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CHAPTER 1

Introduction

Bayesian nonparametrics is a topic at the con�uence of statistics, probability and machine learning.
As we are going to see, the Bayesian approach is very ‘probabilistic’ in nature: indeed, its main object
of study, the posterior distribution, is a probability measure. �is measure will be random, through
its dependence on the data. Studying this measure enables one to answer statistical inference ques-
tions, such as estimation of unknown parameters, or construction of con�dence sets.

�e nonparametric Bayesian�eld is in rapid development: a theory of convergence rates has emerged
in the last 20 years, with many mathematical questions still open, in particular regarding: rates for
certain distances, for some classes of priors (e.g. based on deep neural networks), uncertainty quan-
ti�cation, high-dimensional models, multiple testing, as well as on computability of posteriors or
approximations thereof, to name just a few. �e case where the unknown parameter is a function
� or a high-dimensional vector � will interest us most in this course, but there are many other po-
tentially interesting se�ings, where the unknown quantity is a (possibly high-dimensional) matrix,
graph, manifold…

A �rst example: Bayesians draw unknowns at random. To �x ideas, suppose we observe

�1,… ,�� iid

from a distribution �� of density � on the interval [0, 1]. �is is the so–called density estimation
model on the unit interval. One statistical goal in this se�ing is estimating � . In the Bayesian ap-
proach, to be de�ned more formally in the next pages, the starting point is always to draw at random
the unknown quantities in the model, here the density function � .

How does one draw a function ‘at random’? Probability theory gives a precise meaning to this ques-
tion: it is enough to put a distribution on spaces of functions and ‘draw’ from this law. Technically,
there are several ways one can do so. Let us give a few examples

1. random histograms: for some heights �� drawn at random, one can set

� �
�
�
�=1

��1l�� ,
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where �1,… , �� form a partition (either �xed or random) of [0, 1]

2. random expansions on a basis: for {��} a basis of �2[0, 1], let us set, for (��) a sequence in � 2,

� �
�
�
�=1

������ ,

where �� are, say iidN (0, 1) and � is either �xed (possibly +�) or itself drawn randomly.

3. stochastic processes: Brownian motion (�� )0���1 for instance has sample paths in the set of
continuous functions and is a special case of Gaussian processes commonly used in machine
learning applications.

Coming back to the density estimation se�ing, one notes that the just mentioned random functions
� s cannot be used directly, at least if one wishes to draw a ‘density’: indeed, the previous samples
are not necessarily positive and do not need to integrate to 1. �ere are various ways to �x this: one
can for instance renormalise and set, starting e.g. from Brownian motion (�� ),

�� =
���´ 1

0 �����
,

whose paths are now by construction (random) densities on [0, 1].

Posterior distributions: integrating the information from the data. �e probability distribution
(called the “prior”) chosen on unknown quantities of the statistical model, is updated using the
information contained in the data at hand through a conditioning operation. We will then get a
conditional distribution, which is called posterior distribution. �e more data we have, the more
(hopefully) the posterior will ‘learn’ and the more ‘informative’ it will be to do inference on un-
known parameters of our model.

�e main di�erence with traditional estimators in classical statistics is that the estimator in the
Bayesian approach is a whole (data–dependent) distribution, instead of a point in the parameter
space (think of the maximum likelihood estimator). We will see examples below.

1 Basics of statistics

In statistics, the starting point is the data, o�en a sequence of observations, for instance in form of
a numerical sequence �1,… , ��.

Statistical modelling consists in writing �� = ��(�): data is interpreted as a realisation of random
variables �1,… ,��.

De�nition 1. A statistical experiment consists in

• a random object � taking values in a set � equipped with a �–�eld E .
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• a collection of probability measures on (�, E) called the model

P = {�� , � � �},

where � is a set called set of parameters.

Most of the time, � consists of a �–tuple � = � (�) = (�1,… ,��). In this case, the quantities � and P
of the de�nition above also depend on �.

�.�.�. ���� When � = � (�) = (�1,… ,��), we will o�en assume that � (�)
� = �� �� � �� = ���

� , that is,
that the random variables �1,… , �� are independend and identically distributed (i.i.d. in short).

De�nition 2. A statistical model P = {�� , � � �} is dominated if there exists a positive measure
� on � such that, for any � � �, �� admits a density �� with respect to �, that is

��� (�) = �� (�)��(�).

Note that the measure � should be the same for all � � �. And � is then called dominating measure.
In what follows, we shall always work with dominated models.

N�������. If � is a random variable of distribution �, we write � � �. �is means that for any
function � integrable with respect to �, i.e. � � �1(�),

����[�(� )] = ��[�(� )] =
ˆ
�
�(�)��(�).

If � � �� , we o�en write �� for ����� . For a � iid observations as above, we write �� in place of ����
�
.

E�������� ��������.

1 �e “����������� �����” is

P = {N (� , 1)��, � � �}.

It is a dominated model, for � Lebesgue measure on �,

��� (�) =
1�
2�

��
(���)2

2 �� .

2 �e ������� ���������� model is

P = {���
� , � � F},

where F denotes a set of densities on, say, the unit interval [0, 1], or e.g. on �.
�e “fundamental model” is the very special case where one restricts to densities of Gaussian
distributions of unit variance.
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De�nition 3. A point estimator ��(� ) (or a ‘statistic’ �(� )) in a statistical experiment (� ,P)
is a measurable function of� , most of the time assumed to take values in the set of parameters�.

F��������� ��������. In the frequentist approach, one assumes

� �0 � �, � � ��0
In this se�ing, �0 is called true value of the parameter. Typically, �0 is unknown and one tries to
“estimate” it (i.e. to approach it) with the help of the data � .

Example (fundamentalmodel). Suppose� = (�1,… ,��) is generated from themodelP = {N (� , 1)��, � �
�} with a true �0 � �:

(�1,… ,��) � N (�0, 1)��.
Figure 1.1 represents � = 30 points randomly drawn from N (�0, 1) and �0 = 2. One notes that the
sample stays fairly close to the value 2 and that the empirical mean (“moyenne empirique”) is very
close to 2.

Figure 1.1: Sample of size � = 30 from aN (�0, 1) law.

−1 0 1 2 3 4 5

●

moyenne empirique

Main inference questions

1 Estimation. �e goal is to build an estimator � (�1,… ,��) being close, in a sense to be made
more speci�c (e.g. through a loss functions) of the true value �0 of the parameter � .

2 Con�dence intervals/regions. One wishes to construct C = C(�1,… ,��) (random) subset of �
such that �0 � C(�1,… ,��) with high probability.

3 Tests. One wishes to answer by “true” or “false” to a given property of �� by constructing a
‘test’ �(�1,… ,��) taking values in {0, 1}.

2 Nonparametric models

D������ ���������� �� [0, 1]. One observes � = (�1,… ,��) with

�� � iid �� ,
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with �� the law of density � on [0, 1].

N������������ G������� ����������. One observes � = (�1,… , ��), where, for 1 � � � �,

�� = � (�/�) + �� ,

with � � [0, 1] � � and �� are iidN (0, 1). �at is, the model is

P =

�
�

�
�=1

N (� (�/�), 1), � � G

�

,

for G some set of functions (for instance continuous or Hölder). Let us note that the model is domi-
nated by Lebesgue’s measure �(�) on ��: for any � � G and � the Gaussian density,

�� (�)
� (�1,… , ��) =

�
�
�=1

�(�� � � (�/�))��(�)(�1,… , ��).

G������� ������� �����. Suppose one observes a sequence � = (�1,… , ), where, for � � 1 an
integer, and � = (��)��1 a square–integrable sequence,

�� = �� +
���� , (1.1)

for (��) a sequence of iid standard normal variables. �is is a very popular model which can be seen
as the ‘basis’ of nonparametric statistics. Observe that it is obtained by “piling–up” countably many
times the elementary model

� = � + � /
�
�,

which can be seen as equivalent to the “fundamental model” � � N (� , 1)�� with � � �, through
considering the su�cient statistic � = � � N (� , 1/�).

�e Gaussian sequence model can be wri�en, for �� ,� = N (�� , 1/�),

P =

�

� (�)
� �= �

��1
�� ,� , � � � 2

�

.

It can be shown that � (�)
� is absolutely continuous (and thus, has a density) with respect to the

measure with signal � = 0 the null vector, with

�� (�)
�

�� (�)
0

(� ) = exp

�

�
�
�
�=1

���� � ����22/2

�

. (1.2)

T�������� G������� ������� �����. �is is the same as before, but one observes only up to
� = �, that is here � = (�1,… ,��), with

�� = �� + ��/
�
�, 1 � � � �.
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Statistically, for typical ‘smoothness’ classes the vector � belongs to, not observing ‘frequencies’
a�er � = � is rarely a big problem. Suppose for instance that � belongs to a Sobolev ball, for � , � > 0,

�� (�) =

�

� � � 2 �
�
�
�=1

�2��2� � �

�

. (1.3)

�en, if the measure of loss of an estimator � of � is the quadratic loss �� � ��22, the ‘bias’ incurred
for basing � only on the �rst (��)��� and se�ing �� = 0 for � > � is, if � � �� (�),

�
�>�

�2� � ��2� �
�>�

�2��2� � ���2� .

�e rate ��2� is o�en much smaller than typical optimal rates in terms of the quadratic risk for
smoothness � (o�en of the type ��2�/(2�+1)).

G������� ����� ����� �����. For � � �2[0, 1] one observes � (�) where

�� (�)(�) = � (�)�� + 1���� (�), � � [0, 1],

for� (�) standard Brownian motion on [0, 1].

�ere are two ways to interpret what is observed in this equation. In statistics we will use the second
one mostly.

Observation scheme 1: trajectories (mostly used in stochastic process theory). One observes the trajec-
tory

� (�)(�) =
ˆ �

0
� (�)�� + 1��� (�), � � [0, 1].

Remark. Girsanov’s theorem says that the distribution � (�)
� is absolutely continuous with respect to

that where � = 0 (i.e. the distribution of � � � (�)/��), namely

�� (�)
�

�� (�)
0

(� ) = exp
�
�
ˆ 1

0
� (�)�� (�) � �

2

ˆ 1

0
� (�)2��

�
.

Observation scheme 2: signal plus white noise (mostly used in statistics). One observes the Gaussian
process (�(�)(�), � � �2[0, 1]), indexed by square–integrable functions �. �is means that one has
access to the observation of the random variables

�(�)(�) =
ˆ 1

0
�(�)�� (�)(�) = �� , ��2 +

1��

ˆ 1

0
�(�)�� (�).

Note that �(�)(�) � N (�� , ��2, ���2/�).

One can also note that the Gaussian sequencemodel is just a particular case of the second observation
scheme for the Gaussian white noise model, where for �’s one takes the elements of an orthonormal
basis (��) of �2[0, 1]. Indeed, in that case one can set �� �= �� , ���2, �� �= �(�)(��) and �� =´ 1
0 ��(�)�� (�). Note that �� has lawN (0, ����22) = N (0, 1) and that �� ’s are independent, since

� �

ˆ 1

0
��(�)�� (�) �

ˆ 1

0
�� (�)�� (�)� =

ˆ 1

0
��(�)�� (�)�� = 1l�=� .
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3 Conditioning and Bayes’ formula

Note. We shall de�ne conditional distributions under a dominated framework, which covers already
a huge variety of situations and many examples arising in practice. �is enables one to apply Bayes’
formula, in possibly in�nite–dimensional contexts. A more general de�nition of conditional distri-
butions is via ‘desintegration’, in the spirit of Proposition 2 below.

D�������� ���������.

Let us consider

• a measurable set � equipped with a �–�eld E and a space � equipped with a �–�eld F

• a positive �-�nite measure � on � and a positive �-�nite measure � on �

• a random variable � over � and a random variable � over � .

Suppose the pair (� , � ) admits a density denoted � (� , �) with respect to � � � , which we also write,
if �� ,� denotes the law of the pair,

��� ,� (� , �) = � (� , �)��(�)��(�).

M������� ������������� ��� ���������

Proposition 1. In the above framework, the individual law of � , called marginal distribution of
� , is the law �� with density given by

�� (�) =
ˆ

� (� , �)��(�).

Proof.
For every � mesureable and bounded, Fubini’s theorem gives

�[�(� )] =
ˆ ˆ

�(�)� (� , �)��(�)��(�)

=
ˆ

�(�) �

ˆ
� (� , �)��(�)� ��(�) =

ˆ
�(�)�� (�)��(�).

Similarly, the marginal distribution of � is the law �� on � whose density with respect to � is given
by �� (�) =

´
� (� , �)��(�).

C���������� ������������.
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De�nition 4. �e conditional distribution of � given � = � is the law of density, on � with
respect to � , given by, for �� (�) > 0,

�� |�=� (�) =
� (� , �)´

� (� , �)��(�) =
� (� , �)
�� (�)

.

We o�en denote � (� | �) in place of �� |�=� (�) when there is no risk of confusion. By de�nition,
� � � (� | �) is a density with respect to � , so that

´
� (� | �)��(�) = 1.

De�nition 5. For real-valued � , if �[|� |] < �, we de�ne the conditional expectation �[� |� ] by

�[� |� ] =
ˆ

�� (� |� )��(�).

More generally, for � measurable with �(� ) integrable,

�[�(� ) |� ] =
ˆ

�(�)� (� |� )��(�).

Proposition 2. For every measurable � � � ◊ � � �, provided the variable �(� , � ) is integrable,

�[�(� , � )] = �[�[�(� , � ) |� ]] =
ˆ ˆ

�(� , �)��� |�=� (�)��� (�).

In particular, under the same conditions, if �(� , � ) = �(� )� (� ), for �,� measurable,

�[� (� )�(� )] = �[�[� (� ) |� ]�(� )].

Proof.

�[�(� , � )] =
ˆ ˆ

�(� , �)� (� , �)��(�)��(�)

=
ˆ ˆ

�(� , �) � (� , �)�� (�)
�� (�)��(�)��(�)

=
ˆ

�

ˆ
�(� , �)��� |�=� (�)� �� (�)��(�),

using Fubini’s theorem for the last identity.
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T�� B������� ���������. Given a statistical model P = {� (�)
� , � � �} with data � (�), the

Bayesian approach consists in, �rst, choosing a probability distribution � on �, called the prior
distribution.

In the following, we suppose we are in the following dominated framework: for �, � two sigma–�nite
measures, suppose

�� (�)
� = � (�)� �� �� � �,
�� = ��� .

Note that the measure � has to dominate all measures � (�)
� , for any possible value of � .

Second, the Bayesian se�ing assumes that the distributions for � and � (�) are speci�ed in such a way
that

� � �,

� (�) | � � � (�)
� .

In this se�ing, the distribution of (� (�), �) has density (� (�), �) � � (�)� (� (�))� (�) with respect to � � � .
We will always assume (without mentioning it) that this mapping is measurable for suitable choices
of �–�elds on the space of � ’s and � ’s, so that the next de�nition makes sense.

De�nition 6. �e posterior distribution, denoted �[� |� (�)], is the conditional distribution
L(� |� (�)) of � given � (�) in the Bayesian se�ing as above. It is a distribution on �, that de-
pends on the data � (�). In the dominated framework as assumed above, it has a density with
respect to � given by Bayes’ formula (i.e. the formula for conditional densities given previously)

� �
� (�)� (� (�))� (�)´

� (�)� (� (�))� (�)��(�)
.

Example: fundamental model. Consider the model P = {N (� , 1)��, � � �}. Suppose we take a
normal prior � = N (0, �2) on � (with �2 > 0): this will make computations easy.
Exercise. Check that in this se�ing the posterior �[� |� (�)] is given by

L(� |� (�)) = N �
��

� + ��2 ,
1

� + ��2� .

One advantage of having a distribution (and not only a point estimate such as the MLE, or the
posterior mean) is uncertainty quanti�cation.

De�nition 7. A credibility region of level (at least) 1�� , for � � [0, 1], is a measurable set � � �
(typically depending on the data � = �(� )), such that

�[� |� ] = (�)1 � � .
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Natural questions are: how does �[� |� (�)] behave as � � �? Is there convergence? A limiting
distribution? Are credibility regions linked in some way to con�dence regions?

4 Frequentist analysis of Bayesian methods

Once one adopts the Bayesian approach to build the posterior distribution �[� |� (�)], one can study
this distribution under the frequentist assumption that the data has actually been generated from a
distribution in the model with �xed true parameter �0, that is

��0 � �, � (�) � � (�)
�0 . (1.4)

C���������� ��� ����������� ����

De�nition 8. Under the frequentist framework (1.4), for � a distance on the parameter set �,
the posterior �[� |� ] = �[� |�1,… ,��] is

• consistent (for the distance �) at �0 � � if, for any � > 0, as � � �,

� [ {� � �(� , �0) � �} |�1,… ,��] � 1,

in probability under � (�)
�0 .

• converges at rate �� (for the distance �) at �0 � � if, as � � �,

� [ {� � �(� , �0) � ��} |�1,… ,��] � 1,

in probability under ��0 .

- For �� a random variable with 0 � �� � 1, one has

��
�� 0 � �[��] � 0 (� � �),

and similarly �� � 1 in probability i� �[��] � 1 (exercise).

In particular, to show that the posterior converges at rate �� for � , it is enough to show that

��0� [ {� � �(� , �0) � ��} |� ] � 1 (� � �),

or a similar result with the complementary event and the corresponding expectation going to 0.

Example: fundamental model. In this case P = {N (� , 1)��, � � �}. Under (1.4), we have � �
N (�0, 1)�� for a �xed unknown �0 � �. By the law of large numbers (LLN), we have � � �0 in
probability (also almost surely). One can check that for a prior � = N (0, 1), the posterior distribu-
tionN (�� /(�+1), 1/(�+1)) is consistent at �0 and converges at rate��/

��, for an arbitrary sequence
�� � � as � � �. (exercise)
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L������� ����� �� ��� ��������� ������������ A natural question is whether the posterior
�[� |� (�)] has a limiting shape when � goes to in�nity. In the fundamental model with a N (0, 1)
prior on � , one can prove that, for � � ��� the total variation distance between probability distribu-
tions,

��[� |� ] �N (� , 1/�)��� � 0
in probability under � (�)

�0 . �is is a very special case of a much more general phenomenon, which can
be viewed as a sort of Bayesian central limit theorem (although it deals with the posterior, a quantity
in principle fairly more complex than the empirical average in the classical CLT), and called the
Bernstein–von Mises theorem. In parametric models, under regularity conditions, this result states
that

��[� |� ] �N ( ����� , � �1�0 /�)��� � 0

in probability under � (�)
�0 , where ��0 is the Fisher information matrix and ���� the maximum likeli-

hood estimator in the considered model (or any other ‘e�cient’ estimator).

�ere exist nonparametric versions of this result, but they require some care to be de�ned, as the
limit object is then typically in�nite-dimensional.

5 A �rst nonparametric example

Model. Consider the Gaussian sequence model as above, with � = (�1,…) and, for � � 1,

�� = �� + ��/
�
�,

that is

� (�)
� =

�
�
�=1

N (�� , 1/�).

Prior. Suppose as a prior � on �s one takes, for some � > 0,

� = �� =
�
�
�=1

N (0, �2
� ), with �2

� �= ��1�2� . (1.5)

If working with in�nite product distributions looks intimidating, one can just consider truncated
versions of both model and prior at � = �. All what follows can then be computed in �nite dimen-
sions, see the exercise below.

Posterior distribution. Bayes’ formula gives that the posterior distribution of �� given � only depends
on �� and

L(�� |��)
D= N �

�
� + ��2

�
�� ,

1
� + ��2

� � .

Furthermore, the complete posterior distribution of � is

�[� |� ] =
�
�
�=1

N �
�

� + ��2
�
�� ,

1
� + ��2

� � .

Exercise. Prove this for truncated versions at � = � for model and prior distribution, using Bayes’
formula.
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�e true �0. We assume the following smoothness condition, for some � , � > 0,

�0 � �� (�) �=

�

� � � 2 �
�
�
�=1

�2��2� � �

�

. (1.6)

Posterior convergence under �0. Considering a frequentist analysis of the posterior with a �xed truth
�0, it is natural to wonder whether �[� |� ] is consistent at �0 and if so at which rate it converges for,
say, the � � �22 loss, given by (se�ing � � � = � � �2)

�� � � ��2 = �
��1

(�� � � ��)2.

Let us consider the posterior mean, de�ned by

�(� ) =
ˆ

���(� |� ) = �
���

� + ��2
� � .

First step: reduction to a mean/variance problem. Using Markov’s inequality,

�[�� � �0� > �� |� ] � 1
�2�

ˆ
�� � �0�2��(� |� )

� 1
�2�

�
��1

ˆ
(�� � �0,�)2��(� |� ).

�e “bias–variance decomposition” is (observe that the crossed term is zero because we have cen-
tered around the posterior mean)

ˆ
(�� � �0,�)2��(� |� ) =

ˆ
(�� � ��)2��(� |� ) +

ˆ
(�� � �0,�)2��(� |� )

=
ˆ

(�� � ��)2��(� |� ) + (�� � �0,�)2.

as the last term does not depend on � . Note that the �rst term in the last sum is Var(�� |��). In order
to show that, for some �� = �(1) to be determined,

��0�[�� � �0� > �� |� ] = �(1),

it is enough to study the behaviour of the two terms

(�) �= �
��1

��0Var(�� |��)

(�) �= �
��1

��0 (�� � �0,�)2.

Study of the terms (a) and (b). For both terms, we distinguish the regimes �2
� < 1/� and �2

� � 1/�,
or equivalently � > �� and � � �� respectively, with

�� �= ��
1

1+2� �.
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We can now use the bounds

(�) � �
��1

1
� + ��2

�

� �
����

1
� + �

�>��

�2
� � ��

� + �� �2�
� . ��

2�
2�+1 .

For the second term, by using the explicit expression of �� , a li�le computation shows

��0 (�� � �0,�)2 =
��4
�

(� + ��2
� )2 �

2
0,� +

�
(� + ��2

� )2

= (� ) + (� � ).

�e term (II) is the easiest to bound. Its sum is bounded by

�
��1

�
� + ��2

�

1
� + ��2

�
� �

��1

1
� + ��2

�
. ��

2�
2�+1 ,

by the same reasoning as before. �e sum of the term (I) is bounded by, with � � � = max(�, �),

�
����

�2+4�
�2 �20,� + �

�>��

�20,� � ��2 �
����

�2+4��2��2��20,� + �
�>��

��2��2��20,�

� ��2 �
����

� (2+4��2�)�0
� �2��20,� + � �2�

� �

� ��2(� 2+4��2�
� � 1)� + � �2�

� � . (��2 + � �2�
� )�.

Pu�ing everything together one obtains the following

�eorem 1. In the Gaussian sequence model, consider a Gaussian prior �� as in (1.5) for � > 0.
�en for any � , � > 0, there exists � = �(� , �) such that

sup
�0��(� ,�)

��0
ˆ

�� � �0�22��� (� |� ) � ��2� , with �� = ��(� , �) = ��
���
2�+1 .

In particular, for any arbitrary sequence �� � � (as slowly as desired), as � � �,

sup
�0��(� ,�)

��0�� [�� � �0�2 > ���� |� ] = �(1).

Exercise. Using Jensen’s inequality deduce from the �rst display in �eorem 1 that the posterior
mean �(� ) veri�es, uniformly over �(� , �),

��0��(� ) � �0�22 . �2� .
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Interpretation and discussion. From the expression of the rate �� in �eorem 1 one notes that
the fastest rate is obtained for the choice � = � . �is seems coherent: �rst, it can be checked that a
draw from the prior � = �� in (1.5) belongs to the Sobolev space �� = {� = (��) � ���1 �2� �2� < �}
for any � < � (check that as an exercise), and thus can be seen as a (nearly) �–regular sequence.
Now if the true �0 is �–regular, then choosing a prior distribution that ‘matches’ its regularity by
se�ing � = � should indeed give good results. �is, however, leads to the following question:

What happens if the regularity parameter � is not known? (so that one cannot set � = �)

We will see in these lectures that there are natural ways to choose a slightly di�erent prior that leads
to adaptation, namely to the construction of a posterior distribution that achieves a (near)–optimal
rate without being given the knowledge of the regularity parameter � .

Regarding optimality, it can be shown that the rate ��(� , �) = ���/(2�+1) (corresponding to choosing
� = �) is optimal in the minimax sense:

inf
��

sup
���(� ,�)

��� � �� � ��22�
1/2

� ��
�

2�+1 .

�is rate of convergence is a typical optimal rate in nonparametric problems: it is slower than the
standard rate 1/�� common to (regular) parametric models. �e larger � , the closer we are to a
parametric rate.



CHAPTER 2

Convergence rates, general principles

1 Setup and objectives

Consider a nonparametric se�ing P = {� (�)
� , � � F}, where � in a function in some class (e.g.

square–integrable functions, densities…).

Following a Bayesian approach, we put a prior distribution � on (F ,B), where F is equipped with
the �–algebra B,

� (�) | � � � (�)
� (2.1)

� � �. (2.2)

Bayes’ formula gives us an expression of the mass of any measurable set � � B under the posterior
distribution

�[� |� (�)] =
´
� �

(�)
� (� )��(� )´

�(�)� (� )��(� )
. (2.3)

- Note that �[�] = 0 always implies �[� |� (�)] = 0.

In what follows we study the behaviour of �[� |� (�)] in probability under � (�)
�0 . We wish to show that,

for some �� a sequence typically tending to 0 as � � �, for � a suitable distance over F , as � � �,

��0�[�(� , �0) > �� |� (�)] = �(1).

What will be our target rate ��? �is will depend on �0, F and � . O�en, we shall assume that �0
belongs to some regularity set �� (�) (think of the Sobolev ball from the �rst chapter) and we will try
to take �� to be of the order (or as close as possible to) of the minimax rate

��� = inf
�

sup
� ��� (�)

�� �(� , � ),
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where the in�mum is taken over all possible estimators � = � (� (�)) of � . For standard regularity
classes and distances, ��� will o�en be of the order �(� , �)���/(2�+1), possibly up to logarithmic factors.

[Here: Point estimators (if time allows)]

To �x ideas, let us �rst consider for now the density estimation model on the unit interval [0, 1], i.e.

� (�)
� = ���

� , ��� (�) = � (�)�� , � � [0, 1]. (2.4)

In the density model, � (�) = (�1,… ,��) and Bayes’ formula can be wri�en

�[� |�1,… ,��] =
´
� �

�
�=1 � (��)��(� )´

��
�=1 � (��)��(� )

=
´
� �

�
�=1

�
�0 (��)��(� )´

��
�=1

�
�0 (��)��(� )

, (2.5)

where we use that �0 does not depend on the integrating variable � .
Technical remark: in order for the study of the ratio in the last display to make sense in probability
under ��0 , it will be silently assumed that ��0 [

´
��

�=1 � (��)��(� ) > 0] = 1, which will always be the case
for the priors we shall consider.

2 A �rst useful lemma

De�nition 1. Let us de�ne, for densities �0, � on [0, 1],

� (�0, � ) =
ˆ

log �0
� �0

� (�0, � ) =
ˆ

�log �0
� � � (�0, � )�

2
�0.

and the Kullback–Leibler–type neighborhood

���(�0, ��) = {� � � (�0, � ) � �2� , � (�0, � ) � �2�}.

In the density model, we denote by ��0 the expectation under the law ���
�0 and set � = � (�) for

simplicity.

Lemma 1. Let �� be a measurable set such that, if �� veri�es ��2� � �,

�[��]
��2��2��[���(�0, ��)]

= �(1), (2.6)

as � � �. �en we have, as � � �,

��0�[�� |� ] = �(1).
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�is gives a more re�ned version of the statement �[�] = 0 implies �[� |� ] = 0 with 0 replaced
by some suitable �(1). �e message is that if the prior distribution puts very li�le prior mass on
some (sequence of) set(s), then the posterior distributions puts li�le mass over such set(s). To prove
Lemma 1, we �rst prove yet another lemma.

Lemma 2. For any probability distribution � on F , for any � , � > 0, with � (�)
�0 probability at least

1 � 1/(�2��2), ˆ �
�
�=1

�
�0
(��)��(� ) � �[���(�0, �)]��(1+�)��

2 . (2.7)

Proof of Lemma 1.
[in the proof we assume for simplicity that �0 > 0. If this is not the case, one slightly adapts the
proof, see below] As a preliminary remark, note that, since � is by de�nition a density,

��0 �

�
�
�=1

�
�0
(��)�

=
ˆ �

�
�=1

�
�0
(��)

�
�
�=1

�0(��)��� =
ˆ �

�
�=1

� (��)��1 … ��� = 1.

Bayes’ formula as in (2.3) for the set ��, is �[�� |� ] = � /� with � =
´
��

�=1
�
�0 (��)��(� ). Lemma

2 implies, on an event �� with probability at least 1 � (���2)�1,

� � �[���(�0, ��)]��(1+�)��
2
� .

Let us now bound � /� from above by

�
� � ��(1+�)��2�

�[���(�0, ��)]

ˆ
��

�
�
�=1

�
�0
(��)��(� )1l�� + 1l��� ,

where the bound for the last term is obtained noting that � /� = �[�� |� ] � 1. Taking expecta-
tions (�rst note 1l�� � 1), and invoking �rst Fubini’s theorem and then the preliminary remark,

��0
�
� � ��(1+�)��2�

�[���(�0, ��)]

ˆ
��

��0 �

�
�
�=1

�
�0
(��)�

��(� ) + ��01l���

� ��(1+�)��2�
�[���(�0, ��)]

�[��] + ��01l��� .

Both terms in the last display go to 0 by assumption and Lemma 2 respectively.

[If �0 possibly takes the value 0, consider the event V� = {�� � �0(��) = 0} and note ��0 [V�] � ���0 (�0(�1) =
0) = �

´
1l�0(�)=0�0(�)�� = 0. So since �/� � 1, it is enough to work with (�/� )1lV�� . As V

�
� = �� 1l�0(�� )>0,

��0 �

�
�
�=1

�
�0
(��)1l�0(�� )>0�

=
ˆ �

�
�=1

�
�0
(��)

�
�
�=1

�0(��)1l�0(�� )>0��� =
ˆ �

�
�=1

� (��)1l�0(�� )>0��1 … ��� � 1,

where one uses 1l�0(�� )>0 � 1 and the rest of the argument goes through as before.]
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Proof of Lemma 2.
Let � �= ���(�0, �) and suppose �(�) > 0 (otherwise the result is immediate). Let us denote
�(�) = �(� � �)/�(�). Next let us bound from below

ˆ �
�
�=1

�
�0
(��)��(� ) �

ˆ
�

�
�
�=1

�
�0
(��)��(� ) = �(�)

ˆ �
�
�=1

�
�0
(��)��(� ).

As �(�) is a probability measure on �, Jensen’s inequality applied to the logarithm gives

log
ˆ �

�
�=1

�
�0
(��)��(� ) �

�
�
�=1

ˆ
�
log �

�0
(��)��(� )

= �
�
�
�=1

ˆ
� �

log �0
� (��) � ��(�0, � )� ��(� ) � �

ˆ
�
��(�0, � )��(� )

� �
�
�
�=1

�� � ��2,

where we have set �� =
´
� �log

�0
� (��) � ��(�0, � )� ��(� ), and used the fact that on �, we have

��(�0, � ) � �2 by de�nition. We now use a simple concentration bound on the variables ��s,
which are independent under ��0 . By Tchebychev’s inequality

��0 �

�����

�
�
�=1

��
�����
> ���2

�
� 1
(���2)2Var�0 �

�
�
�=1

���
.

By independence the last term is �Var�0�1 and it is enough to bound

Var�0�1 = ��0 ��

ˆ
� �

log �0
� (��) � ��(�0, � )� ��(� )�

2

�
� ��0 �

ˆ
� �

log �0
� (��) � ��(�0, � )�

2
��(� )

�

�
ˆ
�
� (�0, � )��(� ) � �2�(�) = �2,

where we use Jensen’s inequality with � � �2 and the fact that � (�0, � ) � �2 on �. Let us now set

B� = {
�����

�
�
�=1

��
�����
� ���2}.

By combining the previous bounds, we have just proved that ��0 (B�
�) � �Var�0�1/(���2)2 �

1/(�2��2). �e event B� has as desired probability at least 1 � 1/(�2��2) and on B�,

log
ˆ �

�
�=1

�
�0
(��)��(� ) � �(� + 1)��2

which in turn implies, taking exponentials and renormalising by �(�),
ˆ �

�
�=1

�
�0
(��)��(� ) � �(�)��(1+�)��2 .
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3 A generic result, �rst version

Let us start with a brief historical perspective. Doob (1949) showed that posteriors are (nearly) al-
ways consistent in a�–almost sure sense, which is interesting but prior–dependent. Schwartz (1965)
proved consistency in the sense of the de�nition above under some su�cient conditions of existence
of certain tests and of enough prior mass around the true �0. Diaconis and Freedman (1986) exhibited
an example of seemingly natural prior whose posterior distribution is not consistent. Ghosal, Ghosh
and van der Vaart (2000), Shen and Wasserman (2001) and Ghosal and van der Vaart (2007) gave
su�cient conditions for rates of convergence.

We call test based on observations � a measurable function �(� ) taking values in {0, 1}.

Let us recall that for now we work with the density estimation model P = {���
� , � � F}. Let � be

a prior distribution on (F ,B). Suppose also that F is equipped with a distance � (examples will be
given below). We denote by F � F� = F

�
� the complement of F� � F .

�eorem 1. [GGV, version with tests] Let (��) be a sequence with ��2� � � as � � �.
Suppose there exist � ,� > 0 and measurable sets F� � F such that

i) there exist tests �� = ��(� ) with

��0�� = �(1), sup
� �F�� �(� ,�0)>���

�� (1 � ��) � ��(�+4)��2� ,

ii)
�[F � F�] � ����2�(�+4),

iii)
�[���(�0, ��)] � �����2� .

�en the posterior distribution converges at rate ��� towards �0: as � � �,

��0�[{� � �(� , �0) � ���} |� ] = �(1).

Let us brie�y comment on the conditions. Assumption iii) is natural: there should be enough prior
mass around the true �0. Indeed, recall by Lemma 1 above that if the prior mass of a set is too small,
its posterior mass will be too: having a too small prior probability of the KL–neighborhood would
mean its posterior mass is vanishing, so there could not be convergence at rate ��, at least in terms
of the ‘divergence’ de�ned by the KL–type neighborhood.
Assumption ii) allows to work on a subset F�, so it gives some �exibility, especially if F is a ‘large’
set: indeed, combining ii) with iii)

�[F � F�]
�[���(�0, ��)]

� ��4��2� ,

which leads to ��0�[F � F� |� ] = �(1) using Lemma 1.
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Assumption i) is so far a li�le more mysterious. It can be seen more as a ‘meta–condition’, that
makes the proof of the result quite quick. We will see below another version of the result, where i)
is replaced by another, more interpretable, condition. Let us just note that the distance � in i) is the
same as in the result: one needs to �nd tests with respect to this distance.

Proof.
Since ��0�[F � F� |� ] = �(1) as noted above, is is enough to prove that ��0�[C� |� ] = �(1), where

C� = {� � F�, �(� , �0) � ���}.

Using the tests �� from Assumption i), one decomposes

�[C� |� ] = �[C� |� ]�� + �[C� |� ](1 � ��).

With �[C� |� ] � 1, one gets ��0�[C� |� ]�� � ��0�� = �(1) thanks to i). For the second term, we
write, recalling �� = ��(�1,… ,��) = ��(� ) is a function of the data,

�[C� |� ](1 � ��) =
´
C�
��

�=1
�
�0 (��)(1 � ��(� )��(� )´

��
�=1

�
�0 (��)��(� )

=� �
� .

In order to bound the denominator from below, let us introduce the event

B� =

�ˆ �
�
�=1

�
�0
(��)��(� ) � �[���(�0, ��)]��2��

2
�

�

.

Lemma 2 tells us that ��0 [B�] � 1 � (��2�) = 1 � �(1) using ��2� � �. Deduce, with B
�
� the

complementary event of B�,

�
� � �2��2�

�[���(�0, ��)]

ˆ
��

�
�
�=1

�
�0
(��)(1 � ��(� )��(� ) + 1lB�

� .

Observe, using a similar argument as in the proof of Lemma 1 (and again modulo adjustment in
case �0 can take the value 0 with = becoming �),

��0 �

�
�
�=1

�
�0
(��)(1 � ��(� )

�
=
ˆ �

�
�=1

�
�0
(��)(1 � ��(�1,… , ��))

�
�
�=1

�0(��)��1� ���

=
ˆ
(1 � ��(�1,… , ��))

�
�
�=1

� (��)��1� ��� = �� [1 � ��(� )].

By taking expectations and using Fubini’s theorem,

��0
�
� � �2��2�

�[���(�0, ��)]

ˆ
��

�
�
�=1

��0 �
�
�0
(��)(1 � ��(� )� ��(� ) + ��0 [B�

�]

� �(�+2)��2�
ˆ
��

�
�
�=1

�� [(1 � ��(� )] ��(� ) + ��0 [B�
�]

� �(�+2)��2� ��(�+4)��2� + ��0 [B�
�] � ��2��2� + �(1) = �(1). ⇤
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Exercise (if time allows)

4 Testing and entropy

In �eorem 1, the testing condition i) requires to be able to test a ‘point’ �0 versus the ‘complement
of a ball’ {� � F�, �(� , �0) > ���}. �e la�er set has not a very simple structure (one would prefer a
ball for instance instead of a complement!). Let us see how one can simplify this through combining
tests of ‘point’ versus ‘ball’.

Testing condition (T). Suppose one can �nd constants � > 0 and � � (0, 1) such that for any
� > 0, if �0, �1 � F are such that �(�0, �1) > �, then there exist tests �� with

��0�� � �����2 (2.8)

sup
� � �(� ,�1)<��

�� (1 � ��) � �����2 . (2.9)

�is condition is in fact always veri�ed for certain distances.

De�nition 2. Let � ,� probability distributions dominated by a measure �, i.e. �� = ��� and
�� = ���. �e �1–distance is de�ned as

�� � ��1 =
ˆ

|� � �|��

and the Hellinger distance as

�(� ,�) = �

ˆ
(�� ���)2���

1/2
.

�ese distances verify the following properties (le� as an Exercise)

• �� � ��1 � 2 and �(� ,�) �
�
2.

• �� � ��1 � 2�(� ,�) [use Cauchy-Schwarz]

• If max(�, �) � �0 > 0 then �(� ,�) � ��� � ��1 for some � > 0.

• De�ning the total variation norm (between measures de�ned on a common �–�eld A) as
�� � ���� = sup��A |� (�) � �(�)|,

�� � ��1 = 2�� � ���� .
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�eorem 2. [Le Cam, Birgé] �e testing condition (T) is always veri�ed in the density estimation
model for � the �1–distance or the Hellinger distance �.

We prove this result below for the �1–distance. For the Hellinger distance, we refer to the book by
Ghosal and van der Vaart (2017), Proposition D.8.

De�nition 3. �e �–covering number of a set E for the distance � , denoted � (�, E , �), is the
minimal number of �–balls of radius � necessary to cover E .

�e entropy of a set measures its ‘complexity’/‘size’. Let us give a few examples

• If E = [0, 1] and �(� , �) = |� � � |, then � (�, E , �) is of order 1/�.

• If E is the unit ball in ��

�(0, 1) =

�

� � �� , ���22 �=
�
�
�=1

�2� � 1

�

,

then� (�, E , ���2) is of order ��� . Note that this number grows exponentially with the dimension
�. We prove this below.

• �ere are many results available for balls in various function spaces (histograms, Sobolev or
Hölder balls etc.). Examples will appear in the sequel.

Lemma 3. Suppose that the testing condition (T) holds for a distance � on F and that, for a
sequence of measurable sets F�, and a sequence (��) with ��2� � 1,

log� (��,F�, �) � ���2� .

�en for a given � > 0 there exists � = �(�) large enough and tests �� = ��(� ) such that

��0�� = �(1), sup
� �F�� �(� ,�0)>���

�� (1 � ��) � �����2� .

Proof.
Let us consider the set

�� = {� � F�, �(� , �0) > 4���}

and partition it in ‘shells’ C� as follows

�� = �
��1

{� � F�, 4���� < �(� , �0) � 4�(� + 1)��} = �
��1

C� .
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Now let us cover each shell C� by balls.

• Let � = ���� and consider a minimal covering of C� by balls ��� of radius ��, for � � (0, 1)
the constant appearing in condition (T): by de�nition of the covering number, the number
of these balls is � (��,C� , �).

• Let us denote by ��� the centers of the balls of the previous covering. Since ��� must intersect
C� (otherwise it could be removed from the covering which would then not be minimal), we
have, as � � (0, 1),

�(�0, ���) � 4���� � 2�� = 4���� � 2����� � 2���� > �.

So, for each ��� there exists a test ��� satisfying the properties given by condition (T).

• On the other hand, we also have for any � � 1, if � � ��1,

� (��,C� , �) = � (�����,C� , �) � � (�����,F�, �)
� � (��,F�, �).

• Let us now combine the just–contructed tests ��� by se�ing

� �= sup
�,��1

��� .

Let us now verify that the test � satis�es the desired properties. First, recalling � = ����,

��0� � ��0 �
�
�,�

����
� �

��1
�
�
��0��� � �

��1
� (��,F�, �)�����

2

� �
��1

� (��,F�, �)�����
2�2��2 � � (��,F�, �)

�����2�2�

1 � �����2�2�

� �����2�����2�2�

which is �(1) if � < ��2/2 say. On the other hand, uniformly for � � F� such that �(� , �0) > 4���,

�� (1 � � ) � sup
�,�

sup
� ����

�� (1 � � ) � sup
�,�

sup
� ����

�� (1 � ���)

� sup
�,�

����(����)2 � ����(���)2 � �����2�

as soon as ��2 > �, which concludes the proof.

Proof of�eorem 2 for � = � � �1.
Let �0, �1 two densities with ��0 � �1�1 > �. Let �� = ��1��

�=1 ��� denote the empirical measure
associated to �1,…�� and for a measurable set � � [0, 1], let

��(�) =
1
� �

�=1
1l����.
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Let � denote the set, abbreviated as � = {�0 < �1},

� = {� � �0(�) < �1(�)}

Let us de�ne the test
�� = 1l

�
��(�) > ��0 (�) +

��0 � �1�1
3

�
.

�e term ��0��, also called type I–error of the test, is bounded by

��0�� = ��0 �

�
�
�=1

(1l���� � ��0 (�)) > ��0 � �1�1/3�

� exp{�����0 � �1�21} � �����2 ,

where we use Hoe�ding’s inequality Lemma 4 and ��0 � �1�1 > �.

Let us now consider the term �� (1 � ��), also called type II–error of the test, for � s in the ball
{� � �� � �1� < ��} with � = 1/5.

�� (1 � ��) = ��0 ���(�) � �� (�) � ��0 (�) � �� (�) + ��0 � �1�1/3�

We now claim that with � chosen as above the last display, the term ��0 (�) � �� (�) is at most
����0 � �1�1 for suitably large � > 0.

��0 (�) � �� (�) = ��0 (�) � ��1 (�) + ��1 (�) � �� (�) =� (�) + (��).

�e choice of � ensures (�) = ���0 � �1�1/2 by Lemma 5, which also implies |(��)| � ���1 � �� ��� =
��1 � � �1/2 � ��/2 = �/10 � ��0 � �1�1/10. So (�) + (��) � �(2/5)��1 � �0�1. As �2/5 + 1/3 = �1/15, one
obtains

�� (1 � ��) � ��0 ���(�) � �� (�) � ���1 � �0�1/15� � �������1��0�21 � ������2 ,

invoking Hoe�ding’s inequality (Lemma 4) again with �� > 0 a suitably small constant.

Lemma 4. [Hoe�ding’s inequality] Let �� be independent random variables with �� � �� � �� for
reals �� , �� and 1 � � � �. �en

�
�

�
�
�=1

�� > �
�
� exp

�
� 2�2

��
�=1(�� � ��)2

�
.

Proof.
See, e.g. Boucheron, Lugosi and Massart’s book.
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Lemma 5. [Total variation distance] Let � ,� be two probability measures de�ned on a joint �–
�eldA and dominated by �, that is �� = ���, �� = ���. �e total variation distance �� ����� =
sup��A |� (�) � �(�)| veri�es

2�� � ���� = �� � ��1.

Also, the supremum de�ning the total variation distance is a�ained for � = {� � �(�) < �(�)}.

Proof.
Let � denote the set � = {� � �(�) < �(�)} and �� its complement. �en

�� � ��1 =
ˆ
�
(� � �)�� +

ˆ
��
(� � �)�� �

ˆ
�=�

(� � �)��

= � (�) � �(�) + �(��) � � (��) = 2(� (�) � �(�)) = 2
ˆ
�
(� � �)��.

By symmetry, one also has �� � ��1 = 2
´
�>�(� � �)��. On the other hand, for any � � A,

� (�) � �(�) =
ˆ

1l�(� � �)�� �
ˆ
�>�

1l�(� � �)�� =
ˆ
�
(� � �)�� = �� � ��1/2.

By symmetry, �(�) � � (�) �
´
�>�(� � �)�� = �� � ��1/2. Combining all these facts gives the result.

5 Extension to the non–iid framework

Let us now consider the general se�ing P = {� (�)
� , � � �} where � is a separable metric space

equipped with a (semi–)metric � (one allows that � = �� depends on �) and we have the domination
assumption

�� (�)
� (�) = �(�)� (�)��(�)(�),

for dominatingmeasures �(�). We have seen previously that several canonical nonparametric se�ings
fall into this framework with � = � the unknown function in the model. As an example, recall the
�xed–design nonparametric regression model

�� = � (�/�) + �� , 1 � � � �,

where �� are iidN (0, 1). In this case � = � and

� (�)
� =

�
�
�=1

N (� (��), 1),

and �(�) is the Lebesgue measure on ��. �is model has independent but not identically distributed
observations (given � ).
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All results from Sections 2 and 3 extend to this more general se�ing, up to the following adjustments:
in Bayes’ formula, one replaces��

�=1 � (��) by �(�)� (� (�)), so that the posterior mass of set � is, writing
� = � (�) as a shorthand,

�[� |� ] =
´
� �

(�)
� (� )��(�)´

�(�)� (� )��(�)
=

´
�

�(�)�
�(�)�0

(� )��(�)
´ �(�)�

�(�)�0
(� )��(�)

.

�e KL–type neighborhood is re–de�ned, for � > 0, as

��(�0, �) =
�
� � ��(� (�)

�0 , �
(�)
� ) � ��2,� (� (�)

�0 , �
(�)
� ) � ��2

�
. (2.10)

We denote now by �� the expectation under � (�)
� and similarly for ��0 , omi�ing the dependence on

� in the notation for simplicity.

Exercice Verify that Lemmas 1, 2, 3 easily extend to this more general se�ing upon doing the above
adjustements.

5.1 Gaussian sequence model

Let us now see an example of veri�cation of the testing condition (T) in the non–iid se�ing: recall
the Gaussian sequence model where � = (��)��1 is observed and, for �� iid N (0, 1) and �� a given
sequence in � 2,

�� = �� +
���� , � � 1.

For sequences � = (��) and � = (��) let us write, provided the corresponding series converge

��, �� = �
��1

���� , ���2 = �
��1

�2� .

Lemma 6. Let � , �1, �0 be squared–integrable sequences, and let for � = ��0 � �1�/4,

�(�1, �) = {� � �� � �1� � �}.

�e test �� = 1l{2��1 � �0,�� > ��1�2 � ��0�2} veri�es, for ��(�) = � (N (0, 1) > �),

��0�� � ��(
�
���1 � �0�/2),

sup
���(�1,�)

�� (1 � ��) � ��(
�
���1 � �0�/4)

In particular, condition (T) is veri�ed.

Proof.



M2 – Nonparametric Bayes 33

For the �rst inequality, one works under ��0

��0 [2��1 � �0,�� > ��1�2 � ��0�2] = �[2��1 � �0, �0� + 2��1 � �0, �/
�
�� > ��1�2 � ��0�2]

= �[2��1 � �0, �� >
�
���0 � �1�2] = �[N (0, 1) >

�
���0 � �1�/2],

where the last line uses that ��1 ��0, �� is a random variable of distributionN (0, ��1 ��0�2), which
gives the �rst inequality. For the second, one works this time under �� , for � � �(�1, �).

�� [2��1 � �0,�� � ��1�2 � ��0�2] = �[2��1 � �0, �� + 2��1 � �0, �/
�
�� � ��1�2 � ��0�2].

We now write ��1 � �0, �� = ��1 � �0, � � �0� + ��1 � �0, �0�. By writing � = �1 + �� with ��� � 1,

��1 � �0, � � �0� = ��1 � �0�2 + ���1 � �0, �� � ��1 � �0�2 � ���1 � �0� �
3
4 ��1 � �0�2,

where the last line uses Cauchy–Schwarz’ inequality and ��� � 1. Rearranging the probability at
stake,

�� [1 � ��] � � �2��1 � �0, �/
�
�� � ��1 � �0�2 �

3
2 ��1 � �0�2�

� �[N (0, ��1 � �0�2) � �
�
���1 � �0�2/4] = ��(

�
���1 � �0�/4)

as desired. Property (T) now immediately follows for ��1��0� > � by using the standard inequality
��(�) � ���2/2 for � > 0.

In the sequence model, we have, adapting the formula (1.2) given above for �0 = 0,

�� (�)
�

�� (�)
�0

(� ) = ���� ,���0�� �
2 ���

2+ �
2 ��0�

2 .

One deduces � (� (�)
�0 , �

(�)
� ) = ���0 � ��2/2 and � (� (�)

�0 , �
(�)
� ) = ���0 � ��2, so that

��(�0, ��) =
�
� � � 2 � �� � �0�2 � �2�

�

(both inclusions hold, despite the 1/2 factor above). In this case, the KL–type neighborhood is just a
ball for the �2–norm.

5.2 Gaussian white noise and nonparametric regression

In the Gaussian white noise model, a similar proof as in the sequence model above shows that the
test, with � � �2 denoting the �2–norm on functions,

�� = 1l{2
ˆ 1

0
(�1 � �0)(�)�� (�)(�) > ��1�2 � ��0�2}}

veri�es the conclusions of Lemma 6. Also, ��(�0, ��) = {� � �� � �0�2 � ��} is again an �2–ball.

In the nonparametric regression with �xed design, similar properties hold as in the sequence model,
upon replacing ��, �� and � � � by

�� , �� = 1
�

�
�
�=1

� (��)�(��), �� �2� = 1
�

�
�
�=1

� (��)2.
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Exercise. Establish an analogue of Lemma 6 in this case.

6 A generic result, second version

In the general se�ing P = {� (�)
� , � � �} with �� (�)

� (�) = �(�)� (�)��(�)(�) as in the previous Section,
let us formulate a result generalising�eorem 1 (and that in particular applies to density estimation
as well). Recall that �� is a shorthand for the expectation under � (�)

� and the testing condition, now
formulated in the general se�ing:

Testing condition (T). Suppose one can �nd constants � > 0 and � � (0, 1) such that for any � > 0, if
�0, �1 � � are such that �(�0, �1) > �, then there exist tests �� with

��0�� � �����2

sup
�� �(� ,�1)<��

�� (1 � ��) � �����2 .

�eorem 3. [GGV, entropy version] Let (��, ��) be sequences with �(�2� � �2�) � � as � � �.
Suppose � is a distance on � such that the testing condition (T) holds with constants �,� > 0.
Assume there exist � ,� > 0 and measurable sets �� � � such that, for �� as in (2.10),

i) log� (��,��, �) � ���2�,

ii) �[� � ��] � ����2�(�+4),

iii) �[��(�0, ��)] � �����2� .

Set �� = �� � ��. �en for � = �(�,� ,� ,�) large enough, the posterior distribution converges
at rate ��� towards �0: as � � �,

��0�[{� � �(� , �0) � ���} |� ] = �(1).

Proof.
We start by noting that, for given � � 1, the maps

� � log� (�,��, �), � � ��2

are respectively non–increasing and increasing: for the �rst, note that if �� > �, a covering of
�� with �–balls gives rise to a covering with ��–balls using the same centers. Combining this
monotonicity property with the entropy condition i), one now can apply Lemma 3 with �� =
�� � ��. Indeed, the entropy condition required is also valid with the slower rate �� which gives
the existence of tests �� with

��0�� = �(1), sup
����� �(� ,�0)>���

�� (1 � ��) � �����2� ,

that is, the �rst condition of�eorem 1. Now one proceeds as in the proof of�eorem 1 (now in the
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more general non–i.i.d. se�ing): �rst by combining ii) and iii) one obtains ��0�[� � �� |� ] = �(1)
by using the (generalised version of) Lemma 1, that requires ��2� � �. We further introduce the
set

C� � {� � ��, �(� , �0) � ���}.

�e prior mass condition iii) is automatically veri�ed if one replaces �� by ��: indeed by doing so
the prior mass does not decrease and the exponential term decreases. Now one can follow line
by line the proof of �eorem 1, only making the adjustements for the present general se�ing as
explained in Section 5, which concludes the proof.

7 A�rst application: randomhistogramswith givennumber of jumps

Histogram prior on [0, 1] with deterministic number of jumps. Let � = �� be an integer, a number
of ‘jumps’ – to be chosen later –, and let us subdivide [0, 1] in � equally spaced intervals: for �� =
[(� � 1)/� , �/� ), let us set

� =
�
�
�=1

��1l�� , (�1,… , ��) � ���
� , (2.11)

where �� is the common distribution of the (random) histogram heights. For simplicity in what
follows we take �� = Lap(1) the standard Laplace distribution, which has density � � ��|� |/2 on �,
although many other choices are possible.

Statistical model. Let us consider one of the canonical nonparametric models: it turns out the sim-
plest to verify the conditions of�eorem 3 is the Gaussian white noise model, but the proof is quite
easily adapted for the regression and density models. We shall come back to the density model later.
Recall that in the white noise model one observes � = � (�) with �� (�) = � (�)�� + �� (�)/��.

Bayesian se�ing. We put as prior on � � �2[0, 1] a histogram prior � de�ned as in (2.11), which
combined with the law of � | � in the white noise model gives a posterior distribution �[� |� ].

Frequentist study of �[� |� ] and regularity condition on �0. To study the frequentist behaviour of the
posterior, as usual we need to impose some regularity conditions on �0, which will then typically
in�uence the expression of the convergence rate one obtains. For � � 1 de�ne a Hölder–ball C� (�) =
{� � [0, 1] � �, �� , � � [0, 1], |�(�) � �(�)| � �|� � � |�}. We assume that the true �0 belongs to
F = F (� , �,�), for �,� > 0 and � � 1, with

F = {� � [0, 1] � � � � � C
� (�), �� �� � �}.

Posterior convergence rate. �e speci�c form of the model will actually not ma�er much for�eorem
3: it is enough to know we can apply it, since the white noise model veri�es the testing condition
(T) with � = � � �2 as noted earlier. So it is enough to verify the conditions i), ii), iii) of �eorem 3
with this distance and suitably chosen sets F� (we construct them below). If we can do so, we will
obtain a convergence rate for the posterior distribution �[� |� ] in terms of � = � � �2. For simplicity
in this section we denote � � � = � � �2 the �2–norm on [0, 1].
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7.1 Basic histogram facts

Let V� = Vect�2 (1l�1 ,… , 1l�� ) denote the subspace of �2 = �2[0, 1] spanned by histograms over the
partition (��). For a sequence (�1,… , �� ) � �� , let us denote � � �� the euclidean norm in ��

���2� =
�
�
�=1

�2� .

Fact 1. �e orthogonal projection of � � �2 onto V� is

� [� ] =
�
�
�=1

� �1l�� , with � � = �
ˆ
��
� .

Let us denote � �= (� 1,… , � � ). For any � � �2,

�� [� ]�2 = 1
�

�
�
�=1

� 2� = 1
� �� �2� .

�is, up to a factor ��1, the �2–norm of � [� ] coincides with the � � ��–norm of the sequence � .

Fact 2. Let �0 � C
� (�) with � � (0, 1]. �en

��0 � � [� ]0 �� � ���� .

Indeed, by the mean–value theorem � 0,� = �
´
�� �0 = �0(��), for a �� � �� . For � � �� , we have

|�0(�)� � [� ]0 (�)| = |�0(�)� �0(�)| � �|� � �|� � ���� . �is gives the result by making � range from 1 to � .

7.2 Verifying the conditions of�eorem 3

Let us choose some sieve sets F� as follows

F� =
�
� � V� � � =

�
�
�=1

��1l�� , (�1,… , �� ) � H�

�
,

where H� is the set of sequences � = (��)1���� de�ned as

H� =
�
� = (��), max

1����
|�� | � �

�
.

�e upper bound on the heights turns helpful to verify the entropy condition.

Entropy condition i). Since any � � V� is equivalently characterised by its height sequence � and
�� �2 = ��1���2� , it is enough to cover the set of sequencesH�. More precisely, by using Fact 1 above,

� (�,F�, � � �) = � (
�
��,H�, � � �� ).

Now note that ���2� � � max1���� �2� � ��2 for any � � H�, so that H� � ��� (0,
�
��).

Lemma 7 gives that for 3�/� � 1, we have � (� ,��� (0,�), � � �� ) � (3�/�)� . �is implies, for � � 1,

� (�,F�, � � �) � � (
�
��,��� (0,

�
��), � � �� ) � (3�/�)� .
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In order to ful�ll i), one obtains the condition � log(3�/��) � ���2�.

Sieve condition ii). By de�nition of F�, using that �[|Lap(1)| > �] = ���,

�[F �
�] � �[�� � {1,… ,�} � |�� | > �] � ���� � exp{log� � �}.

In order to ful�ll i), one obtains the condition log� � � � ���2�(� + 4). �is is always satis�ed for
large enough � provided � = �� is chosen so that �� = �(�).

Prior mass condition iii). Recall that in the white noise model ��(�0, �) is just the �2–ball {� � �� ��0� <
�}. Pythagoras theorem gives �� � �0�2 = �� � � [� ]0 �2 + ��0 � � [� ]0 �2. So for any � > 0

�[�� � �0� < �] = �[�� � � [� ]0 �2 < �2 � ��0 � � [� ]0 �2].

By Fact 2 above, ��0 � � [� ]0 � � ��0 � � [� ]0 �� � ���� . �is means that provided � is chosen large
enough in terms of � (the condition involving the rate is given below), one can always make sure
that �2 � ��0 � � [� ]0 �2 � �2/2. It is thus enough to consider, for � > 0,

�[�� � � [� ]0 � < �] = �
�
��1

�
�
�=1

(� � � � 0,�)2 � �2
�
= �

�
��1

�
�
�=1

(�� � � 0,�)2 � �2
�

� �
�

�
�
�=1

{|�� � � 0,� | � �
�
�

�
�
�=1

� �|�� � � 0,� | � �� ,

using the independence of the heights �� under the considered prior distribution. To further bound
from below the last display, note that � �|�� � � 0,� | � �� is the probability that a standard Laplace
variable belongs to a certain interval of length 2�. Since |� 0,� | � ��0�� � � by assumption, this
interval is included in [�� � �,� + �] � [�2� , 2�] if � � 1. On the la�er interval, the standard
Laplace density is at least ��2� /2. Deduce that

� �|�� � � 0,� | � �� � 2� � ��2� /2 = ���2� ,

so that �[�� � � [� ]0 � < �] � �� exp{�2��}. Pu�ing all the previous bounds together, one sees that if
���� � ��/2, then

�[�� � �0�2 < ��] � �[�� � � [� ]0 � < ��/2] � (��/2)� exp{�2��}.

So the prior mass condition is veri�ed if

���� � ��/2
2�� + � log(2/��) � ���2�.

It is now easy to verify that conditions i) up to iii) are satis�ed for the choices

�� � �� � �
log �
� �

�
2�+1

, � � �
�

log ��

1
2�+1

.

We then get the following result.
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�eorem 4. In the Gaussian white noise model, suppose the true �0 belongs to the class
F (� , �,�). Let � be a random histogram prior as above with a number of jumps equal to

� � �
�

log ��

1
2�+1

.

�en for any � � (0, 1] and � > 0 a large enough constant,

��0�[�� � �0�2 � ��� |� ] � 1, �� � �
log �
� �

�
2�+1

.

8 Complements

8.1 Re�nements of conditions in generic results and extensions

�e aim when stating the previous two GGV theorems was to give simple – yet general and already
fairly broadly applicable – statements and proofs. �ese results can be in turn re�ned in a number
of ways. Many re�nements are described in the book by Ghosal and van der Vaart (2017) (referred
to as GV–book in the sequel). we only brie�y mention a few

1. Coupling numerator and denominator when studying Bayes’ formula. �e previous formulations
of the GGV theorem treat denominator and numerator separately. �is could be suboptimal,
especially in situations where the parameter space is large/unbounded: we will see an example
in the Chapter on high–dimensional models.

2. Other notions of entropy. It is already clear from the proof of Lemma 3 that upper-bounds
are possibly generous there, and indeed one can provide more precise conditions. Instead of
looking at a ‘global’ entropy, one can also look at a more ‘local’ version of the entropy.

Fractional posteriors. A popular generalisation (in particular in machine learning and PAC–Bayes
theory) of the posterior distribution is the so–called �–posterior, where given a prior � on � , for
� > 0 one de�nes the distribution, for every measurable �,

�� [� |� ] =
´
� ��,� (�)�(��)´
��,� (�)�(��)

, ��,� (�) = ��
(�)
� (� )�

�
.

Typically one chooses 0 < � < 1, which tempers the in�uence of the data in the obtained distribution.
A technical advantage of working with an �–posterior is that in some situations (and for certain
loss functions) convergence rate results can be obtained under prior–mass conditions only, without
requiring entropy–type bounds. �is was already noted in a paper by Tong Zhang (2006) and recently
re–explored in the work by Bha�acharya et al. (2020). Another advantage is that it is more robust
to model–misspeci�cation. A drawback is that ��,� (� ) is not a likelihood anymore, so the original
Bayesian interpretation is lost: optimality properties related to the use of the likelihood may then be
lost. Typically, statistical e�ciency (e.g. optimal variance) could be lost and ‘credible’ set from the
�–posterior will also o�en be larger for � < 1 than in the posterior case � = 1.
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8.2 Lower bounds

De�nition 4. For � a distance on the parameter set �, we say that �� is a lower bound for the
posterior �[� |� ] = �[� |�1,… ,��] contraction rate, in terms of the distance � , if

� [ {� � �(� , �0) � ��} |�1,… ,��] � 0,

in probability under ��0 .

�e interpretation is that if one looks with a magnifying glass ‘too close’ to a given point �0 then
asymptotically there is no posterior mass.

Exercice. Suppose � � � and that the model P = {���
� , � � �} is “regular” in that ��–type balls

of radius � are ‘comparable’ to intervals of size � i.e. there exists a constant � > 0 such that for any
� > 0 and �0 � �,

���(�0, �) � {� � |� � �0| � ��},

where ��� has the same de�nition as for density estimation but with �0, � replaced by ��0 , �� (check
that this is true e.g. in the fundamental model {N (� , 1)��, � � �}.) Prove that for any sequence (��)
going to 0,

��0�[|� � �0| �
���� |� ] � 0,

that is, ��/
�� is a lower bound for the posterior contraction rate.

8.3 Entropy of unit ball in ��

Let ��� (�, �) = {� � �� � �� � �� � �} denote the euclidian ball of center � � �� and radius � � 0,
for ���2 = ��

�=1 �2� the standard euclidian norm.

Lemma 7. [Entropy of unit ball in ��] For any � > 0, for any � > 0, the covering number of
��� (0,�) with respect to the euclidean norm veri�es, with � � � = max(�, �),

� (� ,��� (0,�), � � �) � �1 � 3�
� �

�
.

Proof.
If � � � , the result is clear: one ball su�ces to cover, so one assumes � < � . Since by ap-
plying an homothecy of ratio � , norms are multiplied by � , we have � (� ,��� (0,�), � � �) =
� (1,��� (0,�/�), � � �). So it is enough to consider the case � = 1 with � < 1 (up to se�ing
� � = �/� ). Let

� �= � (� ,�, � � �), with � �= ��� (0, 1).
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Let � � = ��(�) denote themaximal number of points of � separated by at least � for � � �. Consider
a collection of such points (�� , 1 � � � � �) and note that the collection of balls �(�� , �) = ��� (�� , �)
must cover �, otherwise one could �nd a point � separated from all the ��’s by at least � , contra-
dicting maximality. On the other hand, since ��’s are in �,

�(�1,
�
2 )����(�� � , �2 ) � �(0, 1 + �

2 ).

Also, the balls �(�� , �2 ) are disjoint by de�nition of �–separation. Denoting by V (�) the volume
of a measurable subset � of �� with respect to Lebesgue measure, one deduces

� �

�
�=1

V (�(�� , �/2)) � V (�(0, 1 + �/2)).

A change of variables gives V (�(0, �)) = ��V (�(0, 1)) for � > 0. Since V (�(�� , �/2)) = V (�(0, �/2)),
one obtains

� �(�/2)�V (�(0, 1)) � �1 + �
2�

�
V (�(0, 1)).

One concludes that � � � � � ( 2+�� )� � (3/�)� as announced.



CHAPTER 3

Nonparametric Bayes and adaptation

We explore di�erent classes of prior distributions that lead to ‘adaptive’ behaviour
in nonparametric problems, where adaptive o�en means that the posterior automatically
adapts to the unknown smoothness parameter of the true function.
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1 Random histograms

1.1 White noise model

In the se�ing of the Gaussian white noise model, let us recall the de�nition of the histogram prior on
[0, 1] with deterministic number of jumps: given �� an integer, a number of ‘jumps’ we subdivided
[0, 1] in � equally spaced intervals: for �� = [(� � 1)/� , �/� ), and set

[Fixed � prior] � =
�
�
�=1

��1l�� , (�1,… , �� ) � ���
� ,

where �� is the common distribution of the (random) histogramheights for instance standard Laplace
distribution. For this prior we denoted for simplicity �� the weights, although ��,� would be more
explicit: we use this notation below.

A natural way to a�empt making the prior adaptive with respect to the unknown regularity of �0 is
to take � itself random by se�ing � = ��

� � �� (�), with �� (�) � ��� log � ,

� |� � L
�
� =

�
�
�=1

��,�1l�� , (�1,� ,… , ��,� ) � ���
� �

.

�is is called a hierarchical Bayes approach. We note that other choices of the prior on� are possible.
For instance, one could take �� (�) � ��� . �is would lead to a similar result, but with a slightly
di�erent log–factor in the rate (check this as an exercise a�er having done the proof below for the
former prior).

�eorem 1. In the Gaussian white noise model, suppose the true �0 belongs to the class
F (� , �,�) for some � � (0, 1]. �en for � = �� the prior with random � as above and � > 0 a
large enough constant,

��0�[�� � �0�2 � ��� |� ] � 1, �� � �
log �
� �

�
2�+1

.

Proof.

One de�nes a sieve as, with �� = ��� for � large enough to be chosen, and �� = (�/ log �)1/(2�+1),

F� =
��

�
�=1

�

� =
�
�
�=1

��,�1l�� , max
�

|��,� | � �

�

=
��

�
�=1

F�,� .

�e entropy condition is easily veri�ed using ���2 �
�
�max� |�� | and (see previous Chapter)



M2 – Nonparametric Bayes 43

� (�,F�,� , � � �2) � (3�
�
�/�)� , so that

� (�,F�, � � �2) �
��

�
�=1

(3���/�)� . (���/�)��+1

which gives log� (��,F�, � � �2) . �� log(�/��) + �� log��.
Also, the complement of the sieve has small prior mass as

�[F �
�] � �(� > ��) +

��

�
�=1

�[F �
� |� = �]�[� = �]

. ���� log�� +
��

�
�=1

�����[� = �] . ���� log�� + ����[� ] . ���� log�� + ���,

where we use that � has �nite expectation. Finally, for the prior mass condition,

�[�� � �0�2 � ��] � �[{�� � �0�2 � ��} � {� = ��}]
= �[�� � �0�2 � �� |� = ��]�[� = ��]

and we can now used the bound for �xed � = �� used in the previous chapter, which gives, pro-
vided ����� � ��/2, that �[�� � �0�2 < �� |� = ��] � (��/2)�� exp{�2���}.

Pu�ing everything together, we see that we need: �� log(���/��) . ��2�, and ����� � ��/2 as well
as �� log(2/��) + 2��� . ��2�. �is is satis�ed for �� � �� � �� as in the statement of the result
(choose �rst �� with a large enough constant to verify prior mass, then � large enough to verify
the second condition and �nally the constant in front of �� to be large enough).

1.2 Density estimation

�eorem 1 admits a counterpart in density estimation: in order to apply the GGV theorem, we have
to work with a testing distance: for instance � = � (or � = � � �1). �e prior has to be modi�ed too: one
needs to take a histogram prior on densities on [0, 1]. To do so, we wish that the random histogram
drawn from the prior is positive and we should have

´ 1
0 � = 1. A possible �xed �–prior is as follows,

for �1,… , �� positive,

[Fixed � prior] � =
�
�
�=1

���1l�� , (�1,… , �� ) � Dir(�1,… , �� ),

where Dir(�1,… , �� ) is the Dirichlet distribution, which samples �–tuples directly from the simplex
in dimension � . �en, a random � prior can be obtained as in the previous example, by se�ing e.g.
�� (�) � ��� log � .

One can then formulate a result similar to �eorem 1 we brie�y sketch the di�erences: in the class
of true �0’s, one assumes that the true density �0 is bounded away from 0. In the proof, one has to
work a li�le to relate the KL–neighborhood to an �2 neighborhood, since those are not equal in the
density model (see the handwri�en notes for details). Finally, the prior mass condition is handled
via a speci�c lemma on the Dirichlet distribution.
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2 Gaussian processes

We study below Gaussian processes seen as prior distributions on functions. We explore some of
the properties of a given Gaussian process in term of its ‘geometry’ interpreted as the shape of (the
unit ball of) its Reproducing Kernel Hilbert Space (RKHS), that we de�ne below. We explain how
this in�uences the associated posterior convergence rates in typical nonparametric se�ings.

2.1 De�nitions and examples

We now de�ne two notions: the one of Gaussian process, interpreted as a collection of normal
random variables, and the one of (Banach–valued) Gaussian random variable. In standard se�ings
such as within separable Banach spaces, both notions are essentially equivalent, as we brie�y discuss
below.

De�nition 1. A Gaussian process � = (�� )��� is a stochastic process (i.e. a collection of
random variables) indexed by the set � such that for any �1,… , �� � � and any � � 1, the vector
(��1 ,… ,��� ) is a Gaussian random vector.

In the sequel to �x ideas we take � = [0, 1] as index set. Recall that a Gaussian vector is characterised
by its mean and variance–covariance matrix. So, a Gaussian process (we also write GP)� , if it exists
(we assume so), must be characterised by the quantities

�(�) = �[�� ]
� (�, �) = Cov(�� ,�� ) = �[(�� � ���)(�� � ��� )].

�ose are called respectively mean function and covariance (operator).

In the sequel we restrict for simplicity to centered Gaussian processes, i.e. we take �(�) = 0 for
all � . �e map (�, �) � � (�, �) is symmetric and de�nite–positive in that for any �nite collection
�1,… , �� � [0, 1], the matrix (� (�� , ��)) is de�nite positive. �is follows immediately from the expres-
sion of � (�, �).

Let us insist again that the de�nition above gives the �nite–dimensional distributions (also called
FIDIs) (��1 ,… ,��� ) but we shall not construct a process � (�) = �� that veri�es this (it is possible
to do so).

�e map � � � (�) is called trajectory (or realisation) of � . It can then happen that the process
admits a version (that is, there exists (�� )��� with �[�� = �� ] = 1 for any � � � , which imples the
FIDIs are the same) whose trajectories are continuous, that is � � �� (�) is continuous. �en the
image of the map � � (�� (�))� is included in C

0[0, 1]. More generally, � may have a version that
has trajectories in a separable Banach space �, such as (C0[0, 1], � � ��) above.

De�nition 2. A �–valued Gaussian random variable is a map � � � � �, measurable for the
Borel �–�eld of �, such that for any �� in the dual space ��, the real variable ��� is Gaussian.
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Note that if � is a Gaussian variable in � according to this de�nition, then if T � ��, the collection
(��� , �� � T ) is a Gaussian process indexed by T (this is because: a random vector is Gaussian i�
any �nite linear combination of its coordinates is Gaussian, and: �� is a linear space). For example,
if � = C

0[0, 1] as above, and T is the set of linear maps �� � � � � (�) for � � � (they are continuous,
therefore in ��), then the collection of variables (� (�)(�), � � [0, 1]) is a Gaussian process on [0, 1]
with trajectories in �.

Under a measurability condition, we have that if (�� ) is a Gaussian process with trajectories in �,
then it is also a Gaussian random variable in �.

Lemma 1. Si (�� )��� has a version that admits trajectories in a separable Banach space �, and
if for any � � �, the quantity �� � ��� is a random variable (i.e. is a measurable quantity as
function of �), then � is a Gaussian random variable in �.

We omit the proof: it is based on the fact that when � is separable the Borel �–�eld is generated by
balls. In the sequel, since we generally work with separable Banach spaces, we will use interchange-
ably both concepts.

De�nition 3. For � taking values in the separable Banach space (�, � � ��), we call small ball
probability the quantity, for � > 0,

�[�� �� < �] =� exp(��0(�)).

Sometimes �0(�) = � log �[�� �� < �] is called small–ball term.

2.2 RKHS of a Gaussian process

Let (�� )��� be a Gaussian process. Consider the space

C� = Vect{� (�), � � �}�
2
=

�
�
�
�=1

��� (��), �� � � , � � 1

��2

,

where A
�2 stands for the completion of given set A of random variables (de�ned on a common

probability space �) in �2(�). �is space is called the �rst order chaos associated to� .

De�nition 4. �e RKHS of a centered Gaussian process � = (�� )��� is the set

� = {�� � � � �, �� (�) = �[��� ], � � C� } .
�is set is equipped with the inner product ��, ��� given by, for �1,�2 � �,

���1 , ��2�� = �[�1�2].
�e space � is a Hilbert space called Reproducing Kernel Hilbert Space (RKHS) of� .
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Note that � is indeed a Hilbert space since the map � � �� , mapping C� into �, is by de�nition
an isometry, and C� is a Hilbert space as closed sub–space of �2.

We now list a number of useful properties

• If � = �� , then �� (�) = �(����) = � (�, �) so �� (�) = � (�, �) in this case.

• If � = ��
�=1 ����� , then similarly �� (�) = ��

�=1 � (�� , �).

• For � � C� arbitrary, we have

�� (�) = �[��� ] = �� (� , �), �� (�)��

�is is sometimes called the reproducing formula, as it expresses the value of any element of
the RKHS at a point as an inner product involving the function itself.

• Paralleling the de�nition of C� and thanks to the isometry � � �� , we have

�
�
�
�=1

��� (�� , �), �� � � , � � 1

��

= �.

• In case � has trajectories in a separable Banach space �, it can be proved that � identi�es
with a subspace of �. We will see this is indeed the case in the examples investigated below.

Let S� denote the space Vect{� (�), � � �}, so that C� = S�
�2 .

Example 1 (Gaussian vector in ��). Let � = (�1,… ,��)� be a (column) Gaussian vector. It is a
Gaussian process indexed by � = {1,… , �}. Here we will identify a vector in �� and a function
� = {1,… , �} � �.

If� � N (0,�) with an invertible covariance matrix � then, for any �, � � �� ,

(�, � � ��) = (�� , � � ��), ��, ��� = ����1�. (3.1)

�is means that the RKHS of a Gaussian vector in �� coincides with the ambient space, but with a
twisted geometry that is given by the inner product as above. Let us check this: for � = ��

�=1 ����
in S� and � = (�1,… , ��),� = (�1,… ,��),

�� (�) = �[���] =
�
�
�=1

���[����] =
�
�
�=1

����,� = (��)� ,

so that �� can be identi�ed with the vector ��. In particular, as � is invertible, any vector � � �� is
in �, as � = ��� with �� = ��1�. Now � = �[��� ]�� = �[�����]. For �, � � �� ,

��, ��� = �[��������] = ��� �[��� ]�� = ��� ��� = ����1�,

using that for any real number �� = � (here � = ����), which proves (3.1).
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Example 2 (Random series). More generally, if one now considers

�� =
�
�
�=1

������(�), � � [0, 1],

with (��) � � 2, �� independentN (0, 1) variables and {��(�)} an orthonormal basis of �2[0, 1], it can be
shown that

� =

�
�
�
�=1

����(�), (��) such that
�
�
�=1

��2
� �2� < �

�

,

equipped with the inner product

�
�
�
�=1

���� ,
�
�
�=1

������ =
�
�
�=1

��2
� ���� .

Example 3 (Brownian motion). Consider standard Brownian motion (�� )��[0,1].

Lemma 2. �e RKHS of Brownian motion on [0, 1] is

� =
�ˆ �

0
�(�)��, � � �2[0, 1]

�
,

equipped with the inner product

�
ˆ �

0
�1(�)��,

ˆ �

0
�2(�)���� =

ˆ 1

0
�1(�)�2(�)��.

Remark. �e last inner product can equivalently been wri�en, observing that elements of� are dif-
ferentiable almost everywhere, ��1, �2�� =

´ 1
0 ��1��2. Also, note that for any � � � as above, we have

�(0) = 0. One can ‘release’ Brownian motion at zero and instead consider the process �� = �� + � ,
for � a standard normal variable independent of (�� ). Using a similar proof as for Lemma 2, one
can show that the RKHS�� of this process is� =

�
� +
´ �
0 �(�)��, � � �2[0, 1], � � �

�
with inner–

product ��1, �2��� = �1(0)�2(0) +
´ 1
0 � �1 � �2 .

Proof of Lemma 2.

Let us denote E =
�´ �

0 �(�)��, � � �2[0, 1]
�
. If � = ��

�=1 ����� the corresponding �� � � can be
wri�en

´ �
0 �(�)�� with � the step function � = ��

�=1 ��1l[0,��]. �is is because

�[��� ] =
�
�
�=1

���[����� ] =
�
�
�=1

��(�� � �) =
ˆ �

0
(

�
�
�=1

��1l[0,��])(�)��.

Also, for � = ��
�=1 ����� and � = ��

�=1 ������ two elements of S�, with corresponding �� (�) =
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��
�=1 ��(�� � �) and �� (�) = ��

�=1 ��(��� � �), by de�nition of the RKHS, ��� , ���� equals

�
�
�
�=1

��(�� � �),
�
�
�=1

��(��� � �)�� = �[�� ] = �
�,�

����(�� � ��� ) =
ˆ 1

0
(

�
�
�=1

��1l[0,��])(
�
�
�=1

����1l[0,��� ]). (3.2)

�e above also shows that for any �� step function, the function
´ �
0 �� belongs to�: it su�ces to

use 1l[�,�] = 1l[0,�] � 1l[0,�] for any indicator involved in the de�nition of the step function.

We now check E � �. Let � =
´ �
0 � for � � �2[0, 1]. As any square–integrable function is a

limit in �2 of a sequence of step functions, consider
´ �
0 �� =� �� � � for �� step function with

��� ���2 � 0. Now (��) is a Cauchy sequence in�: indeed by (3.2) we have ��� ����2� = ��� ����22
and (��) is Cauchy since converging in �2. Deduce that (��) converges in � to � � �. To check
that � = � we use the reproducing formula

�(�) = �� (�, �), ��� = lim
�

�� (�, �), ���� = lim
�

��(�) = �(�),

by continuity of the�–inner product and since (��) converges pointwise to � (as ��� � ��2 � 0).

Let now � � �. By de�nition � (�) = ���� , where � � C� = S� and we have �� � � in �2
for some �� � S�. From what we have seen above ����� can be wri�en

´ �
0 �� = ��� for ��

a step function, and we have � (�) = lim� ����� = lim�
´ �
0 �� (reproducing formula). Since ���

converges to � in � (as follows from the isometry C� � �), the sequence (��� ) is Cauchy in �.
As ���� � ��� �2� = ��� � ���22, we deduce that (��) is Cauchy in �2 which implies ��� � ��2 � 0 for
some � � �2, so that

´ �
0 �� �

´ �
0 �. �is means � (�) =

´ �
0 � which shows� � E and concludes the

proof.

2.3 Fundamental properties via RKHS and concentration function

Cameron–Martin formula

�eorem 2. [Cameron–Martin] For a Gaussian random variable� taking values in� separable
Banch space and � � �, the distributions ��+� and �� of� + � and� are mutually absolutely
continuous if and only if � � �. Let us further de�ne the map

� � � � C�

� = �� � � .

�en for any � � �,
���+�
���

(� ) = exp
�
�� � ���2�

2

�
.

Remark. For Brownian motion, this in fact coincides with Girsanov’s formula.
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Ball probabilities and concentration function

Using Cameron–Martin formula above, it is possible to show that if � belongs to �, then for any
� > 0,

�[�� � ��� < �] � �����2�/2�[�� �� < �]. (3.3)

If � does not belong to �, some control of the probability on the le�-hand side is possible via the
concentration function that we de�ne now.

De�nition 5. Let � be a Gaussian random variable taking its values in � separable Banach
space, with RKHS�. Let � belong to��, the closure in � (with respect to the norm of �) of�.
For any � > 0, de�ne

�� (�) = inf
���, ������<�

1
2 ���

2
� � log �[�� �� < �]

=� ��
� (�) + �0(�)

�e function �� (�) is called the concentration function of the process� .

�e concentration function is the sum of the small–ball term and of an approximation term, which
measures the ability of elements of � to approximate a given � . Note that for � � �� and a given
� > 0, the approximation term is always �nite. If � � �� but � � �, then ��

� (�) � +� as � � 0
(otherwise by extracting a subsequence the norm ���� would be �nite).

�eorem 3. Let� be a Gaussian random variable taking its values in� separable Banach space,
with RKHS �. Suppose � � ��. �en for any � > 0,

���� (�/2) � � (�� � ��� < �) � ���� (�).

�is result is particularly useful for Bayesian nonparametric arguments, as, if the � � ��–norm can
be related to the KL–type divergence de�ning the KL–type neighborhood ���(�0, �), then the above
result in particular can provide a lower bound on the prior mass term �[���(�0, ��)] appearing in the
third condition of the GGV theorem.

Borell’s inequality

Let �1 and �1 respectively denote the unit ball of � and of �.

By de�nition �[� � ��1] = �[�� �� < �] = ���0(�). Borell’s inequality generalises this result. In
words, it says that for large� , slightly enlarging��1 by adding elements of norm (in �) of at most
�, the resulting set captures most of the mass of� .
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�eorem 4. [Borell] For � a Gaussian random variables taking values in � separable Banch
space, for any � > 0 and any � > 0, for �(�) = � (N (0, 1) � �),

�[� � ��1 +��1] � �(��1(���0(�)) +�).

2.4 Pre-concentration theorem

Below we use the following standard inequality on the inverse of the Gaussian distribution function
�(�) =

´ �
��(�

��2/2/
�
2� )��: for any 0 < � < 1/2,

0 > ��1(�) � �
�
5
2 log(1/�).

�eorem 5. [van der Vaart and van Zanten 2008] Let � be a Gaussian random variable taking
values in � separable Banach space, with RKHS �. Let �0 � �� and let �� > 0 be such that

��0 (��) � ��2� . (3.4)

�en for any � > 1 with ���2� > log 2, there exists �� � � measurable sets such that

(�) log� (3��,��, � � ��) � 6���2�
(��) �[� � ��] � �����2�

(���) �[�� � �0�� < 2��] � ����2� .

One notes that the result of this theorem curiously ressembles the assumptions of the GGV theorem
of the �rst chapter…

Proof.
�e inequality (iii) is a consequence of the theorem seen just before on probability of balls for
Gaussian processes and their link to the concentration function:

�[�� � �0�� < 2��] � ����0 (��),

which combined with (3.4) leads to (iii).

In order to prove (ii), we de�ne
�� = ���1 +���1,

where �� is to be chosen. By Borell’s inequality,

�[� � ��] � 1 � �(��1(���0(��)) +��).
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By de�nition of the concentration function as a sum of two nonnegative terms, �0(��) � ��0 (��) �
��2� using (3.4). Let us set, for some � > 1,

�� = �2��1(�����2� ).

�en we have, by monotonicity of ��1 and de�nition of ��,

��1(���0(��)) � ��1(����2� ) � ���/2.

Inserting this back into the previous upper-bound on �[� � ��] leads to

�[� � ��] � 1 � �(��/2) = 1 � �(�2��1(�����2� )) = �����2� ,

using that �(��) = 1 � �(�) for any real � , so (ii) is established.

It now remains to check (i). Let �1,… , �� be elements of ���1 separated by at least 2�� in terms
of the � � �� norm, and suppose this set of points is maximal (in the sense that � is the maximal
number of 2��–separated points in���1; the argument below shows that � is necessarily �nite).
�e balls �1 + ���1,… , �� + ���1 are disjoint since the ��’s are 2��–separated. �is implies

1 � �
�
� � �

�
(�� + ���1)�

=
�
�
�=1

�[� � �� + ���1].

Applying Proposition 1, since �� ’s belong to �, and using ����� � ��, one gets

�[� � �� + ���1] � ����� �2�/2�[� � ���1] � ���2
� /2��0(��).

Inserting this into the previous inequality leads to

1 � ����2
� /2��0(��),

from which one sees in particular that � must be �nite. Deduce

� (2��,���1, � � ��) � � � ��2
� /2+�0(��).

�is implies
� (3��, ���1 +���1, � � ��) � ��2

� /2+�0(��).

Let us now apply the standard inequality on ��1 recalled above (using ���2� > log 2)

�� = �2��1(�����2� ) � 2
�
5
2 log(�

���2� ).

Combining with the previous inequality on � , one obtains

� (3��,��, � � ��) � �5���2�+�0(��) � �6���2� ,

using once again (3.4), which leads to (i) and concludes the proof.
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Application: Gaussian white noise model

�e Gaussian white noise model is

�� (�)(�) = � (�)�� + 1���� (�), � � [0, 1].

Recall that in this model, tests verifying condition (T) exist for the � � �2–norm, and that the neigh-
borhood ��� of the GGV theorem is just the �2 ball {� � �� � �0�2 < ��}.

�eorem 6. Let � (�) be observations from the Gaussian white noise model.
Let � be a prior distribution on � � �2[0, 1], de�ned as the distribution of a centered Gaussian
random variable in � = �2, with RKHS �.
Suppose the true �0 � �� and let �� be such that

��0 (��) � ��2� ,

where ��0 is the concentration function of� in � = �2.
�en for � large enough, as � � �,

��0�[�� � �0�2 > ��� |� (�)] � 0.

Proof.
It is enough to note that the conclusion of�eorem 5 matches exactly the conditions of the GGV
�eorem, noting that � = � � �2 and that the neighborhood ��� of the GGV theorem is the �2 ball
{� � �� � �0�2 < ��}. �e�eorem thus follows from the GGV theorem (up to se�ing ��� = 2�� and
noting that � > 1 can be taken arbitrarily large).

Application: Density estimation

In the density estimation model on [0, 1],

� (�) = (�1,… ,��) � ���
� ,

where �� is the distribution of density � on [0, 1]. For the next result, we work in � = C
0[0, 1] space

of continuous functions on [0, 1], equipped with the supremum norm � � ��. �e next result implicitly
assumes that log �0 is well–de�ned, that is, that �0 is bounded from below.

�eorem 7. Let � (�) be observations from the density estimation model.
Let � be a prior distribution on � � C

0[0, 1] = �, de�ned as the distribution of

� � ���´ 1
0 �����

, (3.5)
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where (�� , � � [0, 1]) is a centered Gaussian process with continuous sample paths, with RKHS
�.
Let �0 �= log �0. Suppose �0 � ��. Suppose, for some �� > 0, we have

��0 (��) � ��2� ,

where ��0 is the concentration function of� in � = C
0[0, 1].

�en for � large enough, as � � �,

��0�[�(� , �0) > ��� |� (�)] � 0.

Proof.
One can apply�eorem 5 to the function �0: there exist sets �� such that the conclusions (i)–(ii)–
(iii) of that�eorem are satis�ed.
Our goal is to verify the conditions of the GGV theorem with the Hellinger distance � = �.
For such ��, let us set

F� �=

�

� = ��´ 1
0 ��(�)��

, for � � ��

�

.

By (ii), we have �[F �
�] = �� [� � ��] � �����2� , so the second condition of GGV is satis�ed (we

denote by �� the distribution of the Gaussian process at the level of �’s, while � is the induced
distribution at the level of densities � ).

In order to verify the entropy and prior mass conditions of the GGV theorem, one needs to link
the distance on �’s to the distance on densities. �is is done in Lemma 3.

From the �rst inequality in Lemma 3, one deduces that a covering of �� by 3��–balls using the
� � ��–metric induces a covering of F� by 3���3��/2–balls for the Hellinger distance �. For �� � 0
and large �, this implies

log� (4��,F�, �) � log� (3��,��, � � ��),

which means using (i) of�eorem 5 that the entropy condition of the GGV theorem is satis�ed.

�e second and third inequalities in Lemma 3 imply, for a large enough constant � > 0,

�[���(�0,���)] � �� [�� � �0�� � 2��],

which is larger than ����2� using (iii) of�eorem 5, which shows the prior mass condition is satis-
�ed.

�e result now follows from the GGV theorem.
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Lemma 3. For any bounded functions �,� , if one denotes �� = ��/
´ 1
0 ��(�)��,

�(�� , �� ) � �� � ����������/2

� (�� , �� ) . �� � ��2�(1 + �� � ���)�������

� (�� , �� ) . �� � ��2�(1 + �� � ���)2������� .

Proof.
We prove the �rst inequality. For the second and third, we refer to the paper of van der Vaart of
van Zanten (2008) (or to the book of Ghosal and van der Vaart (2017)).

�(�� , �� ) = � ��/2
���/2�2

� ��/2

���/2�2
�2

= ��
�/2 � ��/2
���/2�2

+ ��/2�
1

���/2�2
� 1
���/2�2�

�2

� 2 ��
�/2 � ��/2�2
���/2�2

.

One can also bound from above

|��/2 � ��/2| = ��/2|��/2��/2 � 1|

� ��/2�� � �
2 ���������/2,

where one uses the inequality |�� � 1| � |� |�|� |, valid for all � > 0. Combining the previous bounds,
one deduces that

�(�� , �� )2 �
´
��+�������� � ��2�´

�� ,

which is no more than �� � ��2�������� , as requested.

Take-away message

�e main take-away message from �eorem 5 and its applications in �ms 6 and 7 is that, when a
Gaussian process is used as prior distribution (and provided the � � ��–norm is easily related to the
testing distance � , KL and V), the rate of convergence of the posterior distribution is essentially de-
termined by solving the equation ��0 (��) . ��2� , where�0 = �0 in the white noise model (respectively
�0 = log �0 in density estimation). �is message actually remains the same for many statistical mod-
els (classi�cation, regression etc.) as well, see Chapter 11 of the bookGhosal and van der Vaart (2017).

We now see how the equation is solved in practice: we see the example of Brownianmotion in details
with proof, and give hints on the general picture for more general Gaussian processes, as well as on
how to achieve statistical adaptation to unknown regularities.
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2.5 Application: posterior rates with a Brownian motion prior

Let us consider the case of Brownianmotion�� = �� in the se�ing (�, ����) = (C0[0, 1], ����) (so, with
the density estimation application in mind; but the results are essentially identical in the �2–se�ing).

As we mentioned earlier, the small ball probability of Brownian motion is well–known from the
probability literature: one can show (we admit it), as � � 0,

�0(�) = � log �[���� < �] � ��2.

It remains to study the approximation term in the concentration function. �is is done in the fol-
lowing Lemma. Recall that we have seen in the last lecture that the RKHS of Brownian motion on
[0, 1] is {

´ �
0 �(�)��, � � �2[0, 1]}, equipped with the Hilbert norm �

´ �
0 ��

2
� = ���22.

Lemma 4. Let (�, � � ��) be the RKHS of Brownian motion.
Suppose �0 � C

�[0, 1], for some � � (0, 1] and �0(0) = 0.
�en

inf
���� ����0��<�

���2� . �
2��2
� .

We note that if � � 1, the result also holds with a constant replacing the power of �, as then �0
belongs to �.

Proof.
We de�ne a sequence � � � that approximates �0. �e idea is to use a convolution. To do so,
one notes that �0 can be extended to � while keeping the Hölder-type property |�0(�)��0(�)| .
|� � � |� . It su�ces to prolongate �0 by a constant outside of [0, 1].

Let �� (�) = �(�/� )/� , for � > 0, and �(�) = ���2/2/
�
2� the Gaussian density. Let

�� (�) �= (�� � �0)(�) � (�� � �0)(0),

with �� � �0(�) =
´
� �� (� � �)�0(�)��.

Note that �� (0) = 0 and �� is a C� map (because it is a convolution by a smooth function), so ��
belongs to �. We now evaluate

|�� � �0(�) � �0(�)| = |
ˆ

�� (�)(�0(� � �) � �0(�))��

.
ˆ

�� (�)|�|��� . ��
ˆ

|�|��(�)�� . �� .

Since �0(0) = 0, we get a similar bound for �� � �0(0) by se�ing � = 0 in the previous inequality.
�is shows ��� � �0�� . �� .
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On the other hand, ��� �2� =
´ 1
0 (�� )

�(�)2�� , where

|(�� )�(�)| = |
ˆ

�0(� � �) 1�2�
�(�/� )��|

= |
ˆ

(�0(� � �) � �0(�))
1
�2�

�(�/� )��| (as
ˆ

�� = 0)

. ��2
ˆ

|�|� |��(�/� )|�� . ���1.

�e result follows by taking � � �1/� .

By gathering the small ball probability estimate and Lemma 4, one gets, with � � � = max(�, �),

��0 (��) � ��2� + � � �(2��2)/�� .

By equating this rate to ��2� , one obtains, with � � � = min(�, �),

�� � ��1/4 � ���/2 = ��
�

1
4 �

�
2

�

.

By using�eorem 7 in the density estimation model, with a normalised Brownian motion prior, one
obtains that for any true density �0 such that �0 = ��0 with �0(0) = 0, the posterior contraction rate
is �� as above. To remove the condition �0(0) = 0, one can consider ‘Brownian motion released at
zero’, see below.

�e rate is the fastest if � = 1/2, for which �� � ��1/4. When � < 1/2, the rate is �� � ���/2: the ap-
proximation term (the ‘bias’) dominates in the contribution from the concentration function. When
� � 1/2, the small ball probability term (analog of the ‘variance’) dominates.

It can be shown that the above rate cannot be improved for Brownian motion: it is the best one that
one can get with this prior. From the minimax perspective, the rate �� above matches the minimax
rate for estimating C� functions, that is ���/(2�+1) if and only if � = 1/2.

It follows also from the proof of Lemma 4 that �� is the set of continuous functions � such that
� (0) = 0 (one uses the proof for �0 continuous and �0(0) = 0, replacing the Hölder condition by
absolute continuity of �0). �at is, almost all of � except for the restriction � (0) = 0. One can show
that to obtain all of �, it su�ces to consider ‘Brownian motion released at zero’

�� = �� + � ,

with � an N (0, 1) variable independent of (�� ). �e RKHS of (�� ) can be shown to be � = {� +´ �
0 �(�)��, � � �2[0, 1], � � �}, for which �� = �.

2.6 Application: posterior rates for other Gaussian processes

One can show a similar result as in the previous subsection for the Riemann-Liouville process�� =
��
� . It can be checked that the obtained rate in this case is (for most � , or otherwise up to a log factor)

�� � ��
���
2�+1 .
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�is rate is the same as the one we obtained for the �rst nonparametric example in the �rst lecture!
Again, the rate is the optimal one (from theminimax perspective) if � = � , but sub-optimal otherwise.

Another example of Gaussian process leading to this rate for � = �2[0, 1] is the random series prior

�� =
�
�
�=1

������(�),

for �� = ��1/2�� , �� a sequence of iidN (0, 1) variables, and (��) an orthonormal basis of �2[0, 1].

�ere are many other examples of Gaussian processes, for which the above theory can be applied:
‘squared-expontial’, Matern … We refer to the book by Ghosal and van der Vaart (2017) for more
information.

2.7 Adaptive inference using Gaussian processes

From the previous paragraphs, comparing the obtained posterior convergence rate with theminimax
one ���/(2�+1), it appears that the Gaussian process prior gives a posterior distribution that converges
at optimal rate if its ‘regularity’ (� = 1/2 for Brownian motion, � > 0 for the Riemann Liouville pro-
cess) matches the regularity � of the true function or density to be estimated.

�is is encouraging, but in practice � is typically unknown. It turns out, that, similar to what we
saw for random histograms (for regularities limited to � � [0, 1] though), adding a single extra
random variable to the Gaussian process allows the posterior to be adaptive: in a 2009 paper, van
der Vaart and van Zanten proved that the following prior on functions � leads to adaptation (that is,
the posterior automatically converges at optimal rate ���/(2�+1) up to a logarithmic factor, without
using a priori the knowledge of �):

1. � is a positive random variable with Gamma distribution

2. Given �, and a certain Gaussian process � , one considers the random function

� � � � ��� .

�e proof of adaptation uses similar arguments as that of �eorem 5, but one needs a more re�ned
argument to make the dependence on � explicit. For more details, we refer to the paper van der
Vaart and van Zanten (2009).
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3 Bayesian methods for high–dimensional models

We introduce so–called high–dimensional statistical models, where the number of pa-
rameters can be equal or larger to the number of observations. Inference is then typically
made possible in these models by appealing to a sparsity assumption, which is o�en realis-
tic in applications. �e main di�culty is that the sparsity pa�ern is not known in advance.
Classes of parsimonious prior distributions are introduced, including the famous spike–
and–slab prior. We then give two results of concentration of posteriors in sparse se�ings,
each corresponding to a di�erent method of proof.

3.1 Introduction

Since the 2000’s practical applications where the number of unknown parameters is ‘large’, even
possibly much larger than the number of observations, have become commonplace. Although it
may seem paradoxical at �rst to be able to solve or even say something in such ‘di�cult’ se�ings, a
key pa�ern that has emerged in the study of these models is that of sparsity. Namely, although the
number of parameters is very large, possibly only a few are really signi�cant.

Sparsity

One very commonly assumed form of sparsity is the following: the true �0 belongs to the nearly-black
class

�0[�] = {� � �� � #{� � �� � 0} � �} (3.6)

for 0 � � � �, where # stands for the cardinality of a �nite set. �is means that only � out of �
coordinates of � are nonzero (but we do not know which ones), and typically it is assumed that
� = �(�), so only a very small number of coordinates of � have ’signal’, that is are nonzero. In the
sequel we assume �� � � and �� = �(�) as � � �.

Some high-dimensional sparse models

�e simplest high-dimensional model is given by the normal sequence model:

�� = �� + �� , � = 1,… , �, (3.7)

where �� are i.i.d. N (0, 1), the parameter set � for � = (�1,… , ��) is �� but � is assumed to be sparse
in the sense that it belongs to one of the sets �0[�] for some 0 � � � �.

It is known that the optimal convergence rate in model (3.7) over �0[�], in terms of asymptotic mini-
max risk for the squared error loss, is 2� log(�/�). �at is, if ���2 = ��

�=1 �2� is the (squared)–�2 norm,

inf
�

sup
�0��0[�]

��0 [�� (� ) � ��2] = 2(1 + �(1))� log(�/�),

where � = � (� ) is an estimator of � based on the observation of � = (�1,… ,��).
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�is model is a special case of the high-dimensional Gaussian linear regression model

� = �� + �, (3.8)

where � � �� , the noise vector � follows a N (0, �2��) distribution and � is a � ◊ � matrix with real
coe�cients. �e ‘high-dimensional case’ corresponds to � � �, possibly � = �(�). In that case, one
typically assumes some form of sparsity such as � � �0[�], for some � = �(�).

In the sequel, for simplicity of presentation we focus on the simpler sequence model (3.7), although
most the obtained results can be transferred to the regression model (3.8) by assuming appropriate
conditions on the design matrix � .

�e need for prior modelling

In the case where � is a subset of ��, the simplest prior that comes to mind is � = ���=1�, making
the coordinates of � independent of distribution � on �. However, from the point of view of the
posterior distribution, this unstructured prior is o�en not suitable. Consider for instance model (3.7)
and let us endow � with the a product of Laplace (double-exponential) priors

�� =
�

�
�=1

Lap(�/2), � > 0.

For this choice, the posterior mode (that is, the mode of the posterior density) is [exercise: check it]

���� = argmin
����

��� � ��22 + ����1�.

�is is nothing but the classical LASSO estimator. In the special case of model (3.7), for the choice
� = �� �

�
log �, the LASSO achieves the minimax rate

sup
���0[�]

�� [� ����� � ��2] . � log �,

up to the form of the log factor. However, if the true �0 = 0, for small � > 0, one can show that (we
do not prove it here)

�0�������
2 � � �

log � | �� � 0.

�is means that the “LASSO–posterior distribution” ���[� |� ] is suboptimal over sparse classes �0[�]
for � � �/ log2 �. �e intuition behind this result is that, although its mode is the LASSO and is thus
sparse, the LASSO–posterior as a probability distribution is not sparse. A sample from ���[� |� ]
almost surely sets no coordinate of � to 0. From the Bayesian perspective, this means that one needs
to take structural assumptions such as sparsity into account when proposing a prior distribution.

3.2 Sparse priors

Spike–and–slab: priors with many exact zeroes

Spike–and–slab priors. For � � [0, 1] and � a distribution on �, the prior

�� = �� ,� =
�

�
�=1

(1 � �)�0 + ��, (3.9)
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where �0 is the Dirac mass at 0, is called spike and slab (SAS) with parameter � � [0, 1] and slab
distribution �. To inforce sparsity, one may choose a deterministic � : the choice � = 1/� is standard
and implies that under the prior, the expected number of nonzero coe�cients is of the order of a
constant. To obtain an improved data �t, options performing be�er in practice include an empirical
Bayes choice �� of � (more on that below), or hierarchical Bayes, where � is itself given a prior, for
instance a Beta distribution, e.g. Beta(1, � + 1).

Subset–selection priors. For �� a prior on the set {0, 1, 2,… , �} and S� the collection of all subsets of
{1,… , �} of size �, let � be constructed as

� � ��, � | � � Unif(S�), � | � � �
���

� � �
���

�0. (3.10)

�e spike–and–slab prior (3.9) is a particular case where �� is the binomial Bin(�, �) distribution.
�rough the prior ��, it is possible to chose dimensional priors that ‘penalise’ more large dimensions
than the binomial, for instance the complexity prior � (�) � exp(��� log(��/�)).

Continuous shrinkage priors

While subset selection priors are particularly appealing in view of their naturally built-in model
selection, one may instead use prior distributions that do not put any coe�cient exactly to 0 but
instead draw either very small values or intermediate/strong ones. A way to do so is to replace the
Dirac mass in (3.9) by an absolutely continuous distribution with density having a high or in�nite
density at zero.

Spike and slab LASSO.�is prior replaces �0, � by two Laplace distributions Lap(�0), Lap(�1) with �0
large, typically going to � with � to enforce (near–)sparsity and �1 a constant, that is

�� = �� ,� =
�

�
�=1

(1 � �)Lap(�0) + �Lap(�1),

where � , as above for the spike and slab prior, to be chosen.

Horseshoe prior. Leaving �nite mixtures, one may also consider continuous mixtures: a popular
choice is the horseshoe prior of Carvalho, Polson and Sco� (2010), which is a continuous scale–
mixture of Gaussians: given a parameter � > 0 to be chosen, this horseshoe draws coordinates ��
independently as

�� | �� � N (0, �2� ), �� � �+(0, � ), (3.11)

where �+(0, � ) is a half-Cauchy distribution with scale � . �is leads to a marginal density � in � that
satis�es, with � = 1/

�
2�3,

�
2� log�1 +

4� 2
�2 � � �(�) � �

� log�1 + 2� 2
�2 � .

�is density has a pole at 0 and Cauchy–tails. One may also consider di�erent priors on the scales
�� . �is is considered in the paper Salomond, Schmidt-Hieber and van der Pas (2016).
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Back to spike–and–slab: on the choice of �

All previously introduced sparse prior distribution have a tuning parameter: � for the spike–and–
slab (SAS) prior, the parameter(s) of the prior on dimension �� for the subset selection prioe, the
parameter � for the horseshoe. �e performance of the posterior distributions associated to these
priors in model (3.7) are quite sensitive the choice of these parameters, as we will see below. We now
present some possibilities to chose them, focusing on the case of � for the SAS prior (the discussion
being quite similar in the other cases).

Deterministic value of � .

1. Choice � = 1/�. Under this prior, the expected (prior) number of nonzero coe�cients is
� � 1/� = 1. We will prove below that this choice already leads to a nearly-optimal con-
vergence rate for the associated posterior distribution. However, one can �nd estimators with
a signi�cantly be�er behaviour, in particular for � not so large. �e priors with � = 1/�� ,
� � 1, behave similarly.

2. ‘Oracle choice’ � = ��/�. Under this prior, the expected (prior) number of nonzero coe�cients
is � � ��/� = ��, that is, the ‘correct’ one. We will prove below that this choice leads to an
optimal convergence rate for the associated posterior distribution. However, it requires the
knowledge of ��, which is typically unknown in practice

Empirical Bayes. One possibility is to replace � by an ad-hoc estimator of the number of non-zero
coordinates of � , for instance by keeping only coordinates above the expected noise level

�� = 1
�

�
�
�=1

1l{|�� | >
�
2 log �}.

However this choice may be too conservative in that signals below the universal
�
2 log � threshold

may not be detected.

�e marginal maximum likelihood empirical Bayes approach (MMLE) consists in forming a likeli-
hood in terms of the parameter of interest (here �) by integrating out the parameter � . In model
(3.7), for a spike–and–slab prior and �xing the distribution � with density � , we have � | � � ��
and �� | � � �� independent normals. �en the Bayesian distribution of � given � has density´
�� �� (��)��� (�) [Exercise: check it]. �e maximisation of the corresponding ‘likelihood’ leads

to, with � = � � �,

�� = argmax
�

�
�=1

((1 � �)�(��) + ��(��)) .

�e plug-in posterior� �� [� |� ] has been advocated and studied in George and Foster (2000) and John-
stone and Silverman (2004) among others.

Hierarchical Bayes. In this approach, one draws � at random

� | � � ��

� � �� ,

where �� is some distribution on [0, 1]. It can be checked that for �� the SAS prior of parameter � ,
taking �� = Beta(1, � + 1) leads to a posterior distribution contracting at the optimal rate.
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3.3 Posterior convergence for spike–and–slab priors

Posterior distribution with �xed �

We consider the following choices

� =

����
�����

Lap(1)
��

Cauchy(1)

where Lap(�) denotes the Laplace (double exponential) distribution with parameter � and Cauchy(1)
the standard Cauchy distribution. Di�erent choices of parameters and prior distributions are possi-
ble but for clarity of exposition we stick to these common distributions. In the sequel � denotes the
density of � with respect to the Lebesgue measure.

By Bayes’ formula the posterior distribution under (3.7) with �xed � � [0, 1] is

�� [� |� ] �
�

�
�=1

(1 � �(��))�0 + �(��)��� (�), (3.12)

where, denoting by � the standard normal density and �(�) = � � �(�) =
´
�(� � �)��(�) the

convolution of � and � at point � � �, the posterior weight �(��) is given by, for any �,

�(��) = �� (��) =
��(��)

(1 � �)�(��) + ��(��)
. (3.13)

�e distribution ��� has density

��� (�) �=
�(�� � �)� (�)

�(��)
(3.14)

with respect to Lebesgue measure on �. �e behaviour of the posterior distribution �� [� |� ] heavily
depends on the choices of the smoothing parameters � and � . It turns out that some aspects of this
distribution are thresholding-type estimators, as established in Johnstone and Silverman (Annals of
Statistics, 2004).

Posterior median and threshold �(�). �e posterior median �����
� (��) of the �th coordinate has a thresh-

olding property: there exists �(�) > 0 such that �����
� (��) = 0 if and only if |�� | � �(�), see Johnstone

and Silverman (2004). A default choice can be � = 1/�; one can check that this leads to a poste-
rior median behaving similarly as a hard thresholding estimator with threshold

�
2 log �. One can

improve on this default choice by taking a well-chosen data-dependent � .

A generic posterior convergence result

Let us work with the subset-selection prior (3.15).

� � ��, � | � � Unif(S�), � | � � �
���

� � �
���

�0. (3.15)

Let us denote, for � � ��, by �� its support

�� = {� � �� � 0},

that is the indices of its nonzero coordinates. We denote �0 = ��0 .
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De�nition 6. We say that a prior on dimension �� as in (3.15) has exponential decrease if there
exists a constant � < 1 such that, for any � � 1,

��(�) � ���(� � 1).

Examples. �e prior ��(�) � ��� and the prior ��(�) � ���� log(��/�) for � > 0, � > 1 + �, both have
exponential decrease [Exercise]. For binomial priors on dimension, �� = Bin(�, �), it can be checked
that they also verify the exponential decrease if �� . ��, which is veri�ed for the choices � = 1/�
and � = ��/�. It can also be veri�ed, see Castillo and van der Vaart (2012), that the beta-binomial
prior

� | � � Bin(�, �)
� � Beta(1, � + 1)

veri�es the exponential decrease property.

�eorem 8. Take a prior � as in (3.15) with � = Lap(1) and suppose, for �0 = ��0 , for some
constant � > 0,

�(�0) � ����� log �.

Assume that the prior on dimension �� veri�es the exponential decrease as in De�nition 6. �en
for � large enough, as � � �,

sup
�0��0[��]

��0�[�� � �0�2 > ��� log � |� ] = �(1).

Corollary. It is not hard to check that all the examples of priors mentioned just above the statement
of�eorem 8 verify, combined with the uniform prior on subsets as in (3.15), the condition on �(�0)
from the�eorem. So they all lead to a posterior convergence rate at least of the order �� log �. By a
more precise argument, one can in fact prove (see Castillo and van der Vaart (2012)) that both priors
on dimension ��(�) � ��� and the Beta-binomial prior as above both lead to a posterior convergence
rate of��� log(�/��) for large� (so, with the precise logarithmic) factor. �is shows that both priors
achieve the optimal rate in an adaptive way. Note that we also ‘recover’ (although the results are
not exactly equivalent as noted above), the posterior contraction rate obtained in�eorem 9 for the
binomial priors on dimension – that lead to the SAS prior construction and vice-versa – with � = 1/�
or � = ��/� (up to the form of the log factor for the la�er).

Proof of�eorem 8

Proof.
We follow ideas similar to that of the proof of the GGV theorem, but do not do the testing/entropy
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part explicitly. For any � � �� measurable, Bayes’ formula can be wri�en

�[� |� ] =
´
� exp{��� � ��2/2}��(�)´
exp{��� � ��2/2}��(�) =

´
� exp{�(� ,� )}��(�)´
exp{�(� ,� )}��(�) ,

where we have set �(� ,� ) = ��� � �0�2/2 + �� � �0,� � �0�. [One may remark that the parameter
set of sparse vectors is unbounded, so one cannot hope for a uniform bound from below of the
denominator independent of how ‘large’ the coordinates of �0 are. In fact, the bound below fea-
tures an �1 norm ��0�1; fortunately, this can be compensated from a similar term appearing in the
bound for the numerator as seen below]

Now let � �=
´
exp{�(� ,� )}��(�) be the denominator on the last term of the display on Bayes’

formula above, and � =
´
� exp{�(� ,� )}��(�) the numerator, with � to be chosen below. We

start by a bound on �.

Bound on the denominator �. Let us set, for �� � � to be chosen,

� = {� � �� � �0� � ��}.

By restricting the integral on the denominator � to the set �,

� � �(�)
ˆ

��(� ,� )� ��(�),

where �� is the probability distribution ��(�) = �(� � �)/�(�). Let us now apply Jensen’s inequality
with the exponential map to obtain

ˆ
�
��(� ,� )� ��(�) � exp

�ˆ
�
�(� ,� )��(�)

�
.

Noting that, on �, we have ��� � �0�2/2 � �2� /2, and se�ing

� �= �
ˆ
�
(� � �0)� ��(�),� � �0� =

ˆ
�
�� � �0,� � �0�� ��(�)

by linearity, one gets

� � �(�)��
�2�
2 +� .

Now under ��0 , we have � � �0 = � � N (0, ��), with �� the identity matrix in dimension �. In
particular,

�� � �0,� � �0� � N (0, �� � �0�2).

So, ��0� = 0 (Fubini), and by Jensen’s inequality again this time applied with � � �2, and Fubini,

��0� 2 �
ˆ
�
��0�� � �0,� � �0�2� ��(�)

=
ˆ
�
�� � �0�2� ��(�) � �2� ,
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using the de�nition of �. By Markov’s inequality, ��0 [|� | > �2�] � ��4� ��0� 2 � ��2� . One deduces
that on an eventA of ��0–probability at least 1 � (1/�2� ), we have

� � �(�)��3�2� /2.

Let us now focus on �(�). Note that an equivalent way of writing the prior � is as follows

� = �
�
�(�)�� , �� �=

�
�
�=1

��,� ,

where ��,� = Lap(1) if � � � and ��,� = �0 otherwise.

Denoting by �0 �= ��0 the support of �0, and �� = (�� , � � �) for � � {1,… , �}, and for � as above,
with ���1 = ��

�=1 |�� |,

�(�) � �(�0)��0 [�� � �0� � ��] � �(�0)��0 [�� � �0�1 � ��]

� �(�0)
ˆ
����0�1���

�
���0

1
2�

�|�� |���

� �(�0)2���
ˆ
���0��0�1���

�����0��0�1���0�1���0

� �(�0)2��� ����0�1
ˆ
���0 �1���

�����0 �1���0 ,

where we have used that ���2 � ���1 for � � �� , � � 1 and invariance by translation of Lebesgue’s
measure [note: one can also use a lower bound involving volumes of balls]. Next, as {|�� | �
��/��, � � �0} � {���0�1 � ��}, with �0 = |�0| � ��,

ˆ
���0 �1���

�����0 �1���0 � �

ˆ ��/��

���/��
��|�|���

�0
& (�����/�� )�0 & ���� .

From the previous bounds one deduces that, on the eventA,

� & �(�0)��3�
2
� /2�����������0�1 .

Bound on the numerator � . Recall that � �=
´
� exp{�(� ,� )}��(�), and we de�ne � now as

� �= �1 � �2, with, for � ,� > 0, with |�| the cardinality of �,

�1 �= {� � |�� | � ���}, �2 �= {� � �� � �0� > ���}.

Let us also de�ne the event
A� =

�
max
1����

|�� | �
�
2 log �

�
.

A union bound gives, using the standard bound ��(�) � �(�)/� , for � > 0,

� (A�
� ) � 2� ��(

�
2 log �) = �(1)
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Also, noting that if � � �1 we have |����0 | � (� + 1)��, for any such � on the eventA� ,

|�� � �0,� � �0�| � �� � �0�1 max
1����

|�� � �0,� |

� |����0 |�� � �0�max
1����

|�� |

�
�
2(� + 1)�� log ��� � �0�,

where the second line uses Cauchy-Schwarz inequality. Now using the inequality 2�� � ��1�2 +
��2, one �nds that, onA� and for large enough �2 > 0,

|�� � �0,� � �0�| � �2�� log � + �� � �0�2
4 .

Inserting this into the de�nition of � leads to, on the eventA� ,

� �
ˆ
�
������0�2/4+�2�� log ���(�)

� ��2�� log � �
�
�(�)

ˆ
��

�������0�2/4 �
���� �1

2|�| ��� , (3.16)

where �� = {� � �� = �} � � , using that by de�nition the prior on the selected subset is product
Laplace. By the triangle inequality,

� ����1 � ���0,��1 + ��� � �0,��1. (3.17)

One bounds each term on the right hand side. Cauchy-Schwarz implies, on � ,

��� � �0,��1 �
�
������ � �0�.

On the other hand, we have

���0,��1 � ���0�1 + ��0,�0��� �1 � ���0�1 +
������ � �0�,

as indeed, using again Cauchy-Schwarz,

��0,�0��� �1 � |�0 � �� |1/2��0,�0��� �
� ������ � �0�.

Inserting back the obtained bounds in (3.17) one gets

�����1 � ���0�1 + (
�
� + 1)������ � �0�.

�e last term is bounded by � ��� + ��� � �0�2/8 for large enough � �. Now the integral in (3.16) is
bounded from above by

����0�1��2�2� /16+� ���
ˆ
��

�������0�2/16��� .
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By de�nition, �� contains only vectors of support at most ���, so that
ˆ
��

�������0�2/16��� �
ˆ
�|�|

����� �2/16��� � ���� .

�is gives the following bound on the numerator, on the eventA� ,

� � ��2�� log ���2�2� /16+���� ����0�1 .

Pu�ing the bounds together. Gathering the previous bounds gives, onA �A� ,

�
� � �3�2� /2+��+�3�� log ���2�2� /16,

where one uses the assumption on �(�0). By choosing �2� = �� log � and taking � large enough,
one deduces, on A �A� , that

� /� � ���2�2� /32 = �(1),

which implies that ��0�[�1 � {� � �� � �0� > ���} |� ] = �(1). Combining this with Lemma 5 for
� large enough, one obtains that ��0�[�� � �0� > ��� |� ] = �(1), which concludes the proof of
�eorem 8.

Lemma 5. Suppose the prior on dimension �� in (3.15) veri�es the exponential decrease property
from De�nition 6 and that � has a centered density with �nite second moment. �en, for �� =
{� � �� � 0} the support of the vector � , for � large enough, as � � �,

sup
�0��0[��]

��0�[� � |�� | > ��� |� ] = �(1).

Proof.
See Proposition 4.1 and Lemma 4.1 in Castillo and van der Vaart (2012).

3.4 Applications to inference in high-dimensional models

We brie�y mention a few applications of the previous theory. Of course, each speci�c applications
requires speci�c extra work, but the results we have seen so far an important �rst step towards them
in the Bayesian se�ing. Much research remains to be done in this very active area.

1. Estimation and prediction of sparse vectors. In the previous sections, we have seen how to
estimate � in the sparse Gaussian sequence model using a Bayesian approach with sparse
priors. Analogous results can be obtained in the high-dimensional regression model under
assumptions on � , either on estimation of � there, or on estimation of �� (the la�er typically
requires less assumptions and is called the prediction task).

2. Con�dence sets for � or for coordinates of � . One may try to use regions that get high posterior
probability (so–called credible sets) to get con�dence sets having speci�c coverage and small-
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est possible diameter. �is is possible only to a certain extent, and one may have to either
make assumptions on the sparsity parameter, or to allow for larger regions, to be able to solve
the problem. Such questions are considered, for instance, in Szabo, van der Pas and van der
Vaart (2017), and Castillo and Szabo (2020).

3. Variable selection and Multiple testing. In applications such as genomics, one very important
practical question is to select a subset of coordinates that contain ‘signal’, with a certain control
of the number of false positive (and possibly also false negative). In the sparse sequence model,
this can be done through the famous Benjamini-Hochberg procedure (BH procedure), but also
in a Bayesian way via, for instance, an empirical Bayes posterior, as suggested by Efron (2007),
and investigated from the frequentist perspective in Castillo and Roquain (2020).

3.5 Complement

Note: this section was not covered in the class and can be skipped.

�e following results help understanding the role of � in the previous result: they quantify the
behaviour of the posterior when � is �xed.

Convergence of posterior for �xed �

Expected posterior �2–squared risk. For a �xed weight � , the posterior distribution of � is given by
(3.12). On each coordinate, the mixing weight �(��) is given by (3.13) and the density of the non-zero
component ��� by (3.14). In the sequel we will obtain bounds on the following quantity, already for
a given � � [0, 1], ˆ

�� � �0�2��� (� |� ) =
�
�
�=1

ˆ
(�� � �0,�)2��� (�� |��).

To do so, we study �2(� , �, �) �=
´
(� � �)2��� (� | �), where �� (� | �) � (1 � �(�))�0 + �(�)�� (�) using

(3.12). By de�nition

�2(� , �, �) = (1 � �(�))�2 + �(�)
ˆ
(� � �)2�� (�)��.

�is quantity is controlled by �(�) and the term involving �� . From the formula for the posterior
weight �(�) in (3.13), bounding the denominator from below by one of its two components, and using
�(�) � 1 yields, for any real � and � � [0, 1],

� �
� � � (�) � �(�) � 1 � �

1 � �
�
� (�). (3.18)

�eorem 9. In the sparse sequence model, let us consider a spike–and–slab (SAS) prior with
�xed � � (0, 1). Let � be either the standard Laplace or Cauchy distribution. �en there exist
�0 > 0, �0 � 2 and � > 0 such that for any � � �0 and � � �0,

sup
�0��0[��]

��0
ˆ

�� � �0�2��� (� ) � ���
�
log(1/�) + ���(1 + log(1/�)).
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As a particular case, one obtains, for � large enough,

sup
�0��0[��]

��0
ˆ

�� � �0�2��� (� ) �

�
��� log � if � = 1/�,
��� log(�/��) if � = ��/�.

In words, �eorem 9 controls the average �2–squared norm between a posterior draw and �0, in
expectation under ��0 , for a sparse �0. �is result implies, using Markov’s inequality, that if ��(�) is
the rate obtained in�eorem 9, we have, for any �� � �, as � � �,

��0�[�� � �0�22 > ����(�) |� ] � 0.

Note that for � = 1/�, or more generally � = ��� with � � 1, the rate given by the �rst display in
the statement of �eorem 9 is given by ��� log �, that is the minimax rate, up to replacing log �/��
by log �. Note that the rate is only signi�cantly di�erent from ��� log(�/��) only in the case where
log(�/��) = �(log �) which happens in the almost dense case where �� is �(�) but �/�� grows very
slowly, e.g. logarithmically.

If one takes the ‘oracle’ choice � = ��/�, which means that one knows beforehand ��, the obtained
rate is the optimal one ��� log(�/��) up to a constant. If � goes signi�cantly above ��/� in that
� � (��/�)

�
log �, the obtained rate is of larger order than �� log(�/��), so is suboptimal.

A result for the integrated posterior distance is in general not equivalent to a posterior convergence
result such as the ones we have seen so far. But it implies such a result up to an arbitrary diverging
sequence result. A nice aspect of the result obtained in �eorem 9 is that it implies convergence
for the posterior mean ��(� ) =

´
���� (� |� ). Indeed, using Jensen’s inequality for the convex map

� � ���2,

��0� ��(� ) � �0�2 � ��0
ˆ

�� � �0�2��� (� ).

�e proof of �eorem 9 is presented in Section 3.5 and is based on a direct analysis of the poste-
rior distribution via the explicit expressions (3.12)–(3.13). It is also possible to analyse the empirical
Bayes � �� [� |� ] posterior using this approach. To do so, one needs to carry out a detailed analysis of
��(� ), which is done in the paper by Johnstone and Silverman (2004).

�e above discussion shows that the behaviour of the posterior �� [� |� ] is quite sensitive to the
choice of � . Even though the default choice � = 1/� gives an almost optimal rate, it is desirable both
for theory and practice to develop methods that choose � in an automatic way, ‘adapting’ to the
unknown sparsity level ��. In fact, such methods give also much be�er results in practice. In Section
3.3, we develop a result based on a method of proof similar to that of the GGV theorem that enables
one to prove such adaptive results on the basis of qualitative assumptions.

Proof of�eorem 9

�e thresholds � (�) and � (�). From Lemma 9 below, we know that �/�, and therefore � = �/� � 1, is
a strictly increasing function on �+. It is also continuous, so given � , a pseudo-threshold � = � (�)
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can be de�ned by
�(� ) = 1

� . (3.19)

Further one can also de�ne � (�) as the solution in � of

�(� , �) �= �(�)
1 � �(�) =

�
1 � �

�
� (�) = 1.

Equivalently, �(� (�)) = 1/2. Also, �(� (�)) = ��1 � 2 so

� (�) � � (�). (3.20)

We prove in Lemma 7 below that � (�) is of order
�
log(1/�).

Proof of�eorem 9. Recall the notation �2(� , �, �) =
´
(� � �)2��� (� | �). By de�nition

ˆ
�� � �0�2��� (� )

= �
�� �0,�=0

ˆ
(�� � �0,�)2��� (� ) + �

�� �0,��0

ˆ
(�� � �0,�)2��� (� )

= �
�� �0,�=0

�2(� , 0,��) + �
�� �0,��0

�2(� , �0,� ,��).

�eorem 9 is proved by taking the expectation and invoking Lemma 6:

��0
ˆ
�� � �0�2��� (� )

. �
�� �0,�=0

� (�)� + �
�� �0,��0

(1 + � (�)2).

�e proof is complete by noting that the �rst sum has at most � terms and the second at most ��
since �0 � �0[��], and using the bounds � (�) � � (�) �

�
log(1/�) from Lemma 7.

Lemma 6. Let � be the Cauchy or Laplace density. For any � and � � [0, 1/2],

�2(� , 0, �) � ��1 �
�

1 � �
�
� (�)�(1 + �2)

�2(� , �, �) � (1 � �(�))�2 + ��(�)((� � �)2 + 1).

Let � be the Cauchy density. For any real � and small enough � ,

�0�2(� , 0, �) � �� (�)�
���2(� , �, �) � �(1 + � (�)2).

Proof of Lemma 6.
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First one proves the �rst two bounds. To do so, we derive moment bounds on �� . Since �� (�) is a
density function, we have for any � ,

´
�� (�)�� = 1. �is implies (log �)�(�) =

´
(� � �)�� (�)�� =´

��� (�)���� . It can be checked, see Johnstone and Silverman (2004) p. 1623, that
´
��� (�)�� =�

��1(�) is a shrinkage rule, that is 0 � ��1(�) � � for � � 0, so by symmetry, for any real � ,

|
ˆ

��� (�)��| � |� |.

Writing �2 = (� � �)2 + 2�(� � �) + �2 and noting that
´
(� � �)2�� (�)�� = ���(�)/�(�) + 1,

ˆ
�2�� (�)�� = ���

� (�) + 1 + 2� �
�

� (�) + �2.

Note that for � Laplace or Cauchy, we have |� �| � �1� and |� ��| � �2� . �is leads to

|��(�)| = |
ˆ

� �(� � �)�(�)��| � �1
ˆ

� (� � �)�(�)�� = �1�(�)

and similarly |���| � �2�, so that
´
�2�� (�)�� � �(1 + �2) which gives the �rst bound using (3.18).

Also, for any real �,
ˆ
(� � �)2�� (�)�� = (� � �)2 + ���

� (�) + 1 + 2(� � �)�
�

� (�).

Now using again ��/� � �1 and ���/� � �2 leads to
ˆ

(� � �)2�� (�)�� � �(1 + (� � �)2).

By using the expression of �2(� , �, �), this yields the second bound of the lemma.

We now turn to the bounds in expectation. For a zero signal � = 0, one notes that � = � (�) is the
value at which both terms in the minimum in the �rst inequality of the lemma are equal. So

�0�2(� , 0, �) .
ˆ

1l|� |�� (�)
�

1 � �
�
� (�)�(�)(1 + �2)�� +

ˆ
1l|� |>� (�)(1 + �2)�(�)�� .

By Lemma 9, � has same tails as � , so for both � Laplace or Cauchy, � is such that � � (1+�2)�(�)
is bounded, so one gets, with � � 1/2,

�0�2(� , 0, �) . �
ˆ

1l|� |�� (�)�� + � (�)�(� (�)) + �(� (�))/� (�)

. � (�)� + � (�)�(� (�)) . � (�)� + � (�)��(� (�)) . � (�)� .

Turning to the last bound of the lemma, we distinguish two cases. Set for the remaining of the
proof � �= � (�) for simplicity of notation. �e �rst case is |�| � 4� , for which

���2(� , �, �) � �2 + � � �1(1 + � 2).



72 2023–2024

�e second case is |�| > 4� . We bound the expectation of each term in the second bound of the
lemma (that for �2(� , �, �)) separately. First, �[�(�)(1 + (� � �)2)] � � . It thus su�ces to bound
�2��[1 � �(�)]. To do so, one uses the bound (3.21) and starts by noting that, if � � N (0, 1),

�[1l|�+�|�� ] � �[|� | � |�| � � ] � �[|� | � |�|/2].

�is implies, with ��(�) =
´ �
� �(�)�� � �(�)/� for � > 0,

��[�21l|� |�� ] � �2|�|�(|�|) � �3.

If � = {� , |� � �| � |�|/2} and �� denotes its complement,

�
2���[��

1
2 (|� |�� )

2 ] �
ˆ
��
��

1
2 (���)

2�� +
ˆ
�
��

1
2 (|� |�� )

2�� .

�e �rst term in the last sum is bounded above by 2 ��(|�|/2). �e second term, as � � {� , |� | �
|�|/2}, is bounded above by 2 ��(|�|/4). �is implies, in the case |�| > 4� , that

���2(� , �, �) � �4 + 4�2 ��(|�|/4) + 5 � � .

�e last bound of the lemma follows by combining the previous bounds in the two cases.

Bound on threshold � (�).

Lemma 7. For any � � �0 with �0 small enough, and � (�) solution of the equation �(� (�)) = ��1,
we have for � large enough,

� (�) � �
�
log(1/�).

Proof.
Since � = �/� � 1 is strictly increasing by Lemma 9, the equation has a unique solution, and � (�)
must be strictly decreasing (as � � ��1 is).

Also, � and � have same tails so �/�(�) � 1 � ���2/4 � 1 � ���2/4 for � > 0 for small enough
�, � > 0, recalling that � is either the Laplace or Cauchy density. Writing the previous inequality
for � = � (�) leads to

� (�) �
�
4 log(1/(��)),

which gives the result by taking � � �0 small enough.

Bound on posterior weight 1 � �(�) in terms of � (�).

Lemma 8. Let � (�) be the unique solution of the equation ��(�) = (1 � �)�(�). �en for �(�) as
in (3.13),

1 � �(�) � 11l|� |�� (�) + ��
1
2 (|� |�� (�))

21l|� |>� (�). (3.21)
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Proof.
See Johnstone and Silverman (2009) p. 1623.

Miscellaneous: properties of � and �/�.

Lemma 9. For � the standard Laplace or Cauchy density, let us recall the notation � = � � �, the
convolution of � and �. We have the following properties.

1. �e function � � �(�) is decreasing on [0,�).

2. �e function � � �(�) has same tails as � � � (�).

3. �e map � � �
� (�) is strictly increasing on [0, +�).

Proof.
�ese properties are proved in Johnstone and Silverman (2004). Points 2. and 3. are a part of
Lemma 1 there; Point 1. follows from the bounds around Eq. (55) there.



74 2023–2024



CHAPTER 4

Deep Bayes

In this chapter we consider two directions for Bayesian deep methods. First, we consider
random deep neural networks as prior distributions for estimating smooth functions. We
recall terminology and basic concepts for such networks and de�ne a prior distribution
on parcimonious deep networks. We then show that corresponding posterior distributions
converge at near–optimal rate around Hölder functions of arbitrary regularities.

Second, we introduce deep Gaussian process priors and sketch a few ideas of why they
are able to adapt to compositional structures.
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1 Introduction to neural networks

Let us introduce some vocabulary. A neural network is a structure with an input layer, a number
of hidden layers (‘couches’ in french) and an output layer. Each hidden layer has a number of units
called neurons. An input is taken by the network in the form of a vector � = (�1,… , �� )� in �� for
some � � 1. �e input layer just contains � units: each one passes the input coordinate �� unchanged
to the neurons of the �rst hidden layer. A network with one hidden layer is depicted in Figure 4.1.
�en � is modi�ed at the level of the �rst hidden layer in a way described below. Each layer is linked
to the next one by arrows between neurons (or between units of input or output layer and a neuron).

Input
layer

Hidden
layer

[neurons]

Output
layer

x1

x2

x3

x4

x5

Output

Figure 4.1: Structure of neural network with one hidden layer

Activation function. �e action of a given neuron will be speci�ed using an activation function, a
function � � � � �. In the sequel, we consider the ReLU activation (ReLU stands for Recti�ed
Linear Unit) given by

� (�) = � � 0 = �+. (4.1)

To encode the action of all neurons in a given layer input dimension � � 1, we de�ne the multidi-
mensional shi�ed activation function as, given � = (�1,… , �� )� a vector of shi�s,

��� = ��(�) �=

�
�
�
�
�
�

� (�1 � �1)
� (�2 � �2)

�
� (�� � �� )

�
�
�
�
�
�

(4.2)

Action of one layer. Each arrow is given aweight that multiplies the input of the arrow. Let us consider
a given layer with � neurons and a vector of biases � = (�1,… , ��)�. At the level of each neuron of the
layer the incoming numbers from each arrow are summed, a bias relative to the neuron is applied



M2 – Nonparametric Bayes 77

and the result is �nally passed through the activation function � . If all the weights are aggregated in
a matrix, say� , with dimension � ◊ �, where � is the input dimension and � the number of neurons
of the considered layer, this means that the vector output of the considered layer is ���� . �e action
of the �rst neuron of the �rst layer is illustrated in Figure 4.2.

x2 W12 � �(W1·x� v1)

Output of first neuron

x1 W11

x4 W14

x3 W13

x5 W15

Weights

Bias
v1

Inputs

Figure 4.2: Operations at the level of the �rst neuron and output

Depth of the neural network. �e previous operations are repeated over successive layers, each new
layer taking as input the output of the previous one (this of course requires that dimensions match).
�e total number of layers is denoted by � and called network depth. A network with two layers is
depicted in Figure 4.3: the layers that are inbetween input and output layers are called ‘hidden’ layers.

Width vector. �e number of neurons of a layer is calledwidth. �ewidth vector � = (�0, �1,… , ��, ��+1)
with �0 = � (input dimension) and ��+1 = 1 collects all widths.

Network architecture. �e pair (�, �) de�nes a network architecture. �e network parameters are the
entries of the matrices (��)0���� and shi�s vectors (��)1���� of the successive layers. �e total number
of parameters is

� =
�
�
�=0

����+1 +
�
�
�=1

�� . (4.3)
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x1

x2

x3

x4

Hidden
layer 1

Hidden
layer 2

Output

Input
layer

Output
layer

Figure 4.3: Neural network with 2 hidden layers

For a matrix � = (���), let ���� denote the (entrywise) maximum of the |��� |s, and similarly for ����
for a vector �.

De�nition 1. [Global network] Denoting by (��)0���� and (��)1���� the successive weight matri-
ces and bias vectors, the global network operates as a map � � � (�) from �� to �, where

� (�) = ��������1����1 � ��1�0� , (⇤)

where �� is de�ned in (4.2) and the activation � is the ReLU function (4.1).

For a vector or matrix �, let ���0 denote the number of nonzero coe�cients of �. In the sequel,
DNN stands for ‘Deep Neural Network’, where deep means that the depth is not ‘small’ (e.g. 1 or
2) but rather a number possibly allowed to go to in�nity (slowly, perhaps) with the number of ob-
servations. A network with just a few layers (e.g. 1 or 2) is sometimes referred to as shallow network.

De�nition 2. [DNN classes] Given a network architecture (�, �), we denote, se�ing �0 = 0,

F (�, �) =
�
� as in (⇤), for some (��)0����, (��)1����, max

0���� ������ � ������ � 1
�
,

and we also set, for � > 0 a sparsity parameter,

F (�, �, �) =
�
� � F (�, �),

�
�
�=0

(����0 + ����0) � �
�
.

We assume here that the network parameters are bounded in absolute value by 1. Another positive
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constant could be used. �e rationale behind this choice is that in practice most of the time network
parameters are initialized using bounded parameters. It is also typically observed that even a�er
training the parameters of the network remain quite close in range to initial parameters. From the
theoretical point of view, some approximation results are quite easily reachable if network parame-
ters are allowed to be very large. But in order to be closer to practical applications where parameters
typically remain bounded, we restrict ourselves to that case, and we will see below that this does
not prevent us to obtain good inference properties.

�e regularity class of functions we consider in these notes is the classical class of Hölder functions
in dimension � over, say, the unit interval.

C
�
� ([0, 1]

� ,� ) =
�
� � [0, 1]� � � � �

���� ��
�=1 ��<�

����� � �� + �
���� �����1=���

sup
� ,���, ���

|���� � (�) � ���� � (�)|
�� � ��������

� �
�
.

Classes of composite functions could be considered as well, we comment on that again below.

2 Prior distributions on DNNs and posterior concentration

2.1 Prior distribution

Let us de�ne an �–dependent prior distribution� as follows; the choices of parameters aremotivated
by the theoretical properties described in the next section. Set

� = log2 �, �1 = �2 = � = �� = �. (4.4)

�e total number of parameters � in a network of F (�, �) is then, using (4.3), of order ��2 (taking
� large enough so that � � �). Let T denote the set of all parameters, that is, elements of vectors
(��)1���� and matrices (��)0����, wri�en in some given order; the order does not ma�er. We have
Card(T ) = � and we denote T = {�� , 1 � � � �}.

De�nition 3. A sparse prior on DNNs

1. Draw a sparsity parameter � in {0, 1,… , �} according to a distribution �� de�ned by

��(�) � ��� log � .

2. Given �, draw a subset � � {0, 1,… , �} of cardinality � uniformly at random among all
possible such subsets.

3. Given �, set, for uniform variables independent across coe�cients,

�� �

�
�0 if � � �
Unif[�1, 1] if � � �
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By de�nition, the prior � puts mass on the set, for � the total number of possibly active parameters

� [F (�, �, � )] = 1.

2.2 Posterior contraction

To make for the simplest statement, we consider the Gaussian white noise model se�ing, with a
prior on � de�ned as above. Analogous statements can easily be wri�en in density estimation or
nonparametric �xed design regression, similar to what we did in Chapter 2.

�eorem 1. [Posterior convergence rate for Hölder functions] Let �0 � C
�
� ([0, 1]� ,� ) a function

of regularity � > 0. De�ne the prior � on the function � from the white noise model as in
De�nition 3. �en there exists � > 0 large enough such that

��0�[�� � �0�2 > ��� |� ] = �(1),

as � � �, where �� = (log �)3��2�/(2�+�).

�eorem 1 shows that a DNN with logarithmic depth and polynomial width (both in terms of �) are
good models for approximating �–smooth functions, for any � > 0. �e output (⇤) of a network
with ReLU activation function is necessarily a piecewise a�ne function: it is interesting to note that
while such a network is not highly smooth (the ‘highest’ regularity one can hope for is Lipschitz, but
not C2 for instance, except in the trivial case where the output is a linear function), it still enables
one to recover optimal minimax rate, up to log factors, for any arbitrarily high smoothness level
� > 0.

It can be shown that DNNs also adapt nearly optimally to other regularity structures, for instance in
case the true �0 is a composite function �0 = �� � ���1 �� � �1, DNNs also yield near–optimal rates: we
refer to the paper Schmidt–Hieber (2020), from which some of the key lemmas below are borrowed,
for more details on this.

2.3 Proof of posterior concentration

We check the three conditions of the GGV theorem successively, with here � equal to the � � �2–
distance on [0, 1], for which appropriate tests exists in the white noise model.

Sieve. For � an integer to be chosen below, let F� �= F (�, �, �). By de�nition of the prior,

�[F �
�] � ��(� > �) . ��� log � .

�e sieve condition of the GGV�eorem is then ful�lled if � log � & ��2�.

Entropy. Using the entropy Lemma 2, with � � �2 � � � ��, for any � > 0,

log� (� ,F�, � � �2) � log� (� ,F (�, �, �), � � ��) � (� + 1) log�
2(� + 1)� 2

� � ,
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where � � (� + 1)�+2 � �� log3(�) for a large enough constant � , so that for any vanishing sequence
(��) with �� � 1/��,

log� (��,F�, � � ��) . �(log �)3.
For the entropy condition of the GGV�eorem to be ful�lled, we need �(log �)3 . ��2�.

Prior mass condition. For ��0 a suitable DNN–approximation of �0 (to be de�ned below),

�[�� � �0�2 � ��] � �[��0 � ��0�2 + �� � ��0�2 � ��] � �[��0 � ��0�� + �� � ��0�� � ��].

Let us apply�eorem 2 to �0 and the choices, for �0 large enough constant (depending on � ,� , �),

� = �
�

2�+� , � = �0 log �.

�ere exists ��0 in F (��, (� ,�,… ,�, 1), �0) that approximates �0 as in�eorem 2, with depth �� . � .
log � and sparsity ��0 . (log �)� . Up to adding at the end of the network a subnetwork that equals
the identity over ���� � log2 � layers (note � = (� � 0)� (��) � 0 which uses one layer, two units and
6 parameters, out of which 4 are non–zero; this is called ‘synchronisation’), one can suppose that
��0 � F (�, (� ,�,… ,�, 1), ��0) � F (�, (� , �,… , �, 1), �0) (this is called ‘enlarging’), where �0 . ��0. More
precisely, we append to the subnetwork above encoding ��0 and with 1-dimensional output a network
of length of order �� �� and width 2, and then arti�cially add neurons with connexions that have all
zero coe�cients to form the desired architecture with width � and length �. We add in total of the
order log2 � non–zero parameters, so the overall sparsity �0 veri�es �0 . ��0.

Let �0 = (�0)��T denote the collection of parameters of the network encoding ��0. By de�nition, only
�0 are non–zero. Let �0 denote the subset of the index set T corresponding to these non–zero pa-
rameters. Similarly, for a draw � from the prior let �(� ) denote the set of indices of its non–zero
parameters.

By�eorem 2, we know that, for large enough � (depending on � ,� , �),

��0 � ��0�� . �
2� + � � �

� . ��� + ��
�

2�+� ,

where � can be made arbitrarily large for large �0, so the last display is smaller than ��/2 as long as
��

�
2�+� . ��. If this holds we then have

�[�� � �0�2 � ��] � �[�� � ��0�� � ��/2] � �[�� � ��0�� � ��/2 | �(� ) = �0]�[�(� ) = �0]

On the event that �(� ) = �0, the corresponding networks encoding � and ��0 have same index sets for
their non–zero coe�cients, so we may now use the ‘error propagation’ Lemma 1 to obtain

�[�� � ��0�� � ��/2 | �(� ) = �0] � � �� � � �0, |�� (� ) � �� ( ��0)| �
��

2� (� + 1)�

� �
���0

��
� (� + 1) = �

��
2� (� + 1)�

�0
� ����0 log

3 �,

for a large enough � > 0, using that log� . log3 �. On the other hand, again for large � > 0,

�[�(� ) = �0] =
1

���0�
���0 log(�0) � ���0 log(��/�0)��0 log �0 � ����0 log �.
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Deduce that �[�� � �0�2 � ��] � ����2� provided one chooses

��2� & �0 log3 �.

Conclusion. Let us choose, for suitably large �2 > 0,

��2 = �2 max(��
2�

2�+� , �0 log3 �/�) = �2(log �)4� /� = �2(log �)4��
�

2�+� .

�en the conditions on �� for the prior mass are satis�ed and the condition for the sieve is ��2� .
� log � which holds for the choice � = �3�0 log2 � for large enough �3 > 0. Finally, from the sieve
condition one gets the condition

�2� & � log3 �
� & (log �)6��

2�
2�+� .

�e proof of the�eorem is complete since �� = �� � �� = �� as desired.

3 Complement: generic properties of DNNs

3.1 Error propagation in a neural network and entropy

Considering the class of functions F (�, �, �), let us denote

� �=
�+1
�
�=0

(�� + 1). (4.5)

Lemma 1. Let � , � � be two functions in F (�, �, �) with matrix parameters �� ,� �
� and shi�

vectors �� , ��
� for � = 0, 1,… , � + 1. Suppose that every individual parameter of � (i.e. elements

of matrices �� or bias vectors ��) is at most � > 0 away from the corresponding parameter of
� �. �en for � as in (4.5),

�� � � ��� � �� (� + 1).

Lemma 2. For � as in (4.5) and any � > 0,

log� (� ,F (�, �, �), � � ��) � (� + 1) log�
2(� + 1)� 2

� � .

In particular if � . log � and �� � � for all �, we have log� (� ,F (�, �, �), ����) . � log2(�) log(1/�).

3.2 Approximation properties for Hölder functions
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�eorem 2. [Approximation of smooth functions by DNNs] Let � � C
�
� ([0, 1]� ,� ) a function of

regularity � > 0. Let �,� � 1 be two integers. �ere exists a network, with � �= 6(� + ���)� ,

�� � F (�, (� ,�,… ,�, 1), �)

with depth and sparsity verifying, for �0 = 1 + log2�(� � �)�, �0 = 141(� + � + 1)3+� ,

� = 8 + �0(� + 5), � � �(� + 6)� ,

such that, for �1 = (2� + 1)(1 + �2 + �2)6� and �2 = �3� , and � � (� + 1)� � (� + 1)�� ,

� �� � � �� � �1
�
2� + �2� � �

� .

[Sketch of proof] �e general idea of the proof is as follows: there are two main steps. �e �rst
is not speci�c to DNNs and is that any �–Hölder function can be well–approximated locally, using
Taylor expansions, by a polynomial of order ���: one can approximate �0 by a piecewise polynomial
function, with a quality of approximation that depends on � . �e second idea, where the choice of
activation function � comes in, is that it is possible to approximate quickly, in one dimension, the
monomial � � �2 using a ReLU network. From there one then shows that ReLU networks suitably
approximate � � �� for � � 2; one can also check that the argument extends to dimensions � � 2
for approximating general monomials. From monomials one can easily approximate polynomials by
combining networks, and now one can connect to the �rst part of the argument, by constructing a
network that approximates the piecewise polynomial function mentioned above, that itself approx-
imates �0.

Lemma 3. [Approximating �(1 � �) with piecewise a�ne functions]
Let � 1 � [0, 1] � [0, 1/4] and more generally �� � [0, 2�2(��1)] � [0, 2�2�], � � 1, be the maps

� 1(�) = �
2 � �

1
2 � �

2� , ��(�) = �
2 � �

1
22��1 � �

2� .

Let us set �� �= �� � ���1 � � � � 1, for � � 1. �en for any � � 1,

�����
�(1 � �) �

�
�
�=1

��(�)
�����
� 4��.

Lemma 4. [Approximating (� , �) � �� by a DNN] Let � � 1. �ere exist a DNN that we
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denote Mult�(� , �) with

Mult� � F (� + 4, (2, 6,� , 6, 2, 2, 2, 1)),

such that for any � , � � [0, 1] it holds Mult�(� , �) � [0, 1], Mult�(0, �) = Mult�(� , 0) = 0 and

|Mult�(� , �) � �� | � 4��.

In order to approximate a function � � C
�
� ([0, 1]� ,� ), we de�ne a grid of [0, 1]� as

�(�) =

�

�� = �
��
���=1,…,�

, � = (�1,… , �� ) � {0, 1,… ,�}�
�

.

Around a given point ��� � [0, 1]� , the function � can be approximated by its Taylor polynomial: in
dimension � its expression is, for ��� = (�1,… , �� ),

��
��� (�) �= �

0�|� |<�
(��� )(���) (� � ���)�

�! .

Taylor’s expansion with Lagrange remainder gives, for any � � C
�
� ([0, 1]� ,� ),

|� (�) � ��
��� (�)| � � �� � ������. (4.6)

De�ne, again for any � � C
�
� ([0, 1]� ,� ) and � = (�1,… , �� ),

��� (�) �= �
����(�)

(��
�� � )(�)

�
�
�=1

(1 �� |�� � ��,� |)+. (4.7)

Inside the hypercubes de�ned by consecutive gridpoints, ��� (�) is a polynomial, so the overall func-
tion ��� is piecewise–polynomial.

Lemma 5. [Approximation of � by a piecewise–polynomial function] For any � � C
�
� ([0, 1]� ,� ),

de�ne ��� as in (4.7). �en
�� � ��� �� � ���� .

Proof. One notes that the terms of the sum in the de�nition (4.7) are nonzero only at a given � for ��
such that �� � �� �� � 1/� , otherwise the product in (4.7) is zero. Combine this with the fact that

�
��=(�1/� ,…,�� /�)

�
�
�=1

(1 �� |�� � ��,� |)+ =
�

�
�=1

�
�
�=0

(1 �� |�� � �/� |)+ = 11

(these functions form a ‘partition of unity’) and Taylor’s approximation (4.6) to obtain the result.
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4 Deep Gaussian process priors

4.1 Motivation: compositional structures

Here we will state results in the so-called random design regression model (but we could state analog
results in Gaussian white noise as in the previous section).
Consider observing i.i.d. pairs �1 = (�1, �1),… ,�� = (��, ��) with

�� = �0(��) + �� , 1 � � � �, (4.8)

where �� are [0, 1]�–valued random variables (also called design points) and �� are independent stan-
dard normal N (0, 1) variables, and independent of the ��’s, and �0 � [0, 1]� � � an unknown
function.

Typical statistical goals in this se�ing are

• estimating the unknown regression function �0 from the observations

• �nding estimates that behave (near–)“optimally” with respect to some criterion (e.g. minimax)
over natural classes of parameters.

Let �� (�) = ���(�1,… ,��)(�) be an estimator of � .
�e prediction risk in the se�ing of model (4.8) is de�ned as follows. Let � be a ‘synthetic’ data point,
that is a variable independent of the ��’s and generated from the distribution of �1. Let

�( �� , �0) = � ��
�� (� ) � �0(� )�

2

� = � ��
�� (�1,… ,��)(� ) � �0(� )�

2

� . (4.9)

Discovering a hidden ‘structure’. �e ‘raw’ regression data collected by the statistician takes the form,
in the se�ing model (4.8), of � vectors of size � + 1: the � pairs (��

� , ��) with �� � [0, 1]� and �� a
real, with the dimension � possibly large (think for instance of e.g. � = 10 or 20). �e unknown
regression function �0(�1,… , �� ) depends on � of variables, and we have seen that if � is larger than
a few units this may lead to a slow uniform convergence rate of the form ��2�/(2�+�) for the prediction
risk. It is o�en the case though that the problem is e�ectively of smaller dimension than � . We give
a number of frequently encountered examples

1. �0 in fact depends on just one variable (but we do not know it a priori), for instance

�0(�1,… , �� ) = �(�1),

for some � � [0, 1] � �. In this case it seems reasonable to expect a rate ��2�/(2�+1), since the
�0 e�ectively depends on 1 variable only. More generally, �0 may depend on a small number
� � � of variables, although we do not know a priori which ones, e.g.

�0(�1,… , �� ) = �(�2, �3, �� ),

in which case the e�ective dimension should be 3, so we expect a rate ��2�/(2�+3).

2. In the preceding example, the function e�ectively depends on a small number of the original
variables �� , but it could depend on few variables only a�er transformation of the variables,
for instance

�0(�1,… , �� ) = �(�1 + �2 +� + �� ).
In this case �0(�1,… , �� ) = �(� �) only depends on ‘one’ variable � � = �1 +� + �� , so one expect
a rate ��2�/(2�+1).
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3. Additive models. It may be possible to write �0 in an additive form

�0(�1,… , �� ) =
�
�
�=1

��(��),

for some functions �1,… , �� depending on one variable only. If all functions �� are at least
�–Hölder, one expects a rate � � ��2�/(2�+1) that is ��2�/(2�+1) if � is a �xed constant.

4. Generalised additive models. It may be possible to write �0 in the form

�0(�1,… , �� ) = �
�

�
�
�=1

��(��)�
,

for some real-valued functions �1,… , �� (that are, as before, say all �–Hölder) and an unknown
real ‘link’ function � that is �–Hölder. One expects the rate to depend on � , � , but not (too
much) on the dimension � .

Class of compositions. In all the se�ings of the previous paragraph, one may note that the original
function �0 can be wri�en as a composition of functions

�0 = �� � � � �1 � �0,

for some integer � � 1. For instance, in the case of additive models one can set �0(�1,… , �� ) =
(�1(�1),… , �� (�� )) (note that �0 is then ��–valued) and �1(�1,… , �� ) = �1 + � + �� . For each of the
examples in the above list, if one knew beforehand that �0 is in one class of the other, one could cer-
tainly develop a speci�c estimation method using the special structure at hand. In practice, however,
it would be desirable to have a method that is able to automatically ‘learn the structure’. We are go-
ing to see that this is achieved by deep ReLU estimators.

Let us introduce the class, for � = (�0,… , ��+1), � = (�0,… , ��), � = (�0,… , ��),

G(�, � , � , � ,� ) =
�
� = �� � � � �0 � �� = (���)� � [�� , ��]�� � [��+1, ��+1]��+1 ,

��� � C
��
�� ([�� , ��]

�� ,� ), |�� |, |�� | � �
�
, (4.10)

where we denoted C
��
�� for the Hölder ball over �� variables to insist on the fact that these functions

depend on �� variables only (at most). �e coe�cients �� can be interpreted as the maximal number
of variables each function ��� is allowed to depend on. In particular, this number is always at most
�� , but may actually be much smaller. Let us note that the decomposition of �0 as a composition is
typically not unique, but this is not of concern us here because we are interested in estimation of �0
itself only.

Compositional classes are quite rich and contain many interesting functions having a low dimen-
sional “e�ective dimensionality”. �ere are quite popular for the analysis of deep learning algo-
rithms. In particular, a recent work by Johannes Schmidt–Hieber (2020) shows that deep ReLU neu-
ral networks can get near optimal rates over such classes (one still assumes that some parameters of
the classes are known). We will see below that deep Gaussian processes possess analog properties
(and are even fully adaptive to smoothness and structure). Let us �rst give an example and state
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what the optimal minimax rate over these classes is.

Example. In ambient dimension 5, consider the function

� (�1, �2, �3, �4, �5) = �1(�01(�1, �3, �4), �02(�1, �4, �5), �03(�5)).

�en �0 takes as input 5 coordinates (so �0 = 5) and takes its values in �3 (hence �1 = 3) so has
three coordinate functions �01, �0,2, �0,3, which themselves depend on only (at most) 3 variables, so
that here �0 = 3. Since �1 has three coordinates and (in general) depends on each of these, we have
�1 = �1 = 3. Finally, the �nal output of the regression is always a real number in this chapter so �2 = 1.

Note that for �0 = �1 � �0 with �1 = �0 = �1 = �0 = 1 and �0, �1 � 1, it follows from the de�nition of
the Hölder class that �0 has regularity �0�1, so that one expects a convergence rate of order ��

�0�1
1+2�0�1 .

It turns out that the actual (or ‘e�ective’) regularity depends on whether �� � 1 or not. Let us de�ne
the following new ‘regularity’ parameter

��� = ��
�

�
�=�+1

(�� � 1). (4.11)

Convergence result for compositions. Given � , � , � as before, let us de�ne the rate

��� = max
0����

�
��

���
2��� +��

�
. (4.12)

Example. For �0 = �1 = �0 = �1 = � = 1 and � = �1 � �0 with �1, �0 � 1, we have ��0 = �0(�1 � 1) = �0�1
and ��1 = �1, and the rate ��� equals, since �0�1 � �1,

max��
� �1
2�1+1 , ��

�0�1
2�0�1+1� = ��

�0�1
2�0�1+1 ,

which gives the rate announced above for this example. One may check that the formula (4.12) also
gives the expected rate in the other examples above.

�eorem 3. [Minimax optimality for compositions] Consider the regression model (4.8), where
the ��s are drawn from a distribution with density on [0, 1]� which is bounded from above and
below by positive constants. For arbitrary � > 0, integer � and vector of integers � , � , suppose
�� � min(�0,… , ���1) for all �. �en for large enough � ,

inf
��

sup
�0 �G(�,� ,� ,� ,� )

�( �� , �0) � ����2,

where the in�mum is taken over all possible estimators �� of � in model (4.8).

4.2 Deep GPs: de�nition
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De�nition 4. [Deep Gaussian process]. A deep Gaussian process (deep GP or simply DGP) is a
composition of Gaussian processes: for some integer � � 2, it is a stochastic process de�ned as

� (�) = �� � � ��1(�), � � [0, 1]� ,

where�� � ��� � ���+1 , with (��) some integers and �1 = � , ��+1 = 1.

Remark. O�en, one restricts the range of the GPs in the composition de�ning a deep GP so that the
successive GPs take values in a same compact subset, e.g. one sets � �

� = (��) � (�� ��) for some
given � > 0 and

� � = � �
� � � �� �

1 .
�e idea to take a deepGP as a prior is tomake the priormore �exible (by adding ‘more randomness’):
it seems then likely that such a prior will approximate well compositions of functions – which enable
to approximate quite complex objects, as we will see below –. As such a deep GP as in De�nition
5 is not yet �exible enough to do adapt well to arbitrary compositional structure and smoothness.
First, it seems natural to draw the ‘depth’ � randomly in the prior, but also, in order not to ‘over�t’, to
select randomly at each level which variables the process�� depends on, in particular if one believes
that there is a low dimensional compositional structure to which the true function �0 we are trying
to recover belongs. �is motivates the following more general de�nition.

De�nition 5. [Hierarchical DGP]. A hierarchical deep Gaussian process (HdGP) is de�ned as

� ���

�1,… , �� | � ��� [�|�]

��� | �, �1,… , �� i.i.d.� �� ���

��� | �, �1,… , �� ,���
i.i.d.� ����

� | �, �1,… , �� , ��� =�(��) � � � �(�0),

where the (���)� are the coordinate functions of �� (which takes values in ���+1 ) and

• �� and �� [� | �] are priors on integers,

• �� is a prior on scale parameters ��� > 0,

• one denotes���� (�) = � (����),

• �(�) = (��) � (� ��) for some � > 0.

Deep horseshoeGP. Let us consider the following prior choices: for the dimension �, one takes a prior
with exponential decrease ��(�) � ��� and similarly for (��), one takes an exponentially decreasing
prior for each �� independently. �e coordinates functions ��� of the function �� in the composition
are given GP priors (given ��� ): they are taken to be centered GPs with squared–exponential covari-
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ance function, i.e. �[����] = exp(��� � ��2), with � � � the euclidian norm on ��� . It now su�ces to
specify the prior on the���s. We take them independent with a horseshoe distributionwith parameter
� > 0 �xed (e.g. � = 1), where the horseshoe prior is de�ned as follows.

De�nition 6. [Horseshoe prior]. �e horseshoe prior with parameter � > 0 is the distribution
on � of the variable �� de�ned as

� � �+(0, 1)
�� | � � N

+(0, � 2�2)

where �+ and N
+ are half–Cauchy and half–Normal distributions (i.e. if � is Cauchy then �+

is the distribution of � | � > 0 and similarly for normal). It can be checked that the density �� of
the horseshoe prior veri�es

1
(2� )3/2� log�1 +

4� 2
�2 � < �� (�) <

1�
2�3�

log�1 +
� 2
�2 � .

In particular, the horseshoe density has a pole at zero and Cauchy tails.

Figure 4.4: Symmetrised horseshoe prior density with parameter � = 3

�e idea of the above choice of Horseshoe deep GP prior is as follows: the density �� puts quite a
lot of mass near zero and in the tails (i.e. the probability of drawing large values is quite high due to
the Cauchy tails). Very small values of ��� allow to “freeze” the corresponding coordinate: it is as if
the prior is almost constant on this coordinate. On the other hand, large values of ��� enable one to
“unsmooth” the very smooth paths of squared–exponential GPs and thus to adapt to smoothness as
well (this type of adaptation to smoothness was already known in the literature since the paper van
der Vaart and van Zanten (2009), as noted in Chapter 3).
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4.3 Statement for deep GPs

For a given model with observations � and likelihood �� (� ), de�ne a fractional posterior or “�–
posterior”, for 0 < � < 1, by, for any measurable set �,

�� [� |� ] =
´
� �� (� )

���(� )´
�� (� )���(� )

.

For � = 1, this is the standard Bayes formula. For � < 1, one ‘reweights’ the likelihood so that
the data has a bit less importance compared to the prior. �e advantage of working with fractional
posteriors is that, remarkably, one can show that there is �–posterior contraction under a prior mass
condition only, see below.

�eorem 4. [Deep Horseshoe GP (idea)] Consider the �–posterior for � � (0, 1) and suppose
one observes data in the random design regression model, with a deep horseshoe GP prior on �
(as de�ned in the previous section). �en the corresponding �–posterior distribution contracts
at the optimal rate (up to logarithmic factors) if the true �0 belongs to a compositional class as
de�ned above.

Wewill not give a proof here, but just give the idea: thanks to�eorem 5 below, since one works with
the �–posterior, it is enough to verify the prior mass condition. �is is done using relatively similar
tools as for a simple GP, but it is somewhat more involved due to the successive steps involved in the
compositions; again, the concentration functions of the successive GPs play a key role. Finally, one
relates the �–Rényi divergence to the target quadratic distance for the regression model (which is
quite easy for Gaussian noise as assumed here; see also below for a general link to the �1–distance).

5 Complement: Tempered posteriors

Notation. Let P = {� (�)
� , � � �} dominated model [�� (�)

� = �(�)� ��] with observations ��.

�–Rényi divergence between densities � and � [wrt �]: for � � (0, 1),

�� (� , �) = � 1
1 � � log�

ˆ
� ��1�����

KL–type neighborhood of �0 � �. Recall the de�nition, for � > 0,

��(�(�)�0 , �) = ��(�0, �) =
�
� � � � � (�(�)�0 , �

(�)
� ) � ��2, � (�(�)�0 , �

(�)
� ) � ��2

�

with � (� , �) =
´
� log(� /�)��, � (� , �) =

´
� (log(� /�) � � (� , �))2 ��.

�eorem 5. For any non negative sequence �� and 0 < �� < 1 such that ����2� � � and

�(��(�0, ��)) � ������2� , (4.13)
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there exists � > 0 such that as � � �, for �0 = ��
�0 ,

��� �� � 1
���� (��� , ���0 ) � � ���2�

1 � ��
|��

� = ��0 (1).

Remarks. Note that in �eorem 5, we allow for �� to possibly go to 0, but it is of course valid as
a particular case for �� = � �xed in (0, 1). In the limiting case �� = 0, one simply obtains the
prior distribution itself (so, the data �� plays no role), while if one lets �� � � one gets close to
“maximum likelihood” (we keep this as an intuition, as of course this notion here would need to be
properly de�ned).
As wri�en the result is in terms of the normalised divergence ��� ((��� , ���0 )/� which still depends
both on �� and �. However, the following classical inequality enables to more easily interpret the
result

��� ((��� , ���0 ) � �����(�)� � �(�)�0 �
2
1/2.

�erefore �eorem 5 automatically implies convergence of the posterior in terms of the squared–
�1 distance at rate �2�/(1 � ��), for any �� that veri�es the stated prior mass condition. Note the ��
inside the exponential in the prior mass condition: this makes it quite di�erent from the typical GGV
condition in the regime when �� tends to 0. More precisely, one then typically obtains a rate similar
to the one obtained from GGV, but with � replaced by �� = ��� (precisely due to this extra �� factor
in the prior mass condition). For instance, nonparametric squared rates ��2�/(2�+�) typically become
(���)�2�/(2�+�). �is only changes the constant if �� is bounded away from 0, but otherwise the rate
is typically slower.
Finally, note that the obtained rate blows up as �� � 1. �is is quite expected, as it is known that the
entropy condition is in a sense necessary for the GGV theorem to hold: a counter-example of Barron,
Schervish and Wasserman (1999) indeed shows that the true posterior (�� = 1) can be inconsistent
under a prior mass condition only.

Proof.

By Lemma 6, on a subset �� of �0-probability at least 1 � 1
��2�

, for any measurable set � � �,

�0��� (�|��) = �0

´
�

��� (��)��
���0 (�

�)�� ��(�)´ ��� (��)��
���0 (�

�)�� ��(�)
� �0

´
�

��� (��)��
���0 (�

�)�� ��(�)

�(��(�0, ��))��2����2�
1�� + �0(��

�)

=
´
�
´
��� (�)�����0 (�)

1�����(�)��(�)
�(��(�0, ��))��2����2�

+ �(1),

(4.14)
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where the last equality follows from Fubini’s theorem. Set

�� �=
�
�,
ˆ

��� (�)�����0 (�)
1�����(�) � ��4����2�

�

=
�
�, � 1

�(1 � ��)
log(
ˆ

��� (�)�����0 (�)
1�����(�)) � 4 ���2�

1 � ��

�

=
�
�, 1

���� (��� , ���0 ) � 4 ���2�
1 � ��

�
.

Substituting �� into the second-last display and using the prior mass condition (4.13) yields

�0��� (�� |��) �
´
��

��4����2���(�)
�(��(�0, ��))��2����2�

+ �(1) � ������2� + �(1) = �(1),

since ����2� � �.

Lemma 6. For any distribution � on �, any � , � > 0 and 0 < � � 1, with �0-probability at least
1 � 1

�2��2 , we have
ˆ
�

��� (��)�

���0 (��)� ��(�) � �(��(�0, �))���(�+1)��
2 .

Proof.

Suppose �(��(�0, �)) > 0 (otherwise the result is immediate), and denote by �� = �(����(�0,�))
�(��(�0,�)) the

normalized prior to ��(�0, �). Now let us bound from below
ˆ
�

��� (��)�

���0 (��)� ��(�) �
ˆ
��(�0,�)

��� (��)�

���0 (��)� ��(�) = �(��(�0, �))
ˆ ��� (��)�

���0 (��)� �
��(�). (4.15)

Since �� is a probability measure on �, Jensen’s inequality applied to the logarithm gives,

log�

ˆ ��� (��)�

���0 (��)� �
��(�)� � �

ˆ
log�

��� (��)
���0 (��)� � ��(�).

Consider now the random variable � �=
´
log�

��� (��)
���0 (�

�)� � ��(�). �en

�0|� | �
ˆ
��(�0,�)

�0
����������
log�

��� (��)
���0 (��)�

����������
� ��(�) =

ˆ
��(�0,�)

ˆ ����������
log�

��� (�)
���0 (�)�

����������
���0 (�)��

�(�)� ��(�))

� ��2 + 1.
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�us Z is integrable and using Fubini’s theorem,

�0� =
ˆ
��(�0,�)

ˆ
log�

��� (�)
���0 (�)�

���0 (�)��
�(�)� ��(�) =

ˆ
��(�0,�)

�� (���0 , �
�
� )� ��(�) � ���2.

Turning to the variance,

Var0(� ) = Var0(�� ) = �0�

ˆ
log�

���0 (�
�)

��� (��)� � ��(�) �
ˆ
��(�0,�)

� (���0 , �
�
� )� ��(�)�

2

= �0�

ˆ
log�

���0 (�
�)

��� (��)� � � (���0 , �
�
� )� ��(�)�

2

�
ˆ
��(�0,�)

�0�log�
���0 (�

�)
��� (��)� � � (���0 , �

�
� )�

2
� ��(�) � ��2

using that �� is supported on ��(�0, �). By Chebychev’s inequality, �0(|� � �(� )| � ���2) � 1
���2 .

�us, on the event {|� � �(� )| � ���2}, which has a probability at least 1 � 1
���2 ,

log�

ˆ ��� (��)�

���0 (��)� �
��(�)� � �(� � �� + �� ) � ��(� + 1)��2.

Substituting this bound into (4.15) then gives the result.
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CHAPTER 5

Variational Bayes

In this chapter we consider a popular approach to simulation from approximations of
posterior distributions. Choosing a best approximation of the posterior distribution from a
given class of distribution is an optimisation problem, �nding a (approximate) solution of
which is o�en relatively fast for simple classes of distributions, such as mean-�eld classes.
We explain the main idea and give theoretical backup: we give general conditions under
which the variational posterior is shown to converge at the same rate as the posterior dis-
tribution itself.
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In this chapter, we consider the use of variational approximations to posterior distributions. �e
three complementary works by Alquier and Ridgway (AoS 2020), Yang, Bha�acharya adnd Pati (AoS
2020) and Zhang and Gao (AoS 2020) provide generic results and conditions under which approxi-
mations of posterior distributions in certain variational classes converge at (at least) the same rate
as the posterior distribution itself. �e case of tempered posterior distributions is also considered.
�ese results apply already to a variety of models and priors, including many non-parametric or
latent variable models. Here we follow mostly the presentation of Zhang and Gao (2020). �e case
of high-dimensional models needs a separate treatment, and is considered in Ray and Szabo (JASA
2022): we present it brie�y.

1 General principles

In variational methods, one wishes to �nd a best (or close to best) approximation of a given target
distribution (in the framework of these lectures it will be the posterior distribution) within a given
class of simple distributions. �e approximation will be quanti�ed in terms of a measure of distance
(or divergence) between distributions.

1.1 Divergences

�e �–Rényi divergence between probability measures � and � is de�ned as, for � > 0 and � � 1,

��(� ,�) =
1

� � 1 log
ˆ

�
��
���

��1
�� ,

if � is absolutely continuous with respect to �, and +� otherwise. In the �rst case, and if � ,� have
densities �, � with respect to �, we have

��(� ,�) =
1

� � 1 log
ˆ

���1����.

If � = 1, one similarly de�nes, for � � � (otherwise we set it to +� as above),

�1 = � (� ,�) =
ˆ

log�
��
��� ��

the Kullback–Leibler divergence between � and �.

�e following facts are classical, see for example the review paper by van Erven and Harremoës
(IEEE 2010): � � ��(� ,�) is an increasing function; as � � 1, �� � �1. Also, �1/2,�2 are related
respectively to the squared–Hellinger distance �2 and the � 2 divergence in the sense that

�1/2 = �2 log(1 � �2/2), �2 = log(1 + � 2).

1.2 Variational families and optimisation
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De�nition 1. Let S be a family of distributions. �e variational posterior with respect to the
family S is the miminiser of the KL-divergence between any element of S and the posterior
distribution. �at is,

�� = argmin
��S

� (�,�(� |� )). (5.1)

O�en, an exact solution to (5.1) is not available, but an approximation is; then the results that follow
also hold for this approximation as long as the la�er is close enough to an exact solution, if it exists,
of (5.1).

If the class S is very large, it may even contain the true posterior in which case one would have
�� = �(� |� )). Of course, the purpose is to choose a class S su�ciently simple so that the optimi-
sation problem (5.1) is simpler to solve compared to direct sampling from the posterior. For direct
sampling from (an approximation of) �(� |� ), unless the posterior is available in closed form (which
is rarely the case), one generally resorts to a general method such as MCMC (Monte Carlo Markov
Chain). However in high dimensions or in problems with latent variables the MCMC method may
be slow to converge. In such cases, variational approximations of the posterior are very popular in
practice. �e idea is to choose a class both su�ciently rich to approach the true posterior reasonably
well, but at the same time su�ciently simple so that (5.1) is fast to solve numerically. In other words,
there is a trade–o� between good approximation properties and computability.

We will not focus much more here on this trade-o�, but give two examples of popular classes below.
Before this, we note that a nice property of the optimisation problem (5.1) is that the normalis-
ing constant in the expression of the posterior density from Bayes’ formula (i.e. the denominator)
vanishes when one optimises in � � S . Indeed, writing �� = ��� and, using Bayes’ formula,
��(� |� ) = �� (� )� (�)/

´
�� (� )� (�)��, and noting that �� =

´
�� (� )� (�)�� depends only on � but

not on � or � ,

� (�,�(� |� )) =
ˆ

log�
�(�)

�� (� )� (�)/�� �
�(�)��

=
ˆ

log�
�(�)

�� (� )� (�)� �(�)�� + log�� ,

and the last term is independent of � so it is enough to minimise the �rst term. In particular, when
solving the variational problem, there is no need to compute �� , which o�en can be delicate or at
least time-consuming. �e previous identity is sometimes rewri�en

log�� = � (�,�(� |� )) +
ˆ

log�
�� (� )� (�)

�(�) � �(�)��.

�e term log�� does not depend on � and is called evidence (it is the logarithm of the density of �
in the Bayesian model). Since the KL–divergence is nonnegative, we have

log�� �
ˆ

log�
�� (� )� (�)

�(�) � �(�)��.

�e term
´
log (�� (� )� (�)/�(�)) �(�)�� is called the Evidence Lower BOund (ELBO). Minimizing the

KL–divergence � (�,�(� |� )) is equivalent to maximising the ELBO.
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De�nition 2. [Mean–�eld classes] Suppose the parameter � � � can be wri�en � = (�1, �2,… , ��)
with � an integer, or � = +�. �e mean–�eld variational class S�� is the class of distributions

S�� =

�

� � ��(�) =
�
�
�=1

���(��)

�

.

�at is, S�� consists of product measures only. As a special subcase, one may consider speci�c
distributions for the �� . Let G = {N (�, �2), � � �, � � 0} be the set of 1–dimensional Gaussian
distributions. �e Gaussian mean �eld class is

S��� =
�
� � ��(�) =

�
�
�=1

���(��), �� � G (� �)
�
.

�e idea of the mean–�eld class is to ignore dependencies in the posterior distribution and to ap-
proximate it by a distribution of product form. Of course, some information is then typically lost in
this process: for instance, for � � �2, a Gaussian distribution N (� ,�) with � a non-diagonal 2 ◊ 2
covariance matrix cannot be perfectly approximated by a product of 1–dimensional Gaussians. One
may think though that the loss is ‘of the order of a multiplicative factor in the variance’, so maybe
not huge.

From the implementation point of view, the problem of minimising the KL–divergence� (�,�(� |� )),
ot equivalently maximising the ELBO, is an optimisation problem. �ere is a vast literature on algo-
rithms performing this task; a famous algorithm is CAVI, for Coordinate Ascent Variational Infer-
ence. We refer to the review paper by Blei et al. (2017) for more on the algorithmical aspect. �e
main idea is that in complex models this optimisation problem can o�en be much faster than the task
of sampling from the posterior. From the theoretical perspective, in order to validate this approach,
it is then natural to ask whether the VB–posterior �� is also a ‘good estimator’ of the true parameter
�0, i.e. if �� contracts at a rate �� towards �0, if possible (at least) as fast as the contraction rate of
the original posterior distribution. We give generic su�cient conditions for this along with a few
examples in the next sections.

2 A generic result for variational posteriors

2.1 Statement

Consider a statistical model P = {� (�)
� , � � �} as before in the course, dominated by �(�) = �, where

� is a parameter set (e.g. space of functions).

Let �(�, �) be a loss function between probability measures such that �(� ,�) � 0 for any such mea-
sures � ,�. Examples of losses include � = ��2, i.e. � times the Hellinger squared distance, or also, if
� is a sequence, �(� (�)

� , � (�)
� � ) = ��� �� ��2. Note the speci�c normalisation chosen with a multiplicative

factor �: this is related to the fact that a typical example is the one of product measures � (�)
� = ���

�
for which typical divergences such as the KL scale with � (recall that � (���

� , ���
� � ) = �� (�� , �� �)).
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Generic conditions. Consider the following conditions

(T) For any � > ��, there exists ��(�) measurable subsets of � and �� test functions such that

��0�� + sup
����(�), �(� (�)

� ,� (�)
�0

)>�1��2
�� (1 � ��) � �����2 .

(S) For any � > ��,
�(��(�)�) � �����2 .

(P) �ere exists � > 1 such that

����(� (�)
�0 , �

(�)
� ) � �3��2�� � ���2��2� .

�ese conditions are almost identical to the ones used before in the lectures. �ere are two di�er-
ences. First, (T) and (S) are required to hold for any � > ��. It is generally not too di�cult to �nd a
sequence of sets ��(�) indexed by � verifying (T) for any � > �� (and not just for � = ��). Second,
the KL-neighborhood used before is replaced by a ��–neighborhood where � > 1. �is is useful in
that it enables one to obtain posterior masses of complements of neighborhoods that decrease expo-
nentially fast to 0 (instead of just polynomially – recall we used simply Tchebychev’s inequality in
proving the GGV theorem – here we get rather an exponential-type inequality).
See Lemma 4, where it is shown that under such slightly strengthened assumptions compared to the
GGV�eorem, the original posterior converges at rate �� and with an exponential decrease to 0.

In what follows, for a given function � , we use the notation �� =
´
� ��.

�eorem 1. [Convergence rate for ��] Let (��) be a sequence such that ��2� � 1. Let � be a
prior distribution on �. Consider �� the variational Bayes approximation (5.1) to the posterior
distribution �[� |� ] with variational class S and set

� 2� = 1
� inf

��S
��0� (�,�(� |� )). (5.2)

Suppose the generic conditions (T), (S), (P) are veri�ed with rate ��, loss function �, positive
constants �1,�2,�3, � > �2 + �3 + 2 and � > 1. �en there exists � = �(�1,� , �) such that

��0 ���(�
(�)
� , � (�)

�0 ) � ��(�2� + � 2� ).

�e interpretation is as follows: �� is the convergence rate of the original posterior distribution in
terms of the loss �, while �� is the contribution arising from considering the variational approxima-
tion. Note that � 2� is de�ned in terms of the posterior and is this still implicit. In the next lines, we
bound it from above by a more universal quantity.
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2.2 Su�cient conditions

Lemma 1. �e rate �� de�ned in (5.2) veri�es

� 2� � 1
� inf

��S �� (�,�) + �� (� (�)
�0 , �

(�)
� )� . (5.3)

Proof.

Denote as shorthand �� = �(� |� ) and � (�)
� =

´
� (�)
� ��(�) so that the denominator in Bayes’

formula is �(�)� =
´
�(�)� ��(�) the marginal density of � in the Bayesian se�ing. Bayes’ formula

writes ��� = �(�)� ��/�(�)� . �en � (�, �� ) =
´
log(��/��� )��, and

log ��
���

= log ��
�� + log �(�)�

�(�)�
.

Deduce that � (�, �� ) can be further wri�en as

��0� (�,�� ) =
ˆ

log ��
���� + ��0

ˆ
log �(�)�

�(�)�
��

and, using Fubini’s theorem and � (� ,�) � 0,

��0
ˆ

log �(�)�

�(�)�
�� = �

ˆ
log �� (�)

�

�� (�)
�

�� (�)
�0

= �
�

ˆ
log

�� (�)
�0

�� (�)
�

�� (�)
�0 +
ˆ

log �� (�)
�

�� (�)
�0

�� (�)
�0 �

= � �� (�
(�)
�0 , �

(�)
� ) � � (� (�)

�0 , �
(�)
� )� � �� (� (�)

�0 , �
(�)
� ).

�e lemma follows by using the de�nition of �� and taking the in�mum over � � S .

By combining Lemma 1 and�eorem 1, we obtain the following, which is just another way to write
the previous Lemma: to bound ��, it su�ces, for �1 � S , to bound � (�1,�) + �1� (� (�)

�0 , �
(�)
� ).

Corollary 1. Under the conditions of�eorem 1, suppose further that, for

E =
�
� � Supp(�) � {� � � (� (�)

�0 , �
(�)
� ) � �2��2�}

�
,

it holds
inf

��S�E
� (�,�) � �1��2� . (5.4)
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�en for a large enough constant � �,

��0 ���(�
(�)
� , � (�)

�0 ) � � ���2� .

2.3 Result for mean-�eld class

�eorem 2. [Convergence rate for ��, mean-�eld case] Under the conditions of �eorem 1, sup-
pose that one can �nd a distribution �� in the mean-�eld class S�� and a subset

A� �=
�
�
�=1

��� � �

of product form which veri�es

(�) A� �
�
� � � (� (�)

�0 , �
(�)
� ) � �1��2� , log�

� ��
�� (�)� � �2��2�

�
,

(�) �� (A�) � ���3��2� .

�en the term �� in (5.2) with S = S�� veri�es

� 2� � (�1 + �2 + �3)�2� .

In particular, the conclusion of�eorem 1 holds with rate �2� .

Note that in case the prior itself belongs to S�� , one can take �� = �, which simpli�es the conditions
even further. Also, condition (B) in the�eorem can be interpreted as asking a prior mass condition
which is “coherent with the structure of the variational class”.

2.4 An example of application: the sequence model

Consider theGaussian sequencemodel�� = ��+��/
��with �� independentN (0, 1) variables. Suppose

the true �0 = (�0,1, �0,2,… , ) belongs to a Sobolev ball

�0 � {� � �
��1

�2��2� � �2}.

Also set �(� (�)
� , � (�)

� � ) = ��� � � ��2.

Consider a sieve prior � de�ned hierarchically: sample � from a distribution � on integers; then
given � sample �1,… , �� independently with density �� on coordinate �; set �� = 0 for all � > �.
Let us consider the variational posterior �� using the mean-�eld class

�� = argmin
��S��

� (�,�(� |� )),
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where S�� is as in De�nition 2. �e next result shows that the variational posterior �� is adaptive
to smoothness and reaches an optimal contraction rate in � 2 up to a logarithmic term.

�eorem 3. In the Gaussian sequence model, suppose �0 and � are as described above, for some
� , � > 0. Take as � the prior on integer such that � (�) � ���� and take �� to be the standard
normal density for any coordinate � that is nonzero under the prior. �en

��0 ���� � �0�2 . �
log �
� �

2�
2�+1

.

Proof.

De�ne �� to be the integer part of (�/ log �)1/(2�+1). One �rst checks that the prior and model
verify the conditions of �eorem 1. �e prior mass condition is easy to verify by including an
��–neighborhood within the KL–neighborhood (which here equals an � 2–neighborhood). One
takes as sieve set the set of sequences whose �rst �� coe�cients are arbitrary reals and coe�cients
from index �� + 1 are zero; then one only needs to check the ‘strengthened’ testing condition:
since this does not directly relate to the variational posterior we omit the details, but note that
this follows by ‘local entropy’ arguments as in Ghosal, Ghosh, van der Vaart (2000), Section 7.
We now apply�eorem 2. Let us setA = ��1 ◊� ◊ ��� ◊�, with

��� =

�
��0,� � 1/��, �0,� + 1/��� , if � � ��,
{0}, if � > ��.

Let us also de�ne the mean-�eld distributions ��(�) for any � � 1 as

��(�) = �
��1

��� , ��� =

�
��(�)�� , if � � �,
�0, if � > �.

We set �� = ��(��). One veri�es the condition of �eorem 2. �at �� puts enough mass on A is
straightforward: using that �0,� ’s are all bounded by �, one gets ��(A) � (�/��)�� � ����� log �.
Recalling that in the sequence model � (� (�)

�0 , �
(�)
� ) = ��� � �0�2, it follows from the de�nition ofA

that � � A implies �� � �0�2 � ��/� +��>�� �
2
0,� . ��2� if �2� is the rate in the statement.

Finally, one notes that if � � A, the prior � equals the mixture���1 � (�)�(�), so � ��/�� = 1/� (��)
and then log(1/� (��)) . �� . ��2� by de�nition of � , as required.

3 Proof of the generic theorem

Useful lemmas and their proofs

�e proofs of�eorems 1 and 2 are quite direct applications of the combination of the next Lemmas.
Lemma 4 makes the conclusion of�eorem 1 more precise by assuming slightly stronger conditions.
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Lemma 2. Let � � 0 and let � ,� be two probability measures. �en
ˆ

� �� � � (�, � ) + log
ˆ

�� (�)�� (�).

Proof.

One writes, with the notation
´
�� �� = ��� ,

� (�, � ) + log
ˆ

�� (�)�� (�) =
ˆ

log�
��
�� � ���� ��

=
ˆ

log�
��
�� �� � �� � ���� �� =

ˆ
log�

��
�� �� �� +

ˆ
� ��,

with �� � = �� ��/(��� ). �e results follows by using
´
log ���/�� �� �� = � (�, � �) � 0.

Lemma 3.

��0 ���(�
(�)
� , � (�)

�0 ) � inf
�>0

1
� � inf��S

��0� (�,�(� |� )) + log ��0
ˆ

���(�
(�)
� ,� (�)

�0
)��(� |� )� .

Proof.

One applies Lemma 2 with � = ��, � = �[� |� ] and � (�) = ��(� (�)
� , � (�)

�0 ) for a given � > 0. Deduce,
writing �� = � (�)

� as shorthand,

� ���(�� , ��0 ) � � ( ��,�[� |� ]) + log ��[� |� ]
�
���(�� ,��0 )

�
� .

First, one takes the expectation under ��0 and uses Jensen’s inequality with the logarithm. Upon
noting that � ( ��,�[� |� ]) � � (�,�[� |� ]) for any � � S by de�nition, the result follows by
dividing by �, taking the in�mum over such �’s, followed by the in�mum over � > 0.

Lemma 4. Suppose conditions (T), (S), (P) hold. �en for � = � � 1 and for any � > ��,

��0�(�(�
(�)
� , � (�)

�0 ) > �1��2 |� ) � �����2 + �����2 + 2����2 .
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Proof.

Writing �� = � (�)
� as shorthand, let us set, with � �= 1 + �,

�� =
�
� � �(�� , ��0 ) > �1��2

�
, �� =

�
� � ��(��0 , �� ) � �3��2

�
,

and, for �� = �|�� = �(� � ��)/�(��),

�� =
�ˆ ���

���0
(� )� ��(�) > ��(�3+1)��2

�
.

Using the tests �� in (� ), the quantity at stake for the Lemma is bounded by

��0�(�� |� ) � ��0 ��(�� |� )(1 � ��)1��� + ��0��
� + ��0��.

�e last term is bounded by �����2 by (� ). Using Markov’s inequality,

��0��
� � ��0 �

�ˆ ���
���0

(� )� ��(�)
���

> ��(�3+1)��2

�

� ���(�3+1)��2��0
�ˆ ���

���0
(� )� ��(�)

���

� ���(�3+1)��2��0

�ˆ
�
���
���0

(� )�

��
� ��(�)

�

,

where the last line uses Jensen’s inequality and convexity of � � ��� on �+. Fubini’s theorem
implies

��0

�ˆ
�
���
���0

(� )�

��
� ��(�)

�

=
ˆ ˆ (���0 )�+1

(��� )�
� ��(�) =

ˆ
���1+�(��0 ,�� )� ��(�) � ���3��2 ,

using the de�nition of ��, on which �� is supported. Pu�ing the previous inequalities together
gives ��0��

� � �����2 . It remains to bound �(�� |� )(1 � ��) on the event ��. By de�nition, on ��,
ˆ ���

���0
(� )��(�) � �[��]

ˆ ���
���0

(� )� ��(�) � �[��]��(�3+1)��2 .

We have �[��] � ���2��2� � ���2��2 for � > �� using (� ). �e last display is thus bounded from
below by ��(�2+�3+1)��2 . Using this fact, one can bound the denominator of Bayes’ formula (wri�en
with ��� /���0 ) from below to get

��0 ��(�� |� )(1 � ��)1��� � �(�2+�3+1)��2��0 �

ˆ
��

���
���0

(� )(1 � ��)��(�)�

� �(�2+�3+1)��2
ˆ
��

�� (1 � ��)��(�).
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Let us further bound from above, using (� ), (�),
ˆ
��

�� (1 � ��)��(�) � � [��(�)�] +
ˆ
�����(�)

�� (1 � ��)��(�) � �����2 + �����2 .

Pu�ing the previous inequalities together yields, provided � > �2 + �3 + 2,

��0 ��(�� |� )(1 � ��)1��� � 2�(�2+�3+1)��2����2 � 2�����2 .

Combining all previous bounds gives the result.

Lemma 5. Suppose the random variable � veri�es

� (� � �) � �1���2� for any � � �0 > 0.

�en for any � � (0, �2/2],
���� � ���0 + �1.

Proof.

Using the formula �� � � +
´ �
� �[� � �]�� for � = ��� and the assumption,

�[��� ] � � + �1
�2 � ���

1�(�2/�).

Se�ing � = ���0 and using � � �2/2, the former is bounded by � + �1(�/�)����2 � � + �1.

Proof of the main results

Proof of�eorem 1.

From Lemma 4, one deduces that for any � � �0 = �1��2� ,

��0�[�(�� , ��0 ) > � |� ] � �1���2� .

One then uses Lemma 5 to deduce, for small �, that

��0
�
�[� |� ] ����(�� ,��0 )�

�
� 4 + ���1��2�

for small �. �e result now follows from an application of Lemma 3.

Proof of�eorem 2.
Invoking Lemma 1, it is enough to �nd � � S�� such that

�� (��0 , �� ) + � (�,�) � (�1 + �2 + �3)�2� .
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De�ne � = ��
�=1 �� , with �� = ��� | ���

the restriction of ��� to ��� , both de�ned in the statement of
the lemma. By de�nition � � S�� and Supp(�) � ��

�=1 ��� .

4 High-dimensional regression

Consider the high-dimensional regression model

� = �� + �,

where the notation is as in the corresponding earlier chapter. Here for simplicity we focus on one
example of design matrix, namely we assume it has independent Gaussian entries

��� � N (0, 1) iid. (5.5)

Let us consider a subset-selection prior on � (with here � instead of �)

� � �� , � | � � Unif(S�), � | � � �
���

� � �
���

�0, (5.6)

with here � = Lap(�) a Laplace distribution with parameter �. Suppose the following slightly faster
than exponential decrease: there exist constants �1,… ,�4 > 0 with

�1���3��(� � 1) � ��(�) � �2���4��(� � 1), (5.7)

for � = 1,… , �. �is condition is satis�ed for instance for the following hierarchical Bayes version of
the spike and slab prior, for some �xed � > 1 and � > 0,

� � Beta(1, ��)

� = (��)1���� | � �
�

�
�=1

(1 � �)�0 + �Lap(�),

As a variational class, let us consider the mean-�eld spike and slab class

P�� =

�

��,� ,� =
�

�
�=1

(1 � ��)�0 + ��N (�� , �2
� ), �� � �, �� � �+, �� � [0, 1]

�

. (5.8)

De�ne the corresponding variational Bayes posterior distribution

�� = argmin
��,� ,��P��

� (��,�� ,�(� | � )). (5.9)

By taking the mean-�eld class (5.8) in this context, one enforces substantial independence in the
variational posterior distribution, with a much reduced complexity in terms of models: there are
only � inclusion variables in (5.8) instead of 2� models the posterior puts mass on. Note also that
while one may choose a Gaussian distribution for slabs from the variational class, it is important to
keep a Laplace slab in the prior itself (otherwise one may face over-shrinkage).
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�eorem 4. Let the prior � be a subset-selection prior as in (5.6) that satis�es (5.7) with slab
� in (5.6) a standard Laplace variable. Suppose also that �� = �(

�
�/ log �). �en, on an event

of overwhelming probability under the law of � as in (5.5), for �� going to in�nity arbitrarily
slowly,

sup
�0��0[��]

��0 ���
� � �� � �0�2 > ��

�
�� log �

� �
= �(1).

�eorem 4 is a special case of �eorem 1 in Ray and Szabo (2022), obtained by using the condi-
tions on � assumed therein are veri�ed for the design (5.5) with overwhelming probability. On the
other hand, under the same conditions on � and for the same prior on �, it follows from Castillo,
Schmidt-Hieber and van der Vaart (AoS 2015), �eorem 2, that the original posterior distribution
�[� | � ] converges towards �0 in � � �2 norm at the same rate

�
�� log �/� which can be shown to be

(near)-optimal in this se�ing.

�is shows that the variational Bayes approximation ��[� | � ] converges at the same rate as the orig-
inal posterior �[� | � ]. An advantage here of the VB-posterior is that this approximation is quite fast
to compute, while sampling from the original posterior typically requires the use of MCMC algo-
rithms that scale signi�cantly slower in terms of dimension.

For more details on the proposed variational algorithm (used to solve the optimisation problem, i.e.
�nding the best approximant in the consideredmean-�eld class) we refer to Ray and Szabo (2022); the
method is implemented in the R package sparsevb, which covers both linear and logistic regression.
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