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CHAPTER 1

Introduction

Bayesian nonparametrics is a topic at the con�uence of statistics, probability and machine learning.
As we are going to see, the Bayesian approach is very ‘probabilistic’ in nature: indeed, its main object
of study, the posterior distribution, is a probability measure. �is measure will be random, through
its dependence on the data. Studying this measure enables one to answer statistical inference ques-
tions, such as estimation of unknown parameters, or construction of con�dence sets.

�e nonparametric Bayesian�eld is in rapid development: a theory of convergence rates has emerged
in the last 20 years, with many mathematical questions still open, in particular regarding: rates for
certain distances, for some classes of priors (e.g. based on deep neural networks), uncertainty quan-
ti�cation, high-dimensional models, multiple testing, as well as on computability of posteriors or
approximations thereof, to name just a few. �e case where the unknown parameter is a function
� or a high-dimensional vector � will interest us most in this course, but there are many other po-
tentially interesting se�ings, where the unknown quantity is a (possibly high-dimensional) matrix,
graph, manifold…

A �rst example: Bayesians draw unknowns at random. To �x ideas, suppose we observe

�1,… ,�� iid

from a distribution �� of density � on the interval [0, 1]. �is is the so–called density estimation
model on the unit interval. One statistical goal in this se�ing is estimating � . In the Bayesian ap-
proach, to be de�ned more formally in the next pages, the starting point is always to draw at random
the unknown quantities in the model, here the density function � .

How does one draw a function ‘at random’? Probability theory gives a precise meaning to this ques-
tion: it is enough to put a distribution on spaces of functions and ‘draw’ from this law. Technically,
there are several ways one can do so. Let us give a few examples

1. random histograms: for some heights �� drawn at random, one can set

� �
�
�
�=1

��1l�� ,
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where �1,… , �� form a partition (either �xed or random) of [0, 1]

2. random expansions on a basis: for {��} a basis of �2[0, 1], let us set, for (��) a sequence in � 2,

� �
�
�
�=1

������ ,

where �� are, say iidN (0, 1) and � is either �xed (possibly +�) or itself drawn randomly.

3. stochastic processes: Brownian motion (�� )0���1 for instance has sample paths in the set of
continuous functions and is a special case of Gaussian processes commonly used in machine
learning applications.

Coming back to the density estimation se�ing, one notes that the just mentioned random functions
� s cannot be used directly, at least if one wishes to draw a ‘density’: indeed, the previous samples
are not necessarily positive and do not need to integrate to 1. �ere are various ways to �x this: one
can for instance renormalise and set, starting e.g. from Brownian motion (�� ),

�� =
���´ 1

0 �����
,

whose paths are now by construction (random) densities on [0, 1].

Posterior distributions: integrating the information from the data. �e probability distribution
(called the “prior”) chosen on unknown quantities of the statistical model, is updated using the
information contained in the data at hand through a conditioning operation. We will then get a
conditional distribution, which is called posterior distribution. �e more data we have, the more
(hopefully) the posterior will ‘learn’ and the more ‘informative’ it will be to do inference on un-
known parameters of our model.

�e main di�erence with traditional estimators in classical statistics is that the estimator in the
Bayesian approach is a whole (data–dependent) distribution, instead of a point in the parameter
space (think of the maximum likelihood estimator). We will see examples below.

1 Basics of statistics

In statistics, the starting point is the data, o�en a sequence of observations, for instance in form of
a numerical sequence �1,… , ��.

Statistical modelling consists in writing �� = ��(�): data is interpreted as a realisation of random
variables �1,… ,��.

De�nition 1. A statistical experiment consists in

• a random object � taking values in a set � equipped with a �–�eld E .
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• a collection of probability measures on (�, E) called the model

P = {�� , � � �},

where � is a set called set of parameters.

Most of the time, � consists of a �–tuple � = � (�) = (�1,… ,��). In this case, the quantities � and P
of the de�nition above also depend on �.

�.�.�. ���� When � = � (�) = (�1,… ,��), we will o�en assume that � (�)
� = �� �� � �� = ���

� , that is,
that the random variables �1,… , �� are independend and identically distributed (i.i.d. in short).

De�nition 2. A statistical model P = {�� , � � �} is dominated if there exists a positive measure
� on � such that, for any � � �, �� admits a density �� with respect to �, that is

��� (�) = �� (�)��(�).

Note that the measure � should be the same for all � � �. And � is then called dominating measure.
In what follows, we shall always work with dominated models.

N�������. If � is a random variable of distribution �, we write � � �. �is means that for any
function � integrable with respect to �, i.e. � � �1(�),

����[�(� )] = ��[�(� )] =
ˆ
�
�(�)��(�).

If � � �� , we o�en write �� for ����� . For a � iid observations as above, we write �� in place of ����
�
.

E�������� ��������.

1 �e “����������� �����” is

P = {N (� , 1)��, � � �}.

It is a dominated model, for � Lebesgue measure on �,

��� (�) =
1�
2�

��
(���)2

2 �� .

2 �e ������� ���������� model is

P = {���
� , � � F},

where F denotes a set of densities on, say, the unit interval [0, 1], or e.g. on �.
�e “fundamental model” is the very special case where one restricts to densities of Gaussian
distributions of unit variance.



10 2024–2025

De�nition 3. A point estimator ��(� ) (or a ‘statistic’ �(� )) in a statistical experiment (� ,P)
is a measurable function of� , most of the time assumed to take values in the set of parameters�.

F��������� ��������. In the frequentist approach, one assumes

� �0 � �, � � ��0
In this se�ing, �0 is called true value of the parameter. Typically, �0 is unknown and one tries to
“estimate” it (i.e. to approach it) with the help of the data � .

Example (fundamentalmodel). Suppose� = (�1,… ,��) is generated from themodelP = {N (� , 1)��, � �
�} with a true �0 � �:

(�1,… ,��) � N (�0, 1)��.
Figure 1.1 represents � = 30 points randomly drawn from N (�0, 1) and �0 = 2. One notes that the
sample stays fairly close to the value 2 and that the empirical mean (“moyenne empirique”) is very
close to 2.

Figure 1.1: Sample of size � = 30 from aN (�0, 1) law.

−1 0 1 2 3 4 5

●

moyenne empirique

Main inference questions

1 Estimation. �e goal is to build an estimator � (�1,… ,��) being close, in a sense to be made
more speci�c (e.g. through a loss functions) of the true value �0 of the parameter � .

2 Con�dence intervals/regions. One wishes to construct C = C(�1,… ,��) (random) subset of �
such that �0 � C(�1,… ,��) with high probability.

3 Tests. One wishes to answer by “true” or “false” to a given property of �� by constructing a
‘test’ �(�1,… ,��) taking values in {0, 1}.

2 Nonparametric models

D������ ���������� �� [0, 1]. One observes � = (�1,… ,��) with

�� � iid �� ,
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with �� the law of density � on [0, 1].

N������������ G������� ����������. One observes � = (�1,… , ��), where, for 1 � � � �,

�� = � (�/�) + �� ,

with � � [0, 1] � � and �� are iidN (0, 1). �at is, the model is

P =

�
�

�
�=1

N (� (�/�), 1), � � G

�

,

for G some set of functions (for instance continuous or Hölder). Let us note that the model is domi-
nated by Lebesgue’s measure �(�) on ��: for any � � G and � the Gaussian density,

�� (�)
� (�1,… , ��) =

�
�
�=1

�(�� � � (�/�))��(�)(�1,… , ��).

G������� ������� �����. Suppose one observes a sequence � = (�1,… , ), where, for � � 1 an
integer, and � = (��)��1 a square–integrable sequence,

�� = �� +
���� , (1.1)

for (��) a sequence of iid standard normal variables. �is is a very popular model which can be seen
as the ‘basis’ of nonparametric statistics. Observe that it is obtained by “piling–up” countably many
times the elementary model

� = � + � /
�
�,

which can be seen as equivalent to the “fundamental model” � � N (� , 1)�� with � � �, through
considering the su�cient statistic � = � � N (� , 1/�).

�e Gaussian sequence model can be wri�en, for �� ,� = N (�� , 1/�),

P =

�

� (�)
� �= �

��1
�� ,� , � � � 2

�

.

It can be shown that � (�)
� is absolutely continuous (and thus, has a density) with respect to the

measure with signal � = 0 the null vector, with

�� (�)
�

�� (�)
0

(� ) = exp
�
�

�
�
�=1

���� � ����22/2
�
. (1.2)

T�������� G������� ������� �����. �is is the same as before, but one observes only up to
� = �, that is here � = (�1,… ,��), with

�� = �� + ��/
�
�, 1 � � � �.
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Statistically, for typical ‘smoothness’ classes the vector � belongs to, not observing ‘frequencies’
a�er � = � is rarely a big problem. Suppose for instance that � belongs to a Sobolev ball, for � , � > 0,

�� (�) =
�
� � � 2 �

�
�
�=1

�2��2� � �
�
. (1.3)

�en, if the measure of loss of an estimator � of � is the quadratic loss �� � ��22, the ‘bias’ incurred
for basing � only on the �rst (��)��� and se�ing �� = 0 for � > � is, if � � �� (�),

�
�>�

�2� � ��2� �
�>�

�2��2� � ���2� .

�e rate ��2� is o�en much smaller than typical optimal rates in terms of the quadratic risk for
smoothness � (o�en of the type ��2�/(2�+1)).

G������� ����� ����� �����. For � � �2[0, 1] one observes � (�) where

�� (�)(�) = � (�)�� + 1���� (�), � � [0, 1],

for� (�) standard Brownian motion on [0, 1].

�ere are two ways to interpret what is observed in this equation. In statistics we will use the second
one mostly.

Observation scheme 1: trajectories (mostly used in stochastic process theory). One observes the trajec-
tory

� (�)(�) =
ˆ �

0
� (�)�� + 1��� (�), � � [0, 1].

Remark. Girsanov’s theorem says that the distribution � (�)
� is absolutely continuous with respect to

that where � = 0 (i.e. the distribution of � � � (�)/��), namely

�� (�)
�

�� (�)
0

(� ) = exp
�
�
ˆ 1

0
� (�)�� (�) � �

2

ˆ 1

0
� (�)2��

�
.

Observation scheme 2: signal plus white noise (mostly used in statistics). One observes the Gaussian
process (�(�)(�), � � �2[0, 1]), indexed by square–integrable functions �. �is means that one has
access to the observation of the random variables

�(�)(�) =
ˆ 1

0
�(�)�� (�)(�) = �� , ��2 +

1��

ˆ 1

0
�(�)�� (�).

Note that �(�)(�) � N (�� , ��2, ���2/�).

One can also note that the Gaussian sequencemodel is just a particular case of the second observation
scheme for the Gaussian white noise model, where for �’s one takes the elements of an orthonormal
basis (��) of �2[0, 1]. Indeed, in that case one can set �� �= �� , ���2, �� �= �(�)(��) and �� =´ 1
0 ��(�)�� (�). Note that �� has lawN (0, ����22) = N (0, 1) and that �� ’s are independent, since

� �

ˆ 1

0
��(�)�� (�) �

ˆ 1

0
�� (�)�� (�)� =

ˆ 1

0
��(�)�� (�)�� = 1l�=� .
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3 Conditioning and Bayes’ formula

Note. We shall de�ne conditional distributions under a dominated framework, which covers already
a huge variety of situations and many examples arising in practice. �is enables one to apply Bayes’
formula, in possibly in�nite–dimensional contexts. A more general de�nition of conditional distri-
butions is via ‘desintegration’, in the spirit of Proposition 2 below.

D�������� ���������.

Let us consider

• a measurable set � equipped with a �–�eld E and a space � equipped with a �–�eld F

• a positive �-�nite measure � on � and a positive �-�nite measure � on �

• a random variable � over � and a random variable � over � .

Suppose the pair (� , � ) admits a density denoted � (� , �) with respect to � � � , which we also write,
if �� ,� denotes the law of the pair,

��� ,� (� , �) = � (� , �)��(�)��(�).

M������� ������������� ��� ���������

Proposition 1. In the above framework, the individual law of � , called marginal distribution of
� , is the law �� with density given by

�� (�) =
ˆ

� (� , �)��(�).

Proof.
For every � mesureable and bounded, Fubini’s theorem gives

�[�(� )] =
ˆ ˆ

�(�)� (� , �)��(�)��(�)

=
ˆ

�(�) �

ˆ
� (� , �)��(�)� ��(�) =

ˆ
�(�)�� (�)��(�).

Similarly, the marginal distribution of � is the law �� on � whose density with respect to � is given
by �� (�) =

´
� (� , �)��(�).

C���������� ������������.
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De�nition 4. �e conditional distribution of � given � = � is the law of density, on � with
respect to � , given by, for �� (�) > 0,

�� |�=� (�) =
� (� , �)´

� (� , �)��(�) =
� (� , �)
�� (�)

.

We o�en denote � (� | �) in place of �� |�=� (�) when there is no risk of confusion. By de�nition,
� � � (� | �) is a density with respect to � , so that

´
� (� | �)��(�) = 1.

De�nition 5. For real-valued � , if �[|� |] < �, we de�ne the conditional expectation �[� |� ] by

�[� |� ] =
ˆ

�� (� |� )��(�).

More generally, for � measurable with �(� ) integrable,

�[�(� ) |� ] =
ˆ

�(�)� (� |� )��(�).

Proposition 2. For every measurable � � � ◊ � � �, provided the variable �(� , � ) is integrable,

�[�(� , � )] = �[�[�(� , � ) |� ]] =
ˆ ˆ

�(� , �)��� |�=� (�)��� (�).

In particular, under the same conditions, if �(� , � ) = �(� )� (� ), for �,� measurable,

�[� (� )�(� )] = �[�[� (� ) |� ]�(� )].

Proof.

�[�(� , � )] =
ˆ ˆ

�(� , �)� (� , �)��(�)��(�)

=
ˆ ˆ

�(� , �) � (� , �)�� (�)
�� (�)��(�)��(�)

=
ˆ

�

ˆ
�(� , �)��� |�=� (�)� �� (�)��(�),

using Fubini’s theorem for the last identity.
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T�� B������� ���������. Given a statistical model P = {� (�)
� , � � �} with data � (�), the

Bayesian approach consists in, �rst, choosing a probability distribution � on �, called the prior
distribution.

In the following, we suppose we are in the following dominated framework: for �, � two sigma–�nite
measures, suppose

�� (�)
� = � (�)� �� �� � �,
�� = ��� .

Note that the measure � has to dominate all measures � (�)
� , for any possible value of � .

Second, the Bayesian se�ing assumes that the distributions for � and � (�) are speci�ed in such a way
that

� � �,

� (�) | � � � (�)
� .

In this se�ing, the distribution of (� (�), �) has density (� (�), �) � � (�)� (� (�))� (�) with respect to � � � .
We will always assume (without mentioning it) that this mapping is measurable for suitable choices
of �–�elds on the space of � ’s and � ’s, so that the next de�nition makes sense.

De�nition 6. �e posterior distribution, denoted �[� |� (�)], is the conditional distribution
L(� |� (�)) of � given � (�) in the Bayesian se�ing as above. It is a distribution on �, that de-
pends on the data � (�). In the dominated framework as assumed above, it has a density with
respect to � given by Bayes’ formula (i.e. the formula for conditional densities given previously)

� �
� (�)� (� (�))� (�)´

� (�)� (� (�))� (�)��(�)
.

Example: fundamental model. Consider the model P = {N (� , 1)��, � � �}. Suppose we take a
normal prior � = N (0, �2) on � (with �2 > 0): this will make computations easy.
Exercise. Check that in this se�ing the posterior �[� |� (�)] is given by

L(� |� (�)) = N �
��

� + ��2 ,
1

� + ��2� .

One advantage of having a distribution (and not only a point estimate such as the MLE, or the
posterior mean) is uncertainty quanti�cation.

De�nition 7. A credibility region of level (at least) 1�� , for � � [0, 1], is a measurable set � � �
(typically depending on the data � = �(� )), such that

�[� |� ] = (�)1 � � .
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Natural questions are: how does �[� |� (�)] behave as � � �? Is there convergence? A limiting
distribution? Are credibility regions linked in some way to con�dence regions?

4 Frequentist analysis of Bayesian methods

Once one adopts the Bayesian approach to build the posterior distribution �[� |� (�)], one can study
this distribution under the frequentist assumption that the data has actually been generated from a
distribution in the model with �xed true parameter �0, that is

��0 � �, � (�) � � (�)
�0 . (1.4)

C���������� ��� ����������� ����

De�nition 8. Under the frequentist framework (1.4), for � a distance on the parameter set �,
the posterior �[� |� ] = �[� |�1,… ,��] is

• consistent (for the distance �) at �0 � � if, for any � > 0, as � � �,

� [ {� � �(� , �0) � �} |�1,… ,��] � 1,

in probability under � (�)
�0 .

• converges at rate �� (for the distance �) at �0 � � if, as � � �,

� [ {� � �(� , �0) � ��} |�1,… ,��] � 1,

in probability under ��0 .

- For �� a random variable with 0 � �� � 1, one has

��
�� 0 � �[��] � 0 (� � �),

and similarly �� � 1 in probability i� �[��] � 1 (exercise).

In particular, to show that the posterior converges at rate �� for � , it is enough to show that

��0� [ {� � �(� , �0) � ��} |� ] � 1 (� � �),

or a similar result with the complementary event and the corresponding expectation going to 0.

Example: fundamental model. In this case P = {N (� , 1)��, � � �}. Under (1.4), we have � �
N (�0, 1)�� for a �xed unknown �0 � �. By the law of large numbers (LLN), we have � � �0 in
probability (also almost surely). One can check that for a prior � = N (0, 1), the posterior distribu-
tionN (�� /(�+1), 1/(�+1)) is consistent at �0 and converges at rate��/

��, for an arbitrary sequence
�� � � as � � �. (exercise)
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L������� ����� �� ��� ��������� ������������ A natural question is whether the posterior
�[� |� (�)] has a limiting shape when � goes to in�nity. In the fundamental model with a N (0, 1)
prior on � , one can prove that, for � � ��� the total variation distance between probability distribu-
tions,

��[� |� ] �N (� , 1/�)��� � 0
in probability under � (�)

�0 . �is is a very special case of a much more general phenomenon, which can
be viewed as a sort of Bayesian central limit theorem (although it deals with the posterior, a quantity
in principle fairly more complex than the empirical average in the classical CLT), and called the
Bernstein–von Mises theorem. In parametric models, under regularity conditions, this result states
that

��[� |� ] �N ( ����� , � �1�0 /�)��� � 0

in probability under � (�)
�0 , where ��0 is the Fisher information matrix and ���� the maximum likeli-

hood estimator in the considered model (or any other ‘e�cient’ estimator).

�ere exist nonparametric versions of this result, but they require some care to be de�ned, as the
limit object is then typically in�nite-dimensional.

5 A �rst nonparametric example

Model. Consider the Gaussian sequence model as above, with � = (�1,…) and, for � � 1,

�� = �� + ��/
�
�,

that is

� (�)
� =

�
�
�=1

N (�� , 1/�).

Prior. Suppose as a prior � on �s one takes, for some � > 0,

� = �� =
�
�
�=1

N (0, �2
� ), with �2

� �= ��1�2� . (1.5)

If working with in�nite product distributions looks intimidating, one can just consider truncated
versions of both model and prior at � = �. All what follows can then be computed in �nite dimen-
sions, see the exercise below.

Posterior distribution. Bayes’ formula gives that the posterior distribution of �� given � only depends
on �� and

L(�� |��)
D= N �

�
� + ��2

�
�� ,

1
� + ��2

� � .

Furthermore, the complete posterior distribution of � is

�[� |� ] =
�
�
�=1

N �
�

� + ��2
�
�� ,

1
� + ��2

� � .

Exercise. Prove this for truncated versions at � = � for model and prior distribution, using Bayes’
formula.
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�e true �0. We assume the following smoothness condition, for some � , � > 0,

�0 � �� (�) �=

�

� � � 2 �
�
�
�=1

�2��2� � �

�

. (1.6)

Posterior convergence under �0. Considering a frequentist analysis of the posterior with a �xed truth
�0, it is natural to wonder whether �[� |� ] is consistent at �0 and if so at which rate it converges for,
say, the � � �22 loss, given by (se�ing � � � = � � �2)

�� � � ��2 = �
��1

(�� � � ��)2.

Let us consider the posterior mean, de�ned by

�(� ) =
ˆ

���(� |� ) = �
���

� + ��2
� � .

First step: reduction to a mean/variance problem. Using Markov’s inequality,

�[�� � �0� > �� |� ] � 1
�2�

ˆ
�� � �0�2��(� |� )

� 1
�2�

�
��1

ˆ
(�� � �0,�)2��(� |� ).

�e “bias–variance decomposition” is (observe that the crossed term is zero because we have cen-
tered around the posterior mean)

ˆ
(�� � �0,�)2��(� |� ) =

ˆ
(�� � ��)2��(� |� ) +

ˆ
(�� � �0,�)2��(� |� )

=
ˆ
(�� � ��)2��(� |� ) + (�� � �0,�)2.

as the last term does not depend on � . Note that the �rst term in the last sum is Var(�� |��). In order
to show that, for some �� = �(1) to be determined,

��0�[�� � �0� > �� |� ] = �(1),

it is enough to study the behaviour of the two terms

(�) �= �
��1

��0Var(�� |��)

(�) �= �
��1

��0 (�� � �0,�)2.

Study of the terms (a) and (b). For both terms, we distinguish the regimes �2
� < 1/� and �2

� � 1/�,
or equivalently � > �� and � � �� respectively, with

�� �= ��
1

1+2� �.
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We can now use the bounds

(�) � �
��1

1
� + ��2

�

� �
����

1
� + �

�>��

�2
� � ��

� + �� �2�
� . ��

2�
2�+1 .

For the second term, by using the explicit expression of �� , a li�le computation shows

��0 (�� � �0,�)2 =
��4
�

(� + ��2
� )2 �

2
0,� +

�
(� + ��2

� )2

= (� ) + (� � ).

�e term (II) is the easiest to bound. Its sum is bounded by

�
��1

�
� + ��2

�

1
� + ��2

�
� �

��1

1
� + ��2

�
. ��

2�
2�+1 ,

by the same reasoning as before. �e sum of the term (I) is bounded by, with � � � = max(�, �),

�
����

�2+4�
�2 �20,� + �

�>��

�20,� � ��2 �
����

�2+4��2��2��20,� + �
�>��

��2��2��20,�

� ��2 �
����

� (2+4��2�)�0
� �2��20,� + � �2�

� �

� ��2(� 2+4��2�
� � 1)� + � �2�

� � . (��2 + � �2�
� )�.

Pu�ing everything together one obtains the following

�eorem 1. In the Gaussian sequence model, consider a Gaussian prior �� as in (1.5) for � > 0.
�en for any � , � > 0, there exists � = �(� , �) such that

sup
�0��(� ,�)

��0
ˆ

�� � �0�22��� (� |� ) � ��2� , with �� = ��(� , �) = ��
���
2�+1 .

In particular, for any arbitrary sequence �� � � (as slowly as desired), as � � �,

sup
�0��(� ,�)

��0�� [�� � �0�2 > ���� |� ] = �(1).

Exercise. Using Jensen’s inequality deduce from the �rst display in �eorem 1 that the posterior
mean �(� ) veri�es, uniformly over �(� , �),

��0��(� ) � �0�22 . �2� .
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Interpretation and discussion. From the expression of the rate �� in �eorem 1 one notes that
the fastest rate is obtained for the choice � = � . �is seems coherent: �rst, it can be checked that a
draw from the prior � = �� in (1.5) belongs to the Sobolev space �� = {� = (��) � ���1 �2� �2� < �}
for any � < � (check that as an exercise), and thus can be seen as a (nearly) �–regular sequence.
Now if the true �0 is �–regular, then choosing a prior distribution that ‘matches’ its regularity by
se�ing � = � should indeed give good results. �is, however, leads to the following question:

What happens if the regularity parameter � is not known? (so that one cannot set � = �)

We will see in these lectures that there are natural ways to choose a slightly di�erent prior that leads
to adaptation, namely to the construction of a posterior distribution that achieves a (near)–optimal
rate without being given the knowledge of the regularity parameter � .

Regarding optimality, it can be shown that the rate ��(� , �) = ���/(2�+1) (corresponding to choosing
� = �) is optimal in the minimax sense:

inf
��

sup
���(� ,�)

��� � �� � ��22�
1/2

� ��
�

2�+1 .

�is rate of convergence is a typical optimal rate in nonparametric problems: it is slower than the
standard rate 1/�� common to (regular) parametric models. �e larger � , the closer we are to a
parametric rate.



CHAPTER 2

Convergence rates, general principles

1 Setup and objectives

Consider a nonparametric se�ing P = {� (�)
� , � � F}, where � in a function in some class (e.g.

square–integrable functions, densities…).

Following a Bayesian approach, we put a prior distribution � on (F ,B), where F is equipped with
the �–algebra B,

� (�) | � � � (�)
� (2.1)

� � �. (2.2)

Bayes’ formula gives us an expression of the mass of any measurable set � � B under the posterior
distribution

�[� |� (�)] =
´
� �

(�)
� (� )��(� )´

�(�)� (� )��(� )
. (2.3)

- Note that �[�] = 0 always implies �[� |� (�)] = 0.

In what follows we study the behaviour of �[� |� (�)] in probability under � (�)
�0 . We wish to show that,

for some �� a sequence typically tending to 0 as � � �, for � a suitable distance over F , as � � �,

��0�[�(� , �0) > �� |� (�)] = �(1).

What will be our target rate ��? �is will depend on �0, F and � . O�en, we shall assume that �0
belongs to some regularity set �� (�) (think of the Sobolev ball from the �rst chapter) and we will try
to take �� to be of the order (or as close as possible to) of the minimax rate

��� = inf
�

sup
� ��� (�)

�� �(� , � ),
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where the in�mum is taken over all possible estimators � = � (� (�)) of � . For standard regularity
classes and distances, ��� will o�en be of the order �(� , �)���/(2�+1), possibly up to logarithmic factors.

[Here: Point estimators (if time allows)]

To �x ideas, let us �rst consider for now the density estimation model on the unit interval [0, 1], i.e.

� (�)
� = ���

� , ��� (�) = � (�)�� , � � [0, 1]. (2.4)

In the density model, � (�) = (�1,… ,��) and Bayes’ formula can be wri�en

�[� |�1,… ,��] =
´
� �

�
�=1 � (��)��(� )´

��
�=1 � (��)��(� )

=
´
� �

�
�=1

�
�0 (��)��(� )´

��
�=1

�
�0 (��)��(� )

, (2.5)

where we use that �0 does not depend on the integrating variable � .
Technical remark: in order for the study of the ratio in the last display to make sense in probability
under ��0 , it will be silently assumed that ��0 [

´
��

�=1 � (��)��(� ) > 0] = 1, which will always be the case
for the priors we shall consider.

2 A �rst useful lemma

De�nition 1. Let us de�ne, for densities �0, � on [0, 1],

� (�0, � ) =
ˆ

log �0
� �0

� (�0, � ) =
ˆ

�log �0
� � � (�0, � )�

2
�0.

and the Kullback–Leibler–type neighborhood

���(�0, ��) = {� � � (�0, � ) � �2� , � (�0, � ) � �2�}.

In the density model, we denote by ��0 the expectation under the law ���
�0 and set � = � (�) for

simplicity.

Lemma 1. Let �� be a measurable set such that, if �� veri�es ��2� � �,

�[��]
��2��2��[���(�0, ��)]

= �(1), (2.6)

as � � �. �en we have, as � � �,

��0�[�� |� ] = �(1).
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�is gives a more re�ned version of the statement �[�] = 0 implies �[� |� ] = 0 with 0 replaced
by some suitable �(1). �e message is that if the prior distribution puts very li�le prior mass on
some (sequence of) set(s), then the posterior distributions puts li�le mass over such set(s). To prove
Lemma 1, we �rst prove yet another lemma.

Lemma 2. For any probability distribution � on F , for any � , � > 0, with � (�)
�0 probability at least

1 � 1/(�2��2), ˆ �
�
�=1

�
�0
(��)��(� ) � �[���(�0, �)]��(1+�)��

2 . (2.7)

Proof of Lemma 1.
[in the proof we assume for simplicity that �0 > 0. If this is not the case, one slightly adapts the
proof, see below] As a preliminary remark, note that, since � is by de�nition a density,

��0 �

�
�
�=1

�
�0
(��)�

=
ˆ �

�
�=1

�
�0
(��)

�
�
�=1

�0(��)��� =
ˆ �

�
�=1

� (��)��1 … ��� = 1.

Bayes’ formula as in (2.3) for the set ��, is �[�� |� ] = � /� with � =
´
��

�=1
�
�0 (��)��(� ). Lemma

2 implies, on an event �� with probability at least 1 � (���2)�1,

� � �[���(�0, ��)]��(1+�)��
2
� .

Let us now bound � /� from above by

�
� � ��(1+�)��2�

�[���(�0, ��)]

ˆ
��

�
�
�=1

�
�0
(��)��(� )1l�� + 1l��� ,

where the bound for the last term is obtained noting that � /� = �[�� |� ] � 1. Taking expecta-
tions (�rst note 1l�� � 1), and invoking �rst Fubini’s theorem and then the preliminary remark,

��0
�
� � ��(1+�)��2�

�[���(�0, ��)]

ˆ
��

��0 �

�
�
�=1

�
�0
(��)�

��(� ) + ��01l���

� ��(1+�)��2�
�[���(�0, ��)]

�[��] + ��01l��� .

Both terms in the last display go to 0 by assumption and Lemma 2 respectively.

[If �0 possibly takes the value 0, consider the event V� = {�� � �0(��) = 0} and note ��0 [V�] � ���0 (�0(�1) =
0) = �

´
1l�0(�)=0�0(�)�� = 0. So since �/� � 1, it is enough to work with (�/� )1lV�� . As V

�
� = �� 1l�0(�� )>0,

��0 �

�
�
�=1

�
�0
(��)1l�0(�� )>0�

=
ˆ �

�
�=1

�
�0
(��)

�
�
�=1

�0(��)1l�0(�� )>0��� =
ˆ �

�
�=1

� (��)1l�0(�� )>0��1 … ��� � 1,

where one uses 1l�0(�� )>0 � 1 and the rest of the argument goes through as before.]
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Proof of Lemma 2.
Let � �= ���(�0, �) and suppose �(�) > 0 (otherwise the result is immediate). Let us denote
�(�) = �(� � �)/�(�). Next let us bound from below

ˆ �
�
�=1

�
�0
(��)��(� ) �

ˆ
�

�
�
�=1

�
�0
(��)��(� ) = �(�)

ˆ �
�
�=1

�
�0
(��)��(� ).

As �(�) is a probability measure on �, Jensen’s inequality applied to the logarithm gives

log
ˆ �

�
�=1

�
�0
(��)��(� ) �

�
�
�=1

ˆ
�
log �

�0
(��)��(� )

= �
�
�
�=1

ˆ
� �

log �0
� (��) � ��(�0, � )� ��(� ) � �

ˆ
�
��(�0, � )��(� )

� �
�
�
�=1

�� � ��2,

where we have set �� =
´
� �log

�0
� (��) � ��(�0, � )� ��(� ), and used the fact that on �, we have

��(�0, � ) � �2 by de�nition. We now use a simple concentration bound on the variables ��s,
which are independent under ��0 . By Tchebychev’s inequality

��0 �

�����

�
�
�=1

��
�����
> ���2

�
� 1
(���2)2Var�0 �

�
�
�=1

���
.

By independence the last term is �Var�0�1 and it is enough to bound

Var�0�1 = ��0 ��

ˆ
� �

log �0
� (��) � ��(�0, � )� ��(� )�

2

�
� ��0 �

ˆ
� �

log �0
� (��) � ��(�0, � )�

2
��(� )

�

�
ˆ
�
� (�0, � )��(� ) � �2�(�) = �2,

where we use Jensen’s inequality with � � �2 and the fact that � (�0, � ) � �2 on �. Let us now set

B� = {
�����

�
�
�=1

��
�����
� ���2}.

By combining the previous bounds, we have just proved that ��0 (B�
�) � �Var�0�1/(���2)2 �

1/(�2��2). �e event B� has as desired probability at least 1 � 1/(�2��2) and on B�,

log
ˆ �

�
�=1

�
�0
(��)��(� ) � �(� + 1)��2

which in turn implies, taking exponentials and renormalising by �(�),
ˆ �

�
�=1

�
�0
(��)��(� ) � �(�)��(1+�)��2 .



M2 – Nonparametric Bayes 25

3 A generic result, �rst version

Let us start with a brief historical perspective. Doob (1949) showed that posteriors are (nearly) al-
ways consistent in a�–almost sure sense, which is interesting but prior–dependent. Schwartz (1965)
proved consistency in the sense of the de�nition above under some su�cient conditions of existence
of certain tests and of enough prior mass around the true �0. Diaconis and Freedman (1986) exhibited
an example of seemingly natural prior whose posterior distribution is not consistent. Ghosal, Ghosh
and van der Vaart (2000), Shen and Wasserman (2001) and Ghosal and van der Vaart (2007) gave
su�cient conditions for rates of convergence.

We call test based on observations � a measurable function �(� ) taking values in {0, 1}.

Let us recall that for now we work with the density estimation model P = {���
� , � � F}. Let � be

a prior distribution on (F ,B). Suppose also that F is equipped with a distance � (examples will be
given below). We denote by F � F� = F

�
� the complement of F� � F .

�eorem 1. [GGV, version with tests] Let (��) be a sequence with ��2� � � as � � �.
Suppose there exist � ,� > 0 and measurable sets F� � F such that

i) there exist tests �� = ��(� ) with

��0�� = �(1), sup
� �F�� �(� ,�0)>���

�� (1 � ��) � ��(�+4)��2� ,

ii)
�[F � F�] � ����2�(�+4),

iii)
�[���(�0, ��)] � �����2� .

�en the posterior distribution converges at rate ��� towards �0: as � � �,

��0�[{� � �(� , �0) � ���} |� ] = �(1).

Let us brie�y comment on the conditions. Assumption iii) is natural: there should be enough prior
mass around the true �0. Indeed, recall by Lemma 1 above that if the prior mass of a set is too small,
its posterior mass will be too: having a too small prior probability of the KL–neighborhood would
mean its posterior mass is vanishing, so there could not be convergence at rate ��, at least in terms
of the ‘divergence’ de�ned by the KL–type neighborhood.
Assumption ii) allows to work on a subset F�, so it gives some �exibility, especially if F is a ‘large’
set: indeed, combining ii) with iii)

�[F � F�]
�[���(�0, ��)]

� ��4��2� ,

which leads to ��0�[F � F� |� ] = �(1) using Lemma 1.
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Assumption i) is so far a li�le more mysterious. It can be seen more as a ‘meta–condition’, that
makes the proof of the result quite quick. We will see below another version of the result, where i)
is replaced by another, more interpretable, condition. Let us just note that the distance � in i) is the
same as in the result: one needs to �nd tests with respect to this distance.

Proof.
Since ��0�[F � F� |� ] = �(1) as noted above, is is enough to prove that ��0�[C� |� ] = �(1), where

C� = {� � F�, �(� , �0) � ���}.

Using the tests �� from Assumption i), one decomposes

�[C� |� ] = �[C� |� ]�� + �[C� |� ](1 � ��).

With �[C� |� ] � 1, one gets ��0�[C� |� ]�� � ��0�� = �(1) thanks to i). For the second term, we
write, recalling �� = ��(�1,… ,��) = ��(� ) is a function of the data,

�[C� |� ](1 � ��) =
´
C�
��

�=1
�
�0 (��)(1 � ��(� )��(� )´

��
�=1

�
�0 (��)��(� )

=� �
� .

In order to bound the denominator from below, let us introduce the event

B� =
�ˆ �

�
�=1

�
�0
(��)��(� ) � �[���(�0, ��)]��2��

2
�

�
.

Lemma 2 tells us that ��0 [B�] � 1 � (��2�) = 1 � �(1) using ��2� � �. Deduce, with B
�
� the

complementary event of B�,

�
� � �2��2�

�[���(�0, ��)]

ˆ
��

�
�
�=1

�
�0
(��)(1 � ��(� )��(� ) + 1lB�

� .

Observe, using a similar argument as in the proof of Lemma 1 (and again modulo adjustment in
case �0 can take the value 0 with = becoming �),

��0 �

�
�
�=1

�
�0
(��)(1 � ��(� )

�
=
ˆ �

�
�=1

�
�0
(��)(1 � ��(�1,… , ��))

�
�
�=1

�0(��)��1� ���

=
ˆ
(1 � ��(�1,… , ��))

�
�
�=1

� (��)��1� ��� = �� [1 � ��(� )].

By taking expectations and using Fubini’s theorem,

��0
�
� � �2��2�

�[���(�0, ��)]

ˆ
��

�
�
�=1

��0 �
�
�0
(��)(1 � ��(� )� ��(� ) + ��0 [B�

�]

� �(�+2)��2�
ˆ
��

�
�
�=1

�� [(1 � ��(� )] ��(� ) + ��0 [B�
�]

� �(�+2)��2� ��(�+4)��2� + ��0 [B�
�] � ��2��2� + �(1) = �(1). ⇤
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Exercise (if time allows)

4 Testing and entropy

In �eorem 1, the testing condition i) requires to be able to test a ‘point’ �0 versus the ‘complement
of a ball’ {� � F�, �(� , �0) > ���}. �e la�er set has not a very simple structure (one would prefer a
ball for instance instead of a complement!). Let us see how one can simplify this through combining
tests of ‘point’ versus ‘ball’.

Testing condition (T). Suppose one can �nd constants � > 0 and � � (0, 1) such that for any
� > 0, if �0, �1 � F are such that �(�0, �1) > �, then there exist tests �� with

��0�� � �����2 (2.8)

sup
� � �(� ,�1)<��

�� (1 � ��) � �����2 . (2.9)

�is condition is in fact always veri�ed for certain distances.

De�nition 2. Let � ,� probability distributions dominated by a measure �, i.e. �� = ��� and
�� = ���. �e �1–distance is de�ned as

�� � ��1 =
ˆ

|� � �|��

and the Hellinger distance as

�(� ,�) = �

ˆ
(�� ���)2���

1/2
.

�ese distances verify the following properties (le� as an Exercise)

• �� � ��1 � 2 and �(� ,�) �
�
2.

• �� � ��1 � 2�(� ,�) [use Cauchy-Schwarz]

• If max(�, �) � �0 > 0 then �(� ,�) � ��� � ��1 for some � > 0.

• De�ning the total variation norm (between measures de�ned on a common �–�eld A) as
�� � ���� = sup��A |� (�) � �(�)|,

�� � ��1 = 2�� � ���� .
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�eorem 2. [Le Cam, Birgé] �e testing condition (T) is always veri�ed in the density estimation
model for � the �1–distance or the Hellinger distance �.

We prove this result below for the �1–distance. For the Hellinger distance, we refer to the book by
Ghosal and van der Vaart (2017), Proposition D.8.

De�nition 3. �e �–covering number of a set E for the distance � , denoted � (�, E , �), is the
minimal number of �–balls of radius � necessary to cover E .

�e entropy of a set measures its ‘complexity’/‘size’. Let us give a few examples

• If E = [0, 1] and �(� , �) = |� � � |, then � (�, E , �) is of order 1/�.

• If E is the unit ball in ��

�(0, 1) =

�

� � �� , ���22 �=
�
�
�=1

�2� � 1

�

,

then� (�, E , ���2) is of order ��� . Note that this number grows exponentially with the dimension
�. We prove this below.

• �ere are many results available for balls in various function spaces (histograms, Sobolev or
Hölder balls etc.). Examples will appear in the sequel.

Lemma 3. Suppose that the testing condition (T) holds for a distance � on F and that, for a
sequence of measurable sets F�, and a sequence (��) with ��2� � 1,

log� (��,F�, �) � ���2� .

�en for a given � > 0 there exists � = �(�) large enough and tests �� = ��(� ) such that

��0�� = �(1), sup
� �F�� �(� ,�0)>���

�� (1 � ��) � �����2� .

Proof.
Let us consider the set

�� = {� � F�, �(� , �0) > 4���}

and partition it in ‘shells’ C� as follows

�� = �
��1

{� � F�, 4���� < �(� , �0) � 4�(� + 1)��} = �
��1

C� .


