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Abstract

We create computer-generated pictures of the following uniformly hyper-
bolic systems : the attractor derived from Anosov, the Plykin attractor and
a Smale horseshoe. These systems provide simple examples on which to test
computer programs devoted to simulation of “chaotic” dynamical systems.

1 Introduction

Computer-generated pictures of fractals and attractors are quite common on the
internet. The mandelbrot set [Ma83], the Lorentz attractor [Lo63] , the Feigenbaum
bifurcation[Fei78] and the Henon attractor[He76] are amongst the most represented
dynamical systems on the web. Pictures and computer experiments have proven
to be quite useful for their study. In some cases, computer-assisted proofs of their
“chaotic” behaviour are the only proofs available.

These systems all fall in the category of systems exhibiting non-uniformly hy-
perbolic behaviour. Their study is modelled on the theory of uniformly hyperbolic
dynamical systems, and try to recover some of the most proeminent features of
the hyperbolic theory : invariant SRB measures, bernoullicity of these measures,
distribution results concerning the repartition of typical orbits, etc.

The modern theory of uniformly hyperbolic systems goes back to the middle
of the twentieth century, with the work of D.V. Anosov [An67], S. Smale [Sm67].
It is now a well established theory , and gives a pretty complete description of the
dynamics of smooth systems, whose differential is uniformly contracting and dilating
on two invariant complementary sub-bundles of the tangent space. The theory
provides numerous examples of non-trivial attractors, and gives a nice description
of the dynamic on these attractors, by the use of a symbolic model.

As strange as it may seem, there are almost no pictures of these uniformly
hyperbolic attractors. There may be several reasons for that ; the theory was build
during the sixties, seventies ; at that time, computers were not powerful enough
to handle the computations. Also computer experiments are usually focused on
systems of physical origin. These systems are often of the non-uniformly hyperbolic
type. One of the goal of this article is to provide computer-generated pictures of
uniformly hyperbolic dynamical systems. Another goal is to show that we are far
from understanding everything about them. We think that these pictures may help
in pointing out where are the remaining difficulties, and how to solve them.

Three systems are described in this article : the attractor derived from Anosov,
the Plykin attractor, and a Smale horseshoe. From the numerical viewpoint, we
think they have a great virtue : their statistical properties have been extensively
studied and all possess complete rigorous mathematical proofs. Hence they provide



simple examples on which testing the many computer programs devised for the
study of more complicated dynamical systems.

2 Attractors derived from Anosov

The first example is due to S. Smale [Sm67] ; it is obtained by perturbing an Anosov
diffeomorphism. Hence it is called an attractor derived from Anosov. This attractor
is defined on the two-dimensional torus TZ2. The torus may be seen as a product of
two circles S! x S!, or as the quotient of the plane R2 by the subgroup Z? of points
with integer coordinates : T2 ~ R?/Z2.

2.1 Hyperbolic automorphism of the torus

We first need some properties of the matrix A = (7 1). Let us denote the golden

mean by A = 1+2—*/5 ~ 1.618. The matrix A admits two eigenvalues A2 and A~2 ; the
associated eigenvectors are e, = ﬁ (})and es = ﬁ (31), and the following
relation holds :

2 1) 1 A -1\ (A2 0 1 A1

1 1) 1+ \1 A 0 X2) ixa\-1 A
The action of the matrix (2 }) on the plane gives an invertible transformation
on the torus T2, called a hyperbolic toral automorphism. This transformation is an
Anosov diffeomorphism : there are two invariant uniformly contracting and dilating

sub-bundles in the tangent space. The contracting one is directed by e, at each
point, the dilating one by e;.

The following can be shown about the dynamics of the toral automorphism :
— the periodic points are dense ;

— there exists a point whose orbit is dense ;

— there are many ergodic invariant probability measures with full support ;

These properties are shared by all transitive Anosov diffeomorphisms, and can be
obtained by the use of a symbolic model. For the hyperbolic toral automorphisms,
this model was first constructed by R. Adler and B. Weiss [AW67]. It was later
extended by Sinai to all transitive Anosov diffeomorphisms [Si68]. The book of
R.Bowen [Bo75] contains a presentation of these results, as does the survey of J.C.
Yoccoz [Yoc95).

We describe briefly how to build this symbolic model for the automorphism
(? 1)- Let us begin with the simpler example of the multiplication by 2 defined on
R/Z. The base two expansion of real numbers gives a surjective map from the set
of sequences of zeros and ones to the space R/Z.

Qp
(an)neN* = Z 2_"

Multiplication by two mod one on the reals amounts to shifting the digits of the
expansion to the left. Hence we obtain a conjuguation between the multiplication
by two on R/Z and the shift on the space of sequences of zeroes and ones.

The properties described earlier are easy to prove now : two points are 2"-close
together if their n first digits coincide. Given any sequence of zeros and ones, we
may take the first n terms of the sequence and repeat them periodically. This gives
a new sequence, which is periodic and close to the previous one. Also a dense
sequence is obtained by concatenating all words built of zeroes and ones : 0 1 00 01



10 11 etc. Finally, for any p €)0, 1(, there is a probability measure giving probability
pto0and 1—pto 1. The law of large number asserts that this measure is ergodic.

In the base (e, es), the action of the matrix (; }) is multiplication by A2 on the
first coordinate, and multiplication by A~2 on the other coordinate. Now any real
number z > 0 admits a decompositon in base A : £ = > a,A™" for some sequence
a, € {0,1} (just define a,, recursively by an11 = E((z — Y." arAF) /A" 1) where E
is the integer part, and note that not all sequences occur : if a, = 1, ap4+1 = 0). So,
given two sequences of zeroes and ones, we may associate a point on the torus whose
first coordinate in the base (e,,e;) admits the first sequence as its decomposition
in base A, and whose second coordinate is given by the second sequence. Applying
the matrix amounts to shifting the sequences twice to the right and to the left
respectively. One checks that the two digits lost on the left-shifted sequence are
recovered on the other sequence. This gives the desired symbolic model and implies
the properties discussed above.

2.2 The perturbation

We now add a term to the diffeomorphism, so as to transform the fixed point (g)
into an attracting fixed point.

a(0)m (3 1) (3) + r watarera (3 1) (3)

with k(z) = (1 — 2%)?1[_q,1)(2) used as a C* “bump” function. The parameter a
controls the extent of the perturbation, the parameter p; controls its amplitude.
The additionnal term only modifies the dgminant eigenvalue. The differential at
the fixed point ({) is now conjuguated to ( ** e 2.

Note that A2 ~ 2.618 ; so if we choose p; = —2.2, the point (3) becomes an
attracting fixed point. If the parameter a is less than 0.5, say a = 0.4, the periodic
point (o3) of A is again a hyperbolic periodic point for f;. Hence not all points are
attracted by (§). So, we may expect to see an open set of points attracted to the
point (§) , whereas there is still an invariant compact set on which the dynamics
retains some of the features of the hyperbolic toral automorphism. This is indeed
what happens for the chosen set of parameters. The basin of attraction of the point
(3) is depicted in figure 1.

Figure 1 A A Figure 2



Figure 2 is an enlargement of a small part of figure 1, centered on the point (53 ).
It reveals a structure of the type “Cantor times interval” in the complementary of
the basin of attraction.

Let us explain how it was obtained. For each pixel on the picture, we calculate
the number of iterations needed to reach a small neighborhood of the attracting fixed
point (), say the disk {(z,y) | > + > < 0.0001}. The pixel is colored according
to that number of iterations : points that take less than ten iterations to reach
the small disk are colored in black. The intensity of the color then increases until
thirty iterations are needed, in which case the pixel appears in red. Pixels in yellow
need around seventies iterations. Points needing more than two hundreds iterations
should appear in bright white, although they are hard to spot on the picture. Of
course, points needing more than ten iterations to reach the small disk around the
attracting fixed point are very close to the boundary of the basin of attraction ;
thus the colored area on figure 1 almost coincides with the complementary of the
basin.

Other algorithms can be used to get a glimpse at that basin of attraction. In
figure 3, we first color the small disk {(z,y) | #® + y? < 0.0001} radially. Points in
the direction of —e, are colored in white ; the color smoothly fades until it reaches
dark blue, which is attained for points in the direction of e,. Each pixel is then
colored according to the color of the first iterate which falls in the small disk.

2
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2.3 Properties of the attractor

We now consider the inverse of the transformation f, instead of f;. The point (g)
is a repelling fixed point for f{'. The complementary of its basin of repulsion is an
attractor ; it is an attractor derived from Anosov.

Let us denote D = {(z,y) | % + y* < 0.0001}. The basin of attraction B of fi
is the set of all points admitting an iterate which falls in D. Hence we have B =
U fi (D). the basin B is a countable increasing union of open sets diffeomorphic
to a disk ; hence it is an immersed disk. On the set B, the transformation f; is
topologically conjugated to its linearization D g)fi- In other words, there is an
homeomorphism h : B = R? such that ho fioh™! = (*2:” AEZ) ; recall that
A2 ~ 2618, p; = —2.2 and A2 ~ 0.382.

The existence of such a conjuguacy in a small neighborhood of the attracting fixed
point follows from the Hartman-Grossman theorem. It is then extended to the whole
basin of attraction by defining h = fi ™ o ho fI* on the iterates of that conjugacy
neighborhood. As a consequence, we see that the open set U = T2 — () satisfies
the property :

B°= () f1U).

neN

This means that the invariant compact set B€ is an attractor for f; ! whose basin
of attraction coincides with T? — (§).

The restriction of the tangent space to the set B¢ can be decomposed into two
invariant one-dimensional subbundles, that are respectively uniformly contracted
and dilated by the differential of the transformation f;. The proof can be found in
[PaDM82]. In fact, the bundle directed by e, is again invariant by Df;, and gives
the contracting bundle of f;'. The dilating bundle is obtained by an invariant
Cone field criterion.

The set B is an attracting compact invariant hyperbolic set for f;- !, The general
theory of uniformly hyperbolic systems then provides a symbolic model for the
dynamics of f; ! in restriction to B°. This model allows to recover stochastic
properties similar to the one satisfied by the hyperbolic automorphism of the torus.

3 The Plykin attractor

The attractor derived from Anosov lives on the torus. One can ask if there are
uniformly hyperbolic attractors on the sphere. The first example of such a system
was given by Plykin [Ply74] ; it can be obtained from the attractor derived from
Anosov by realizing the sphere as a quotient of the torus.

3.1 Second deformation

We first make another deformation to the map fi, in order to obtain other at-
0.5

tracting basins. The orbit of the point (§2) is periodic of period three under the
transformation f. Indeed we have :

0.5 0.5 0.5 0 0 0.5
h (0.5) B ( 0 ) ’ fl( 0 ) B (0.5) S (0.5) - (0.5)‘
Let us denote the integer part of some real number z by E(z). The following change

of variables :
ze =z — 0.5 E(2z 4+ 0.5)
ys =y — 0.5 E(2y + 0.5)



sends the three periodic points to the center (§). In order to transform these points
into attracting periodic points, we add another term to the map fi, and consider
the map f2 : T? — T2 sending (?) to :

()25 (5 3) ()R (5 ) (3)

We take a = 0.4 and b = 0.1, so that the two perturbations do not interfere. The

differential of f» at the three periodic points is conjuguated to (*2 tr2 %,). The

periodic orbit of period three becomes attractive if, for example, ps = —2.2.

The result is depicted in Figure 4. That figure is centered on the periodic point
(5:2)- Its basin of attraction appears in black. The algorithm used for that picture
is similar to the algorithm of Figure 1. The inverse of the third iterate of fa, f; 2,
admits four repelling fixed points ; the complementary of the basin of repulsion of
these four points is an attractor, on which the dynamics enjoys properties similar to
the hyperbolic automorphism of the torus. The four basins of repulsion are depicted
in different colors on figure 5.

Figure 4 A A Figure 5

3.2 From the torus to the sphere

We now consider the symmetry on the torus given by : (z,y) — (—z,—y). This
symmetry has four fixed points, which are precisely the fixed point of f» and the
three periodic points of period three. We may quotient the torus by this symmetry.
The resulting space is topologically a sphere ; from the differential viewpoint, it is
a sphere with four conical points. Such a space has an euclidean model, namely
the tetrahedron. If we start from the hexagonal torus instead of the usual one , the
resulting tetrahedron is regular.

The transformation f, ' commutes with the symmetry, so it defines a transfor-
mation of the tetrahedron, for which the four vertices are repelling fixed points. The
Plykin attractor is obtained by smoothing the tetrahedron and the transformation
f;! in a neighborhood of the vertices. Note that if the smoothing is small enough,
it takes place in the basins of repulsion of the repelling points, and do not alter the
attractor. So, for purpose of representation , this smoothing is irrelevant. Figure 6
gives an explicit model for the tetrahedron, which can be cut and pasted to obtain
a representation of the Plykin attractor.



Figure 6 A

3.3 Lakes of Wada

Finally, the sphere or the tetrahedron may be stereographically projected on the
plane. The repelling fixed point (§) on the torus is sent to infinity by the projection.
The map obtained from f; ! is a diffeomorphism of the plane, for which infinity is
repelling ; it admits moreover a period three repelling orbit, and the complementary
of the basins of repulsion is an attractor which is depicted in Figure 7.

Figure 7 A A Figure 8



We remark that the basins of repulsion of the transformation form Lakes of
Wada : each of the four basins is an immersed disk ; and each of these disks have
the same boundary , the attractor itself. In other words, any point on the attractor
is accumulated by the four basins of repulsion. Such immersion of disks in the plane
was first conceived by L. Brouwer and effectively built by K. Yoneyama [Yonl7].
The basins are depicted in different colors on Figure 8.

4 The Smale horseshoe

4.1 Third deformation

We come back to the transformation f; on the torus. What happens if the periodic
orbit of period three of f; is deformed into a repelling periodic orbit instead of an
attracting periodic orbit ? Such a deformation can be achieved by adding a third
term to the automorphism of the torus :

5 (2) = () + BRI (o) —sint ()
\y 2\y 1+ A2 sin(pg)  cos(ps) Y2
The parameter p; determines the amplitude of the perturbation , the parameter py

determines its phase. The eigenvalues of D f3 at the periodic points of period three
are equal to A2 4 py + p3e* and A\~2 + pze™t. We take p, = —2.2, p3 = 0.7.

Figure 9 shows the result for ps = 0 ; the algorithm used is the same as in Figures
1 and 2. The figure is centered on the point (§3). Note that colors around this
point seem to be brighter, compared to Figure 1. Figure 10 shows an enlargement
around (¢3), and should be compared with Figure 2. We can see how the basin of
attraction of the point (g) (in black on the picture) is repelled by the point (g2 ).

Figure 9 A A Figure 10

Figures 11 and 12 show the result for p4 = 0.6. Red has been replaced by Blue.
The basin of attraction of the point (§) (dark part of the picture) now turns around
the repelling point ().



Figure 11 A A Figure 12

4.2 Horseshoes

The transformation f3 on the torus induces a mapping on the sphere, which exhibits
a “Smale horseshoe”. It possesses a repelling orbit of period three, and the infinity
is an attracting fixed point.

Figure 13 A



The compact set K depicted in Figure 13 (ps = 0) consists of the points which
are not attracted by infinity. This set may be split into three invariant subsets :
the repelling orbit of period three ; a Cantor set €2 consisting of the closure of the
recurrent points of f3 (different from the three repelling points) ; and the set of
points which are attracted by this Cantor set. The closure of the recurrent points
is the set usually called the horseshoe. One can show that the transformation g
admits an hyperbolic decomposition in restriction to this set. Thus f3 is an Axiom
A diffeomorphism, and the general theory of Axiom A diffeomorphisms provides a
symbolic model describing the dynamics of f3 on Q.

Figure 14 is a colored version of Figure 13, whereas Figure 15 is an enlargement
of Figure 14 around one of the three repelling points. The brighter the points, the
longer it takes to reach infinity, hence the closer they are from the set of points not
attracted by infinity.

Figure 14 A A Figure 15

In [Sm67], S. Smale gives a general method for building horseshoes, by “stretch-
ing” rectangles. We explain how it relates to the preceding construction.

A

Figure 16 A
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Let us describe a continuous transformation from the plane to itself, which gives
rise to a Cantor set similar to the one depicted in Figure 13. The set pictured
at the left of Figure 16 is denoted by A ; outside this set, the transformation is
uniformly contracting. The set itself is uniformly dilated in the vertical direction,
and contracted in the horizontal direction. It is then “bent” as depicted in the
second picture of Figure 16. The last picture shows what is obtained by iterating
another time the transformation. The infinity is an attracting fixed point for the
inverse of the transformation, which also possesses a repelling fixed point located
in the bottom part of A. The intersection of all the images of A gives a compact
set which locally looks like a Cantor set times an interval.

By modifying slightly the preceding construction, we can build a transformation
with a period three repelling orbit, and an attracting fixed point at infinity. The
picture below shows how the bending is done.

I~ -
P,

N
\_/ Nl

Figure 13 is then obtained by bending a last time the resulting compact set, as done
on the picture below.

Figure 17 A

4.3 The dissipative part of the horseshoe

What can be said about the set K (ie the set depicted in Figure 13) ? or from the
subset of the torus depicted in Figure 9 or 11, from which K is obtained ? The
action of f3 on this set is totally dissipative, and provides few informations.

On the other hand, there is a flow defined on this compact set. The set K is
locally homeomorphic to the product of a Cantor set by an interval, so we may
consider translation along this interval. Several parameterizations are possible ;
for example, a riemannian metric defined on a neighborhood of K may be used to
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obtain a flow ¢; parameterized by arc length. The trajectory of some point z € K
under the flow is the projection on the sphere of the stable manifold W#(z) of the
point z, under the action of f3 :

We(z) = {y € T | d(f§ (2), £ (y)) = 0 as n — +o0}

The flow has three singularities coming from the repelling orbit of f3. Note that
the points whose stable manifold ends on one of the repelling points (3), (¢) or
(%), form six immersed one dimensional curves which are dense in K. On the
complementary of these points, the flow is continuous.

It is not known whether the flow ¢; admits a finite of infinite ergodic invariant
measure fully supported on K. Also, studying the statistical distribution of the
orbits of the flow is an open problem. Note however that the foliation W?* on
K—{(:2),(3),(%)} admits a unique transverse invariant family of measures ; this
result is due to R. Bowen and B. Marcus [BM77]. Hence if the measure exists, it is
unique.

From the similarities between the pictures obtained for the attractor derived
from Anosov and the horseshoe, one may conjecture that there indeed exists a
finite measure invariant by the flow, for a suitable parameterization of the flow.
Also it should be equidistributed in the sense that, means on increasing pieces of a
stable manifold should converge uniformly to the mean with respect to the invariant
measure, as soon as the chosen stable manifold is different from the six manifolds
ending on a repelling periodic point of period three.
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