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Discussion of Uncertainty quantification for the

horseshoe

Ismaël Castillo

The presently discussed paper by Stéphanie van der Pas, Botond Szabó and Aad van
der Vaart is a third of a series of very interesting works on convergence properties of
posterior distributions associated to the horseshoe prior in the sparse normal means
model. The horseshoe prior distribution as considered in the paper is a specific scale
mixture of normal distributions. Given ⌧ , it is the distribution of ✓

1

obtained from

✓

1

|�, ⌧ ⇠ N (0,�2

⌧

2), � ⇠ C

+(0, 1). (1)

Convergence rates are obtained in van der Pas et al. (2014) and adaptive counterparts
are derived in van der Pas et al. (2017). In the present paper the authors make an im-
portant step further and study uncertainty quantification: they demonstrate that under
certain conditions credible sets derived from the horseshoe posterior distribution, either
local marginal credible intervals or global `2 credible balls, can be used as confidence
sets, asymptotically in the number of observations. This is, after Belitser and Nurushev
(2015), one of the first works on the subject using Bayesian methods in sparse settings.

I really enjoyed reading this paper and the previous ones. Below I discuss two main
points and then close my discussion with a couple of more specific questions. The first
comment draws some analogies with spike and slab priors with sparsity parameter
calibrated by empirical Bayes (EB) and asks for possibly more general horseshoe-type
distributions. In a second comment, we discuss model selection properties and credible
sets for the horseshoe.

Some of the comments below are inspired by current work in progress with Romain
Mismer Castillo and Mismer (2017) and Botond Szabó Castillo and Szabó (2017), in
which we consider related questions for spike and slab prior distributions
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for some absolutely continuous distribution G and ↵ calibrated by an empirical Bayes
approach: following the steps of Johnstone and Silverman (2004), who studied risks of
a class of point estimators derived from the EB approach, we consider the convergence
of the full EB-posterior and related credible sets properties.

1. More flexible horseshoe prior distributions?

⇤
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2 Discussion of Uncertainty quantification for the horseshoe

Following Carvalho et al. (2010), if ⇡(✓
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This implies that the horseshoe prior, given ⌧ , has a pole at zero and Cauchy tails. The
pole at zero guarantees shrinkage of small signals while heavy tails avoid over-shrinkage
of large signals.

There seems to be a striking correspondance between the tuning parameter ⌧ of the
horseshoe and the success probability ↵ in the spike and slab prior, especially when G

is taken to be a distribution with Cauchy tails. For instance, when using a marginal
maximum likelihood empirical Bayes (MMLE) method to estimate ↵ for such a spike
and slab prior with Cauchy tails, one can show Castillo and Mismer (2017) (thereby
slightly improving, in the case one restricts to `

0

[pn] classes, upon the estimate from
Lemma 10 and Eq. (101) in Johnstone and Silverman (2004)) the estimate ↵̂ is such
that, as n ! 1,

sup
✓02`0[pn]

P✓0

h
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p
log(n/pn)

i
= o(1),

where pn is the sparsity parameter. This is the same as the upper boundary for ⌧

obtained by the authors who established in van der Pas et al. (2017) that the MMLE
⌧̂n verifies

sup
✓02`0[pn]

P✓0 [⌧̂n > ⌧(pn)] = o(1),

which is part of Condition 1 of the present paper. This suggests that tails of the horse-
shoe and tails of the slab distribution play a similar role, also at level of precise conditions
arising in the proofs.

This naturally leads to the question of whether it is possible to allow for other
tail distributions for the marginal distribution of ✓

1

for horseshoe-type priors. Another
reason why we mention this is that it appears from Castillo and Mismer (2017)-Castillo
and Szabó (2017) that in the spike and slab case, tails of G are particularly critical
in obtaining optimal adaptive rates and confidence sets when using an empirical Bayes
method. While Cauchy tails are fine in the spike and slab case when the squared `
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2 is considered, they presumably lead to suboptimal rates if the
loss is measured in terms of dq-distances dq(✓, ✓) :=

P
i |✓i � ✓

0
i|q (as in Castillo and

van der Vaart (2012)) when q < 1 (we note here that we are talking about results for
the full EB posterior distribution, not aspects of it such as the median or mode as in
Johnstone and Silverman (2004), for which this phenomenon does not arise).

Perhaps heavier tails, such as ✓

�1��
1

with � < 1 could be obtained by considering
one of the other mixture priors mentioned in the paper such as the normal-exponential-
gamma or the more general global-local scale mixture of normals, although we could not
find any explicit results on tails of the marginal distribution in the mentioned references.

2. Model selection: ‘sparsifying’ the horseshoe?
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By construction, a draw from the posterior distribution associated to the horseshoe
prior does not set any component exactly to zero. In a sense, again by construction,
the horseshoe prior is not exactly ‘made for’ `

0

[pn] classes. Still, as the authors nicely
prove, it leads to very good results for estimation and confidence sets for the squared
`

2 loss and `

0

[pn] classes.

When one looks at a di↵erent type of results, such as model selection, or results
for loss functions that are more sensible to missing the exact zeros, such as dq–losses,
something must be done, and the authors propose an additional selection rule to set
some of the coe�cients to zero.

The selection rule consists in looking at marginal credible intervals for individual
coe�cients ✓i and to select the given index i if the credible interval does not contain
zero. This rule is very intuitive, but is there a qualitative justification of this specific
choice? For instance, can something be said about its corresponding ‘threshold’ in the
sense of the smallest signal strength that gives detection?

Part of the interesting message from Sections 2 (credible intervals) and 3 (model se-
lection) from the paper is that, after the selection rule is applied, the resulting procedure
does qualitatively something similar to what priors with a built-in selection procedure,
such as spike and slab, would do: most true zero parameters are set to zero, large enough
signals are always detected, while ‘intermediate’ signals are often set to zero.

One can wonder whether it is possible to recover some results obtained for priors
with built-in selection with the horseshoe combined with the selection rule, for instance
in the following two directions

a) Number of non-zero coe�cients. From (i) of Theorem 3.1, it follows that the total
number of selected coe�cients is no larger than pn + (n � pn)�n (I believe �n

should be read (n � pn)�n in point (i) of the statement). The condition on �n

implies that n�n is of larger order than pn. Could one prove that the bound is
close to pn, or rather here, say, a constant times pn

p
log(n/pn)?

b) dq–losses. In principle, one could also expect that, once some of the smallest co-
e�cients of the horseshoe estimator are set to zero, the resulting ’after selection’-
estimate would perform well also in terms of dq–distances, at least for some qs in
(0, 2). This question arises for estimation as in van der Pas et al. (2017) but also
for credible sets as in Section 4 of the present paper.

Specific questions

(i) Adaptive minimax rate with precise logarithmic term.

In the companion paper van der Pas et al. (2017), the authors obtain a nearly opti-
mal minimax rate Cpn log n for the horseshoe posterior, which may miss the minimax
rate of the order pn log(n/pn) for signals that are nearly dense (e.g. pn = n/ log n or
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4 Discussion of Uncertainty quantification for the horseshoe

pn = n/e

p
logn). It would be interesting to see whether the precise logarithmic term can

be obtained.

(ii) Simulations.

In principle, when looking at classes of sparse vectors that do not specifically contain
zeros, such as strong or weak `

p classes (0 < p < 2), the horseshoe estimator should
perform even better, in the sense that it is not ‘penalised’ by the fact of not setting
some coe�cients to zero. Did the authors do some simulations in this type of setting?

Also, how does one choose in practice the blow-up factor L of the credible intervals
or credible balls? Is there a recommended rule to chose it in simulations?
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van der Pas, S., Szabó, B., and van der Vaart, A. (2017). “Adaptive posterior contraction
rates for the horseshoe.” Electron. J. Stat., 11(2): 3196–3225. 1, 2, 3

imsart-ba ver. 2014/10/16 file: castillo_discussion.tex date: October 26, 2017


	References

