\xi_t - \int_0^t h(s, \xi_s) ds$, $t \in [0, 1]$, est un \mathbb{P} -mouvement brownien.

- (iii) Soit $\mathscr{G} := \sigma(\xi_t, t \in [0, 1])$. Calculer $\mathbb{E}(U \mid \mathscr{G})$.
- (iv) Définissons la probabilité $\widetilde{\mathbb{Q}}$ sur \mathscr{F}_1 par $\widetilde{\mathbb{Q}} := e^{-UB_1 U^2/2} \bullet \mathbb{P}|_{\mathscr{F}_1}$. Montrer que sous $\widetilde{\mathbb{Q}}$, $(\xi_t, t \in [0, 1])$ et U sont indépendants, et que la loi de U est la même sous \mathbb{P} et sous $\widetilde{\mathbb{Q}}$.

Année 2022 - 2023

Chapitre VII. Équations différentielles stochastiques

Exercice 1. Considérons une solution X de l'EDS $E_x(\sigma, b)$ en dimension 1.

- (1) Soit $s: \mathbb{R} \to \mathbb{R}$ de classe C^2 telle que $\frac{1}{2}s''\sigma^2 + s'b = 0$. Montrer que $(s(X_t), t \ge 0)$ est une martingale locale continue. La fonction s est appelée une **fonction d'échelle** de X.
- (2) On suppose que σ est continue et que s' et σ ne s'annulent pas. Soient a < x < b des réels, et soit $T_{a,b} := \inf\{t \ge 0 : X_t \notin [a, b[\}] \text{ (avec inf } \emptyset := \infty).$

Montrer que $\mathbb{P}^x(T_{a,b} < \infty) = 1$ (on pourra utiliser le Théorème de Dubins-Schwarz), et que (en utilisant des formules analogues pour le MB)

$$\mathbb{P}^x \{ X_{T_{a,b}} = a \} = \frac{s(b) - s(x)}{s(b) - s(a)}, \qquad \mathbb{P}^x \{ X_{T_{a,b}} = b \} = \frac{s(x) - s(a)}{s(b) - s(a)}.$$

- **Exercice 2.** (1) Soit $X := (X_t, t \ge 0)$ solution de $E(\sigma, b)$ à valeurs dans un ouvert $D \subset \mathbb{R}^d$. Soit $\lambda \in \mathbb{R}$ un réel. Soit $f : D \subset \mathbb{R}$ de classe C^2 telle que $\mathscr{L}f = \lambda f$, où $(\mathscr{L}f)(x) := \frac{1}{2} \sum_{i=1}^d \sum_{j=1}^d (\sigma \sigma^*)_{ij}(x) \frac{\partial^2 f}{\partial x_i \partial x_j}(x) + \sum_{i=1}^d b_i(x) \frac{\partial f}{\partial x_i}(x)$. Montrer que $(f(X_t) e^{-\lambda t}, t \ge 0)$ est une martingale locale continue.
 - (2) Soit $B := (B^1, B^2, B^3)$ un mouvement brownien à valeurs dans \mathbb{R}^3 , issu de $B_0 := a \in \mathbb{R}^3 \setminus \{0\}$. Soit $X := |B|^2$, où |B| désigne la norme euclidienne de B. Montrer que X est solution d'une EDS $E(\sigma, b)$ dont on précisera les coefficients σ et b.
 - (3) On suppose désormais $\lambda \geq 0$. Montrer que $2tg''(t) + 3g'(t) = \lambda g(t)$, t > 0, pour $g(t) = \frac{e^{\sqrt{2\lambda t}}}{\sqrt{2\lambda t}}$ ou $g(t) := \frac{e^{-\sqrt{2\lambda t}}}{\sqrt{2\lambda t}}$.
 - (4) Soit $f(t) = \frac{\sin(\sqrt{2\lambda t})}{\sqrt{2\lambda t}}$, t > 0. Montrer que $M_t := f(X_t) e^{-\lambda t}$ est une martingale locale.
 - (5) Soient $x > |a|^2$ et $T_x := \inf\{t \ge 0 : X_t = x\}$. En utilisant la martingale locale $M_t := f(X_t) e^{-\lambda t}$, montrer que pour tout $\lambda \ge 0$, on a $\mathbb{E}(e^{-\lambda T_x}) = \frac{f(|a|^2)}{f(x)}$.
 - (6) On suppose maintenant $B_0 = 0 \in \mathbb{R}^3$. Montrer que $\mathbb{E}(e^{-\lambda T_x}) = \frac{1}{f(x)} = \frac{\sqrt{2\lambda x}}{\sinh(\sqrt{2\lambda x})}, \ \lambda \geq 0$ (il faudra utiliser la propriété de Markov forte).

Exercice 3. Soient $(\Omega, \mathscr{F}, (\mathscr{F}_t), \mathbb{P}, B)$ un (\mathscr{F}_t) -mouvement brownien (réel issu de 0) et σ et b des fonctions boréliennes sur \mathbb{R} telles que pour tous $x, y \in \mathbb{R}$,

$$|\sigma(x)| \le M, \ |b(x)| \le M, \ |\sigma(x) - \sigma(y)| \le K|x - y|, \ |b(x) - b(y)| \le K|x - y|.$$

Soit, x étant fixé, X la solution de l'EDS $X_t = x + \int_0^t \sigma(X_s) dB_s + \int_0^t b(X_s) ds$. On considère le processus X^n défini pour $n \ge 1$ par $X_0^n = x$ et

$$X_t^n = X_{k/n}^n + \sigma(X_{k/n}^n)(B_t - B_{k/n}) + b(X_{k/n}^n)\left(t - \frac{k}{n}\right), \quad \frac{k}{n} \le t \le \frac{k+1}{n}, \quad k = 0, 1, \dots$$

On pose $\tau_s^n := \sum_{k=0}^{\infty} \frac{k}{n} \mathbf{1}_{\left[\frac{k}{n}, \frac{k+1}{n}\right[}(s)$.

- (1) Montrer que $X_t^n = x + \int_0^t \sigma(X_{\tau_s^n}^n) dB_s + \int_0^t b(X_{\tau_s^n}^n) ds$.
- (2) Montrer qu'il existe une constante A telle que $\mathbb{E}\{(X_t^n X_{\tau_t^n}^n)^2\} \leq \frac{A}{n}, \ \forall t \in [0,1], \ \forall n > 1.$
- (3) Montrer que pour tout $n \ge 1$ et $t \in [0, 1]$

$$\mathbb{E}\{(X_t - X_t^n)^2\} \le 4K^2 \int_0^t \mathbb{E}\{(X_s - X_{\tau_s^n}^n)^2\} \, \mathrm{d}s$$
$$\le 8K^2 \int_0^t \mathbb{E}\{(X_s - X_s^n)^2\} \, \mathrm{d}s + \frac{32K^2M^2}{n}.$$

En déduire qu'il existe une constante C_1 telle que $\sup_{t \in [0,1]} \mathbb{E}\{(X_t - X_t^n)^2\} \leq \frac{C_2}{n}$, $\forall n \geq 1$.

(4) Montrer qu'il existe une constante C_2 telle que pour toute fonction f à dérivées continues bornées, $|\mathbb{E}\{f(X_1^n) - f(X_1)\}| \leq ||f'||_{\infty} \frac{C_2}{\sqrt{n}}, \forall n \geq 1.$

Exercice 4. Soit B un (\mathscr{F}_t) -mouvement brownien standard.

(1) Montrer qu'il existe un processus X continu adapté tel que

$$X_t = 1 + \int_0^t \frac{1}{(1+s)(1+|X_s|)} dB_s - \frac{1}{2} \int_0^t X_s ds, \qquad t \ge 0.$$

- (2) Montrer que X est adapté par rapport à la filtration canonique de B.
- (3) Soit $X_t^* := \sup_{s \in [0,t]} |X_s|$. Montrer que $\mathbb{E}[(X_1^*)^2] < \infty$. En considérant $X_t X_1$, montrer que $\mathbb{E}[(X_2^*)^2] < \infty$. Montrer que $\mathbb{E}[(X_t^*)^2] < \infty$ pour tout $t \ge 0$.
- (4) Soit $Y_t := e^{1/(1+t)}(1+X_t^2)$, $t \ge 0$. Montrer que Y est une surmartingale (par rapport à la filtration (\mathscr{F}_t)). On en déduit que $\lim_{t\to\infty} Y_t$ existe p.s. (et la limite est p.s. finie).
- (5) Montrer que $\lim_{t\to\infty} |X_t|$ existe p.s.
- (6) En considérant la partie à variation finie de Y, montrer que $\int_0^\infty X_s^2 \, \mathrm{d}s < \infty$, p.s.
- (7) Montrer que $\liminf_{t\to\infty} |X_t| = 0$ p.s. En déduire que $\lim_{t\to\infty} X_t = 0$ p.s.

Exercice 5. Soit B un (\mathscr{F}_t) -mouvement brownien standard. Soit $b: \mathbb{R} \to \mathbb{R}$ une fonction lipschitzienne. Fixons $x \in \mathbb{R}$ et $0 < \varepsilon \le 1$. Soit $X^{x,\varepsilon} := (X^{x,\varepsilon}_t, t \ge 0)$ solution de l'EDS

$$X_t^{x,\varepsilon} = x + \varepsilon B_t + \int_0^t b(X_s^{x,\varepsilon}) \,\mathrm{d}s, \qquad t \ge 0.$$

Soit $y^x: \mathbb{R}_+ \to \mathbb{R}$ une fonction de classe C^1 telle que

$$y^{x}(t) = x + \int_{0}^{t} b(y^{x}(s)) ds, \qquad t \ge 0.$$

Montrer que

- (1) $\sup_{s\in[0,t]}|X^{x,\varepsilon}_s-y^x(s)|\leq \varepsilon B^*_t\mathrm{e}^{Kt},\,t\in[0,\,1],\,\mathrm{ou}\ K>0$ est une constante
- (2) pour tout $\delta > 0$, il existe $c_1 \in \mathbb{R}_+^*$ et $c_2 \in \mathbb{R}_+^*$, dont les valeurs ne dépendent pas de (x,ε) , telles que $\mathbb{P}\{\sup_{t\in[0,1]}|X_t^{x,\varepsilon}-y^x(t)|>\delta\} \leq c_1\exp(-\frac{c_2}{\varepsilon^2})$.

Exercice 6. Soit $(X_t, t \ge 0)$ un processus continu et adapté, à valeurs dans [0, 1], tel que

$$X_t = \frac{1}{\sqrt{2}} + \int_0^t X_s(1 - X_s^2) dB_s - \frac{1}{2} \int_0^t X_s(1 - X_s^2)(1 + 3X_s^2) ds.$$

(1) Soit $\gamma \in]0, 1[$ un réel, et soit $\tau := \inf\{t \geq 0 : X_t \geq \gamma\}$ ($\inf \varnothing := \infty$). On considère le processus $U_t := f(X_{t \wedge \tau}), t \geq 0$, où $f(x) := \frac{x^2}{1-x^2}, x \in [0,1[$.

Montrer que $(U_t, t \ge 0)$ est une semimartingale, et écrire sa décomposition canonique.

- (2) Montrer que $\mathbb{E}(U_t) = 1$ pour tout $t \geq 0$.
- (3) Montrer à l'aide du lemme de Fatou que $f(\gamma)\mathbb{P}(\tau<+\infty)\leq 1$ et en déduire que $\mathbb{P}(\tau<\infty)\leq \frac{1-\gamma^2}{\gamma^2}.$
- (4) Montrer que presque sûrement, $X_t < 1$ pour tout $t \ge 0$. En particulier, on peut p.s. définir le processus $V_t := \frac{X_t^2}{1 X_t^2}$, $t \ge 0$.
- (5) Montrer que $(V_t, t \ge 0)$ est solution d'une équation différentielle stochastique dont on précisera les coefficients.
- (6) Écrire $(X_t, t \ge 0)$ en fonction de $(B_t, t \ge 0)$.