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IRMAR, Université Rennes 1, campus beaulieu, 35042 Rennes cedex, France

yves.coudene@univ-rennes1.fr

First draft 21/06/2007, accepted 13/10/2008, last updated 15/05/2012.
Published in Contemporary Mathematics, Amer. Math. Soc.,vol 485, 2009, 85-89.

Abstract

We give a short dynamical proof of the unique ergodicity of the horocyclic
flow associated to an Anosov flow with one dimensional orientable strong
stable distribution. This proof extends to the partially hyperbolic setting. 1

The unique ergodicity of the horocyclic flow on a compact surface of constant neg-
ative curvature was proven by H. Furstenberg in [Fu73]. The proof was based on
the study of the linear action of PSL2(R) on R

2, and used techniques from har-
monic analysis. This result was then generalised in different directions by B. Marcus
[Ma75], R. Bowen [BoMa77], W. Veech [Ve77], M. Ratner [Ra92] and others.

We propose a proof of the unique ergodicity of the horocyclic flow shorter than
the previous one, along the lines of the dynamical proof of B. Marcus. It holds in the
context of Anosov flows with one dimensional orientable strong stable distribution.
Our proof does not make use of any contraction estimate along the weak unstable
distribution. Hence we obtain a result valid in the partially hyperbolic setting
(Compare [EP78]).

Definition

Let X be a compact metric space, gt a continuous flow on X . Given ε > 0 and
x ∈ X , the local weak unstable distribution of gt is defined by :

Wwu
ε (x) = {y ∈ X | ∀ t ≥ 0, d(g−t(x), g−t(y)) < ε}

Let hs be a continuous flow on X ; a Borel probability measure µ invariant under hs,
is said to be absolutely continuous with respect to Wwu if the following conditions
are satisfied :

– For all x0 ∈ X , for all ε > 0, there exists δ > 0 such that :
for all y ∈ Wwu

ε (x0) ∩ B(x0, δ) and s ∈] − 1, 1[, the intersection Wwu
ε (hs(x0)) ∩

h]−2,3[(y) consists in a single point x. The map (y, s) 7→ x, which is defined from
(

Wwu
ε (x0)∩B(x0, δ)

)

×]− 1, 1[ into X , is a homeomorphism onto a neighbourhood
of x0.

– In these coordinates, the measure µ, after renormalisation, is of the form dνs(y)⊗
ds, with νs probability measures, which depend measurably on s.

The first condition says that Wwu is transverse to the flow hs; the second condition
says that the Lebesgue measure on hs-orbits is invariant under the holonomy given
by Wwu. This is a compatibility condition between µ and the parameterisation hs.

137B10, 37D40, 34C28

1



Theorem

Let X be a compact metric space, gt and hs two continuous flows on X which

satisfy the relation : gt ◦hs = hse−t ◦gt. Let µ a Borel probability measure invariant

under both flows, which is absolutely continuous with respect to Wwu, and with full

support. Finally assume that the flow hs admits a dense orbit. Then hs is uniquely

ergodic.

Remarks

• These assumptions are satisfied if X is a compact negatively curved surface, gt
is the geodesic flow on the unit tangent bundle, hs is the horocyclic flow with the
Margulis parametrisation, and µ is the Bowen-Margulis measure.
• More generally, it holds if gt is a topologically mixing Anosov flow with one-
dimensional strong stable distribution, hs is a well chosen parameterisation of that
distribution and µ is the measure of maximal entropy [Ma75].
• The simplest example of a partially hyperbolic flow satisfying the hypothesis of
the theorem is given by the suspension of a linear automorphism of the torus with
a single eigenvalue of modulus strictly smaller than one, and with eigenvalues on
the unit circle. Other examples are given by the action of an Anosov flow on the
frame bundle of the manifold.
• The unique ergodicity of the flow hs implies the ergodicity of hs with respect to
µ. This in turn implies the mixing of gt with respect to µ, hence the ergodicity
of gt with respect to µ. This does not follow from the classical Hopf argument
[Ho39][Ho71], since we didn’t ask for contraction along Wwu.

Proof

Let f be a continuous function defined on X . The Birkhoff sums of f with respect
to the flow hs are denoted by St(f). The relation between hs and gt gives :

1

t
St(f)(x) =

1

t

∫ t

0

f(hs(x)) ds =

∫ 1

0

f(hst(x)) ds =

∫ 1

0

f(g− ln(t) ◦hs ◦ gln(t)(x)) ds

We write: Mt(f)(x) =
∫ 1

0 f
(

g− ln(t)(hs(x))
)

ds, so that 1
t
St(f)(x) = Mt(f)

(

gln(t)(x)
)

.

Lemma The family {Mt(f)(x)}t∈R+
is equicontinuous.

Proof of the lemma

The modulus of uniform continuity of f is denoted by ωf (ε) :

ωf (ε) = sup{|f(x)− f(y)| | x, y ∈ X with d(x, y) < ε}

We fix x0 ∈ X , ε > 0 and consider x close to x0.
In the coordinates system associated to x0, x can be written as (y(x), s(x)); we de-
fine Vx = B(y(x), δ)×]s(h−1(x)), s(h1(x))[ in these coordinates. We see that 1Vx

(z)
converges to 1Vx0

(z) pointwise for z ∈ (∂Vx0
)c, when x tends to x0. This conver-

gence also holds in the L2 topology, if Vx0
has been chosen such that µ(∂Vx0

) = 0.

We now work in the coordinates system associated to x. In these coordinates, Vx

can be written as Kx×]−1, 1[, with Kx = Wwu
ε (x)∩h]−2,3[

(

B(y(x), δ)∩Wwu
ε (x0)

)

,
and the measure µ/µ(Vx) can be decomposed as dνs ⊗ ds.

|Mt(f)(x)−
1

µ(Vx)

∫

Vx

f(g− ln(t)(z))dµ(z)|

≤ |
∫ 1

0
f
(

g− ln(t)(hs(x))
)

ds−
∫ 1

0

∫

Kx

f ◦ g− ln(t)(y, s)dνs(y)ds |

≤
∫ 1

0

∫

Kx

|f ◦ g− ln(t)(0, s)− f ◦ g− ln(t)(y, s)| dνs(y) ds

The points (s, 0) and (s, y) are on the same local weak unstable leaf Wwu
ε (hs(x)).

Since for all z ∈ X , g−t

(

Wwu
ε (z)

)

⊂ Wwu
ε (g−t(z)), we see that the quantity

|f ◦ g− ln(t)(0, s)− f ◦ g− ln(t)(y, s)| is bounded by ωf (ε).
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|Mt(f)(x0)−Mt(f)(x)| ≤ 2ωf(ε) + |
∫

Vx0

f(g− ln(t)(z))
dµ(z)
µ(Vx0

) −
∫

Vx

f(g− ln(t)(z))
dµ(z)
µ(Vx)

|

≤ 2ωf(ε) + ||f ||2 || 1
µ(Vx0

) 1Vx0
− 1

µ(Vx)
1Vx

||2

This ends the proof of the lemma.

The Ascoli theorem now asserts that the family {Mt(f)(x)}t∈R+
has a compact

closure with respect to the uniform topology. Let us denote by f̄ one of its accumu-
lation points. If we manage to show that f̄ is constant, then the family {Mt(f)(x)}
will converge uniformly to that constant. Thus, 1

t
St(f) will also converge uniformly

to a constant; this fact implies the unique ergodicity of hs.

Let tk → ∞ and f̄ a continuous function such that : || Mtk(f)− f̄ ||∞ −→ 0.
This convergence also holds in L2-norm, so the quantity || 1

tk
Stk(f)(x)− f̄ ◦gln(tk) ||2

goes to 0 with k. Let us apply the Von Neumann ergodic theorem to hs: there is
an hs-invariant L

2-function Pf such that || 1
t
St(f)− Pf ||2 −→ 0.

From these two facts, and the gt-invariance of µ, we get:

|| f̄ − Pf ◦ g− ln(tk) ||2 = || f̄ ◦ gln(tk) − Pf ||2 −→ 0 with k.

We know that Pf is hs-invariant almost everywhere. From the commutation rela-
tion between hs and gt, we see that Pf ◦ gt is hs-invariant, for all s, t. The function
f̄ , as an L2 limit of hs-invariant functions, is also hs-invariant almost everywhere:
f̄ ◦hs = f̄ µ− a.e. So, f̄ is an hs-invariant continuous function, and the flow hs has
a dense orbit. This implies that f̄ is constant.

The non-compact case

Can we drop the compactness assumption in the previous result ? We cannot expect
the flow to be uniquely ergodic in that case; still, we can show that µ is the unique
invariant probability measure amongst the ergodic invariant measures ν that satisfy:

ν
(

{x ∈ X | ω(x) = φ}
)

= 0.

The set of accumulation points of gt(x), t ≥ 0, has been denoted by ω(x). In
other words, ergodic hs-invariant probability measures, different from µ, must be
supported by the set of points going to infinity under the action of the flow gt. Note
that this set is both hs- and gt-invariant.

The previous argument uses compactness at one point, in order to apply the
Ascoli theorem. If X is not compact, we can still use that theorem, if we endow
the space of continuous functions with the compact-open topology, instead of the
uniform topology; cf [Du73] 7.6.4. Convergence for this topology is equivalent to
uniform convergence on compact subsets. This implies simple convergence, and in
our case, L2-convergence, since all the quantities considered are bounded by the
uniform norm of f . So the previous argument applies verbatim and gives uniform
convergence on compact subsets of Mt(f) to the constant

∫

fdµ, for all f bounded
uniformly continuous. This shows that µ is ergodic with respect to hs but this is
not enough to get unique ergodicity.

We now assume that ν is an hs-invariant probability measure that satisfies the
condition: ν

(

{x ∈ X | ω(x) = φ}
)

= 0. Applying the Birkhoff ergodic theorem
to hs and ν, we find an hs-invariant function Pf with

∫

Pf dν =
∫

f dν, such
that 1

t
St(f) converges to Pf , ν-a.e. Let x ∈ X such that 1

t
St(f)(x) converges to

Pf(x), and gln t(x) has an accumulation point: there is a sequence tk such that
gln(tk)(x) is converging. Let K be a compact set containing that subsequence (e.g.
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K = {gln(tk)(x), k ∈ N}). The quantity Mt(f) converges uniformly on K to
∫

fdµ,
so we have:

1

tk
Stkf(x) = Mtk(f)(gln(tk)(x)) →

∫

fdµ

Hence Pf(x) =
∫

fdµ, for ν-a.e.x, and integrating with respect to ν,
∫

fdν =
∫

fdµ.
We have proven:

Theorem

Let X be a separable metric space, gt and hs two continuous flows on X which

satisfy the relation : gt ◦ hs = hse−t ◦ gt. Let µ be a Borel probability measure

invariant under both flows, which is absolutely continuous with respect to Wwu, and

with full support. Finally assume that the flow hs admits a dense orbit. Then µ is

ergodic with respect to hs, and this is the only hs-invariant probability measure that

satisfies:

µ
(

{x ∈ X | ω(x) = φ}
)

= 0.

As an application, we recall that, on a finite volume negatively curved manifold,
a point that goes to infinity under the action of the geodesic flow is on a closed
horocycle. So we recover a famous theorem of Dani: on a finite volume surface with
negative constant curvature, the only ergodic hs-invariant probability measures are
the volume and the Dirac masses on closed horocycles.

Finally, we note that in the variable curvature setting, the measure µ is not
equal to the Riemannian volume, and there are examples of surfaces with finite
volume but for which the natural candidate for µ is infinite (M. Peigné, personal
communication).
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